1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21 /* 22 * The UBI Eraseblock Association (EBA) unit. 23 * 24 * This unit is responsible for I/O to/from logical eraseblock. 25 * 26 * Although in this implementation the EBA table is fully kept and managed in 27 * RAM, which assumes poor scalability, it might be (partially) maintained on 28 * flash in future implementations. 29 * 30 * The EBA unit implements per-logical eraseblock locking. Before accessing a 31 * logical eraseblock it is locked for reading or writing. The per-logical 32 * eraseblock locking is implemented by means of the lock tree. The lock tree 33 * is an RB-tree which refers all the currently locked logical eraseblocks. The 34 * lock tree elements are &struct ltree_entry objects. They are indexed by 35 * (@vol_id, @lnum) pairs. 36 * 37 * EBA also maintains the global sequence counter which is incremented each 38 * time a logical eraseblock is mapped to a physical eraseblock and it is 39 * stored in the volume identifier header. This means that each VID header has 40 * a unique sequence number. The sequence number is only increased an we assume 41 * 64 bits is enough to never overflow. 42 */ 43 44 #include <linux/slab.h> 45 #include <linux/crc32.h> 46 #include <linux/err.h> 47 #include "ubi.h" 48 49 /* Number of physical eraseblocks reserved for atomic LEB change operation */ 50 #define EBA_RESERVED_PEBS 1 51 52 /** 53 * struct ltree_entry - an entry in the lock tree. 54 * @rb: links RB-tree nodes 55 * @vol_id: volume ID of the locked logical eraseblock 56 * @lnum: locked logical eraseblock number 57 * @users: how many tasks are using this logical eraseblock or wait for it 58 * @mutex: read/write mutex to implement read/write access serialization to 59 * the (@vol_id, @lnum) logical eraseblock 60 * 61 * When a logical eraseblock is being locked - corresponding &struct ltree_entry 62 * object is inserted to the lock tree (@ubi->ltree). 63 */ 64 struct ltree_entry { 65 struct rb_node rb; 66 int vol_id; 67 int lnum; 68 int users; 69 struct rw_semaphore mutex; 70 }; 71 72 /* Slab cache for lock-tree entries */ 73 static struct kmem_cache *ltree_slab; 74 75 /** 76 * next_sqnum - get next sequence number. 77 * @ubi: UBI device description object 78 * 79 * This function returns next sequence number to use, which is just the current 80 * global sequence counter value. It also increases the global sequence 81 * counter. 82 */ 83 static unsigned long long next_sqnum(struct ubi_device *ubi) 84 { 85 unsigned long long sqnum; 86 87 spin_lock(&ubi->ltree_lock); 88 sqnum = ubi->global_sqnum++; 89 spin_unlock(&ubi->ltree_lock); 90 91 return sqnum; 92 } 93 94 /** 95 * ubi_get_compat - get compatibility flags of a volume. 96 * @ubi: UBI device description object 97 * @vol_id: volume ID 98 * 99 * This function returns compatibility flags for an internal volume. User 100 * volumes have no compatibility flags, so %0 is returned. 101 */ 102 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) 103 { 104 if (vol_id == UBI_LAYOUT_VOL_ID) 105 return UBI_LAYOUT_VOLUME_COMPAT; 106 return 0; 107 } 108 109 /** 110 * ltree_lookup - look up the lock tree. 111 * @ubi: UBI device description object 112 * @vol_id: volume ID 113 * @lnum: logical eraseblock number 114 * 115 * This function returns a pointer to the corresponding &struct ltree_entry 116 * object if the logical eraseblock is locked and %NULL if it is not. 117 * @ubi->ltree_lock has to be locked. 118 */ 119 static struct ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, 120 int lnum) 121 { 122 struct rb_node *p; 123 124 p = ubi->ltree.rb_node; 125 while (p) { 126 struct ltree_entry *le; 127 128 le = rb_entry(p, struct ltree_entry, rb); 129 130 if (vol_id < le->vol_id) 131 p = p->rb_left; 132 else if (vol_id > le->vol_id) 133 p = p->rb_right; 134 else { 135 if (lnum < le->lnum) 136 p = p->rb_left; 137 else if (lnum > le->lnum) 138 p = p->rb_right; 139 else 140 return le; 141 } 142 } 143 144 return NULL; 145 } 146 147 /** 148 * ltree_add_entry - add new entry to the lock tree. 149 * @ubi: UBI device description object 150 * @vol_id: volume ID 151 * @lnum: logical eraseblock number 152 * 153 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the 154 * lock tree. If such entry is already there, its usage counter is increased. 155 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation 156 * failed. 