xref: /linux/drivers/mtd/ubi/eba.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * The UBI Eraseblock Association (EBA) sub-system.
23  *
24  * This sub-system is responsible for I/O to/from logical eraseblock.
25  *
26  * Although in this implementation the EBA table is fully kept and managed in
27  * RAM, which assumes poor scalability, it might be (partially) maintained on
28  * flash in future implementations.
29  *
30  * The EBA sub-system implements per-logical eraseblock locking. Before
31  * accessing a logical eraseblock it is locked for reading or writing. The
32  * per-logical eraseblock locking is implemented by means of the lock tree. The
33  * lock tree is an RB-tree which refers all the currently locked logical
34  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35  * They are indexed by (@vol_id, @lnum) pairs.
36  *
37  * EBA also maintains the global sequence counter which is incremented each
38  * time a logical eraseblock is mapped to a physical eraseblock and it is
39  * stored in the volume identifier header. This means that each VID header has
40  * a unique sequence number. The sequence number is only increased an we assume
41  * 64 bits is enough to never overflow.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48 
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51 
52 /**
53  * next_sqnum - get next sequence number.
54  * @ubi: UBI device description object
55  *
56  * This function returns next sequence number to use, which is just the current
57  * global sequence counter value. It also increases the global sequence
58  * counter.
59  */
60 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
61 {
62 	unsigned long long sqnum;
63 
64 	spin_lock(&ubi->ltree_lock);
65 	sqnum = ubi->global_sqnum++;
66 	spin_unlock(&ubi->ltree_lock);
67 
68 	return sqnum;
69 }
70 
71 /**
72  * ubi_get_compat - get compatibility flags of a volume.
73  * @ubi: UBI device description object
74  * @vol_id: volume ID
75  *
76  * This function returns compatibility flags for an internal volume. User
77  * volumes have no compatibility flags, so %0 is returned.
78  */
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 		return UBI_LAYOUT_VOLUME_COMPAT;
83 	return 0;
84 }
85 
86 /**
87  * ltree_lookup - look up the lock tree.
88  * @ubi: UBI device description object
89  * @vol_id: volume ID
90  * @lnum: logical eraseblock number
91  *
92  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93  * object if the logical eraseblock is locked and %NULL if it is not.
94  * @ubi->ltree_lock has to be locked.
95  */
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 					    int lnum)
98 {
99 	struct rb_node *p;
100 
101 	p = ubi->ltree.rb_node;
102 	while (p) {
103 		struct ubi_ltree_entry *le;
104 
105 		le = rb_entry(p, struct ubi_ltree_entry, rb);
106 
107 		if (vol_id < le->vol_id)
108 			p = p->rb_left;
109 		else if (vol_id > le->vol_id)
110 			p = p->rb_right;
111 		else {
112 			if (lnum < le->lnum)
113 				p = p->rb_left;
114 			else if (lnum > le->lnum)
115 				p = p->rb_right;
116 			else
117 				return le;
118 		}
119 	}
120 
121 	return NULL;
122 }
123 
124 /**
125  * ltree_add_entry - add new entry to the lock tree.
126  * @ubi: UBI device description object
127  * @vol_id: volume ID
128  * @lnum: logical eraseblock number
129  *
130  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131  * lock tree. If such entry is already there, its usage counter is increased.
132  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133  * failed.
134  */
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 					       int vol_id, int lnum)
137 {
138 	struct ubi_ltree_entry *le, *le1, *le_free;
139 
140 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 	if (!le)
142 		return ERR_PTR(-ENOMEM);
143 
144 	le->users = 0;
145 	init_rwsem(&le->mutex);
146 	le->vol_id = vol_id;
147 	le->lnum = lnum;
148 
149 	spin_lock(&ubi->ltree_lock);
150 	le1 = ltree_lookup(ubi, vol_id, lnum);
151 
152 	if (le1) {
153 		/*
154 		 * This logical eraseblock is already locked. The newly
155 		 * allocated lock entry is not needed.
156 		 */
157 		le_free = le;
158 		le = le1;
159 	} else {
160 		struct rb_node **p, *parent = NULL;
161 
162 		/*
163 		 * No lock entry, add the newly allocated one to the
164 		 * @ubi->ltree RB-tree.
165 		 */
166 		le_free = NULL;
167 
168 		p = &ubi->ltree.rb_node;
169 		while (*p) {
170 			parent = *p;
171 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
172 
173 			if (vol_id < le1->vol_id)
174 				p = &(*p)->rb_left;
175 			else if (vol_id > le1->vol_id)
176 				p = &(*p)->rb_right;
177 			else {
178 				ubi_assert(lnum != le1->lnum);
179 				if (lnum < le1->lnum)
180 					p = &(*p)->rb_left;
181 				else
182 					p = &(*p)->rb_right;
183 			}
184 		}
185 
186 		rb_link_node(&le->rb, parent, p);
187 		rb_insert_color(&le->rb, &ubi->ltree);
188 	}
189 	le->users += 1;
190 	spin_unlock(&ubi->ltree_lock);
191 
192 	kfree(le_free);
193 	return le;
194 }
195 
196 /**
197  * leb_read_lock - lock logical eraseblock for reading.
198  * @ubi: UBI device description object
199  * @vol_id: volume ID
200  * @lnum: logical eraseblock number
201  *
202  * This function locks a logical eraseblock for reading. Returns zero in case
203  * of success and a negative error code in case of failure.
204  */
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206 {
207 	struct ubi_ltree_entry *le;
208 
209 	le = ltree_add_entry(ubi, vol_id, lnum);
210 	if (IS_ERR(le))
211 		return PTR_ERR(le);
212 	down_read(&le->mutex);
213 	return 0;
214 }
215 
216 /**
217  * leb_read_unlock - unlock logical eraseblock.
