1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21 /* 22 * The UBI Eraseblock Association (EBA) sub-system. 23 * 24 * This sub-system is responsible for I/O to/from logical eraseblock. 25 * 26 * Although in this implementation the EBA table is fully kept and managed in 27 * RAM, which assumes poor scalability, it might be (partially) maintained on 28 * flash in future implementations. 29 * 30 * The EBA sub-system implements per-logical eraseblock locking. Before 31 * accessing a logical eraseblock it is locked for reading or writing. The 32 * per-logical eraseblock locking is implemented by means of the lock tree. The 33 * lock tree is an RB-tree which refers all the currently locked logical 34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. 35 * They are indexed by (@vol_id, @lnum) pairs. 36 * 37 * EBA also maintains the global sequence counter which is incremented each 38 * time a logical eraseblock is mapped to a physical eraseblock and it is 39 * stored in the volume identifier header. This means that each VID header has 40 * a unique sequence number. The sequence number is only increased an we assume 41 * 64 bits is enough to never overflow. 42 */ 43 44 #include <linux/slab.h> 45 #include <linux/crc32.h> 46 #include <linux/err.h> 47 #include "ubi.h" 48 49 /* Number of physical eraseblocks reserved for atomic LEB change operation */ 50 #define EBA_RESERVED_PEBS 1 51 52 /** 53 * next_sqnum - get next sequence number. 54 * @ubi: UBI device description object 55 * 56 * This function returns next sequence number to use, which is just the current 57 * global sequence counter value. It also increases the global sequence 58 * counter. 59 */ 60 static unsigned long long next_sqnum(struct ubi_device *ubi) 61 { 62 unsigned long long sqnum; 63 64 spin_lock(&ubi->ltree_lock); 65 sqnum = ubi->global_sqnum++; 66 spin_unlock(&ubi->ltree_lock); 67 68 return sqnum; 69 } 70 71 /** 72 * ubi_get_compat - get compatibility flags of a volume. 73 * @ubi: UBI device description object 74 * @vol_id: volume ID 75 * 76 * This function returns compatibility flags for an internal volume. User 77 * volumes have no compatibility flags, so %0 is returned. 78 */ 79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) 80 { 81 if (vol_id == UBI_LAYOUT_VOLUME_ID) 82 return UBI_LAYOUT_VOLUME_COMPAT; 83 return 0; 84 } 85 86 /** 87 * ltree_lookup - look up the lock tree. 88 * @ubi: UBI device description object 89 * @vol_id: volume ID 90 * @lnum: logical eraseblock number 91 * 92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry 93 * object if the logical eraseblock is locked and %NULL if it is not. 94 * @ubi->ltree_lock has to be locked. 95 */ 96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, 97 int lnum) 98 { 99 struct rb_node *p; 100 101 p = ubi->ltree.rb_node; 102 while (p) { 103 struct ubi_ltree_entry *le; 104 105 le = rb_entry(p, struct ubi_ltree_entry, rb); 106 107 if (vol_id < le->vol_id) 108 p = p->rb_left; 109 else if (vol_id > le->vol_id) 110 p = p->rb_right; 111 else { 112 if (lnum < le->lnum) 113 p = p->rb_left; 114 else if (lnum > le->lnum) 115 p = p->rb_right; 116 else 117 return le; 118 } 119 } 120 121 return NULL; 122 } 123 124 /** 125 * ltree_add_entry - add new entry to the lock tree. 126 * @ubi: UBI device description object 127 * @vol_id: volume ID 128 * @lnum: logical eraseblock number 129 * 130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the 131 * lock tree. If such entry is already there, its usage counter is increased. 132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation 133 * failed. 134 */ 135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, 136 int vol_id, int lnum) 137 { 138 struct ubi_ltree_entry *le, *le1, *le_free; 139 140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); 141 if (!le) 142 return ERR_PTR(-ENOMEM); 143 144 le->users = 0; 145 init_rwsem(&le->mutex); 146 le->vol_id = vol_id; 147 le->lnum = lnum; 148 149 spin_lock(&ubi->ltree_lock); 150 le1 = ltree_lookup(ubi, vol_id, lnum); 151 152 if (le1) { 153 /* 154 * This logical eraseblock is already locked. The newly 155 * allocated lock entry is not needed. 