157 */ 158 static struct ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id, 159 int lnum) 160 { 161 struct ltree_entry *le, *le1, *le_free; 162 163 le = kmem_cache_alloc(ltree_slab, GFP_NOFS); 164 if (!le) 165 return ERR_PTR(-ENOMEM); 166 167 le->vol_id = vol_id; 168 le->lnum = lnum; 169 170 spin_lock(&ubi->ltree_lock); 171 le1 = ltree_lookup(ubi, vol_id, lnum); 172 173 if (le1) { 174 /* 175 * This logical eraseblock is already locked. The newly 176 * allocated lock entry is not needed. 177 */ 178 le_free = le; 179 le = le1; 180 } else { 181 struct rb_node **p, *parent = NULL; 182 183 /* 184 * No lock entry, add the newly allocated one to the 185 * @ubi->ltree RB-tree. 186 */ 187 le_free = NULL; 188 189 p = &ubi->ltree.rb_node; 190 while (*p) { 191 parent = *p; 192 le1 = rb_entry(parent, struct ltree_entry, rb); 193 194 if (vol_id < le1->vol_id) 195 p = &(*p)->rb_left; 196 else if (vol_id > le1->vol_id) 197 p = &(*p)->rb_right; 198 else { 199 ubi_assert(lnum != le1->lnum); 200 if (lnum < le1->lnum) 201 p = &(*p)->rb_left; 202 else 203 p = &(*p)->rb_right; 204 } 205 } 206 207 rb_link_node(&le->rb, parent, p); 208 rb_insert_color(&le->rb, &ubi->ltree); 209 } 210 le->users += 1; 211 spin_unlock(&ubi->ltree_lock); 212 213 if (le_free) 214 kmem_cache_free(ltree_slab, le_free); 215 216 return le; 217 } 218 219 /** 220 * leb_read_lock - lock logical eraseblock for reading. 221 * @ubi: UBI device description object 222 * @vol_id: volume ID 223 * @lnum: logical eraseblock number 224 * 225 * This function locks a logical eraseblock for reading. Returns zero in case 226 * of success and a negative error code in case of failure. 227 */ 228 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) 229 { 230 struct ltree_entry *le; 231 232 le = ltree_add_entry(ubi, vol_id, lnum); 233 if (IS_ERR(le)) 234 return PTR_ERR(le); 235 down_read(&le->mutex); 236 return 0; 237 } 238 239 /** 240 * leb_read_unlock - unlock logical eraseblock. 241 * @ubi: UBI device description object 242 * @vol_id: volume ID 243 * @lnum: logical eraseblock number 244 */ 245 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) 246 { 247 int free = 0; 248 struct ltree_entry *le; 249 250 spin_lock(&ubi->ltree_lock); 251 le = ltree_lookup(ubi, vol_id, lnum); 252 le->users -= 1; 253 ubi_assert(le->users >= 0); 254 if (le->users == 0) { 255 rb_erase(&le->rb, &ubi->ltree); 256 free = 1; 257 } 258 spin_unlock(&ubi->ltree_lock); 259 260 up_read(&le->mutex); 261 if (free) 262 kmem_cache_free(ltree_slab, le); 263 } 264 265 /** 266 * leb_write_lock - lock logical eraseblock for writing. 267 * @ubi: UBI device description object 268 * @vol_id: volume ID 269 * @lnum: logical eraseblock number 270 * 271 * This function locks a logical eraseblock for writing. Returns zero in case 272 * of success and a negative error code in case of failure. 273 */ 274 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) 275 { 276 struct ltree_entry *le; 277 278 le = ltree_add_entry(ubi, vol_id, lnum); 279 if (IS_ERR(le)) 280 return PTR_ERR(le); 281 down_write(&le->mutex); 282 return 0; 283 } 284 285 /** 286 * leb_write_unlock - unlock logical eraseblock. 287 * @ubi: UBI device description object 288 * @vol_id: volume ID 289 * @lnum: logical eraseblock number 290 */ 291 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) 292 { 293 int free; 294 struct ltree_entry *le; 295 296 spin_lock(&ubi->ltree_lock); 297 le = ltree_lookup(ubi, vol_id, lnum); 298 le->users -= 1; 299 ubi_assert(le->users >= 0); 300 if (le->users == 0) { 301 rb_erase(&le->rb, &ubi->ltree); 302 free = 1; 303 } else 304 free = 0; 305 spin_unlock(&ubi->ltree_lock); 306 307 up_write(&le->mutex); 308 if (free) 309 kmem_cache_free(ltree_slab, le); 310 } 311 312 /** 313 * ubi_eba_unmap_leb - un-map logical eraseblock. 314 * @ubi: UBI device description object 315 * @vol_id: volume ID 316 * @lnum: logical eraseblock number 317 * 318 * This function un-maps logical eraseblock @lnum and schedules corresponding 319 * physical eraseblock for erasure. Returns zero in case of success and a 320 * negative error code in case of failure. 