218  * @ubi: UBI device description object
219  * @vol_id: volume ID
220  * @lnum: logical eraseblock number
221  */
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223 {
224 	struct ubi_ltree_entry *le;
225 
226 	spin_lock(&ubi->ltree_lock);
227 	le = ltree_lookup(ubi, vol_id, lnum);
228 	le->users -= 1;
229 	ubi_assert(le->users >= 0);
230 	up_read(&le->mutex);
231 	if (le->users == 0) {
232 		rb_erase(&le->rb, &ubi->ltree);
233 		kfree(le);
234 	}
235 	spin_unlock(&ubi->ltree_lock);
236 }
237 
238 /**
239  * leb_write_lock - lock logical eraseblock for writing.
240  * @ubi: UBI device description object
241  * @vol_id: volume ID
242  * @lnum: logical eraseblock number
243  *
244  * This function locks a logical eraseblock for writing. Returns zero in case
245  * of success and a negative error code in case of failure.
246  */
247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248 {
249 	struct ubi_ltree_entry *le;
250 
251 	le = ltree_add_entry(ubi, vol_id, lnum);
252 	if (IS_ERR(le))
253 		return PTR_ERR(le);
254 	down_write(&le->mutex);
255 	return 0;
256 }
257 
258 /**
259  * leb_write_lock - lock logical eraseblock for writing.
260  * @ubi: UBI device description object
261  * @vol_id: volume ID
262  * @lnum: logical eraseblock number
263  *
264  * This function locks a logical eraseblock for writing if there is no
265  * contention and does nothing if there is contention. Returns %0 in case of
266  * success, %1 in case of contention, and and a negative error code in case of
267  * failure.
268  */
269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270 {
271 	struct ubi_ltree_entry *le;
272 
273 	le = ltree_add_entry(ubi, vol_id, lnum);
274 	if (IS_ERR(le))
275 		return PTR_ERR(le);
276 	if (down_write_trylock(&le->mutex))
277 		return 0;
278 
279 	/* Contention, cancel */
280 	spin_lock(&ubi->ltree_lock);
281 	le->users -= 1;
282 	ubi_assert(le->users >= 0);
283 	if (le->users == 0) {
284 		rb_erase(&le->rb, &ubi->ltree);
285 		kfree(le);
286 	}
287 	spin_unlock(&ubi->ltree_lock);
288 
289 	return 1;
290 }
291 
292 /**
293  * leb_write_unlock - unlock logical eraseblock.
294  * @ubi: UBI device description object
295  * @vol_id: volume ID
296  * @lnum: logical eraseblock number
297  */
298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299 {
300 	struct ubi_ltree_entry *le;
301 
302 	spin_lock(&ubi->ltree_lock);
303 	le = ltree_lookup(ubi, vol_id, lnum);
304 	le->users -= 1;
305 	ubi_assert(le->users >= 0);
306 	up_write(&le->mutex);
307 	if (le->users == 0) {
308 		rb_erase(&le->rb, &ubi->ltree);
309 		kfree(le);
310 	}
311 	spin_unlock(&ubi->ltree_lock);
312 }
313 
314 /**
315  * ubi_eba_unmap_leb - un-map logical eraseblock.
316  * @ubi: UBI device description object
317  * @vol: volume description object
318  * @lnum: logical eraseblock number
319  *
320  * This function un-maps logical eraseblock @lnum and schedules corresponding
321  * physical eraseblock for erasure. Returns zero in case of success and a
322  * negative error code in case of failure.
323  */
324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 		      int lnum)
326 {
327 	int err, pnum, vol_id = vol->vol_id;
328 
329 	if (ubi->ro_mode)
330 		return -EROFS;
331 
332 	err = leb_write_lock(ubi, vol_id, lnum);
333 	if (err)
334 		return err;
335 
336 	pnum = vol->eba_tbl[lnum];
337 	if (pnum < 0)
338 		/* This logical eraseblock is already unmapped */
339 		goto out_unlock;
340 
341 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342 
343 	down_read(&ubi->fm_eba_sem);
344 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
345 	up_read(&ubi->fm_eba_sem);
346 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
347 
348 out_unlock:
349 	leb_write_unlock(ubi, vol_id, lnum);
350 	return err;
351 }
352 
353 /**
354  * ubi_eba_read_leb - read data.
355  * @ubi: UBI device description object
356  * @vol: volume description object
357  * @lnum: logical eraseblock number
358  * @buf: buffer to store the read data
359  * @offset: offset from where to read
360  * @len: how many bytes to read
361  * @check: data CRC check flag
362  *
363  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
364  * bytes. The @check flag only makes sense for static volumes and forces
365  * eraseblock data CRC checking.
366  *
367  * In case of success this function returns zero. In case of a static volume,
368  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
369  * returned for any volume type if an ECC error was detected by the MTD device
370  * driver. Other negative error cored may be returned in case of other errors.
371  */
372 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
373 		     void *buf, int offset, int len, int check)
374 {
375 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
376 	struct ubi_vid_hdr *vid_hdr;
377 	uint32_t uninitialized_var(crc);
378 
379 	err = leb_read_lock(ubi, vol_id, lnum);
380 	if (err)
381 		return err;
382 
383 	pnum = vol->eba_tbl[lnum];
384 	if (pnum < 0) {
385 		/*
386 		 * The logical eraseblock is not mapped, fill the whole buffer
387 		 * with 0xFF bytes. The exception is static volumes for which
388 		 * it is an error to read unmapped logical eraseblocks.
