xref: /linux/drivers/mtd/ubi/eba.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * The UBI Eraseblock Association (EBA) unit.
23  *
24  * This unit is responsible for I/O to/from logical eraseblock.
25  *
26  * Although in this implementation the EBA table is fully kept and managed in
27  * RAM, which assumes poor scalability, it might be (partially) maintained on
28  * flash in future implementations.
29  *
30  * The EBA unit implements per-logical eraseblock locking. Before accessing a
31  * logical eraseblock it is locked for reading or writing. The per-logical
32  * eraseblock locking is implemented by means of the lock tree. The lock tree
33  * is an RB-tree which refers all the currently locked logical eraseblocks. The
34  * lock tree elements are &struct ltree_entry objects. They are indexed by
35  * (@vol_id, @lnum) pairs.
36  *
37  * EBA also maintains the global sequence counter which is incremented each
38  * time a logical eraseblock is mapped to a physical eraseblock and it is
39  * stored in the volume identifier header. This means that each VID header has
40  * a unique sequence number. The sequence number is only increased an we assume
41  * 64 bits is enough to never overflow.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48 
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51 
52 /**
53  * struct ltree_entry - an entry in the lock tree.
54  * @rb: links RB-tree nodes
55  * @vol_id: volume ID of the locked logical eraseblock
56  * @lnum: locked logical eraseblock number
57  * @users: how many tasks are using this logical eraseblock or wait for it
58  * @mutex: read/write mutex to implement read/write access serialization to
59  * the (@vol_id, @lnum) logical eraseblock
60  *
61  * When a logical eraseblock is being locked - corresponding &struct ltree_entry
62  * object is inserted to the lock tree (@ubi->ltree).
63  */
64 struct ltree_entry {
65 	struct rb_node rb;
66 	int vol_id;
67 	int lnum;
68 	int users;
69 	struct rw_semaphore mutex;
70 };
71 
72 /* Slab cache for lock-tree entries */
73 static struct kmem_cache *ltree_slab;
74 
75 /**
76  * next_sqnum - get next sequence number.
77  * @ubi: UBI device description object
78  *
79  * This function returns next sequence number to use, which is just the current
80  * global sequence counter value. It also increases the global sequence
81  * counter.
82  */
83 static unsigned long long next_sqnum(struct ubi_device *ubi)
84 {
85 	unsigned long long sqnum;
86 
87 	spin_lock(&ubi->ltree_lock);
88 	sqnum = ubi->global_sqnum++;
89 	spin_unlock(&ubi->ltree_lock);
90 
91 	return sqnum;
92 }
93 
94 /**
95  * ubi_get_compat - get compatibility flags of a volume.
96  * @ubi: UBI device description object
97  * @vol_id: volume ID
98  *
99  * This function returns compatibility flags for an internal volume. User
100  * volumes have no compatibility flags, so %0 is returned.
101  */
102 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
103 {
104 	if (vol_id == UBI_LAYOUT_VOL_ID)
105 		return UBI_LAYOUT_VOLUME_COMPAT;
106 	return 0;
107 }
108 
109 /**
110  * ltree_lookup - look up the lock tree.
111  * @ubi: UBI device description object
112  * @vol_id: volume ID
113  * @lnum: logical eraseblock number
114  *
115  * This function returns a pointer to the corresponding &struct ltree_entry
116  * object if the logical eraseblock is locked and %NULL if it is not.
117  * @ubi->ltree_lock has to be locked.
118  */
119 static struct ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
120 					int lnum)
121 {
122 	struct rb_node *p;
123 
124 	p = ubi->ltree.rb_node;
125 	while (p) {
126 		struct ltree_entry *le;
127 
128 		le = rb_entry(p, struct ltree_entry, rb);
129 
130 		if (vol_id < le->vol_id)
131 			p = p->rb_left;
132 		else if (vol_id > le->vol_id)
133 			p = p->rb_right;
134 		else {
135 			if (lnum < le->lnum)
136 				p = p->rb_left;
137 			else if (lnum > le->lnum)
138 				p = p->rb_right;
139 			else
140 				return le;
141 		}
142 	}
143 
144 	return NULL;
145 }
146 
147 /**
148  * ltree_add_entry - add new entry to the lock tree.
149  * @ubi: UBI device description object
150  * @vol_id: volume ID
151  * @lnum: logical eraseblock number
152  *
153  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
154  * lock tree. If such entry is already there, its usage counter is increased.
155  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
156  * failed.
157  */
158 static struct ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id,
159 					   int lnum)
160 {
161 	struct ltree_entry *le, *le1, *le_free;
162 
163 	le = kmem_cache_alloc(ltree_slab, GFP_NOFS);
164 	if (!le)
165 		return ERR_PTR(-ENOMEM);
166 
167 	le->vol_id = vol_id;
168 	le->lnum = lnum;
169 
170 	spin_lock(&ubi->ltree_lock);
171 	le1 = ltree_lookup(ubi, vol_id, lnum);
172 
173 	if (le1) {
174 		/*
175 		 * This logical eraseblock is already locked. The newly
176 		 * allocated lock entry is not needed.