321 */ 322 int ubi_eba_unmap_leb(struct ubi_device *ubi, int vol_id, int lnum) 323 { 324 int idx = vol_id2idx(ubi, vol_id), err, pnum; 325 struct ubi_volume *vol = ubi->volumes[idx]; 326 327 if (ubi->ro_mode) 328 return -EROFS; 329 330 err = leb_write_lock(ubi, vol_id, lnum); 331 if (err) 332 return err; 333 334 pnum = vol->eba_tbl[lnum]; 335 if (pnum < 0) 336 /* This logical eraseblock is already unmapped */ 337 goto out_unlock; 338 339 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); 340 341 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; 342 err = ubi_wl_put_peb(ubi, pnum, 0); 343 344 out_unlock: 345 leb_write_unlock(ubi, vol_id, lnum); 346 return err; 347 } 348 349 /** 350 * ubi_eba_read_leb - read data. 351 * @ubi: UBI device description object 352 * @vol_id: volume ID 353 * @lnum: logical eraseblock number 354 * @buf: buffer to store the read data 355 * @offset: offset from where to read 356 * @len: how many bytes to read 357 * @check: data CRC check flag 358 * 359 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF 360 * bytes. The @check flag only makes sense for static volumes and forces 361 * eraseblock data CRC checking. 362 * 363 * In case of success this function returns zero. In case of a static volume, 364 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be 365 * returned for any volume type if an ECC error was detected by the MTD device 366 * driver. Other negative error cored may be returned in case of other errors. 367 */ 368 int ubi_eba_read_leb(struct ubi_device *ubi, int vol_id, int lnum, void *buf, 369 int offset, int len, int check) 370 { 371 int err, pnum, scrub = 0, idx = vol_id2idx(ubi, vol_id); 372 struct ubi_vid_hdr *vid_hdr; 373 struct ubi_volume *vol = ubi->volumes[idx]; 374 uint32_t uninitialized_var(crc); 375 376 err = leb_read_lock(ubi, vol_id, lnum); 377 if (err) 378 return err; 379 380 pnum = vol->eba_tbl[lnum]; 381 if (pnum < 0) { 382 /* 383 * The logical eraseblock is not mapped, fill the whole buffer 384 * with 0xFF bytes. The exception is static volumes for which 385 * it is an error to read unmapped logical eraseblocks. 386 */ 387 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", 388 len, offset, vol_id, lnum); 389 leb_read_unlock(ubi, vol_id, lnum); 390 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); 391 memset(buf, 0xFF, len); 392 return 0; 393 } 394 395 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", 396 len, offset, vol_id, lnum, pnum); 397 398 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 399 check = 0; 400 401 retry: 402 if (check) { 403 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 404 if (!vid_hdr) { 405 err = -ENOMEM; 406 goto out_unlock; 407 } 408 409 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 410 if (err && err != UBI_IO_BITFLIPS) { 411 if (err > 0) { 412 /* 413 * The header is either absent or corrupted. 414 * The former case means there is a bug - 415 * switch to read-only mode just in case. 416 * The latter case means a real corruption - we 417 * may try to recover data. FIXME: but this is 418 * not implemented. 419 */ 420 if (err == UBI_IO_BAD_VID_HDR) { 421 ubi_warn("bad VID header at PEB %d, LEB" 422 "%d:%d", pnum, vol_id, lnum); 423 err = -EBADMSG; 424 } else 425 ubi_ro_mode(ubi); 426 } 427 goto out_free; 428 } else if (err == UBI_IO_BITFLIPS) 429 scrub = 1; 430 431 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); 432 ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); 433 434 crc = be32_to_cpu(vid_hdr->data_crc); 435 ubi_free_vid_hdr(ubi, vid_hdr); 436 } 437 438 err = ubi_io_read_data(ubi, buf, pnum, offset, len); 439 if (err) { 440 if (err == UBI_IO_BITFLIPS) { 441 scrub = 1; 442 err = 0; 443 } else if (err == -EBADMSG) { 444 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 445 goto out_unlock; 446 scrub = 1; 447 if (!check) { 448 ubi_msg("force data checking"); 449 check = 1; 450 goto retry; 451 } 452 } else 453 goto out_unlock; 454 } 455 456 if (check) { 457 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); 458 if (crc1 != crc) { 459 ubi_warn("CRC error: calculated %#08x, must be %#08x", 460 crc1, crc); 461 err = -EBADMSG; 462 goto out_unlock; 463 } 464 } 465 466 if (scrub) 467 err = ubi_wl_scrub_peb(ubi, pnum); 468 469 leb_read_unlock(ubi, vol_id, lnum); 470 return err; 471 472 out_free: 473 ubi_free_vid_hdr(ubi, vid_hdr); 474 out_unlock: 475 leb_read_unlock(ubi, vol_id, lnum); 476 return err; 477 } 478 479 /** 480 * recover_peb - recover from write failure. 481 * @ubi: UBI device description object 482 * @pnum: the physical eraseblock to recover 483 * @vol_id: volume ID 484 * @lnum: logical eraseblock number 485 * @buf: data which was not written because of the write failure 486 * @offset: offset of the failed write 487 * @len: how many bytes should have been written 488 * 489 * This function is called in case of a write failure and moves all good data 490 * from the potentially bad physical eraseblock to a good physical eraseblock. 