389 		 */
390 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
391 			len, offset, vol_id, lnum);
392 		leb_read_unlock(ubi, vol_id, lnum);
393 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
394 		memset(buf, 0xFF, len);
395 		return 0;
396 	}
397 
398 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
399 		len, offset, vol_id, lnum, pnum);
400 
401 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
402 		check = 0;
403 
404 retry:
405 	if (check) {
406 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
407 		if (!vid_hdr) {
408 			err = -ENOMEM;
409 			goto out_unlock;
410 		}
411 
412 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
413 		if (err && err != UBI_IO_BITFLIPS) {
414 			if (err > 0) {
415 				/*
416 				 * The header is either absent or corrupted.
417 				 * The former case means there is a bug -
418 				 * switch to read-only mode just in case.
419 				 * The latter case means a real corruption - we
420 				 * may try to recover data. FIXME: but this is
421 				 * not implemented.
422 				 */
423 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
424 				    err == UBI_IO_BAD_HDR) {
425 					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
426 						 pnum, vol_id, lnum);
427 					err = -EBADMSG;
428 				} else {
429 					err = -EINVAL;
430 					ubi_ro_mode(ubi);
431 				}
432 			}
433 			goto out_free;
434 		} else if (err == UBI_IO_BITFLIPS)
435 			scrub = 1;
436 
437 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
438 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
439 
440 		crc = be32_to_cpu(vid_hdr->data_crc);
441 		ubi_free_vid_hdr(ubi, vid_hdr);
442 	}
443 
444 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
445 	if (err) {
446 		if (err == UBI_IO_BITFLIPS)
447 			scrub = 1;
448 		else if (mtd_is_eccerr(err)) {
449 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
450 				goto out_unlock;
451 			scrub = 1;
452 			if (!check) {
453 				ubi_msg(ubi, "force data checking");
454 				check = 1;
455 				goto retry;
456 			}
457 		} else
458 			goto out_unlock;
459 	}
460 
461 	if (check) {
462 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
463 		if (crc1 != crc) {
464 			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
465 				 crc1, crc);
466 			err = -EBADMSG;
467 			goto out_unlock;
468 		}
469 	}
470 
471 	if (scrub)
472 		err = ubi_wl_scrub_peb(ubi, pnum);
473 
474 	leb_read_unlock(ubi, vol_id, lnum);
475 	return err;
476 
477 out_free:
478 	ubi_free_vid_hdr(ubi, vid_hdr);
479 out_unlock:
480 	leb_read_unlock(ubi, vol_id, lnum);
481 	return err;
482 }
483 
484 /**
485  * ubi_eba_read_leb_sg - read data into a scatter gather list.
486  * @ubi: UBI device description object
487  * @vol: volume description object
488  * @lnum: logical eraseblock number
489  * @sgl: UBI scatter gather list to store the read data
490  * @offset: offset from where to read
491  * @len: how many bytes to read
492  * @check: data CRC check flag
493  *
494  * This function works exactly like ubi_eba_read_leb(). But instead of
495  * storing the read data into a buffer it writes to an UBI scatter gather
496  * list.
497  */
498 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
499 			struct ubi_sgl *sgl, int lnum, int offset, int len,
500 			int check)
501 {
502 	int to_read;
503 	int ret;
504 	struct scatterlist *sg;
505 
506 	for (;;) {
507 		ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
508 		sg = &sgl->sg[sgl->list_pos];
509 		if (len < sg->length - sgl->page_pos)
510 			to_read = len;
511 		else
512 			to_read = sg->length - sgl->page_pos;
513 
514 		ret = ubi_eba_read_leb(ubi, vol, lnum,
515 				       sg_virt(sg) + sgl->page_pos, offset,
516 				       to_read, check);
517 		if (ret < 0)
518 			return ret;
519 
520 		offset += to_read;
521 		len -= to_read;
522 		if (!len) {
523 			sgl->page_pos += to_read;
524 			if (sgl->page_pos == sg->length) {
525 				sgl->list_pos++;
526 				sgl->page_pos = 0;
527 			}
528 
529 			break;
530 		}
531 
532 		sgl->list_pos++;
533 		sgl->page_pos = 0;
534 	}
535 
536 	return ret;
537 }
538 
539 /**
540  * recover_peb - recover from write failure.
541  * @ubi: UBI device description object
542  * @pnum: the physical eraseblock to recover
543  * @vol_id: volume ID
544  * @lnum: logical eraseblock number
545  * @buf: data which was not written because of the write failure
546  * @offset: offset of the failed write
547  * @len: how many bytes should have been written
548  *
549  * This function is called in case of a write failure and moves all good data
550  * from the potentially bad physical eraseblock to a good physical eraseblock.
551  * This function also writes the data which was not written due to the failure.
552  * Returns new physical eraseblock number in case of success, and a negative
553  * error code in case of failure.