156 */ 157 le_free = le; 158 le = le1; 159 } else { 160 struct rb_node **p, *parent = NULL; 161 162 /* 163 * No lock entry, add the newly allocated one to the 164 * @ubi->ltree RB-tree. 165 */ 166 le_free = NULL; 167 168 p = &ubi->ltree.rb_node; 169 while (*p) { 170 parent = *p; 171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb); 172 173 if (vol_id < le1->vol_id) 174 p = &(*p)->rb_left; 175 else if (vol_id > le1->vol_id) 176 p = &(*p)->rb_right; 177 else { 178 ubi_assert(lnum != le1->lnum); 179 if (lnum < le1->lnum) 180 p = &(*p)->rb_left; 181 else 182 p = &(*p)->rb_right; 183 } 184 } 185 186 rb_link_node(&le->rb, parent, p); 187 rb_insert_color(&le->rb, &ubi->ltree); 188 } 189 le->users += 1; 190 spin_unlock(&ubi->ltree_lock); 191 192 kfree(le_free); 193 return le; 194 } 195 196 /** 197 * leb_read_lock - lock logical eraseblock for reading. 198 * @ubi: UBI device description object 199 * @vol_id: volume ID 200 * @lnum: logical eraseblock number 201 * 202 * This function locks a logical eraseblock for reading. Returns zero in case 203 * of success and a negative error code in case of failure. 204 */ 205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) 206 { 207 struct ubi_ltree_entry *le; 208 209 le = ltree_add_entry(ubi, vol_id, lnum); 210 if (IS_ERR(le)) 211 return PTR_ERR(le); 212 down_read(&le->mutex); 213 return 0; 214 } 215 216 /** 217 * leb_read_unlock - unlock logical eraseblock. 218 * @ubi: UBI device description object 219 * @vol_id: volume ID 220 * @lnum: logical eraseblock number 221 */ 222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) 223 { 224 struct ubi_ltree_entry *le; 225 226 spin_lock(&ubi->ltree_lock); 227 le = ltree_lookup(ubi, vol_id, lnum); 228 le->users -= 1; 229 ubi_assert(le->users >= 0); 230 up_read(&le->mutex); 231 if (le->users == 0) { 232 rb_erase(&le->rb, &ubi->ltree); 233 kfree(le); 234 } 235 spin_unlock(&ubi->ltree_lock); 236 } 237 238 /** 239 * leb_write_lock - lock logical eraseblock for writing. 240 * @ubi: UBI device description object 241 * @vol_id: volume ID 242 * @lnum: logical eraseblock number 243 * 244 * This function locks a logical eraseblock for writing. Returns zero in case 245 * of success and a negative error code in case of failure. 246 */ 247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) 248 { 249 struct ubi_ltree_entry *le; 250 251 le = ltree_add_entry(ubi, vol_id, lnum); 252 if (IS_ERR(le)) 253 return PTR_ERR(le); 254 down_write(&le->mutex); 255 return 0; 256 } 257 258 /** 259 * leb_write_lock - lock logical eraseblock for writing. 260 * @ubi: UBI device description object 261 * @vol_id: volume ID 262 * @lnum: logical eraseblock number 263 * 264 * This function locks a logical eraseblock for writing if there is no 265 * contention and does nothing if there is contention. Returns %0 in case of 266 * success, %1 in case of contention, and and a negative error code in case of 267 * failure. 268 */ 269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) 270 { 271 struct ubi_ltree_entry *le; 272 273 le = ltree_add_entry(ubi, vol_id, lnum); 274 if (IS_ERR(le)) 275 return PTR_ERR(le); 276 if (down_write_trylock(&le->mutex)) 277 return 0; 278 279 /* Contention, cancel */ 280 spin_lock(&ubi->ltree_lock); 281 le->users -= 1; 282 ubi_assert(le->users >= 0); 283 if (le->users == 0) { 284 rb_erase(&le->rb, &ubi->ltree); 285 kfree(le); 286 } 287 spin_unlock(&ubi->ltree_lock); 288 289 return 1; 290 } 291 292 /** 293 * leb_write_unlock - unlock logical eraseblock. 294 * @ubi: UBI device description object 295 * @vol_id: volume ID 296 * @lnum: logical eraseblock number 297 */ 298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) 299 { 300 struct ubi_ltree_entry *le; 301 302 spin_lock(&ubi->ltree_lock); 303 le = ltree_lookup(ubi, vol_id, lnum); 304 le->users -= 1; 305 ubi_assert(le->users >= 0); 306 up_write(&le->mutex); 307 if (le->users == 0) { 308 rb_erase(&le->rb, &ubi->ltree); 309 kfree(le); 310 } 311 spin_unlock(&ubi->ltree_lock); 312 } 313 314 /** 315 * ubi_eba_unmap_leb - un-map logical eraseblock. 