1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21 /* 22 * The UBI Eraseblock Association (EBA) sub-system. 23 * 24 * This sub-system is responsible for I/O to/from logical eraseblock. 25 * 26 * Although in this implementation the EBA table is fully kept and managed in 27 * RAM, which assumes poor scalability, it might be (partially) maintained on 28 * flash in future implementations. 29 * 30 * The EBA sub-system implements per-logical eraseblock locking. Before 31 * accessing a logical eraseblock it is locked for reading or writing. The 32 * per-logical eraseblock locking is implemented by means of the lock tree. The 33 * lock tree is an RB-tree which refers all the currently locked logical 34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. 35 * They are indexed by (@vol_id, @lnum) pairs. 36 * 37 * EBA also maintains the global sequence counter which is incremented each 38 * time a logical eraseblock is mapped to a physical eraseblock and it is 39 * stored in the volume identifier header. This means that each VID header has 40 * a unique sequence number. The sequence number is only increased an we assume 41 * 64 bits is enough to never overflow. 42 */ 43 44 #include <linux/slab.h> 45 #include <linux/crc32.h> 46 #include <linux/err.h> 47 #include "ubi.h" 48 49 /* Number of physical eraseblocks reserved for atomic LEB change operation */ 50 #define EBA_RESERVED_PEBS 1 51 52 /** 53 * next_sqnum - get next sequence number. 54 * @ubi: UBI device description object 55 * 56 * This function returns next sequence number to use, which is just the current 57 * global sequence counter value. It also increases the global sequence 58 * counter. 59 */ 60 unsigned long long ubi_next_sqnum(struct ubi_device *ubi) 61 { 62 unsigned long long sqnum; 63 64 spin_lock(&ubi->ltree_lock); 65 sqnum = ubi->global_sqnum++; 66 spin_unlock(&ubi->ltree_lock); 67 68 return sqnum; 69 } 70 71 /** 72 * ubi_get_compat - get compatibility flags of a volume. 73 * @ubi: UBI device description object 74 * @vol_id: volume ID 75 * 76 * This function returns compatibility flags for an internal volume. User 77 * volumes have no compatibility flags, so %0 is returned. 78 */ 79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) 80 { 81 if (vol_id == UBI_LAYOUT_VOLUME_ID) 82 return UBI_LAYOUT_VOLUME_COMPAT; 83 return 0; 84 } 85 86 /** 87 * ltree_lookup - look up the lock tree. 88 * @ubi: UBI device description object 89 * @vol_id: volume ID 90 * @lnum: logical eraseblock number 91 * 92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry 93 * object if the logical eraseblock is locked and %NULL if it is not. 94 * @ubi->ltree_lock has to be locked. 95 */ 96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, 97 int lnum) 98 { 99 struct rb_node *p; 100 101 p = ubi->ltree.rb_node; 102 while (p) { 103 struct ubi_ltree_entry *le; 104 105 le = rb_entry(p, struct ubi_ltree_entry, rb); 106 107 if (vol_id < le->vol_id) 108 p = p->rb_left; 109 else if (vol_id > le->vol_id) 110 p = p->rb_right; 111 else { 112 if (lnum < le->lnum) 113 p = p->rb_left; 114 else if (lnum > le->lnum) 115 p = p->rb_right; 116 else 117 return le; 118 } 119 } 120 121 return NULL; 122 } 123 124 /** 125 * ltree_add_entry - add new entry to the lock tree. 126 * @ubi: UBI device description object 127 * @vol_id: volume ID 128 * @lnum: logical eraseblock number 129 * 130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the 131 * lock tree. If such entry is already there, its usage counter is increased. 132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation 133 * failed. 134 */ 135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, 136 int vol_id, int lnum) 137 { 138 struct ubi_ltree_entry *le, *le1, *le_free; 139 140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); 141 if (!le) 142 return ERR_PTR(-ENOMEM); 143 144 le->users = 0; 145 init_rwsem(&le->mutex); 146 le->vol_id = vol_id; 147 le->lnum = lnum; 148 149 spin_lock(&ubi->ltree_lock); 150 le1 = ltree_lookup(ubi, vol_id, lnum); 151 152 if (le1) { 153 /* 154 * This logical eraseblock is already locked. The newly 155 * allocated lock entry is not needed. 156 */ 157 le_free = le; 158 le = le1; 159 } else { 160 struct rb_node **p, *parent = NULL; 161 162 /* 163 * No lock entry, add the newly allocated one to the 164 * @ubi->ltree RB-tree. 165 */ 166 le_free = NULL; 167 168 p = &ubi->ltree.rb_node; 169 while (*p) { 170 parent = *p; 171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb); 172 173 if (vol_id < le1->vol_id) 174 p = &(*p)->rb_left; 175 else if (vol_id > le1->vol_id) 176 p = &(*p)->rb_right; 177 else { 178 ubi_assert(lnum != le1->lnum); 179 if (lnum < le1->lnum) 180 p = &(*p)->rb_left; 181 else 182 p = &(*p)->rb_right; 183 } 184 } 185 186 rb_link_node(&le->rb, parent, p); 187 rb_insert_color(&le->rb, &ubi->ltree); 188 } 189 le->users += 1; 190 spin_unlock(&ubi->ltree_lock); 191 192 kfree(le_free); 193 return le; 194 } 195 196 /** 197 * leb_read_lock - lock logical eraseblock for reading. 198 * @ubi: UBI device description object 199 * @vol_id: volume ID 200 * @lnum: logical eraseblock number 201 * 202 * This function locks a logical eraseblock for reading. Returns zero in case 203 * of success and a negative error code in case of failure. 204 */ 205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) 206 { 207 struct ubi_ltree_entry *le; 208 209 le = ltree_add_entry(ubi, vol_id, lnum); 210 if (IS_ERR(le)) 211 return PTR_ERR(le); 212 down_read(&le->mutex); 213 return 0; 214 } 215 216 /** 217 * leb_read_unlock - unlock logical eraseblock. 