554  */
555 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
556 		       const void *buf, int offset, int len)
557 {
558 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
559 	struct ubi_volume *vol = ubi->volumes[idx];
560 	struct ubi_vid_hdr *vid_hdr;
561 
562 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
563 	if (!vid_hdr)
564 		return -ENOMEM;
565 
566 retry:
567 	new_pnum = ubi_wl_get_peb(ubi);
568 	if (new_pnum < 0) {
569 		ubi_free_vid_hdr(ubi, vid_hdr);
570 		up_read(&ubi->fm_eba_sem);
571 		return new_pnum;
572 	}
573 
574 	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
575 		pnum, new_pnum);
576 
577 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
578 	if (err && err != UBI_IO_BITFLIPS) {
579 		if (err > 0)
580 			err = -EIO;
581 		up_read(&ubi->fm_eba_sem);
582 		goto out_put;
583 	}
584 
585 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
586 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
587 	if (err) {
588 		up_read(&ubi->fm_eba_sem);
589 		goto write_error;
590 	}
591 
592 	data_size = offset + len;
593 	mutex_lock(&ubi->buf_mutex);
594 	memset(ubi->peb_buf + offset, 0xFF, len);
595 
596 	/* Read everything before the area where the write failure happened */
597 	if (offset > 0) {
598 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
599 		if (err && err != UBI_IO_BITFLIPS) {
600 			up_read(&ubi->fm_eba_sem);
601 			goto out_unlock;
602 		}
603 	}
604 
605 	memcpy(ubi->peb_buf + offset, buf, len);
606 
607 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
608 	if (err) {
609 		mutex_unlock(&ubi->buf_mutex);
610 		up_read(&ubi->fm_eba_sem);
611 		goto write_error;
612 	}
613 
614 	mutex_unlock(&ubi->buf_mutex);
615 	ubi_free_vid_hdr(ubi, vid_hdr);
616 
617 	vol->eba_tbl[lnum] = new_pnum;
618 	up_read(&ubi->fm_eba_sem);
619 	ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
620 
621 	ubi_msg(ubi, "data was successfully recovered");
622 	return 0;
623 
624 out_unlock:
625 	mutex_unlock(&ubi->buf_mutex);
626 out_put:
627 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
628 	ubi_free_vid_hdr(ubi, vid_hdr);
629 	return err;
630 
631 write_error:
632 	/*
633 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
634 	 * get another one.
635 	 */
636 	ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
637 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
638 	if (++tries > UBI_IO_RETRIES) {
639 		ubi_free_vid_hdr(ubi, vid_hdr);
640 		return err;
641 	}
642 	ubi_msg(ubi, "try again");
643 	goto retry;
644 }
645 
646 /**
647  * ubi_eba_write_leb - write data to dynamic volume.
648  * @ubi: UBI device description object
649  * @vol: volume description object
650  * @lnum: logical eraseblock number
651  * @buf: the data to write
652  * @offset: offset within the logical eraseblock where to write
653  * @len: how many bytes to write
654  *
655  * This function writes data to logical eraseblock @lnum of a dynamic volume
656  * @vol. Returns zero in case of success and a negative error code in case
657  * of failure. In case of error, it is possible that something was still
658  * written to the flash media, but may be some garbage.
659  */
660 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
661 		      const void *buf, int offset, int len)
662 {
663 	int err, pnum, tries = 0, vol_id = vol->vol_id;
664 	struct ubi_vid_hdr *vid_hdr;
665 
666 	if (ubi->ro_mode)
667 		return -EROFS;
668 
669 	err = leb_write_lock(ubi, vol_id, lnum);
670 	if (err)
671 		return err;
672 
673 	pnum = vol->eba_tbl[lnum];
674 	if (pnum >= 0) {
675 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
676 			len, offset, vol_id, lnum, pnum);
677 
678 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
679 		if (err) {
680 			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
681 			if (err == -EIO && ubi->bad_allowed)
682 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
683 						  offset, len);
684 			if (err)
685 				ubi_ro_mode(ubi);
686 		}
687 		leb_write_unlock(ubi, vol_id, lnum);
688 		return err;
689 	}
690 
691 	/*
692 	 * The logical eraseblock is not mapped. We have to get a free physical
693 	 * eraseblock and write the volume identifier header there first.
694 	 */
695 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
696 	if (!vid_hdr) {
697 		leb_write_unlock(ubi, vol_id, lnum);
698 		return -ENOMEM;
699 	}
700 
701 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
702 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
703 	vid_hdr->vol_id = cpu_to_be32(vol_id);
704 	vid_hdr->lnum = cpu_to_be32(lnum);
705 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
706 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
707 
708 retry:
709 	pnum = ubi_wl_get_peb(ubi);
710 	if (pnum < 0) {
711 		ubi_free_vid_hdr(ubi, vid_hdr);
712 		leb_write_unlock(ubi, vol_id, lnum);
713 		up_read(&ubi->fm_eba_sem);
714 		return pnum;
715 	}
716 
717 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
718 		len, offset, vol_id, lnum, pnum);
719 
720 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
721 	if (err) {
722 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
723 			 vol_id, lnum, pnum);
724 		up_read(&ubi->fm_eba_sem);
725 		goto write_error;
726 	}
727 
728 	if (len) {
729 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
730 		if (err) {
731 			ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
732 				 len, offset, vol_id, lnum, pnum);
733 			up_read(&ubi->fm_eba_sem);
734 			goto write_error;
735 		}
736 	}
737 
738 	vol->eba_tbl[lnum] = pnum;
739 	up_read(&ubi->fm_eba_sem);
740 
741 	leb_write_unlock(ubi, vol_id, lnum);
742 	ubi_free_vid_hdr(ubi, vid_hdr);
743 	return 0;
744 
745 write_error:
746 	if (err != -EIO || !ubi->bad_allowed) {
747 		ubi_ro_mode(ubi);
748 		leb_write_unlock(ubi, vol_id, lnum);
749 		ubi_free_vid_hdr(ubi, vid_hdr);
750 		return err;
751 	}
752 
753 	/*
754 	 * Fortunately, this is the first write operation to this physical
755 	 * eraseblock, so just put it and request a new one. We assume that if
756 	 * this physical eraseblock went bad, the erase code will handle that.
757 	 */
758 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
759 	if (err || ++tries > UBI_IO_RETRIES) {
760 		ubi_ro_mode(ubi);
761 		leb_write_unlock(ubi, vol_id, lnum);
762 		ubi_free_vid_hdr(ubi, vid_hdr);
763 		return err;
764 	}
765 
766 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
767 	ubi_msg(ubi, "try another PEB");
768 	goto retry;
769 }
770 
771 /**
772  * ubi_eba_write_leb_st - write data to static volume.