491 * This function also writes the data which was not written due to the failure. 492 * Returns new physical eraseblock number in case of success, and a negative 493 * error code in case of failure. 494 */ 495 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, 496 const void *buf, int offset, int len) 497 { 498 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0; 499 struct ubi_volume *vol = ubi->volumes[idx]; 500 struct ubi_vid_hdr *vid_hdr; 501 502 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 503 if (!vid_hdr) { 504 return -ENOMEM; 505 } 506 507 mutex_lock(&ubi->buf_mutex); 508 509 retry: 510 new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN); 511 if (new_pnum < 0) { 512 mutex_unlock(&ubi->buf_mutex); 513 ubi_free_vid_hdr(ubi, vid_hdr); 514 return new_pnum; 515 } 516 517 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum); 518 519 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 520 if (err && err != UBI_IO_BITFLIPS) { 521 if (err > 0) 522 err = -EIO; 523 goto out_put; 524 } 525 526 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 527 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); 528 if (err) 529 goto write_error; 530 531 data_size = offset + len; 532 memset(ubi->peb_buf1 + offset, 0xFF, len); 533 534 /* Read everything before the area where the write failure happened */ 535 if (offset > 0) { 536 err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset); 537 if (err && err != UBI_IO_BITFLIPS) 538 goto out_put; 539 } 540 541 memcpy(ubi->peb_buf1 + offset, buf, len); 542 543 err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size); 544 if (err) 545 goto write_error; 546 547 mutex_unlock(&ubi->buf_mutex); 548 ubi_free_vid_hdr(ubi, vid_hdr); 549 550 vol->eba_tbl[lnum] = new_pnum; 551 ubi_wl_put_peb(ubi, pnum, 1); 552 553 ubi_msg("data was successfully recovered"); 554 return 0; 555 556 out_put: 557 mutex_unlock(&ubi->buf_mutex); 558 ubi_wl_put_peb(ubi, new_pnum, 1); 559 ubi_free_vid_hdr(ubi, vid_hdr); 560 return err; 561 562 write_error: 563 /* 564 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to 565 * get another one. 566 */ 567 ubi_warn("failed to write to PEB %d", new_pnum); 568 ubi_wl_put_peb(ubi, new_pnum, 1); 569 if (++tries > UBI_IO_RETRIES) { 570 mutex_unlock(&ubi->buf_mutex); 571 ubi_free_vid_hdr(ubi, vid_hdr); 572 return err; 573 } 574 ubi_msg("try again"); 575 goto retry; 576 } 577 578 /** 579 * ubi_eba_write_leb - write data to dynamic volume. 580 * @ubi: UBI device description object 581 * @vol_id: volume ID 582 * @lnum: logical eraseblock number 583 * @buf: the data to write 584 * @offset: offset within the logical eraseblock where to write 585 * @len: how many bytes to write 586 * @dtype: data type 587 * 588 * This function writes data to logical eraseblock @lnum of a dynamic volume 589 * @vol_id. Returns zero in case of success and a negative error code in case 590 * of failure. In case of error, it is possible that something was still 591 * written to the flash media, but may be some garbage. 592 */ 593 int ubi_eba_write_leb(struct ubi_device *ubi, int vol_id, int lnum, 594 const void *buf, int offset, int len, int dtype) 595 { 596 int idx = vol_id2idx(ubi, vol_id), err, pnum, tries = 0; 597 struct ubi_volume *vol = ubi->volumes[idx]; 598 struct ubi_vid_hdr *vid_hdr; 599 600 if (ubi->ro_mode) 601 return -EROFS; 602 603 err = leb_write_lock(ubi, vol_id, lnum); 604 if (err) 605 return err; 606 607 pnum = vol->eba_tbl[lnum]; 608 if (pnum >= 0) { 609 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", 610 len, offset, vol_id, lnum, pnum); 611 612 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 613 if (err) { 614 ubi_warn("failed to write data to PEB %d", pnum); 615 if (err == -EIO && ubi->bad_allowed) 616 err = recover_peb(ubi, pnum, vol_id, lnum, buf, offset, len); 617 if (err) 618 ubi_ro_mode(ubi); 619 } 620 leb_write_unlock(ubi, vol_id, lnum); 621 return err; 622 } 623 624 /* 625 * The logical eraseblock is not mapped. We have to get a free physical 626 * eraseblock and write the volume identifier header there first. 