177 		 */
178 		le_free = le;
179 		le = le1;
180 	} else {
181 		struct rb_node **p, *parent = NULL;
182 
183 		/*
184 		 * No lock entry, add the newly allocated one to the
185 		 * @ubi->ltree RB-tree.
186 		 */
187 		le_free = NULL;
188 
189 		p = &ubi->ltree.rb_node;
190 		while (*p) {
191 			parent = *p;
192 			le1 = rb_entry(parent, struct ltree_entry, rb);
193 
194 			if (vol_id < le1->vol_id)
195 				p = &(*p)->rb_left;
196 			else if (vol_id > le1->vol_id)
197 				p = &(*p)->rb_right;
198 			else {
199 				ubi_assert(lnum != le1->lnum);
200 				if (lnum < le1->lnum)
201 					p = &(*p)->rb_left;
202 				else
203 					p = &(*p)->rb_right;
204 			}
205 		}
206 
207 		rb_link_node(&le->rb, parent, p);
208 		rb_insert_color(&le->rb, &ubi->ltree);
209 	}
210 	le->users += 1;
211 	spin_unlock(&ubi->ltree_lock);
212 
213 	if (le_free)
214 		kmem_cache_free(ltree_slab, le_free);
215 
216 	return le;
217 }
218 
219 /**
220  * leb_read_lock - lock logical eraseblock for reading.
221  * @ubi: UBI device description object
222  * @vol_id: volume ID
223  * @lnum: logical eraseblock number
224  *
225  * This function locks a logical eraseblock for reading. Returns zero in case
226  * of success and a negative error code in case of failure.
227  */
228 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
229 {
230 	struct ltree_entry *le;
231 
232 	le = ltree_add_entry(ubi, vol_id, lnum);
233 	if (IS_ERR(le))
234 		return PTR_ERR(le);
235 	down_read(&le->mutex);
236 	return 0;
237 }
238 
239 /**
240  * leb_read_unlock - unlock logical eraseblock.
241  * @ubi: UBI device description object
242  * @vol_id: volume ID
243  * @lnum: logical eraseblock number
244  */
245 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
246 {
247 	int free = 0;
248 	struct ltree_entry *le;
249 
250 	spin_lock(&ubi->ltree_lock);
251 	le = ltree_lookup(ubi, vol_id, lnum);
252 	le->users -= 1;
253 	ubi_assert(le->users >= 0);
254 	if (le->users == 0) {
255 		rb_erase(&le->rb, &ubi->ltree);
256 		free = 1;
257 	}
258 	spin_unlock(&ubi->ltree_lock);
259 
260 	up_read(&le->mutex);
261 	if (free)
262 		kmem_cache_free(ltree_slab, le);
263 }
264 
265 /**
266  * leb_write_lock - lock logical eraseblock for writing.
267  * @ubi: UBI device description object
268  * @vol_id: volume ID
269  * @lnum: logical eraseblock number
270  *
271  * This function locks a logical eraseblock for writing. Returns zero in case
272  * of success and a negative error code in case of failure.
273  */
274 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
275 {
276 	struct ltree_entry *le;
277 
278 	le = ltree_add_entry(ubi, vol_id, lnum);
279 	if (IS_ERR(le))
280 		return PTR_ERR(le);
281 	down_write(&le->mutex);
282 	return 0;
283 }
284 
285 /**
286  * leb_write_unlock - unlock logical eraseblock.
287  * @ubi: UBI device description object
288  * @vol_id: volume ID
289  * @lnum: logical eraseblock number
290  */
291 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
292 {
293 	int free;
294 	struct ltree_entry *le;
295 
296 	spin_lock(&ubi->ltree_lock);
297 	le = ltree_lookup(ubi, vol_id, lnum);
298 	le->users -= 1;
299 	ubi_assert(le->users >= 0);
300 	if (le->users == 0) {
301 		rb_erase(&le->rb, &ubi->ltree);
302 		free = 1;
303 	} else
304 		free = 0;
305 	spin_unlock(&ubi->ltree_lock);
306 
307 	up_write(&le->mutex);
308 	if (free)
309 		kmem_cache_free(ltree_slab, le);
310 }
311 
312 /**
313  * ubi_eba_unmap_leb - un-map logical eraseblock.
314  * @ubi: UBI device description object
315  * @vol_id: volume ID
316  * @lnum: logical eraseblock number
317  *
318  * This function un-maps logical eraseblock @lnum and schedules corresponding
319  * physical eraseblock for erasure. Returns zero in case of success and a
320  * negative error code in case of failure.