773  * @ubi: UBI device description object
774  * @vol: volume description object
775  * @lnum: logical eraseblock number
776  * @buf: data to write
777  * @len: how many bytes to write
778  * @used_ebs: how many logical eraseblocks will this volume contain
779  *
780  * This function writes data to logical eraseblock @lnum of static volume
781  * @vol. The @used_ebs argument should contain total number of logical
782  * eraseblock in this static volume.
783  *
784  * When writing to the last logical eraseblock, the @len argument doesn't have
785  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
786  * to the real data size, although the @buf buffer has to contain the
787  * alignment. In all other cases, @len has to be aligned.
788  *
789  * It is prohibited to write more than once to logical eraseblocks of static
790  * volumes. This function returns zero in case of success and a negative error
791  * code in case of failure.
792  */
793 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
794 			 int lnum, const void *buf, int len, int used_ebs)
795 {
796 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
797 	struct ubi_vid_hdr *vid_hdr;
798 	uint32_t crc;
799 
800 	if (ubi->ro_mode)
801 		return -EROFS;
802 
803 	if (lnum == used_ebs - 1)
804 		/* If this is the last LEB @len may be unaligned */
805 		len = ALIGN(data_size, ubi->min_io_size);
806 	else
807 		ubi_assert(!(len & (ubi->min_io_size - 1)));
808 
809 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
810 	if (!vid_hdr)
811 		return -ENOMEM;
812 
813 	err = leb_write_lock(ubi, vol_id, lnum);
814 	if (err) {
815 		ubi_free_vid_hdr(ubi, vid_hdr);
816 		return err;
817 	}
818 
819 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
820 	vid_hdr->vol_id = cpu_to_be32(vol_id);
821 	vid_hdr->lnum = cpu_to_be32(lnum);
822 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
823 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
824 
825 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
826 	vid_hdr->vol_type = UBI_VID_STATIC;
827 	vid_hdr->data_size = cpu_to_be32(data_size);
828 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
829 	vid_hdr->data_crc = cpu_to_be32(crc);
830 
831 retry:
832 	pnum = ubi_wl_get_peb(ubi);
833 	if (pnum < 0) {
834 		ubi_free_vid_hdr(ubi, vid_hdr);
835 		leb_write_unlock(ubi, vol_id, lnum);
836 		up_read(&ubi->fm_eba_sem);
837 		return pnum;
838 	}
839 
840 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
841 		len, vol_id, lnum, pnum, used_ebs);
842 
843 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
844 	if (err) {
845 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
846 			 vol_id, lnum, pnum);
847 		up_read(&ubi->fm_eba_sem);
848 		goto write_error;
849 	}
850 
851 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
852 	if (err) {
853 		ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
854 			 len, pnum);
855 		up_read(&ubi->fm_eba_sem);
856 		goto write_error;
857 	}
858 
859 	ubi_assert(vol->eba_tbl[lnum] < 0);
860 	vol->eba_tbl[lnum] = pnum;
861 	up_read(&ubi->fm_eba_sem);
862 
863 	leb_write_unlock(ubi, vol_id, lnum);
864 	ubi_free_vid_hdr(ubi, vid_hdr);
865 	return 0;
866 
867 write_error:
868 	if (err != -EIO || !ubi->bad_allowed) {
869 		/*
870 		 * This flash device does not admit of bad eraseblocks or
871 		 * something nasty and unexpected happened. Switch to read-only
872 		 * mode just in case.
873 		 */
874 		ubi_ro_mode(ubi);
875 		leb_write_unlock(ubi, vol_id, lnum);
876 		ubi_free_vid_hdr(ubi, vid_hdr);
877 		return err;
878 	}
879 
880 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
881 	if (err || ++tries > UBI_IO_RETRIES) {
882 		ubi_ro_mode(ubi);
883 		leb_write_unlock(ubi, vol_id, lnum);
884 		ubi_free_vid_hdr(ubi, vid_hdr);
885 		return err;
886 	}
887 
888 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
889 	ubi_msg(ubi, "try another PEB");
890 	goto retry;
891 }
892 
893 /*
894  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
895  * @ubi: UBI device description object
896  * @vol: volume description object
897  * @lnum: logical eraseblock number
898  * @buf: data to write
899  * @len: how many bytes to write
900  *
901  * This function changes the contents of a logical eraseblock atomically. @buf
902  * has to contain new logical eraseblock data, and @len - the length of the
903  * data, which has to be aligned. This function guarantees that in case of an
904  * unclean reboot the old contents is preserved. Returns zero in case of
905  * success and a negative error code in case of failure.
906  *
907  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
908  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
909  */
910 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
911 			      int lnum, const void *buf, int len)
912 {
913 	int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id;
914 	struct ubi_vid_hdr *vid_hdr;
915 	uint32_t crc;
916 
917 	if (ubi->ro_mode)
918 		return -EROFS;
919 
920 	if (len == 0) {
921 		/*
922 		 * Special case when data length is zero. In this case the LEB
923 		 * has to be unmapped and mapped somewhere else.