316 * @ubi: UBI device description object 317 * @vol: volume description object 318 * @lnum: logical eraseblock number 319 * 320 * This function un-maps logical eraseblock @lnum and schedules corresponding 321 * physical eraseblock for erasure. Returns zero in case of success and a 322 * negative error code in case of failure. 323 */ 324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, 325 int lnum) 326 { 327 int err, pnum, vol_id = vol->vol_id; 328 329 if (ubi->ro_mode) 330 return -EROFS; 331 332 err = leb_write_lock(ubi, vol_id, lnum); 333 if (err) 334 return err; 335 336 pnum = vol->eba_tbl[lnum]; 337 if (pnum < 0) 338 /* This logical eraseblock is already unmapped */ 339 goto out_unlock; 340 341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); 342 343 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; 344 err = ubi_wl_put_peb(ubi, pnum, 0); 345 346 out_unlock: 347 leb_write_unlock(ubi, vol_id, lnum); 348 return err; 349 } 350 351 /** 352 * ubi_eba_read_leb - read data. 353 * @ubi: UBI device description object 354 * @vol: volume description object 355 * @lnum: logical eraseblock number 356 * @buf: buffer to store the read data 357 * @offset: offset from where to read 358 * @len: how many bytes to read 359 * @check: data CRC check flag 360 * 361 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF 362 * bytes. The @check flag only makes sense for static volumes and forces 363 * eraseblock data CRC checking. 364 * 365 * In case of success this function returns zero. In case of a static volume, 366 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be 367 * returned for any volume type if an ECC error was detected by the MTD device 368 * driver. Other negative error cored may be returned in case of other errors. 369 */ 370 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 371 void *buf, int offset, int len, int check) 372 { 373 int err, pnum, scrub = 0, vol_id = vol->vol_id; 374 struct ubi_vid_hdr *vid_hdr; 375 uint32_t uninitialized_var(crc); 376 377 err = leb_read_lock(ubi, vol_id, lnum); 378 if (err) 379 return err; 380 381 pnum = vol->eba_tbl[lnum]; 382 if (pnum < 0) { 383 /* 384 * The logical eraseblock is not mapped, fill the whole buffer 385 * with 0xFF bytes. The exception is static volumes for which 386 * it is an error to read unmapped logical eraseblocks. 387 */ 388 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", 389 len, offset, vol_id, lnum); 390 leb_read_unlock(ubi, vol_id, lnum); 391 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); 392 memset(buf, 0xFF, len); 393 return 0; 394 } 395 396 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", 397 len, offset, vol_id, lnum, pnum); 398 399 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 400 check = 0; 401 402 retry: 403 if (check) { 404 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 405 if (!vid_hdr) { 406 err = -ENOMEM; 407 goto out_unlock; 408 } 409 410 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 411 if (err && err != UBI_IO_BITFLIPS) { 412 if (err > 0) { 413 /* 414 * The header is either absent or corrupted. 415 * The former case means there is a bug - 416 * switch to read-only mode just in case. 417 * The latter case means a real corruption - we 418 * may try to recover data. FIXME: but this is 419 * not implemented. 420 */ 421 if (err == UBI_IO_BAD_VID_HDR) { 422 ubi_warn("bad VID header at PEB %d, LEB" 423 "%d:%d", pnum, vol_id, lnum); 424 err = -EBADMSG; 425 } else 426 ubi_ro_mode(ubi); 427 } 428 goto out_free; 429 } else if (err == UBI_IO_BITFLIPS) 430 scrub = 1; 431 432 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); 433 ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); 434 435 crc = be32_to_cpu(vid_hdr->data_crc); 436 ubi_free_vid_hdr(ubi, vid_hdr); 437 } 438 439 err = ubi_io_read_data(ubi, buf, pnum, offset, len); 440 if (err) { 441 if (err == UBI_IO_BITFLIPS) { 442 scrub = 1; 443 err = 0; 444 } else if (err == -EBADMSG) { 445 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 446 goto out_unlock; 447 scrub = 1; 448 if (!check) { 449 ubi_msg("force data checking"); 450 check = 1; 451 goto retry; 452 } 453 } else 454 goto out_unlock; 455 } 456 457 if (check) { 458 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); 459 if (crc1 != crc) { 460 ubi_warn("CRC error: calculated %#08x, must be %#08x", 461 crc1, crc); 462 err = -EBADMSG; 463 goto out_unlock; 464 } 465 } 466 467 if (scrub) 468 err = ubi_wl_scrub_peb(ubi, pnum); 469 470 leb_read_unlock(ubi, vol_id, lnum); 471 return err; 472 473 out_free: 474 ubi_free_vid_hdr(ubi, vid_hdr); 475 out_unlock: 476 leb_read_unlock(ubi, vol_id, lnum); 477 return err; 478 } 479 480 /** 481 * recover_peb - recover from write failure. 482 * @ubi: UBI device description object 483 * @pnum: the physical eraseblock to recover 484 * @vol_id: volume ID 485 * @lnum: logical eraseblock number 486 * @buf: data which was not written because of the write failure 487 * @offset: offset of the failed write 488 * @len: how many bytes should have been written 489 * 490 * This function is called in case of a write failure and moves all good data 491 * from the potentially bad physical eraseblock to a good physical eraseblock. 492 * This function also writes the data which was not written due to the failure. 493 * Returns new physical eraseblock number in case of success, and a negative 494 * error code in case of failure. 495 */ 496 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, 497 const void *buf, int offset, int len) 498 { 499 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0; 500 struct ubi_volume *vol = ubi->volumes[idx]; 501 struct ubi_vid_hdr *vid_hdr; 502 503 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 504 if (!vid_hdr) 505 return -ENOMEM; 506 507 mutex_lock(&ubi->buf_mutex); 508 509 retry: 510 new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN); 511 if (new_pnum < 0) { 512 mutex_unlock(&ubi->buf_mutex); 513 ubi_free_vid_hdr(ubi, vid_hdr); 514 return new_pnum; 515 } 516 517 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum); 518 519 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 520 if (err && err != UBI_IO_BITFLIPS) { 521 if (err > 0) 522 err = -EIO; 523 goto out_put; 524 } 525 526 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 527 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); 528 if (err) 529 goto write_error; 530 531 data_size = offset + len; 532 memset(ubi->peb_buf1 + offset, 0xFF, len); 533 534 /* Read everything before the area where the write failure happened */ 535 if (offset > 0) { 536 err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset); 537 if (err && err != UBI_IO_BITFLIPS) 538 goto out_put; 539 } 540 541 memcpy(ubi->peb_buf1 + offset, buf, len); 542 543 err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size); 544 if (err) 545 goto write_error; 546 547 mutex_unlock(&ubi->buf_mutex); 548 ubi_free_vid_hdr(ubi, vid_hdr); 549 550 vol->eba_tbl[lnum] = new_pnum; 551 ubi_wl_put_peb(ubi, pnum, 1); 552 553 ubi_msg("data was successfully recovered"); 554 return 0; 555 556 out_put: 557 mutex_unlock(&ubi->buf_mutex); 558 ubi_wl_put_peb(ubi, new_pnum, 1); 559 ubi_free_vid_hdr(ubi, vid_hdr); 560 return err; 561 562 write_error: 563 /* 564 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to 565 * get another one. 566 */ 567 ubi_warn("failed to write to PEB %d", new_pnum); 568 ubi_wl_put_peb(ubi, new_pnum, 1); 569 if (++tries > UBI_IO_RETRIES) { 570 mutex_unlock(&ubi->buf_mutex); 571 ubi_free_vid_hdr(ubi, vid_hdr); 572 return err; 573 } 574 ubi_msg("try again"); 575 goto retry; 576 } 577 578 /** 579 * ubi_eba_write_leb - write data to dynamic volume. 580 * @ubi: UBI device description object 581 * @vol: volume description object 582 * @lnum: logical eraseblock number 583 * @buf: the data to write 584 * @offset: offset within the logical eraseblock where to write 585 * @len: how many bytes to write 586 * @dtype: data type 587 * 588 * This function writes data to logical eraseblock @lnum of a dynamic volume 589 * @vol. Returns zero in case of success and a negative error code in case 590 * of failure. In case of error, it is possible that something was still 591 * written to the flash media, but may be some garbage. 