321  */
322 int ubi_eba_unmap_leb(struct ubi_device *ubi, int vol_id, int lnum)
323 {
324 	int idx = vol_id2idx(ubi, vol_id), err, pnum;
325 	struct ubi_volume *vol = ubi->volumes[idx];
326 
327 	if (ubi->ro_mode)
328 		return -EROFS;
329 
330 	err = leb_write_lock(ubi, vol_id, lnum);
331 	if (err)
332 		return err;
333 
334 	pnum = vol->eba_tbl[lnum];
335 	if (pnum < 0)
336 		/* This logical eraseblock is already unmapped */
337 		goto out_unlock;
338 
339 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
340 
341 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
342 	err = ubi_wl_put_peb(ubi, pnum, 0);
343 
344 out_unlock:
345 	leb_write_unlock(ubi, vol_id, lnum);
346 	return err;
347 }
348 
349 /**
350  * ubi_eba_read_leb - read data.
351  * @ubi: UBI device description object
352  * @vol_id: volume ID
353  * @lnum: logical eraseblock number
354  * @buf: buffer to store the read data
355  * @offset: offset from where to read
356  * @len: how many bytes to read
357  * @check: data CRC check flag
358  *
359  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
360  * bytes. The @check flag only makes sense for static volumes and forces
361  * eraseblock data CRC checking.
362  *
363  * In case of success this function returns zero. In case of a static volume,
364  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
365  * returned for any volume type if an ECC error was detected by the MTD device
366  * driver. Other negative error cored may be returned in case of other errors.
367  */
368 int ubi_eba_read_leb(struct ubi_device *ubi, int vol_id, int lnum, void *buf,
369 		     int offset, int len, int check)
370 {
371 	int err, pnum, scrub = 0, idx = vol_id2idx(ubi, vol_id);
372 	struct ubi_vid_hdr *vid_hdr;
373 	struct ubi_volume *vol = ubi->volumes[idx];
374 	uint32_t uninitialized_var(crc);
375 
376 	err = leb_read_lock(ubi, vol_id, lnum);
377 	if (err)
378 		return err;
379 
380 	pnum = vol->eba_tbl[lnum];
381 	if (pnum < 0) {
382 		/*
383 		 * The logical eraseblock is not mapped, fill the whole buffer
384 		 * with 0xFF bytes. The exception is static volumes for which
385 		 * it is an error to read unmapped logical eraseblocks.
386 		 */
387 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
388 			len, offset, vol_id, lnum);
389 		leb_read_unlock(ubi, vol_id, lnum);
390 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
391 		memset(buf, 0xFF, len);
392 		return 0;
393 	}
394 
395 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
396 		len, offset, vol_id, lnum, pnum);
397 
398 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
399 		check = 0;
400 
401 retry:
402 	if (check) {
403 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
404 		if (!vid_hdr) {
405 			err = -ENOMEM;
406 			goto out_unlock;
407 		}
408 
409 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
410 		if (err && err != UBI_IO_BITFLIPS) {
411 			if (err > 0) {
412 				/*
413 				 * The header is either absent or corrupted.
414 				 * The former case means there is a bug -
415 				 * switch to read-only mode just in case.
416 				 * The latter case means a real corruption - we
417 				 * may try to recover data. FIXME: but this is
418 				 * not implemented.
419 				 */
420 				if (err == UBI_IO_BAD_VID_HDR) {
421 					ubi_warn("bad VID header at PEB %d, LEB"
422 						 "%d:%d", pnum, vol_id, lnum);
423 					err = -EBADMSG;
424 				} else
425 					ubi_ro_mode(ubi);
426 			}
427 			goto out_free;
428 		} else if (err == UBI_IO_BITFLIPS)
429 			scrub = 1;
430 
431 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
432 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
433 
434 		crc = be32_to_cpu(vid_hdr->data_crc);
435 		ubi_free_vid_hdr(ubi, vid_hdr);
436 	}
437 
438 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
439 	if (err) {
440 		if (err == UBI_IO_BITFLIPS) {
441 			scrub = 1;
442 			err = 0;
443 		} else if (err == -EBADMSG) {
444 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
445 				goto out_unlock;
446 			scrub = 1;
447 			if (!check) {
448 				ubi_msg("force data checking");
449 				check = 1;
450 				goto retry;
451 			}
452 		} else
453 			goto out_unlock;
454 	}
455 
456 	if (check) {
457 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
458 		if (crc1 != crc) {
459 			ubi_warn("CRC error: calculated %#08x, must be %#08x",
460 				 crc1, crc);
461 			err = -EBADMSG;
462 			goto out_unlock;
463 		}
464 	}
465 
466 	if (scrub)
467 		err = ubi_wl_scrub_peb(ubi, pnum);
468 
469 	leb_read_unlock(ubi, vol_id, lnum);
470 	return err;
471 
472 out_free:
473 	ubi_free_vid_hdr(ubi, vid_hdr);
474 out_unlock:
475 	leb_read_unlock(ubi, vol_id, lnum);
476 	return err;
477 }
478 
479 /**
480  * recover_peb - recover from write failure.