924 		 */
925 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
926 		if (err)
927 			return err;
928 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
929 	}
930 
931 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
932 	if (!vid_hdr)
933 		return -ENOMEM;
934 
935 	mutex_lock(&ubi->alc_mutex);
936 	err = leb_write_lock(ubi, vol_id, lnum);
937 	if (err)
938 		goto out_mutex;
939 
940 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
941 	vid_hdr->vol_id = cpu_to_be32(vol_id);
942 	vid_hdr->lnum = cpu_to_be32(lnum);
943 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
944 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
945 
946 	crc = crc32(UBI_CRC32_INIT, buf, len);
947 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
948 	vid_hdr->data_size = cpu_to_be32(len);
949 	vid_hdr->copy_flag = 1;
950 	vid_hdr->data_crc = cpu_to_be32(crc);
951 
952 retry:
953 	pnum = ubi_wl_get_peb(ubi);
954 	if (pnum < 0) {
955 		err = pnum;
956 		up_read(&ubi->fm_eba_sem);
957 		goto out_leb_unlock;
958 	}
959 
960 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
961 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
962 
963 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
964 	if (err) {
965 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
966 			 vol_id, lnum, pnum);
967 		up_read(&ubi->fm_eba_sem);
968 		goto write_error;
969 	}
970 
971 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
972 	if (err) {
973 		ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
974 			 len, pnum);
975 		up_read(&ubi->fm_eba_sem);
976 		goto write_error;
977 	}
978 
979 	old_pnum = vol->eba_tbl[lnum];
980 	vol->eba_tbl[lnum] = pnum;
981 	up_read(&ubi->fm_eba_sem);
982 
983 	if (old_pnum >= 0) {
984 		err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0);
985 		if (err)
986 			goto out_leb_unlock;
987 	}
988 
989 out_leb_unlock:
990 	leb_write_unlock(ubi, vol_id, lnum);
991 out_mutex:
992 	mutex_unlock(&ubi->alc_mutex);
993 	ubi_free_vid_hdr(ubi, vid_hdr);
994 	return err;
995 
996 write_error:
997 	if (err != -EIO || !ubi->bad_allowed) {
998 		/*
999 		 * This flash device does not admit of bad eraseblocks or
1000 		 * something nasty and unexpected happened. Switch to read-only
1001 		 * mode just in case.
1002 		 */
1003 		ubi_ro_mode(ubi);
1004 		goto out_leb_unlock;
1005 	}
1006 
1007 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
1008 	if (err || ++tries > UBI_IO_RETRIES) {
1009 		ubi_ro_mode(ubi);
1010 		goto out_leb_unlock;
1011 	}
1012 
1013 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1014 	ubi_msg(ubi, "try another PEB");
1015 	goto retry;
1016 }
1017 
1018 /**
1019  * is_error_sane - check whether a read error is sane.
1020  * @err: code of the error happened during reading
1021  *
1022  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1023  * cannot read data from the target PEB (an error @err happened). If the error
1024  * code is sane, then we treat this error as non-fatal. Otherwise the error is
1025  * fatal and UBI will be switched to R/O mode later.
1026  *
1027  * The idea is that we try not to switch to R/O mode if the read error is
1028  * something which suggests there was a real read problem. E.g., %-EIO. Or a
1029  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1030  * mode, simply because we do not know what happened at the MTD level, and we
1031  * cannot handle this. E.g., the underlying driver may have become crazy, and
1032  * it is safer to switch to R/O mode to preserve the data.
1033  *
1034  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1035  * which we have just written.
1036  */
1037 static int is_error_sane(int err)
1038 {
1039 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1040 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1041 		return 0;
1042 	return 1;
1043 }
1044 
1045 /**
1046  * ubi_eba_copy_leb - copy logical eraseblock.
1047  * @ubi: UBI device description object
1048  * @from: physical eraseblock number from where to copy
1049  * @to: physical eraseblock number where to copy
1050  * @vid_hdr: VID header of the @from physical eraseblock
1051  *
1052  * This function copies logical eraseblock from physical eraseblock @from to
1053  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1054  * function. Returns:
1055  *   o %0 in case of success;
1056  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1057  *   o a negative error code in case of failure.
1058  */
1059 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1060 		     struct ubi_vid_hdr *vid_hdr)
1061 {
1062 	int err, vol_id, lnum, data_size, aldata_size, idx;
1063 	struct ubi_volume *vol;
1064 	uint32_t crc;
1065 
1066 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1067 	lnum = be32_to_cpu(vid_hdr->lnum);
1068 
1069 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1070 
1071 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1072 		data_size = be32_to_cpu(vid_hdr->data_size);
1073 		aldata_size = ALIGN(data_size, ubi->min_io_size);
1074 	} else
1075 		data_size = aldata_size =
1076 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1077 
1078 	idx = vol_id2idx(ubi, vol_id);
1079 	spin_lock(&ubi->volumes_lock);
1080 	/*
1081 	 * Note, we may race with volume deletion, which means that the volume
1082 	 * this logical eraseblock belongs to might be being deleted. Since the
1083 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1084 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1085 	 */
1086 	vol = ubi->volumes[idx];
1087 	spin_unlock(&ubi->volumes_lock);
1088 	if (!vol) {
1089 		/* No need to do further work, cancel */
1090 		dbg_wl("volume %d is being removed, cancel", vol_id);
1091 		return MOVE_CANCEL_RACE;
1092 	}
1093 
1094 	/*
1095 	 * We do not want anybody to write to this logical eraseblock while we
1096 	 * are moving it, so lock it.
1097 	 *
1098 	 * Note, we are using non-waiting locking here, because we cannot sleep
1099 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1100 	 * unmapping the LEB which is mapped to the PEB we are going to move
1101 	 * (@from). This task locks the LEB and goes sleep in the
1102 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1103 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1104 	 * LEB is already locked, we just do not move it and return
1105 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1106 	 * we do not know the reasons of the contention - it may be just a
1107 	 * normal I/O on this LEB, so we want to re-try.
1108 	 */
1109 	err = leb_write_trylock(ubi, vol_id, lnum);
1110 	if (err) {
1111 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1112 		return MOVE_RETRY;
1113 	}
1114 
1115 	/*
1116 	 * The LEB might have been put meanwhile, and the task which put it is
1117 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1118 	 * cancel it.