218 * @ubi: UBI device description object 219 * @vol_id: volume ID 220 * @lnum: logical eraseblock number 221 */ 222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) 223 { 224 struct ubi_ltree_entry *le; 225 226 spin_lock(&ubi->ltree_lock); 227 le = ltree_lookup(ubi, vol_id, lnum); 228 le->users -= 1; 229 ubi_assert(le->users >= 0); 230 up_read(&le->mutex); 231 if (le->users == 0) { 232 rb_erase(&le->rb, &ubi->ltree); 233 kfree(le); 234 } 235 spin_unlock(&ubi->ltree_lock); 236 } 237 238 /** 239 * leb_write_lock - lock logical eraseblock for writing. 240 * @ubi: UBI device description object 241 * @vol_id: volume ID 242 * @lnum: logical eraseblock number 243 * 244 * This function locks a logical eraseblock for writing. Returns zero in case 245 * of success and a negative error code in case of failure. 246 */ 247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) 248 { 249 struct ubi_ltree_entry *le; 250 251 le = ltree_add_entry(ubi, vol_id, lnum); 252 if (IS_ERR(le)) 253 return PTR_ERR(le); 254 down_write(&le->mutex); 255 return 0; 256 } 257 258 /** 259 * leb_write_lock - lock logical eraseblock for writing. 260 * @ubi: UBI device description object 261 * @vol_id: volume ID 262 * @lnum: logical eraseblock number 263 * 264 * This function locks a logical eraseblock for writing if there is no 265 * contention and does nothing if there is contention. Returns %0 in case of 266 * success, %1 in case of contention, and and a negative error code in case of 267 * failure. 268 */ 269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) 270 { 271 struct ubi_ltree_entry *le; 272 273 le = ltree_add_entry(ubi, vol_id, lnum); 274 if (IS_ERR(le)) 275 return PTR_ERR(le); 276 if (down_write_trylock(&le->mutex)) 277 return 0; 278 279 /* Contention, cancel */ 280 spin_lock(&ubi->ltree_lock); 281 le->users -= 1; 282 ubi_assert(le->users >= 0); 283 if (le->users == 0) { 284 rb_erase(&le->rb, &ubi->ltree); 285 kfree(le); 286 } 287 spin_unlock(&ubi->ltree_lock); 288 289 return 1; 290 } 291 292 /** 293 * leb_write_unlock - unlock logical eraseblock. 294 * @ubi: UBI device description object 295 * @vol_id: volume ID 296 * @lnum: logical eraseblock number 297 */ 298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) 299 { 300 struct ubi_ltree_entry *le; 301 302 spin_lock(&ubi->ltree_lock); 303 le = ltree_lookup(ubi, vol_id, lnum); 304 le->users -= 1; 305 ubi_assert(le->users >= 0); 306 up_write(&le->mutex); 307 if (le->users == 0) { 308 rb_erase(&le->rb, &ubi->ltree); 309 kfree(le); 310 } 311 spin_unlock(&ubi->ltree_lock); 312 } 313 314 /** 315 * ubi_eba_unmap_leb - un-map logical eraseblock. 316 * @ubi: UBI device description object 317 * @vol: volume description object 318 * @lnum: logical eraseblock number 319 * 320 * This function un-maps logical eraseblock @lnum and schedules corresponding 321 * physical eraseblock for erasure. Returns zero in case of success and a 322 * negative error code in case of failure. 323 */ 324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, 325 int lnum) 326 { 327 int err, pnum, vol_id = vol->vol_id; 328 329 if (ubi->ro_mode) 330 return -EROFS; 331 332 err = leb_write_lock(ubi, vol_id, lnum); 333 if (err) 334 return err; 335 336 pnum = vol->eba_tbl[lnum]; 337 if (pnum < 0) 338 /* This logical eraseblock is already unmapped */ 339 goto out_unlock; 340 341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); 342 343 down_read(&ubi->fm_eba_sem); 344 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; 345 up_read(&ubi->fm_eba_sem); 346 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); 347 348 out_unlock: 349 leb_write_unlock(ubi, vol_id, lnum); 350 return err; 351 } 352 353 /** 354 * ubi_eba_read_leb - read data. 355 * @ubi: UBI device description object 356 * @vol: volume description object 357 * @lnum: logical eraseblock number 358 * @buf: buffer to store the read data 359 * @offset: offset from where to read 360 * @len: how many bytes to read 361 * @check: data CRC check flag 362 * 363 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF 364 * bytes. The @check flag only makes sense for static volumes and forces 365 * eraseblock data CRC checking. 366 * 367 * In case of success this function returns zero. In case of a static volume, 368 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be 369 * returned for any volume type if an ECC error was detected by the MTD device 370 * driver. Other negative error cored may be returned in case of other errors. 371 */ 372 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 373 void *buf, int offset, int len, int check) 374 { 375 int err, pnum, scrub = 0, vol_id = vol->vol_id; 376 struct ubi_vid_hdr *vid_hdr; 377 uint32_t uninitialized_var(crc); 378 379 err = leb_read_lock(ubi, vol_id, lnum); 380 if (err) 381 return err; 382 383 pnum = vol->eba_tbl[lnum]; 384 if (pnum < 0) { 385 /* 386 * The logical eraseblock is not mapped, fill the whole buffer 387 * with 0xFF bytes. The exception is static volumes for which 388 * it is an error to read unmapped logical eraseblocks. 389 */ 390 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", 391 len, offset, vol_id, lnum); 392 leb_read_unlock(ubi, vol_id, lnum); 393 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); 394 memset(buf, 0xFF, len); 395 return 0; 396 } 397 398 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", 399 len, offset, vol_id, lnum, pnum); 400 401 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 402 check = 0; 403 404 retry: 405 if (check) { 406 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 407 if (!vid_hdr) { 408 err = -ENOMEM; 409 goto out_unlock; 410 } 411 412 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 413 if (err && err != UBI_IO_BITFLIPS) { 414 if (err > 0) { 415 /* 416 * The header is either absent or corrupted. 