481  * @ubi: UBI device description object
482  * @pnum: the physical eraseblock to recover
483  * @vol_id: volume ID
484  * @lnum: logical eraseblock number
485  * @buf: data which was not written because of the write failure
486  * @offset: offset of the failed write
487  * @len: how many bytes should have been written
488  *
489  * This function is called in case of a write failure and moves all good data
490  * from the potentially bad physical eraseblock to a good physical eraseblock.
491  * This function also writes the data which was not written due to the failure.
492  * Returns new physical eraseblock number in case of success, and a negative
493  * error code in case of failure.
494  */
495 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
496 		       const void *buf, int offset, int len)
497 {
498 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
499 	struct ubi_volume *vol = ubi->volumes[idx];
500 	struct ubi_vid_hdr *vid_hdr;
501 
502 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
503 	if (!vid_hdr) {
504 		return -ENOMEM;
505 	}
506 
507 	mutex_lock(&ubi->buf_mutex);
508 
509 retry:
510 	new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
511 	if (new_pnum < 0) {
512 		mutex_unlock(&ubi->buf_mutex);
513 		ubi_free_vid_hdr(ubi, vid_hdr);
514 		return new_pnum;
515 	}
516 
517 	ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
518 
519 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
520 	if (err && err != UBI_IO_BITFLIPS) {
521 		if (err > 0)
522 			err = -EIO;
523 		goto out_put;
524 	}
525 
526 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
527 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
528 	if (err)
529 		goto write_error;
530 
531 	data_size = offset + len;
532 	memset(ubi->peb_buf1 + offset, 0xFF, len);
533 
534 	/* Read everything before the area where the write failure happened */
535 	if (offset > 0) {
536 		err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
537 		if (err && err != UBI_IO_BITFLIPS)
538 			goto out_put;
539 	}
540 
541 	memcpy(ubi->peb_buf1 + offset, buf, len);
542 
543 	err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
544 	if (err)
545 		goto write_error;
546 
547 	mutex_unlock(&ubi->buf_mutex);
548 	ubi_free_vid_hdr(ubi, vid_hdr);
549 
550 	vol->eba_tbl[lnum] = new_pnum;
551 	ubi_wl_put_peb(ubi, pnum, 1);
552 
553 	ubi_msg("data was successfully recovered");
554 	return 0;
555 
556 out_put:
557 	mutex_unlock(&ubi->buf_mutex);
558 	ubi_wl_put_peb(ubi, new_pnum, 1);
559 	ubi_free_vid_hdr(ubi, vid_hdr);
560 	return err;
561 
562 write_error:
563 	/*
564 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
565 	 * get another one.
566 	 */
567 	ubi_warn("failed to write to PEB %d", new_pnum);
568 	ubi_wl_put_peb(ubi, new_pnum, 1);
569 	if (++tries > UBI_IO_RETRIES) {
570 		mutex_unlock(&ubi->buf_mutex);
571 		ubi_free_vid_hdr(ubi, vid_hdr);
572 		return err;
573 	}
574 	ubi_msg("try again");
575 	goto retry;
576 }
577 
578 /**
579  * ubi_eba_write_leb - write data to dynamic volume.
580  * @ubi: UBI device description object
581  * @vol_id: volume ID
582  * @lnum: logical eraseblock number
583  * @buf: the data to write
584  * @offset: offset within the logical eraseblock where to write
585  * @len: how many bytes to write
586  * @dtype: data type
587  *
588  * This function writes data to logical eraseblock @lnum of a dynamic volume
589  * @vol_id. Returns zero in case of success and a negative error code in case
590  * of failure. In case of error, it is possible that something was still
591  * written to the flash media, but may be some garbage.
592  */
593 int ubi_eba_write_leb(struct ubi_device *ubi, int vol_id, int lnum,
594 		      const void *buf, int offset, int len, int dtype)
595 {
596 	int idx = vol_id2idx(ubi, vol_id), err, pnum, tries = 0;
597 	struct ubi_volume *vol = ubi->volumes[idx];
598 	struct ubi_vid_hdr *vid_hdr;
599 
600 	if (ubi->ro_mode)
601 		return -EROFS;
602 
603 	err = leb_write_lock(ubi, vol_id, lnum);
604 	if (err)
605 		return err;
606 
607 	pnum = vol->eba_tbl[lnum];
608 	if (pnum >= 0) {
609 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
610 			len, offset, vol_id, lnum, pnum);
611 
612 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
613 		if (err) {
614 			ubi_warn("failed to write data to PEB %d", pnum);
615 			if (err == -EIO && ubi->bad_allowed)
616 				err = recover_peb(ubi, pnum, vol_id, lnum, buf, offset, len);
617 			if (err)
618 				ubi_ro_mode(ubi);
619 		}
620 		leb_write_unlock(ubi, vol_id, lnum);
621 		return err;
622 	}
623 
624 	/*
625 	 * The logical eraseblock is not mapped. We have to get a free physical
626 	 * eraseblock and write the volume identifier header there first.