1119 	 */
1120 	if (vol->eba_tbl[lnum] != from) {
1121 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1122 		       vol_id, lnum, from, vol->eba_tbl[lnum]);
1123 		err = MOVE_CANCEL_RACE;
1124 		goto out_unlock_leb;
1125 	}
1126 
1127 	/*
1128 	 * OK, now the LEB is locked and we can safely start moving it. Since
1129 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1130 	 * with some other functions - we lock the buffer by taking the
1131 	 * @ubi->buf_mutex.
1132 	 */
1133 	mutex_lock(&ubi->buf_mutex);
1134 	dbg_wl("read %d bytes of data", aldata_size);
1135 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1136 	if (err && err != UBI_IO_BITFLIPS) {
1137 		ubi_warn(ubi, "error %d while reading data from PEB %d",
1138 			 err, from);
1139 		err = MOVE_SOURCE_RD_ERR;
1140 		goto out_unlock_buf;
1141 	}
1142 
1143 	/*
1144 	 * Now we have got to calculate how much data we have to copy. In
1145 	 * case of a static volume it is fairly easy - the VID header contains
1146 	 * the data size. In case of a dynamic volume it is more difficult - we
1147 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1148 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1149 	 * may have some side-effects. And not only this. It is important not
1150 	 * to include those 0xFFs to CRC because later the they may be filled
1151 	 * by data.
1152 	 */
1153 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1154 		aldata_size = data_size =
1155 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1156 
1157 	cond_resched();
1158 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1159 	cond_resched();
1160 
1161 	/*
1162 	 * It may turn out to be that the whole @from physical eraseblock
1163 	 * contains only 0xFF bytes. Then we have to only write the VID header
1164 	 * and do not write any data. This also means we should not set
1165 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1166 	 */
1167 	if (data_size > 0) {
1168 		vid_hdr->copy_flag = 1;
1169 		vid_hdr->data_size = cpu_to_be32(data_size);
1170 		vid_hdr->data_crc = cpu_to_be32(crc);
1171 	}
1172 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1173 
1174 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1175 	if (err) {
1176 		if (err == -EIO)
1177 			err = MOVE_TARGET_WR_ERR;
1178 		goto out_unlock_buf;
1179 	}
1180 
1181 	cond_resched();
1182 
1183 	/* Read the VID header back and check if it was written correctly */
1184 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1185 	if (err) {
1186 		if (err != UBI_IO_BITFLIPS) {
1187 			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1188 				 err, to);
1189 			if (is_error_sane(err))
1190 				err = MOVE_TARGET_RD_ERR;
1191 		} else
1192 			err = MOVE_TARGET_BITFLIPS;
1193 		goto out_unlock_buf;
1194 	}
1195 
1196 	if (data_size > 0) {
1197 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1198 		if (err) {
1199 			if (err == -EIO)
1200 				err = MOVE_TARGET_WR_ERR;
1201 			goto out_unlock_buf;
1202 		}
1203 
1204 		cond_resched();
1205 
1206 		/*
1207 		 * We've written the data and are going to read it back to make
1208 		 * sure it was written correctly.
1209 		 */
1210 		memset(ubi->peb_buf, 0xFF, aldata_size);
1211 		err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1212 		if (err) {
1213 			if (err != UBI_IO_BITFLIPS) {
1214 				ubi_warn(ubi, "error %d while reading data back from PEB %d",
1215 					 err, to);
1216 				if (is_error_sane(err))
1217 					err = MOVE_TARGET_RD_ERR;
1218 			} else
1219 				err = MOVE_TARGET_BITFLIPS;
1220 			goto out_unlock_buf;
1221 		}
1222 
1223 		cond_resched();
1224 
1225 		if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1226 			ubi_warn(ubi, "read data back from PEB %d and it is different",
1227 				 to);
1228 			err = -EINVAL;
1229 			goto out_unlock_buf;
1230 		}
1231 	}
1232 
1233 	ubi_assert(vol->eba_tbl[lnum] == from);
1234 	down_read(&ubi->fm_eba_sem);
1235 	vol->eba_tbl[lnum] = to;
1236 	up_read(&ubi->fm_eba_sem);
1237 
1238 out_unlock_buf:
1239 	mutex_unlock(&ubi->buf_mutex);
1240 out_unlock_leb:
1241 	leb_write_unlock(ubi, vol_id, lnum);
1242 	return err;
1243 }
1244 
1245 /**
1246  * print_rsvd_warning - warn about not having enough reserved PEBs.
1247  * @ubi: UBI device description object
1248  *
1249  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1250  * cannot reserve enough PEBs for bad block handling. This function makes a
1251  * decision whether we have to print a warning or not. The algorithm is as
1252  * follows:
1253  *   o if this is a new UBI image, then just print the warning
1254  *   o if this is an UBI image which has already been used for some time, print
1255  *     a warning only if we can reserve less than 10% of the expected amount of
1256  *     the reserved PEB.
1257  *
1258  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1259  * of PEBs becomes smaller, which is normal and we do not want to scare users
1260  * with a warning every time they attach the MTD device. This was an issue
1261  * reported by real users.
1262  */
1263 static void print_rsvd_warning(struct ubi_device *ubi,
1264 			       struct ubi_attach_info *ai)
1265 {
1266 	/*
1267 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1268 	 * large number to distinguish between newly flashed and used images.