417 * The former case means there is a bug - 418 * switch to read-only mode just in case. 419 * The latter case means a real corruption - we 420 * may try to recover data. FIXME: but this is 421 * not implemented. 422 */ 423 if (err == UBI_IO_BAD_HDR_EBADMSG || 424 err == UBI_IO_BAD_HDR) { 425 ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d", 426 pnum, vol_id, lnum); 427 err = -EBADMSG; 428 } else { 429 /* 430 * Ending up here in the non-Fastmap case 431 * is a clear bug as the VID header had to 432 * be present at scan time to have it referenced. 433 * With fastmap the story is more complicated. 434 * Fastmap has the mapping info without the need 435 * of a full scan. So the LEB could have been 436 * unmapped, Fastmap cannot know this and keeps 437 * the LEB referenced. 438 * This is valid and works as the layer above UBI 439 * has to do bookkeeping about used/referenced 440 * LEBs in any case. 441 */ 442 if (ubi->fast_attach) { 443 err = -EBADMSG; 444 } else { 445 err = -EINVAL; 446 ubi_ro_mode(ubi); 447 } 448 } 449 } 450 goto out_free; 451 } else if (err == UBI_IO_BITFLIPS) 452 scrub = 1; 453 454 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); 455 ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); 456 457 crc = be32_to_cpu(vid_hdr->data_crc); 458 ubi_free_vid_hdr(ubi, vid_hdr); 459 } 460 461 err = ubi_io_read_data(ubi, buf, pnum, offset, len); 462 if (err) { 463 if (err == UBI_IO_BITFLIPS) 464 scrub = 1; 465 else if (mtd_is_eccerr(err)) { 466 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 467 goto out_unlock; 468 scrub = 1; 469 if (!check) { 470 ubi_msg(ubi, "force data checking"); 471 check = 1; 472 goto retry; 473 } 474 } else 475 goto out_unlock; 476 } 477 478 if (check) { 479 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); 480 if (crc1 != crc) { 481 ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x", 482 crc1, crc); 483 err = -EBADMSG; 484 goto out_unlock; 485 } 486 } 487 488 if (scrub) 489 err = ubi_wl_scrub_peb(ubi, pnum); 490 491 leb_read_unlock(ubi, vol_id, lnum); 492 return err; 493 494 out_free: 495 ubi_free_vid_hdr(ubi, vid_hdr); 496 out_unlock: 497 leb_read_unlock(ubi, vol_id, lnum); 498 return err; 499 } 500 501 /** 502 * ubi_eba_read_leb_sg - read data into a scatter gather list. 503 * @ubi: UBI device description object 504 * @vol: volume description object 505 * @lnum: logical eraseblock number 506 * @sgl: UBI scatter gather list to store the read data 507 * @offset: offset from where to read 508 * @len: how many bytes to read 509 * @check: data CRC check flag 510 * 511 * This function works exactly like ubi_eba_read_leb(). But instead of 512 * storing the read data into a buffer it writes to an UBI scatter gather 513 * list. 514 */ 515 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol, 516 struct ubi_sgl *sgl, int lnum, int offset, int len, 517 int check) 518 { 519 int to_read; 520 int ret; 521 struct scatterlist *sg; 522 523 for (;;) { 524 ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT); 525 sg = &sgl->sg[sgl->list_pos]; 526 if (len < sg->length - sgl->page_pos) 527 to_read = len; 528 else 529 to_read = sg->length - sgl->page_pos; 530 531 ret = ubi_eba_read_leb(ubi, vol, lnum, 532 sg_virt(sg) + sgl->page_pos, offset, 533 to_read, check); 534 if (ret < 0) 535 return ret; 536 537 offset += to_read; 538 len -= to_read; 539 if (!len) { 540 sgl->page_pos += to_read; 541 if (sgl->page_pos == sg->length) { 542 sgl->list_pos++; 543 sgl->page_pos = 0; 544 } 545 546 break; 547 } 548 549 sgl->list_pos++; 550 sgl->page_pos = 0; 551 } 552 553 return ret; 554 } 555 556 /** 557 * recover_peb - recover from write failure. 558 * @ubi: UBI device description object 559 * @pnum: the physical eraseblock to recover 560 * @vol_id: volume ID 561 * @lnum: logical eraseblock number 562 * @buf: data which was not written because of the write failure 563 * @offset: offset of the failed write 564 * @len: how many bytes should have been written 565 * 566 * This function is called in case of a write failure and moves all good data 567 * from the potentially bad physical eraseblock to a good physical eraseblock. 568 * This function also writes the data which was not written due to the failure. 569 * Returns new physical eraseblock number in case of success, and a negative 570 * error code in case of failure. 