627 	 */
628 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
629 	if (!vid_hdr) {
630 		leb_write_unlock(ubi, vol_id, lnum);
631 		return -ENOMEM;
632 	}
633 
634 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
635 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
636 	vid_hdr->vol_id = cpu_to_be32(vol_id);
637 	vid_hdr->lnum = cpu_to_be32(lnum);
638 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
639 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
640 
641 retry:
642 	pnum = ubi_wl_get_peb(ubi, dtype);
643 	if (pnum < 0) {
644 		ubi_free_vid_hdr(ubi, vid_hdr);
645 		leb_write_unlock(ubi, vol_id, lnum);
646 		return pnum;
647 	}
648 
649 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
650 		len, offset, vol_id, lnum, pnum);
651 
652 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
653 	if (err) {
654 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
655 			 vol_id, lnum, pnum);
656 		goto write_error;
657 	}
658 
659 	err = ubi_io_write_data(ubi, buf, pnum, offset, len);
660 	if (err) {
661 		ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, "
662 			 "PEB %d", len, offset, vol_id, lnum, pnum);
663 		goto write_error;
664 	}
665 
666 	vol->eba_tbl[lnum] = pnum;
667 
668 	leb_write_unlock(ubi, vol_id, lnum);
669 	ubi_free_vid_hdr(ubi, vid_hdr);
670 	return 0;
671 
672 write_error:
673 	if (err != -EIO || !ubi->bad_allowed) {
674 		ubi_ro_mode(ubi);
675 		leb_write_unlock(ubi, vol_id, lnum);
676 		ubi_free_vid_hdr(ubi, vid_hdr);
677 		return err;
678 	}
679 
680 	/*
681 	 * Fortunately, this is the first write operation to this physical
682 	 * eraseblock, so just put it and request a new one. We assume that if
683 	 * this physical eraseblock went bad, the erase code will handle that.
684 	 */
685 	err = ubi_wl_put_peb(ubi, pnum, 1);
686 	if (err || ++tries > UBI_IO_RETRIES) {
687 		ubi_ro_mode(ubi);
688 		leb_write_unlock(ubi, vol_id, lnum);
689 		ubi_free_vid_hdr(ubi, vid_hdr);
690 		return err;
691 	}
692 
693 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
694 	ubi_msg("try another PEB");
695 	goto retry;
696 }
697 
698 /**
699  * ubi_eba_write_leb_st - write data to static volume.
700  * @ubi: UBI device description object
701  * @vol_id: volume ID
702  * @lnum: logical eraseblock number
703  * @buf: data to write
704  * @len: how many bytes to write
705  * @dtype: data type
706  * @used_ebs: how many logical eraseblocks will this volume contain
707  *
708  * This function writes data to logical eraseblock @lnum of static volume
709  * @vol_id. The @used_ebs argument should contain total number of logical
710  * eraseblock in this static volume.
711  *
712  * When writing to the last logical eraseblock, the @len argument doesn't have
713  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
714  * to the real data size, although the @buf buffer has to contain the
715  * alignment. In all other cases, @len has to be aligned.
716  *
717  * It is prohibited to write more then once to logical eraseblocks of static
718  * volumes. This function returns zero in case of success and a negative error
719  * code in case of failure.
720  */
721 int ubi_eba_write_leb_st(struct ubi_device *ubi, int vol_id, int lnum,
722 			 const void *buf, int len, int dtype, int used_ebs)
723 {
724 	int err, pnum, tries = 0, data_size = len;
725 	int idx = vol_id2idx(ubi, vol_id);
726 	struct ubi_volume *vol = ubi->volumes[idx];
727 	struct ubi_vid_hdr *vid_hdr;
728 	uint32_t crc;
729 
730 	if (ubi->ro_mode)
731 		return -EROFS;
732 
733 	if (lnum == used_ebs - 1)
734 		/* If this is the last LEB @len may be unaligned */
735 		len = ALIGN(data_size, ubi->min_io_size);
736 	else
737 		ubi_assert(len % ubi->min_io_size == 0);
738 
739 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
740 	if (!vid_hdr)
741 		return -ENOMEM;
742 
743 	err = leb_write_lock(ubi, vol_id, lnum);
744 	if (err) {
745 		ubi_free_vid_hdr(ubi, vid_hdr);
746 		return err;
747 	}
748 
749 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
750 	vid_hdr->vol_id = cpu_to_be32(vol_id);
751 	vid_hdr->lnum = cpu_to_be32(lnum);
752 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
753 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
754 
755 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
756 	vid_hdr->vol_type = UBI_VID_STATIC;
757 	vid_hdr->data_size = cpu_to_be32(data_size);
758 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
759 	vid_hdr->data_crc = cpu_to_be32(crc);
760 
761 retry:
762 	pnum = ubi_wl_get_peb(ubi, dtype);
763 	if (pnum < 0) {
764 		ubi_free_vid_hdr(ubi, vid_hdr);
765 		leb_write_unlock(ubi, vol_id, lnum);
766 		return pnum;
767 	}
768 
769 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
770 		len, vol_id, lnum, pnum, used_ebs);
771 
772 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
773 	if (err) {
774 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
775 			 vol_id, lnum, pnum);
776 		goto write_error;
777 	}
778 
779 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
780 	if (err) {
781 		ubi_warn("failed to write %d bytes of data to PEB %d",
782 			 len, pnum);
783 		goto write_error;
784 	}
785 
786 	ubi_assert(vol->eba_tbl[lnum] < 0);
787 	vol->eba_tbl[lnum] = pnum;
788 
789 	leb_write_unlock(ubi, vol_id, lnum);
790 	ubi_free_vid_hdr(ubi, vid_hdr);
791 	return 0;
792 
793 write_error:
794 	if (err != -EIO || !ubi->bad_allowed) {
795 		/*
796 		 * This flash device does not admit of bad eraseblocks or
797 		 * something nasty and unexpected happened. Switch to read-only
798 		 * mode just in case.