1269 	 */
1270 	if (ai->max_sqnum > (1 << 18)) {
1271 		int min = ubi->beb_rsvd_level / 10;
1272 
1273 		if (!min)
1274 			min = 1;
1275 		if (ubi->beb_rsvd_pebs > min)
1276 			return;
1277 	}
1278 
1279 	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1280 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1281 	if (ubi->corr_peb_count)
1282 		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1283 			 ubi->corr_peb_count);
1284 }
1285 
1286 /**
1287  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1288  * @ubi: UBI device description object
1289  * @ai_fastmap: UBI attach info object created by fastmap
1290  * @ai_scan: UBI attach info object created by scanning
1291  *
1292  * Returns < 0 in case of an internal error, 0 otherwise.
1293  * If a bad EBA table entry was found it will be printed out and
1294  * ubi_assert() triggers.
1295  */
1296 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1297 		   struct ubi_attach_info *ai_scan)
1298 {
1299 	int i, j, num_volumes, ret = 0;
1300 	int **scan_eba, **fm_eba;
1301 	struct ubi_ainf_volume *av;
1302 	struct ubi_volume *vol;
1303 	struct ubi_ainf_peb *aeb;
1304 	struct rb_node *rb;
1305 
1306 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1307 
1308 	scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1309 	if (!scan_eba)
1310 		return -ENOMEM;
1311 
1312 	fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1313 	if (!fm_eba) {
1314 		kfree(scan_eba);
1315 		return -ENOMEM;
1316 	}
1317 
1318 	for (i = 0; i < num_volumes; i++) {
1319 		vol = ubi->volumes[i];
1320 		if (!vol)
1321 			continue;
1322 
1323 		scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1324 				      GFP_KERNEL);
1325 		if (!scan_eba[i]) {
1326 			ret = -ENOMEM;
1327 			goto out_free;
1328 		}
1329 
1330 		fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1331 				    GFP_KERNEL);
1332 		if (!fm_eba[i]) {
1333 			ret = -ENOMEM;
1334 			goto out_free;
1335 		}
1336 
1337 		for (j = 0; j < vol->reserved_pebs; j++)
1338 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1339 
1340 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1341 		if (!av)
1342 			continue;
1343 
1344 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1345 			scan_eba[i][aeb->lnum] = aeb->pnum;
1346 
1347 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1348 		if (!av)
1349 			continue;
1350 
1351 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1352 			fm_eba[i][aeb->lnum] = aeb->pnum;
1353 
1354 		for (j = 0; j < vol->reserved_pebs; j++) {
1355 			if (scan_eba[i][j] != fm_eba[i][j]) {
1356 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1357 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1358 					continue;
1359 
1360 				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1361 					vol->vol_id, j, fm_eba[i][j],
1362 					scan_eba[i][j]);
1363 				ubi_assert(0);
1364 			}
1365 		}
1366 	}
1367 
1368 out_free:
1369 	for (i = 0; i < num_volumes; i++) {
1370 		if (!ubi->volumes[i])
1371 			continue;
1372 
1373 		kfree(scan_eba[i]);
1374 		kfree(fm_eba[i]);
1375 	}
1376 
1377 	kfree(scan_eba);
1378 	kfree(fm_eba);
1379 	return ret;
1380 }
1381 
1382 /**
1383  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1384  * @ubi: UBI device description object
1385  * @ai: attaching information
1386  *
1387  * This function returns zero in case of success and a negative error code in
1388  * case of failure.
1389  */
1390 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1391 {
1392 	int i, j, err, num_volumes;
1393 	struct ubi_ainf_volume *av;
1394 	struct ubi_volume *vol;
1395 	struct ubi_ainf_peb *aeb;
1396 	struct rb_node *rb;
1397 
1398 	dbg_eba("initialize EBA sub-system");
1399 
1400 	spin_lock_init(&ubi->ltree_lock);
1401 	mutex_init(&ubi->alc_mutex);
1402 	ubi->ltree = RB_ROOT;
1403 
1404 	ubi->global_sqnum = ai->max_sqnum + 1;
1405 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1406 
1407 	for (i = 0; i < num_volumes; i++) {
1408 		vol = ubi->volumes[i];
1409 		if (!vol)
1410 			continue;
1411 
1412 		cond_resched();
1413 
1414 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1415 				       GFP_KERNEL);
1416 		if (!vol->eba_tbl) {
1417 			err = -ENOMEM;
1418 			goto out_free;
1419 		}
1420 
1421 		for (j = 0; j < vol->reserved_pebs; j++)
1422 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1423 
1424 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1425 		if (!av)
1426 			continue;
1427 
1428 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1429 			if (aeb->lnum >= vol->reserved_pebs)
1430 				/*
1431 				 * This may happen in case of an unclean reboot
1432 				 * during re-size.
1433 				 */
1434 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1435 			else
1436 				vol->eba_tbl[aeb->lnum] = aeb->pnum;
1437 		}
1438 	}
1439 
1440 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1441 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1442 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1443 		if (ubi->corr_peb_count)
1444 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1445 				ubi->corr_peb_count);
1446 		err = -ENOSPC;
1447 		goto out_free;
1448 	}
1449 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1450 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1451 
1452 	if (ubi->bad_allowed) {
1453 		ubi_calculate_reserved(ubi);
1454 
1455 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1456 			/* No enough free physical eraseblocks */
1457 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1458 			print_rsvd_warning(ubi, ai);
1459 		} else
1460 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1461 
1462 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1463 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1464 	}
1465 
1466 	dbg_eba("EBA sub-system is initialized");
1467 	return 0;
1468 
1469 out_free:
1470 	for (i = 0; i < num_volumes; i++) {
1471 		if (!ubi->volumes[i])
1472 			continue;
1473 		kfree(ubi->volumes[i]->eba_tbl);
1474 		ubi->volumes[i]->eba_tbl = NULL;
1475 	}
1476 	return err;
1477 }
1478