571 */ 572 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, 573 const void *buf, int offset, int len) 574 { 575 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0; 576 struct ubi_volume *vol = ubi->volumes[idx]; 577 struct ubi_vid_hdr *vid_hdr; 578 uint32_t crc; 579 580 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 581 if (!vid_hdr) 582 return -ENOMEM; 583 584 retry: 585 new_pnum = ubi_wl_get_peb(ubi); 586 if (new_pnum < 0) { 587 ubi_free_vid_hdr(ubi, vid_hdr); 588 up_read(&ubi->fm_eba_sem); 589 return new_pnum; 590 } 591 592 ubi_msg(ubi, "recover PEB %d, move data to PEB %d", 593 pnum, new_pnum); 594 595 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 596 if (err && err != UBI_IO_BITFLIPS) { 597 if (err > 0) 598 err = -EIO; 599 up_read(&ubi->fm_eba_sem); 600 goto out_put; 601 } 602 603 ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC); 604 605 mutex_lock(&ubi->buf_mutex); 606 memset(ubi->peb_buf + offset, 0xFF, len); 607 608 /* Read everything before the area where the write failure happened */ 609 if (offset > 0) { 610 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); 611 if (err && err != UBI_IO_BITFLIPS) { 612 up_read(&ubi->fm_eba_sem); 613 goto out_unlock; 614 } 615 } 616 617 memcpy(ubi->peb_buf + offset, buf, len); 618 619 data_size = offset + len; 620 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); 621 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 622 vid_hdr->copy_flag = 1; 623 vid_hdr->data_size = cpu_to_be32(data_size); 624 vid_hdr->data_crc = cpu_to_be32(crc); 625 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); 626 if (err) { 627 mutex_unlock(&ubi->buf_mutex); 628 up_read(&ubi->fm_eba_sem); 629 goto write_error; 630 } 631 632 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); 633 if (err) { 634 mutex_unlock(&ubi->buf_mutex); 635 up_read(&ubi->fm_eba_sem); 636 goto write_error; 637 } 638 639 mutex_unlock(&ubi->buf_mutex); 640 ubi_free_vid_hdr(ubi, vid_hdr); 641 642 vol->eba_tbl[lnum] = new_pnum; 643 up_read(&ubi->fm_eba_sem); 644 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 645 646 ubi_msg(ubi, "data was successfully recovered"); 647 return 0; 648 649 out_unlock: 650 mutex_unlock(&ubi->buf_mutex); 651 out_put: 652 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); 653 ubi_free_vid_hdr(ubi, vid_hdr); 654 return err; 655 656 write_error: 657 /* 658 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to 659 * get another one. 660 */ 661 ubi_warn(ubi, "failed to write to PEB %d", new_pnum); 662 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); 663 if (++tries > UBI_IO_RETRIES) { 664 ubi_free_vid_hdr(ubi, vid_hdr); 665 return err; 666 } 667 ubi_msg(ubi, "try again"); 668 goto retry; 669 } 670 671 /** 672 * ubi_eba_write_leb - write data to dynamic volume. 673 * @ubi: UBI device description object 674 * @vol: volume description object 675 * @lnum: logical eraseblock number 676 * @buf: the data to write 677 * @offset: offset within the logical eraseblock where to write 678 * @len: how many bytes to write 679 * 680 * This function writes data to logical eraseblock @lnum of a dynamic volume 681 * @vol. Returns zero in case of success and a negative error code in case 682 * of failure. In case of error, it is possible that something was still 683 * written to the flash media, but may be some garbage. 684 */ 685 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 686 const void *buf, int offset, int len) 687 { 688 int err, pnum, tries = 0, vol_id = vol->vol_id; 689 struct ubi_vid_hdr *vid_hdr; 690 691 if (ubi->ro_mode) 692 return -EROFS; 693 694 err = leb_write_lock(ubi, vol_id, lnum); 695 if (err) 696 return err; 697 698 pnum = vol->eba_tbl[lnum]; 699 if (pnum >= 0) { 700 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", 701 len, offset, vol_id, lnum, pnum); 702 703 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 704 if (err) { 705 ubi_warn(ubi, "failed to write data to PEB %d", pnum); 706 if (err == -EIO && ubi->bad_allowed) 707 err = recover_peb(ubi, pnum, vol_id, lnum, buf, 708 offset, len); 709 if (err) 710 ubi_ro_mode(ubi); 711 } 712 leb_write_unlock(ubi, vol_id, lnum); 713 return err; 714 } 715 716 /* 717 * The logical eraseblock is not mapped. We have to get a free physical 718 * eraseblock and write the volume identifier header there first. 719 */ 720 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 721 if (!vid_hdr) { 722 leb_write_unlock(ubi, vol_id, lnum); 723 return -ENOMEM; 724 } 725 726 vid_hdr->vol_type = UBI_VID_DYNAMIC; 727 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 728 vid_hdr->vol_id = cpu_to_be32(vol_id); 729 vid_hdr->lnum = cpu_to_be32(lnum); 730 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 731 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 732 733 retry: 734 pnum = ubi_wl_get_peb(ubi); 735 if (pnum < 0) { 736 ubi_free_vid_hdr(ubi, vid_hdr); 737 leb_write_unlock(ubi, vol_id, lnum); 738 up_read(&ubi->fm_eba_sem); 739 return pnum; 740 } 741 742 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", 743 len, offset, vol_id, lnum, pnum); 744 745 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 746 if (err) { 747 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", 748 vol_id, lnum, pnum); 749 up_read(&ubi->fm_eba_sem); 750 goto write_error; 751 } 752 753 if (len) { 754 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 755 if (err) { 756 ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", 757 len, offset, vol_id, lnum, pnum); 758 up_read(&ubi->fm_eba_sem); 759 goto write_error; 760 } 761 } 762 763 vol->eba_tbl[lnum] = pnum; 764 up_read(&ubi->fm_eba_sem); 765 766 leb_write_unlock(ubi, vol_id, lnum); 767 ubi_free_vid_hdr(ubi, vid_hdr); 768 return 0; 769 770 write_error: 771 if (err != -EIO || !ubi->bad_allowed) { 772 ubi_ro_mode(ubi); 773 leb_write_unlock(ubi, vol_id, lnum); 774 ubi_free_vid_hdr(ubi, vid_hdr); 775 return err; 776 } 777 778 /* 779 * Fortunately, this is the first write operation to this physical 780 * eraseblock, so just put it and request a new one. We assume that if 781 * this physical eraseblock went bad, the erase code will handle that. 782 */ 783 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 784 if (err || ++tries > UBI_IO_RETRIES) { 785 ubi_ro_mode(ubi); 786 leb_write_unlock(ubi, vol_id, lnum); 787 ubi_free_vid_hdr(ubi, vid_hdr); 788 return err; 789 } 790 791 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 792 ubi_msg(ubi, "try another PEB"); 793 goto retry; 794 } 795 796 /** 797 * ubi_eba_write_leb_st - write data to static volume. 