799 		 */
800 		ubi_ro_mode(ubi);
801 		leb_write_unlock(ubi, vol_id, lnum);
802 		ubi_free_vid_hdr(ubi, vid_hdr);
803 		return err;
804 	}
805 
806 	err = ubi_wl_put_peb(ubi, pnum, 1);
807 	if (err || ++tries > UBI_IO_RETRIES) {
808 		ubi_ro_mode(ubi);
809 		leb_write_unlock(ubi, vol_id, lnum);
810 		ubi_free_vid_hdr(ubi, vid_hdr);
811 		return err;
812 	}
813 
814 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
815 	ubi_msg("try another PEB");
816 	goto retry;
817 }
818 
819 /*
820  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
821  * @ubi: UBI device description object
822  * @vol_id: volume ID
823  * @lnum: logical eraseblock number
824  * @buf: data to write
825  * @len: how many bytes to write
826  * @dtype: data type
827  *
828  * This function changes the contents of a logical eraseblock atomically. @buf
829  * has to contain new logical eraseblock data, and @len - the length of the
830  * data, which has to be aligned. This function guarantees that in case of an
831  * unclean reboot the old contents is preserved. Returns zero in case of
832  * success and a negative error code in case of failure.
833  *
834  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
835  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
836  */
837 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, int vol_id, int lnum,
838 			      const void *buf, int len, int dtype)
839 {
840 	int err, pnum, tries = 0, idx = vol_id2idx(ubi, vol_id);
841 	struct ubi_volume *vol = ubi->volumes[idx];
842 	struct ubi_vid_hdr *vid_hdr;
843 	uint32_t crc;
844 
845 	if (ubi->ro_mode)
846 		return -EROFS;
847 
848 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
849 	if (!vid_hdr)
850 		return -ENOMEM;
851 
852 	mutex_lock(&ubi->alc_mutex);
853 	err = leb_write_lock(ubi, vol_id, lnum);
854 	if (err)
855 		goto out_mutex;
856 
857 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
858 	vid_hdr->vol_id = cpu_to_be32(vol_id);
859 	vid_hdr->lnum = cpu_to_be32(lnum);
860 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
861 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
862 
863 	crc = crc32(UBI_CRC32_INIT, buf, len);
864 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
865 	vid_hdr->data_size = cpu_to_be32(len);
866 	vid_hdr->copy_flag = 1;
867 	vid_hdr->data_crc = cpu_to_be32(crc);
868 
869 retry:
870 	pnum = ubi_wl_get_peb(ubi, dtype);
871 	if (pnum < 0) {
872 		err = pnum;
873 		goto out_leb_unlock;
874 	}
875 
876 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
877 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
878 
879 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
880 	if (err) {
881 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
882 			 vol_id, lnum, pnum);
883 		goto write_error;
884 	}
885 
886 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
887 	if (err) {
888 		ubi_warn("failed to write %d bytes of data to PEB %d",
889 			 len, pnum);
890 		goto write_error;
891 	}
892 
893 	if (vol->eba_tbl[lnum] >= 0) {
894 		err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1);
895 		if (err)
896 			goto out_leb_unlock;
897 	}
898 
899 	vol->eba_tbl[lnum] = pnum;
900 
901 out_leb_unlock:
902 	leb_write_unlock(ubi, vol_id, lnum);
903 out_mutex:
904 	mutex_unlock(&ubi->alc_mutex);
905 	ubi_free_vid_hdr(ubi, vid_hdr);
906 	return err;
907 
908 write_error:
909 	if (err != -EIO || !ubi->bad_allowed) {
910 		/*
911 		 * This flash device does not admit of bad eraseblocks or
912 		 * something nasty and unexpected happened. Switch to read-only
913 		 * mode just in case.
914 		 */
915 		ubi_ro_mode(ubi);
916 		goto out_leb_unlock;
917 	}
918 
919 	err = ubi_wl_put_peb(ubi, pnum, 1);
920 	if (err || ++tries > UBI_IO_RETRIES) {
921 		ubi_ro_mode(ubi);
922 		goto out_leb_unlock;
923 	}
924 
925 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
926 	ubi_msg("try another PEB");
927 	goto retry;
928 }
929 
930 /**
931  * ltree_entry_ctor - lock tree entries slab cache constructor.