627 */ 628 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 629 if (!vid_hdr) { 630 leb_write_unlock(ubi, vol_id, lnum); 631 return -ENOMEM; 632 } 633 634 vid_hdr->vol_type = UBI_VID_DYNAMIC; 635 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 636 vid_hdr->vol_id = cpu_to_be32(vol_id); 637 vid_hdr->lnum = cpu_to_be32(lnum); 638 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 639 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 640 641 retry: 642 pnum = ubi_wl_get_peb(ubi, dtype); 643 if (pnum < 0) { 644 ubi_free_vid_hdr(ubi, vid_hdr); 645 leb_write_unlock(ubi, vol_id, lnum); 646 return pnum; 647 } 648 649 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", 650 len, offset, vol_id, lnum, pnum); 651 652 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 653 if (err) { 654 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 655 vol_id, lnum, pnum); 656 goto write_error; 657 } 658 659 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 660 if (err) { 661 ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, " 662 "PEB %d", len, offset, vol_id, lnum, pnum); 663 goto write_error; 664 } 665 666 vol->eba_tbl[lnum] = pnum; 667 668 leb_write_unlock(ubi, vol_id, lnum); 669 ubi_free_vid_hdr(ubi, vid_hdr); 670 return 0; 671 672 write_error: 673 if (err != -EIO || !ubi->bad_allowed) { 674 ubi_ro_mode(ubi); 675 leb_write_unlock(ubi, vol_id, lnum); 676 ubi_free_vid_hdr(ubi, vid_hdr); 677 return err; 678 } 679 680 /* 681 * Fortunately, this is the first write operation to this physical 682 * eraseblock, so just put it and request a new one. We assume that if 683 * this physical eraseblock went bad, the erase code will handle that. 684 */ 685 err = ubi_wl_put_peb(ubi, pnum, 1); 686 if (err || ++tries > UBI_IO_RETRIES) { 687 ubi_ro_mode(ubi); 688 leb_write_unlock(ubi, vol_id, lnum); 689 ubi_free_vid_hdr(ubi, vid_hdr); 690 return err; 691 } 692 693 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 694 ubi_msg("try another PEB"); 695 goto retry; 696 } 697 698 /** 699 * ubi_eba_write_leb_st - write data to static volume. 700 * @ubi: UBI device description object 701 * @vol_id: volume ID 702 * @lnum: logical eraseblock number 703 * @buf: data to write 704 * @len: how many bytes to write 705 * @dtype: data type 706 * @used_ebs: how many logical eraseblocks will this volume contain 707 * 708 * This function writes data to logical eraseblock @lnum of static volume 709 * @vol_id. The @used_ebs argument should contain total number of logical 710 * eraseblock in this static volume. 711 * 712 * When writing to the last logical eraseblock, the @len argument doesn't have 713 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent 714 * to the real data size, although the @buf buffer has to contain the 715 * alignment. In all other cases, @len has to be aligned. 716 * 717 * It is prohibited to write more then once to logical eraseblocks of static 718 * volumes. This function returns zero in case of success and a negative error 719 * code in case of failure. 720 */ 721 int ubi_eba_write_leb_st(struct ubi_device *ubi, int vol_id, int lnum, 722 const void *buf, int len, int dtype, int used_ebs) 723 { 724 int err, pnum, tries = 0, data_size = len; 725 int idx = vol_id2idx(ubi, vol_id); 726 struct ubi_volume *vol = ubi->volumes[idx]; 727 struct ubi_vid_hdr *vid_hdr; 728 uint32_t crc; 729 730 if (ubi->ro_mode) 731 return -EROFS; 732 733 if (lnum == used_ebs - 1) 734 /* If this is the last LEB @len may be unaligned */ 735 len = ALIGN(data_size, ubi->min_io_size); 736 else 737 ubi_assert(len % ubi->min_io_size == 0); 738 739 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 740 if (!vid_hdr) 741 return -ENOMEM; 742 743 err = leb_write_lock(ubi, vol_id, lnum); 744 if (err) { 745 ubi_free_vid_hdr(ubi, vid_hdr); 746 return err; 747 } 748 749 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 750 vid_hdr->vol_id = cpu_to_be32(vol_id); 751 vid_hdr->lnum = cpu_to_be32(lnum); 752 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 753 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 754 755 crc = crc32(UBI_CRC32_INIT, buf, data_size); 756 vid_hdr->vol_type = UBI_VID_STATIC; 757 vid_hdr->data_size = cpu_to_be32(data_size); 758 vid_hdr->used_ebs = cpu_to_be32(used_ebs); 759 vid_hdr->data_crc = cpu_to_be32(crc); 760 761 retry: 762 pnum = ubi_wl_get_peb(ubi, dtype); 763 if (pnum < 0) { 764 ubi_free_vid_hdr(ubi, vid_hdr); 765 leb_write_unlock(ubi, vol_id, lnum); 766 return pnum; 767 } 768 769 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d", 770 len, vol_id, lnum, pnum, used_ebs); 771 772 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 773 if (err) { 774 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 