798 * @ubi: UBI device description object 799 * @vol: volume description object 800 * @lnum: logical eraseblock number 801 * @buf: data to write 802 * @len: how many bytes to write 803 * @used_ebs: how many logical eraseblocks will this volume contain 804 * 805 * This function writes data to logical eraseblock @lnum of static volume 806 * @vol. The @used_ebs argument should contain total number of logical 807 * eraseblock in this static volume. 808 * 809 * When writing to the last logical eraseblock, the @len argument doesn't have 810 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent 811 * to the real data size, although the @buf buffer has to contain the 812 * alignment. In all other cases, @len has to be aligned. 813 * 814 * It is prohibited to write more than once to logical eraseblocks of static 815 * volumes. This function returns zero in case of success and a negative error 816 * code in case of failure. 817 */ 818 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, 819 int lnum, const void *buf, int len, int used_ebs) 820 { 821 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id; 822 struct ubi_vid_hdr *vid_hdr; 823 uint32_t crc; 824 825 if (ubi->ro_mode) 826 return -EROFS; 827 828 if (lnum == used_ebs - 1) 829 /* If this is the last LEB @len may be unaligned */ 830 len = ALIGN(data_size, ubi->min_io_size); 831 else 832 ubi_assert(!(len & (ubi->min_io_size - 1))); 833 834 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 835 if (!vid_hdr) 836 return -ENOMEM; 837 838 err = leb_write_lock(ubi, vol_id, lnum); 839 if (err) { 840 ubi_free_vid_hdr(ubi, vid_hdr); 841 return err; 842 } 843 844 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 845 vid_hdr->vol_id = cpu_to_be32(vol_id); 846 vid_hdr->lnum = cpu_to_be32(lnum); 847 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 848 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 849 850 crc = crc32(UBI_CRC32_INIT, buf, data_size); 851 vid_hdr->vol_type = UBI_VID_STATIC; 852 vid_hdr->data_size = cpu_to_be32(data_size); 853 vid_hdr->used_ebs = cpu_to_be32(used_ebs); 854 vid_hdr->data_crc = cpu_to_be32(crc); 855 856 retry: 857 pnum = ubi_wl_get_peb(ubi); 858 if (pnum < 0) { 859 ubi_free_vid_hdr(ubi, vid_hdr); 860 leb_write_unlock(ubi, vol_id, lnum); 861 up_read(&ubi->fm_eba_sem); 862 return pnum; 863 } 864 865 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d", 866 len, vol_id, lnum, pnum, used_ebs); 867 868 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 869 if (err) { 870 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", 871 vol_id, lnum, pnum); 872 up_read(&ubi->fm_eba_sem); 873 goto write_error; 874 } 875 876 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 877 if (err) { 878 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d", 879 len, pnum); 880 up_read(&ubi->fm_eba_sem); 881 goto write_error; 882 } 883 884 ubi_assert(vol->eba_tbl[lnum] < 0); 885 vol->eba_tbl[lnum] = pnum; 886 up_read(&ubi->fm_eba_sem); 887 888 leb_write_unlock(ubi, vol_id, lnum); 889 ubi_free_vid_hdr(ubi, vid_hdr); 890 return 0; 891 892 write_error: 893 if (err != -EIO || !ubi->bad_allowed) { 894 /* 895 * This flash device does not admit of bad eraseblocks or 896 * something nasty and unexpected happened. Switch to read-only 897 * mode just in case. 898 */ 899 ubi_ro_mode(ubi); 900 leb_write_unlock(ubi, vol_id, lnum); 901 ubi_free_vid_hdr(ubi, vid_hdr); 902 return err; 903 } 904 905 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 906 if (err || ++tries > UBI_IO_RETRIES) { 907 ubi_ro_mode(ubi); 908 leb_write_unlock(ubi, vol_id, lnum); 909 ubi_free_vid_hdr(ubi, vid_hdr); 910 return err; 911 } 912 913 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 914 ubi_msg(ubi, "try another PEB"); 915 goto retry; 916 } 917 918 /* 919 * ubi_eba_atomic_leb_change - change logical eraseblock atomically. 920 * @ubi: UBI device description object 921 * @vol: volume description object 922 * @lnum: logical eraseblock number 923 * @buf: data to write 924 * @len: how many bytes to write 925 * 926 * This function changes the contents of a logical eraseblock atomically. @buf 927 * has to contain new logical eraseblock data, and @len - the length of the 928 * data, which has to be aligned. This function guarantees that in case of an 929 * unclean reboot the old contents is preserved. Returns zero in case of 930 * success and a negative error code in case of failure. 931 * 932 * UBI reserves one LEB for the "atomic LEB change" operation, so only one 933 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. 