932  * @obj: the lock-tree entry to construct
933  * @cache: the lock tree entry slab cache
934  * @flags: constructor flags
935  */
936 static void ltree_entry_ctor(void *obj, struct kmem_cache *cache,
937 			     unsigned long flags)
938 {
939 	struct ltree_entry *le = obj;
940 
941 	le->users = 0;
942 	init_rwsem(&le->mutex);
943 }
944 
945 /**
946  * ubi_eba_copy_leb - copy logical eraseblock.
947  * @ubi: UBI device description object
948  * @from: physical eraseblock number from where to copy
949  * @to: physical eraseblock number where to copy
950  * @vid_hdr: VID header of the @from physical eraseblock
951  *
952  * This function copies logical eraseblock from physical eraseblock @from to
953  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
954  * function. Returns zero in case of success, %UBI_IO_BITFLIPS if the operation
955  * was canceled because bit-flips were detected at the target PEB, and a
956  * negative error code in case of failure.
957  */
958 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
959 		     struct ubi_vid_hdr *vid_hdr)
960 {
961 	int err, vol_id, lnum, data_size, aldata_size, pnum, idx;
962 	struct ubi_volume *vol;
963 	uint32_t crc;
964 
965 	vol_id = be32_to_cpu(vid_hdr->vol_id);
966 	lnum = be32_to_cpu(vid_hdr->lnum);
967 
968 	dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
969 
970 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
971 		data_size = be32_to_cpu(vid_hdr->data_size);
972 		aldata_size = ALIGN(data_size, ubi->min_io_size);
973 	} else
974 		data_size = aldata_size =
975 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
976 
977 	/*
978 	 * We do not want anybody to write to this logical eraseblock while we
979 	 * are moving it, so we lock it.
980 	 */
981 	err = leb_write_lock(ubi, vol_id, lnum);
982 	if (err)
983 		return err;
984 
985 	mutex_lock(&ubi->buf_mutex);
986 
987 	/*
988 	 * But the logical eraseblock might have been put by this time.
989 	 * Cancel if it is true.
990 	 */
991 	idx = vol_id2idx(ubi, vol_id);
992 
993 	/*
994 	 * We may race with volume deletion/re-size, so we have to hold
995 	 * @ubi->volumes_lock.
996 	 */
997 	spin_lock(&ubi->volumes_lock);
998 	vol = ubi->volumes[idx];
999 	if (!vol) {
1000 		dbg_eba("volume %d was removed meanwhile", vol_id);
1001 		spin_unlock(&ubi->volumes_lock);
1002 		goto out_unlock;
1003 	}
1004 
1005 	pnum = vol->eba_tbl[lnum];
1006 	if (pnum != from) {
1007 		dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1008 			"PEB %d, cancel", vol_id, lnum, from, pnum);
1009 		spin_unlock(&ubi->volumes_lock);
1010 		goto out_unlock;
1011 	}
1012 	spin_unlock(&ubi->volumes_lock);
1013 
1014 	/* OK, now the LEB is locked and we can safely start moving it */
1015 
1016 	dbg_eba("read %d bytes of data", aldata_size);
1017 	err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
1018 	if (err && err != UBI_IO_BITFLIPS) {
1019 		ubi_warn("error %d while reading data from PEB %d",
1020 			 err, from);
1021 		goto out_unlock;
1022 	}
1023 
1024 	/*
1025 	 * Now we have got to calculate how much data we have to to copy. In
1026 	 * case of a static volume it is fairly easy - the VID header contains
1027 	 * the data size. In case of a dynamic volume it is more difficult - we
1028 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1029 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1030 	 * may have some side-effects. And not only this. It is important not
1031 	 * to include those 0xFFs to CRC because later the they may be filled
1032 	 * by data.
1033 	 */
1034 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1035 		aldata_size = data_size =
1036 			ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
1037 
1038 	cond_resched();
1039 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
1040 	cond_resched();
1041 
1042 	/*
1043 	 * It may turn out to me that the whole @from physical eraseblock
1044 	 * contains only 0xFF bytes. Then we have to only write the VID header
1045 	 * and do not write any data. This also means we should not set
1046 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1047 	 */
1048 	if (data_size > 0) {
1049 		vid_hdr->copy_flag = 1;
1050 		vid_hdr->data_size = cpu_to_be32(data_size);
1051 		vid_hdr->data_crc = cpu_to_be32(crc);
1052 	}
1053 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
1054 
1055 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1056 	if (err)
1057 		goto out_unlock;
1058 
1059 	cond_resched();
1060 
1061 	/* Read the VID header back and check if it was written correctly */
1062 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1063 	if (err) {
1064 		if (err != UBI_IO_BITFLIPS)
1065 			ubi_warn("cannot read VID header back from PEB %d", to);
1066 		goto out_unlock;
1067 	}
1068 
1069 	if (data_size > 0) {
1070 		err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
1071 		if (err)
1072 			goto out_unlock;
1073 
1074 		cond_resched();
1075 
1076 		/*
1077 		 * We've written the data and are going to read it back to make
1078 		 * sure it was written correctly.