775 vol_id, lnum, pnum); 776 goto write_error; 777 } 778 779 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 780 if (err) { 781 ubi_warn("failed to write %d bytes of data to PEB %d", 782 len, pnum); 783 goto write_error; 784 } 785 786 ubi_assert(vol->eba_tbl[lnum] < 0); 787 vol->eba_tbl[lnum] = pnum; 788 789 leb_write_unlock(ubi, vol_id, lnum); 790 ubi_free_vid_hdr(ubi, vid_hdr); 791 return 0; 792 793 write_error: 794 if (err != -EIO || !ubi->bad_allowed) { 795 /* 796 * This flash device does not admit of bad eraseblocks or 797 * something nasty and unexpected happened. Switch to read-only 798 * mode just in case. 799 */ 800 ubi_ro_mode(ubi); 801 leb_write_unlock(ubi, vol_id, lnum); 802 ubi_free_vid_hdr(ubi, vid_hdr); 803 return err; 804 } 805 806 err = ubi_wl_put_peb(ubi, pnum, 1); 807 if (err || ++tries > UBI_IO_RETRIES) { 808 ubi_ro_mode(ubi); 809 leb_write_unlock(ubi, vol_id, lnum); 810 ubi_free_vid_hdr(ubi, vid_hdr); 811 return err; 812 } 813 814 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 815 ubi_msg("try another PEB"); 816 goto retry; 817 } 818 819 /* 820 * ubi_eba_atomic_leb_change - change logical eraseblock atomically. 821 * @ubi: UBI device description object 822 * @vol_id: volume ID 823 * @lnum: logical eraseblock number 824 * @buf: data to write 825 * @len: how many bytes to write 826 * @dtype: data type 827 * 828 * This function changes the contents of a logical eraseblock atomically. @buf 829 * has to contain new logical eraseblock data, and @len - the length of the 830 * data, which has to be aligned. This function guarantees that in case of an 831 * unclean reboot the old contents is preserved. Returns zero in case of 832 * success and a negative error code in case of failure. 833 * 834 * UBI reserves one LEB for the "atomic LEB change" operation, so only one 835 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. 836 */ 837 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, int vol_id, int lnum, 838 const void *buf, int len, int dtype) 839 { 840 int err, pnum, tries = 0, idx = vol_id2idx(ubi, vol_id); 841 struct ubi_volume *vol = ubi->volumes[idx]; 842 struct ubi_vid_hdr *vid_hdr; 843 uint32_t crc; 844 845 if (ubi->ro_mode) 846 return -EROFS; 847 848 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 849 if (!vid_hdr) 850 return -ENOMEM; 851 852 mutex_lock(&ubi->alc_mutex); 853 err = leb_write_lock(ubi, vol_id, lnum); 854 if (err) 855 goto out_mutex; 856 857 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 858 vid_hdr->vol_id = cpu_to_be32(vol_id); 859 vid_hdr->lnum = cpu_to_be32(lnum); 860 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 861 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 862 863 crc = crc32(UBI_CRC32_INIT, buf, len); 864 vid_hdr->vol_type = UBI_VID_DYNAMIC; 865 vid_hdr->data_size = cpu_to_be32(len); 866 vid_hdr->copy_flag = 1; 867 vid_hdr->data_crc = cpu_to_be32(crc); 868 869 retry: 870 pnum = ubi_wl_get_peb(ubi, dtype); 871 if (pnum < 0) { 872 err = pnum; 873 goto out_leb_unlock; 874 } 875 876 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d", 877 vol_id, lnum, vol->eba_tbl[lnum], pnum); 878 879 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 880 if (err) { 881 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 882 vol_id, lnum, pnum); 883 goto write_error; 884 } 885 886 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 887 if (err) { 888 ubi_warn("failed to write %d bytes of data to PEB %d", 889 len, pnum); 890 goto write_error; 891 } 892 893 if (vol->eba_tbl[lnum] >= 0) { 894 err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1); 895 if (err) 896 goto out_leb_unlock; 897 } 898 899 vol->eba_tbl[lnum] = pnum; 900 901 out_leb_unlock: 902 leb_write_unlock(ubi, vol_id, lnum); 903 out_mutex: 904 mutex_unlock(&ubi->alc_mutex); 905 ubi_free_vid_hdr(ubi, vid_hdr); 906 return err; 907 908 write_error: 909 if (err != -EIO || !ubi->bad_allowed) { 910 /* 911 * This flash device does not admit of bad eraseblocks or 912 * something nasty and unexpected happened. Switch to read-only 913 * mode just in case. 914 */ 915 ubi_ro_mode(ubi); 916 goto out_leb_unlock; 917 } 918 919 err = ubi_wl_put_peb(ubi, pnum, 1); 920 if (err || ++tries > UBI_IO_RETRIES) { 921 ubi_ro_mode(ubi); 922 goto out_leb_unlock; 923 } 924 925 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 926 ubi_msg("try another PEB"); 927 goto retry; 928 } 929 930 /** 931 * ltree_entry_ctor - lock tree entries slab cache constructor. 