934 */ 935 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, 936 int lnum, const void *buf, int len) 937 { 938 int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id; 939 struct ubi_vid_hdr *vid_hdr; 940 uint32_t crc; 941 942 if (ubi->ro_mode) 943 return -EROFS; 944 945 if (len == 0) { 946 /* 947 * Special case when data length is zero. In this case the LEB 948 * has to be unmapped and mapped somewhere else. 949 */ 950 err = ubi_eba_unmap_leb(ubi, vol, lnum); 951 if (err) 952 return err; 953 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); 954 } 955 956 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 957 if (!vid_hdr) 958 return -ENOMEM; 959 960 mutex_lock(&ubi->alc_mutex); 961 err = leb_write_lock(ubi, vol_id, lnum); 962 if (err) 963 goto out_mutex; 964 965 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 966 vid_hdr->vol_id = cpu_to_be32(vol_id); 967 vid_hdr->lnum = cpu_to_be32(lnum); 968 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 969 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 970 971 crc = crc32(UBI_CRC32_INIT, buf, len); 972 vid_hdr->vol_type = UBI_VID_DYNAMIC; 973 vid_hdr->data_size = cpu_to_be32(len); 974 vid_hdr->copy_flag = 1; 975 vid_hdr->data_crc = cpu_to_be32(crc); 976 977 retry: 978 pnum = ubi_wl_get_peb(ubi); 979 if (pnum < 0) { 980 err = pnum; 981 up_read(&ubi->fm_eba_sem); 982 goto out_leb_unlock; 983 } 984 985 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d", 986 vol_id, lnum, vol->eba_tbl[lnum], pnum); 987 988 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 989 if (err) { 990 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", 991 vol_id, lnum, pnum); 992 up_read(&ubi->fm_eba_sem); 993 goto write_error; 994 } 995 996 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 997 if (err) { 998 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d", 999 len, pnum); 1000 up_read(&ubi->fm_eba_sem); 1001 goto write_error; 1002 } 1003 1004 old_pnum = vol->eba_tbl[lnum]; 1005 vol->eba_tbl[lnum] = pnum; 1006 up_read(&ubi->fm_eba_sem); 1007 1008 if (old_pnum >= 0) { 1009 err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0); 1010 if (err) 1011 goto out_leb_unlock; 1012 } 1013 1014 out_leb_unlock: 1015 leb_write_unlock(ubi, vol_id, lnum); 1016 out_mutex: 1017 mutex_unlock(&ubi->alc_mutex); 1018 ubi_free_vid_hdr(ubi, vid_hdr); 1019 return err; 1020 1021 write_error: 1022 if (err != -EIO || !ubi->bad_allowed) { 1023 /* 1024 * This flash device does not admit of bad eraseblocks or 1025 * something nasty and unexpected happened. Switch to read-only 1026 * mode just in case. 1027 */ 1028 ubi_ro_mode(ubi); 1029 goto out_leb_unlock; 1030 } 1031 1032 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 1033 if (err || ++tries > UBI_IO_RETRIES) { 1034 ubi_ro_mode(ubi); 1035 goto out_leb_unlock; 1036 } 1037 1038 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 1039 ubi_msg(ubi, "try another PEB"); 1040 goto retry; 1041 } 1042 1043 /** 1044 * is_error_sane - check whether a read error is sane. 1045 * @err: code of the error happened during reading 1046 * 1047 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we 1048 * cannot read data from the target PEB (an error @err happened). If the error 1049 * code is sane, then we treat this error as non-fatal. Otherwise the error is 1050 * fatal and UBI will be switched to R/O mode later. 1051 * 1052 * The idea is that we try not to switch to R/O mode if the read error is 1053 * something which suggests there was a real read problem. E.g., %-EIO. Or a 1054 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O 1055 * mode, simply because we do not know what happened at the MTD level, and we 1056 * cannot handle this. E.g., the underlying driver may have become crazy, and 1057 * it is safer to switch to R/O mode to preserve the data. 1058 * 1059 * And bear in mind, this is about reading from the target PEB, i.e. the PEB 1060 * which we have just written. 1061 */ 1062 static int is_error_sane(int err) 1063 { 1064 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || 1065 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) 1066 return 0; 1067 return 1; 1068 } 1069 1070 /** 1071 * ubi_eba_copy_leb - copy logical eraseblock. 1072 * @ubi: UBI device description object 1073 * @from: physical eraseblock number from where to copy 1074 * @to: physical eraseblock number where to copy 1075 * @vid_hdr: VID header of the @from physical eraseblock 1076 * 1077 * This function copies logical eraseblock from physical eraseblock @from to 1078 * physical eraseblock @to. The @vid_hdr buffer may be changed by this 1079 * function. Returns: 1080 * o %0 in case of success; 1081 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; 1082 * o a negative error code in case of failure. 1083 */ 1084 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, 1085 struct ubi_vid_hdr *vid_hdr) 1086 { 1087 int err, vol_id, lnum, data_size, aldata_size, idx; 1088 struct ubi_volume *vol; 1089 uint32_t crc; 1090 1091 vol_id = be32_to_cpu(vid_hdr->vol_id); 1092 lnum = be32_to_cpu(vid_hdr->lnum); 1093 1094 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); 1095 1096 if (vid_hdr->vol_type == UBI_VID_STATIC) { 1097 data_size = be32_to_cpu(vid_hdr->data_size); 1098 aldata_size = ALIGN(data_size, ubi->min_io_size); 1099 } else 1100 data_size = aldata_size = 1101 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); 1102 1103 idx = vol_id2idx(ubi, vol_id); 1104 spin_lock(&ubi->volumes_lock); 1105 /* 1106 * Note, we may race with volume deletion, which means that the volume 1107 * this logical eraseblock belongs to might be being deleted. Since the 1108 * volume deletion un-maps all the volume's logical eraseblocks, it will 1109 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. 