1079 		 */
1080 
1081 		err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
1082 		if (err) {
1083 			if (err != UBI_IO_BITFLIPS)
1084 				ubi_warn("cannot read data back from PEB %d",
1085 					 to);
1086 			goto out_unlock;
1087 		}
1088 
1089 		cond_resched();
1090 
1091 		if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
1092 			ubi_warn("read data back from PEB %d - it is different",
1093 				 to);
1094 			goto out_unlock;
1095 		}
1096 	}
1097 
1098 	ubi_assert(vol->eba_tbl[lnum] == from);
1099 	vol->eba_tbl[lnum] = to;
1100 
1101 out_unlock:
1102 	mutex_unlock(&ubi->buf_mutex);
1103 	leb_write_unlock(ubi, vol_id, lnum);
1104 	return err;
1105 }
1106 
1107 /**
1108  * ubi_eba_init_scan - initialize the EBA unit using scanning information.
1109  * @ubi: UBI device description object
1110  * @si: scanning information
1111  *
1112  * This function returns zero in case of success and a negative error code in
1113  * case of failure.
1114  */
1115 int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1116 {
1117 	int i, j, err, num_volumes;
1118 	struct ubi_scan_volume *sv;
1119 	struct ubi_volume *vol;
1120 	struct ubi_scan_leb *seb;
1121 	struct rb_node *rb;
1122 
1123 	dbg_eba("initialize EBA unit");
1124 
1125 	spin_lock_init(&ubi->ltree_lock);
1126 	mutex_init(&ubi->alc_mutex);
1127 	ubi->ltree = RB_ROOT;
1128 
1129 	if (ubi_devices_cnt == 0) {
1130 		ltree_slab = kmem_cache_create("ubi_ltree_slab",
1131 					       sizeof(struct ltree_entry), 0,
1132 					       0, &ltree_entry_ctor);
1133 		if (!ltree_slab)
1134 			return -ENOMEM;
1135 	}
1136 
1137 	ubi->global_sqnum = si->max_sqnum + 1;
1138 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1139 
1140 	for (i = 0; i < num_volumes; i++) {
1141 		vol = ubi->volumes[i];
1142 		if (!vol)
1143 			continue;
1144 
1145 		cond_resched();
1146 
1147 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1148 				       GFP_KERNEL);
1149 		if (!vol->eba_tbl) {
1150 			err = -ENOMEM;
1151 			goto out_free;
1152 		}
1153 
1154 		for (j = 0; j < vol->reserved_pebs; j++)
1155 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1156 
1157 		sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1158 		if (!sv)
1159 			continue;
1160 
1161 		ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1162 			if (seb->lnum >= vol->reserved_pebs)
1163 				/*
1164 				 * This may happen in case of an unclean reboot
1165 				 * during re-size.
1166 				 */
1167 				ubi_scan_move_to_list(sv, seb, &si->erase);
1168 			vol->eba_tbl[seb->lnum] = seb->pnum;
1169 		}
1170 	}
1171 
1172 	if (ubi->bad_allowed) {
1173 		ubi_calculate_reserved(ubi);
1174 
1175 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1176 			/* No enough free physical eraseblocks */
1177 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1178 			ubi_warn("cannot reserve enough PEBs for bad PEB "
1179 				 "handling, reserved %d, need %d",
1180 				 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1181 		} else
1182 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1183 
1184 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1185 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1186 	}
1187 
1188 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1189 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1190 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1191 		err = -ENOSPC;
1192 		goto out_free;
1193 	}
1194 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1195 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1196 
1197 	dbg_eba("EBA unit is initialized");
1198 	return 0;
1199 
1200 out_free:
1201 	for (i = 0; i < num_volumes; i++) {
1202 		if (!ubi->volumes[i])
1203 			continue;
1204 		kfree(ubi->volumes[i]->eba_tbl);
1205 	}
1206 	if (ubi_devices_cnt == 0)
1207 		kmem_cache_destroy(ltree_slab);
1208 	return err;
1209 }
1210 
1211 /**
1212  * ubi_eba_close - close EBA unit.
1213  * @ubi: UBI device description object
1214  */
1215 void ubi_eba_close(const struct ubi_device *ubi)
1216 {
1217 	int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1218 
1219 	dbg_eba("close EBA unit");
1220 
1221 	for (i = 0; i < num_volumes; i++) {
1222 		if (!ubi->volumes[i])
1223 			continue;
1224 		kfree(ubi->volumes[i]->eba_tbl);
1225 	}
1226 	if (ubi_devices_cnt == 1)
1227 		kmem_cache_destroy(ltree_slab);
1228 }
1229