932 * @obj: the lock-tree entry to construct 933 * @cache: the lock tree entry slab cache 934 * @flags: constructor flags 935 */ 936 static void ltree_entry_ctor(void *obj, struct kmem_cache *cache, 937 unsigned long flags) 938 { 939 struct ltree_entry *le = obj; 940 941 le->users = 0; 942 init_rwsem(&le->mutex); 943 } 944 945 /** 946 * ubi_eba_copy_leb - copy logical eraseblock. 947 * @ubi: UBI device description object 948 * @from: physical eraseblock number from where to copy 949 * @to: physical eraseblock number where to copy 950 * @vid_hdr: VID header of the @from physical eraseblock 951 * 952 * This function copies logical eraseblock from physical eraseblock @from to 953 * physical eraseblock @to. The @vid_hdr buffer may be changed by this 954 * function. Returns zero in case of success, %UBI_IO_BITFLIPS if the operation 955 * was canceled because bit-flips were detected at the target PEB, and a 956 * negative error code in case of failure. 957 */ 958 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, 959 struct ubi_vid_hdr *vid_hdr) 960 { 961 int err, vol_id, lnum, data_size, aldata_size, pnum, idx; 962 struct ubi_volume *vol; 963 uint32_t crc; 964 965 vol_id = be32_to_cpu(vid_hdr->vol_id); 966 lnum = be32_to_cpu(vid_hdr->lnum); 967 968 dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); 969 970 if (vid_hdr->vol_type == UBI_VID_STATIC) { 971 data_size = be32_to_cpu(vid_hdr->data_size); 972 aldata_size = ALIGN(data_size, ubi->min_io_size); 973 } else 974 data_size = aldata_size = 975 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); 976 977 /* 978 * We do not want anybody to write to this logical eraseblock while we 979 * are moving it, so we lock it. 980 */ 981 err = leb_write_lock(ubi, vol_id, lnum); 982 if (err) 983 return err; 984 985 mutex_lock(&ubi->buf_mutex); 986 987 /* 988 * But the logical eraseblock might have been put by this time. 989 * Cancel if it is true. 990 */ 991 idx = vol_id2idx(ubi, vol_id); 992 993 /* 994 * We may race with volume deletion/re-size, so we have to hold 995 * @ubi->volumes_lock. 996 */ 997 spin_lock(&ubi->volumes_lock); 998 vol = ubi->volumes[idx]; 999 if (!vol) { 1000 dbg_eba("volume %d was removed meanwhile", vol_id); 1001 spin_unlock(&ubi->volumes_lock); 1002 goto out_unlock; 1003 } 1004 1005 pnum = vol->eba_tbl[lnum]; 1006 if (pnum != from) { 1007 dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to " 1008 "PEB %d, cancel", vol_id, lnum, from, pnum); 1009 spin_unlock(&ubi->volumes_lock); 1010 goto out_unlock; 1011 } 1012 spin_unlock(&ubi->volumes_lock); 1013 1014 /* OK, now the LEB is locked and we can safely start moving it */ 1015 1016 dbg_eba("read %d bytes of data", aldata_size); 1017 err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size); 1018 if (err && err != UBI_IO_BITFLIPS) { 1019 ubi_warn("error %d while reading data from PEB %d", 1020 err, from); 1021 goto out_unlock; 1022 } 1023 1024 /* 1025 * Now we have got to calculate how much data we have to to copy. In 1026 * case of a static volume it is fairly easy - the VID header contains 1027 * the data size. In case of a dynamic volume it is more difficult - we 1028 * have to read the contents, cut 0xFF bytes from the end and copy only 1029 * the first part. We must do this to avoid writing 0xFF bytes as it 1030 * may have some side-effects. And not only this. It is important not 1031 * to include those 0xFFs to CRC because later the they may be filled 1032 * by data. 1033 */ 1034 if (vid_hdr->vol_type == UBI_VID_DYNAMIC) 1035 aldata_size = data_size = 1036 ubi_calc_data_len(ubi, ubi->peb_buf1, data_size); 1037 1038 cond_resched(); 1039 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size); 1040 cond_resched(); 1041 1042 /* 1043 * It may turn out to me that the whole @from physical eraseblock 1044 * contains only 0xFF bytes. Then we have to only write the VID header 1045 * and do not write any data. This also means we should not set 1046 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. 