1110 */ 1111 vol = ubi->volumes[idx]; 1112 spin_unlock(&ubi->volumes_lock); 1113 if (!vol) { 1114 /* No need to do further work, cancel */ 1115 dbg_wl("volume %d is being removed, cancel", vol_id); 1116 return MOVE_CANCEL_RACE; 1117 } 1118 1119 /* 1120 * We do not want anybody to write to this logical eraseblock while we 1121 * are moving it, so lock it. 1122 * 1123 * Note, we are using non-waiting locking here, because we cannot sleep 1124 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is 1125 * unmapping the LEB which is mapped to the PEB we are going to move 1126 * (@from). This task locks the LEB and goes sleep in the 1127 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are 1128 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the 1129 * LEB is already locked, we just do not move it and return 1130 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because 1131 * we do not know the reasons of the contention - it may be just a 1132 * normal I/O on this LEB, so we want to re-try. 1133 */ 1134 err = leb_write_trylock(ubi, vol_id, lnum); 1135 if (err) { 1136 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); 1137 return MOVE_RETRY; 1138 } 1139 1140 /* 1141 * The LEB might have been put meanwhile, and the task which put it is 1142 * probably waiting on @ubi->move_mutex. No need to continue the work, 1143 * cancel it. 1144 */ 1145 if (vol->eba_tbl[lnum] != from) { 1146 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", 1147 vol_id, lnum, from, vol->eba_tbl[lnum]); 1148 err = MOVE_CANCEL_RACE; 1149 goto out_unlock_leb; 1150 } 1151 1152 /* 1153 * OK, now the LEB is locked and we can safely start moving it. Since 1154 * this function utilizes the @ubi->peb_buf buffer which is shared 1155 * with some other functions - we lock the buffer by taking the 1156 * @ubi->buf_mutex. 1157 */ 1158 mutex_lock(&ubi->buf_mutex); 1159 dbg_wl("read %d bytes of data", aldata_size); 1160 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); 1161 if (err && err != UBI_IO_BITFLIPS) { 1162 ubi_warn(ubi, "error %d while reading data from PEB %d", 1163 err, from); 1164 err = MOVE_SOURCE_RD_ERR; 1165 goto out_unlock_buf; 1166 } 1167 1168 /* 1169 * Now we have got to calculate how much data we have to copy. In 1170 * case of a static volume it is fairly easy - the VID header contains 1171 * the data size. In case of a dynamic volume it is more difficult - we 1172 * have to read the contents, cut 0xFF bytes from the end and copy only 1173 * the first part. We must do this to avoid writing 0xFF bytes as it 1174 * may have some side-effects. And not only this. It is important not 1175 * to include those 0xFFs to CRC because later the they may be filled 1176 * by data. 1177 */ 1178 if (vid_hdr->vol_type == UBI_VID_DYNAMIC) 1179 aldata_size = data_size = 1180 ubi_calc_data_len(ubi, ubi->peb_buf, data_size); 1181 1182 cond_resched(); 1183 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); 1184 cond_resched(); 1185 1186 /* 1187 * It may turn out to be that the whole @from physical eraseblock 1188 * contains only 0xFF bytes. Then we have to only write the VID header 1189 * and do not write any data. This also means we should not set 1190 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. 1191 */ 1192 if (data_size > 0) { 1193 vid_hdr->copy_flag = 1; 1194 vid_hdr->data_size = cpu_to_be32(data_size); 1195 vid_hdr->data_crc = cpu_to_be32(crc); 1196 } 1197 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 1198 1199 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); 1200 if (err) { 1201 if (err == -EIO) 1202 err = MOVE_TARGET_WR_ERR; 1203 goto out_unlock_buf; 1204 } 1205 1206 cond_resched(); 1207 1208 /* Read the VID header back and check if it was written correctly */ 1209 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); 1210 if (err) { 1211 if (err != UBI_IO_BITFLIPS) { 1212 ubi_warn(ubi, "error %d while reading VID header back from PEB %d", 1213 err, to); 1214 if (is_error_sane(err)) 1215 err = MOVE_TARGET_RD_ERR; 1216 } else 1217 err = MOVE_TARGET_BITFLIPS; 1218 goto out_unlock_buf; 1219 } 1220 1221 if (data_size > 0) { 1222 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); 1223 if (err) { 1224 if (err == -EIO) 1225 err = MOVE_TARGET_WR_ERR; 1226 goto out_unlock_buf; 1227 } 1228 1229 cond_resched(); 1230 } 1231 1232 ubi_assert(vol->eba_tbl[lnum] == from); 1233 down_read(&ubi->fm_eba_sem); 1234 vol->eba_tbl[lnum] = to; 1235 up_read(&ubi->fm_eba_sem); 1236 1237 out_unlock_buf: 1238 mutex_unlock(&ubi->buf_mutex); 1239 out_unlock_leb: 1240 leb_write_unlock(ubi, vol_id, lnum); 1241 return err; 1242 } 1243 1244 /** 1245 * print_rsvd_warning - warn about not having enough reserved PEBs. 1246 * @ubi: UBI device description object 1247 * 1248 * This is a helper function for 'ubi_eba_init()' which is called when UBI 1249 * cannot reserve enough PEBs for bad block handling. This function makes a 1250 * decision whether we have to print a warning or not. The algorithm is as 1251 * follows: 1252 * o if this is a new UBI image, then just print the warning 1253 * o if this is an UBI image which has already been used for some time, print 1254 * a warning only if we can reserve less than 10% of the expected amount of 1255 * the reserved PEB. 1256 * 1257 * The idea is that when UBI is used, PEBs become bad, and the reserved pool 1258 * of PEBs becomes smaller, which is normal and we do not want to scare users 1259 * with a warning every time they attach the MTD device. This was an issue 1260 * reported by real users. 1261 */ 1262 static void print_rsvd_warning(struct ubi_device *ubi, 1263 struct ubi_attach_info *ai) 1264 { 1265 /* 1266 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably 1267 * large number to distinguish between newly flashed and used images. 1268 */ 1269 if (ai->max_sqnum > (1 << 18)) { 1270 int min = ubi->beb_rsvd_level / 10; 1271 1272 if (!min) 1273 min = 1; 1274 if (ubi->beb_rsvd_pebs > min) 1275 return; 1276 } 1277 1278 ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", 1279 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); 1280 if (ubi->corr_peb_count) 1281 ubi_warn(ubi, "%d PEBs are corrupted and not used", 1282 ubi->corr_peb_count); 1283 } 1284 1285 /** 1286 * self_check_eba - run a self check on the EBA table constructed by fastmap. 1287 * @ubi: UBI device description object 1288 * @ai_fastmap: UBI attach info object created by fastmap 1289 * @ai_scan: UBI attach info object created by scanning 1290 * 1291 * Returns < 0 in case of an internal error, 0 otherwise. 1292 * If a bad EBA table entry was found it will be printed out and 1293 * ubi_assert() triggers. 1294 */ 1295 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, 1296 struct ubi_attach_info *ai_scan) 1297 { 1298 int i, j, num_volumes, ret = 0; 1299 int **scan_eba, **fm_eba; 1300 struct ubi_ainf_volume *av; 1301 struct ubi_volume *vol; 1302 struct ubi_ainf_peb *aeb; 1303 struct rb_node *rb; 1304 1305 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1306 1307 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL); 1308 if (!scan_eba) 1309 return -ENOMEM; 1310 1311 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL); 1312 if (!fm_eba) { 1313 kfree(scan_eba); 1314 return -ENOMEM; 1315 } 1316 1317 for (i = 0; i < num_volumes; i++) { 1318 vol = ubi->volumes[i]; 1319 if (!vol) 1320 continue; 1321 1322 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba), 1323 GFP_KERNEL); 1324 if (!scan_eba[i]) { 1325 ret = -ENOMEM; 1326 goto out_free; 1327 } 1328 1329 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba), 1330 GFP_KERNEL); 1331 if (!fm_eba[i]) { 1332 ret = -ENOMEM; 1333 goto out_free; 1334 } 1335 1336 for (j = 0; j < vol->reserved_pebs; j++) 1337 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; 1338 1339 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); 1340 if (!av) 1341 continue; 1342 1343 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) 1344 scan_eba[i][aeb->lnum] = aeb->pnum; 1345 1346 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); 1347 if (!av) 1348 continue; 1349 1350 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) 1351 fm_eba[i][aeb->lnum] = aeb->pnum; 1352 1353 for (j = 0; j < vol->reserved_pebs; j++) { 1354 if (scan_eba[i][j] != fm_eba[i][j]) { 1355 if (scan_eba[i][j] == UBI_LEB_UNMAPPED || 1356 fm_eba[i][j] == UBI_LEB_UNMAPPED) 1357 continue; 1358 1359 ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!", 1360 vol->vol_id, j, fm_eba[i][j], 1361 scan_eba[i][j]); 1362 ubi_assert(0); 1363 } 1364 } 1365 } 1366 1367 out_free: 1368 for (i = 0; i < num_volumes; i++) { 1369 if (!ubi->volumes[i]) 1370 continue; 1371 1372 kfree(scan_eba[i]); 1373 kfree(fm_eba[i]); 1374 } 1375 1376 kfree(scan_eba); 1377 kfree(fm_eba); 1378 return ret; 1379 } 1380 1381 /** 1382 * ubi_eba_init - initialize the EBA sub-system using attaching information. 1383 * @ubi: UBI device description object 1384 * @ai: attaching information 1385 * 1386 * This function returns zero in case of success and a negative error code in 1387 * case of failure. 1388 */ 1389 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1390 { 1391 int i, j, err, num_volumes; 1392 struct ubi_ainf_volume *av; 1393 struct ubi_volume *vol; 1394 struct ubi_ainf_peb *aeb; 1395 struct rb_node *rb; 1396 1397 dbg_eba("initialize EBA sub-system"); 1398 1399 spin_lock_init(&ubi->ltree_lock); 1400 mutex_init(&ubi->alc_mutex); 1401 ubi->ltree = RB_ROOT; 1402 1403 ubi->global_sqnum = ai->max_sqnum + 1; 1404 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1405 1406 for (i = 0; i < num_volumes; i++) { 1407 vol = ubi->volumes[i]; 1408 if (!vol) 1409 continue; 1410 1411 cond_resched(); 1412 1413 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int), 1414 GFP_KERNEL); 1415 if (!vol->eba_tbl) { 1416 err = -ENOMEM; 1417 goto out_free; 1418 } 1419 1420 for (j = 0; j < vol->reserved_pebs; j++) 1421 vol->eba_tbl[j] = UBI_LEB_UNMAPPED; 1422 1423 av = ubi_find_av(ai, idx2vol_id(ubi, i)); 1424 if (!av) 1425 continue; 1426 1427 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { 1428 if (aeb->lnum >= vol->reserved_pebs) 1429 /* 1430 * This may happen in case of an unclean reboot 1431 * during re-size. 1432 */ 1433 ubi_move_aeb_to_list(av, aeb, &ai->erase); 1434 else 1435 vol->eba_tbl[aeb->lnum] = aeb->pnum; 1436 } 1437 } 1438 1439 if (ubi->avail_pebs < EBA_RESERVED_PEBS) { 1440 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1441 ubi->avail_pebs, EBA_RESERVED_PEBS); 1442 if (ubi->corr_peb_count) 1443 ubi_err(ubi, "%d PEBs are corrupted and not used", 1444 ubi->corr_peb_count); 1445 err = -ENOSPC; 1446 goto out_free; 1447 } 1448 ubi->avail_pebs -= EBA_RESERVED_PEBS; 1449 ubi->rsvd_pebs += EBA_RESERVED_PEBS; 1450 1451 if (ubi->bad_allowed) { 1452 ubi_calculate_reserved(ubi); 1453 1454 if (ubi->avail_pebs < ubi->beb_rsvd_level) { 1455 /* No enough free physical eraseblocks */ 1456 ubi->beb_rsvd_pebs = ubi->avail_pebs; 1457 print_rsvd_warning(ubi, ai); 1458 } else 1459 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; 1460 1461 ubi->avail_pebs -= ubi->beb_rsvd_pebs; 1462 ubi->rsvd_pebs += ubi->beb_rsvd_pebs; 1463 } 1464 1465 dbg_eba("EBA sub-system is initialized"); 1466 return 0; 1467 1468 out_free: 1469 for (i = 0; i < num_volumes; i++) { 1470 if (!ubi->volumes[i]) 1471 continue; 1472 kfree(ubi->volumes[i]->eba_tbl); 1473 ubi->volumes[i]->eba_tbl = NULL; 1474 } 1475 return err; 1476 } 1477