1047 */ 1048 if (data_size > 0) { 1049 vid_hdr->copy_flag = 1; 1050 vid_hdr->data_size = cpu_to_be32(data_size); 1051 vid_hdr->data_crc = cpu_to_be32(crc); 1052 } 1053 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 1054 1055 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); 1056 if (err) 1057 goto out_unlock; 1058 1059 cond_resched(); 1060 1061 /* Read the VID header back and check if it was written correctly */ 1062 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); 1063 if (err) { 1064 if (err != UBI_IO_BITFLIPS) 1065 ubi_warn("cannot read VID header back from PEB %d", to); 1066 goto out_unlock; 1067 } 1068 1069 if (data_size > 0) { 1070 err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size); 1071 if (err) 1072 goto out_unlock; 1073 1074 cond_resched(); 1075 1076 /* 1077 * We've written the data and are going to read it back to make 1078 * sure it was written correctly. 1079 */ 1080 1081 err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size); 1082 if (err) { 1083 if (err != UBI_IO_BITFLIPS) 1084 ubi_warn("cannot read data back from PEB %d", 1085 to); 1086 goto out_unlock; 1087 } 1088 1089 cond_resched(); 1090 1091 if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) { 1092 ubi_warn("read data back from PEB %d - it is different", 1093 to); 1094 goto out_unlock; 1095 } 1096 } 1097 1098 ubi_assert(vol->eba_tbl[lnum] == from); 1099 vol->eba_tbl[lnum] = to; 1100 1101 out_unlock: 1102 mutex_unlock(&ubi->buf_mutex); 1103 leb_write_unlock(ubi, vol_id, lnum); 1104 return err; 1105 } 1106 1107 /** 1108 * ubi_eba_init_scan - initialize the EBA unit using scanning information. 1109 * @ubi: UBI device description object 1110 * @si: scanning information 1111 * 1112 * This function returns zero in case of success and a negative error code in 1113 * case of failure. 1114 */ 1115 int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1116 { 1117 int i, j, err, num_volumes; 1118 struct ubi_scan_volume *sv; 1119 struct ubi_volume *vol; 1120 struct ubi_scan_leb *seb; 1121 struct rb_node *rb; 1122 1123 dbg_eba("initialize EBA unit"); 1124 1125 spin_lock_init(&ubi->ltree_lock); 1126 mutex_init(&ubi->alc_mutex); 1127 ubi->ltree = RB_ROOT; 1128 1129 if (ubi_devices_cnt == 0) { 1130 ltree_slab = kmem_cache_create("ubi_ltree_slab", 1131 sizeof(struct ltree_entry), 0, 1132 0, <ree_entry_ctor); 1133 if (!ltree_slab) 1134 return -ENOMEM; 1135 } 1136 1137 ubi->global_sqnum = si->max_sqnum + 1; 1138 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1139 1140 for (i = 0; i < num_volumes; i++) { 1141 vol = ubi->volumes[i]; 1142 if (!vol) 1143 continue; 1144 1145 cond_resched(); 1146 1147 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int), 1148 GFP_KERNEL); 1149 if (!vol->eba_tbl) { 1150 err = -ENOMEM; 1151 goto out_free; 1152 } 1153 1154 for (j = 0; j < vol->reserved_pebs; j++) 1155 vol->eba_tbl[j] = UBI_LEB_UNMAPPED; 1156 1157 sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i)); 1158 if (!sv) 1159 continue; 1160 1161 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { 1162 if (seb->lnum >= vol->reserved_pebs) 1163 /* 1164 * This may happen in case of an unclean reboot 1165 * during re-size. 1166 */ 1167 ubi_scan_move_to_list(sv, seb, &si->erase); 1168 vol->eba_tbl[seb->lnum] = seb->pnum; 1169 } 1170 } 1171 1172 if (ubi->bad_allowed) { 1173 ubi_calculate_reserved(ubi); 1174 1175 if (ubi->avail_pebs < ubi->beb_rsvd_level) { 1176 /* No enough free physical eraseblocks */ 1177 ubi->beb_rsvd_pebs = ubi->avail_pebs; 1178 ubi_warn("cannot reserve enough PEBs for bad PEB " 1179 "handling, reserved %d, need %d", 1180 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); 1181 } else 1182 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; 1183 1184 ubi->avail_pebs -= ubi->beb_rsvd_pebs; 1185 ubi->rsvd_pebs += ubi->beb_rsvd_pebs; 1186 } 1187 1188 if (ubi->avail_pebs < EBA_RESERVED_PEBS) { 1189 ubi_err("no enough physical eraseblocks (%d, need %d)", 1190 ubi->avail_pebs, EBA_RESERVED_PEBS); 1191 err = -ENOSPC; 1192 goto out_free; 1193 } 1194 ubi->avail_pebs -= EBA_RESERVED_PEBS; 1195 ubi->rsvd_pebs += EBA_RESERVED_PEBS; 1196 1197 dbg_eba("EBA unit is initialized"); 1198 return 0; 1199 1200 out_free: 1201 for (i = 0; i < num_volumes; i++) { 1202 if (!ubi->volumes[i]) 1203 continue; 1204 kfree(ubi->volumes[i]->eba_tbl); 1205 } 1206 if (ubi_devices_cnt == 0) 1207 kmem_cache_destroy(ltree_slab); 1208 return err; 1209 } 1210 1211 /** 1212 * ubi_eba_close - close EBA unit. 1213 * @ubi: UBI device description object 1214 */ 1215 void ubi_eba_close(const struct ubi_device *ubi) 1216 { 1217 int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1218 1219 dbg_eba("close EBA unit"); 1220 1221 for (i = 0; i < num_volumes; i++) { 1222 if (!ubi->volumes[i]) 1223 continue; 1224 kfree(ubi->volumes[i]->eba_tbl); 1225 } 1226 if (ubi_devices_cnt == 1) 1227 kmem_cache_destroy(ltree_slab); 1228 } 1229