592 */ 593 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 594 const void *buf, int offset, int len, int dtype) 595 { 596 int err, pnum, tries = 0, vol_id = vol->vol_id; 597 struct ubi_vid_hdr *vid_hdr; 598 599 if (ubi->ro_mode) 600 return -EROFS; 601 602 err = leb_write_lock(ubi, vol_id, lnum); 603 if (err) 604 return err; 605 606 pnum = vol->eba_tbl[lnum]; 607 if (pnum >= 0) { 608 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", 609 len, offset, vol_id, lnum, pnum); 610 611 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 612 if (err) { 613 ubi_warn("failed to write data to PEB %d", pnum); 614 if (err == -EIO && ubi->bad_allowed) 615 err = recover_peb(ubi, pnum, vol_id, lnum, buf, 616 offset, len); 617 if (err) 618 ubi_ro_mode(ubi); 619 } 620 leb_write_unlock(ubi, vol_id, lnum); 621 return err; 622 } 623 624 /* 625 * The logical eraseblock is not mapped. We have to get a free physical 626 * eraseblock and write the volume identifier header there first. 627 */ 628 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 629 if (!vid_hdr) { 630 leb_write_unlock(ubi, vol_id, lnum); 631 return -ENOMEM; 632 } 633 634 vid_hdr->vol_type = UBI_VID_DYNAMIC; 635 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 636 vid_hdr->vol_id = cpu_to_be32(vol_id); 637 vid_hdr->lnum = cpu_to_be32(lnum); 638 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 639 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 640 641 retry: 642 pnum = ubi_wl_get_peb(ubi, dtype); 643 if (pnum < 0) { 644 ubi_free_vid_hdr(ubi, vid_hdr); 645 leb_write_unlock(ubi, vol_id, lnum); 646 return pnum; 647 } 648 649 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", 650 len, offset, vol_id, lnum, pnum); 651 652 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 653 if (err) { 654 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 655 vol_id, lnum, pnum); 656 goto write_error; 657 } 658 659 if (len) { 660 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 661 if (err) { 662 ubi_warn("failed to write %d bytes at offset %d of " 663 "LEB %d:%d, PEB %d", len, offset, vol_id, 664 lnum, pnum); 665 goto write_error; 666 } 667 } 668 669 vol->eba_tbl[lnum] = pnum; 670 671 leb_write_unlock(ubi, vol_id, lnum); 672 ubi_free_vid_hdr(ubi, vid_hdr); 673 return 0; 674 675 write_error: 676 if (err != -EIO || !ubi->bad_allowed) { 677 ubi_ro_mode(ubi); 678 leb_write_unlock(ubi, vol_id, lnum); 679 ubi_free_vid_hdr(ubi, vid_hdr); 680 return err; 681 } 682 683 /* 684 * Fortunately, this is the first write operation to this physical 685 * eraseblock, so just put it and request a new one. We assume that if 686 * this physical eraseblock went bad, the erase code will handle that. 687 */ 688 err = ubi_wl_put_peb(ubi, pnum, 1); 689 if (err || ++tries > UBI_IO_RETRIES) { 690 ubi_ro_mode(ubi); 691 leb_write_unlock(ubi, vol_id, lnum); 692 ubi_free_vid_hdr(ubi, vid_hdr); 693 return err; 694 } 695 696 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 697 ubi_msg("try another PEB"); 698 goto retry; 699 } 700 701 /** 702 * ubi_eba_write_leb_st - write data to static volume. 703 * @ubi: UBI device description object 704 * @vol: volume description object 705 * @lnum: logical eraseblock number 706 * @buf: data to write 707 * @len: how many bytes to write 708 * @dtype: data type 709 * @used_ebs: how many logical eraseblocks will this volume contain 710 * 711 * This function writes data to logical eraseblock @lnum of static volume 712 * @vol. The @used_ebs argument should contain total number of logical 713 * eraseblock in this static volume. 714 * 715 * When writing to the last logical eraseblock, the @len argument doesn't have 716 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent 717 * to the real data size, although the @buf buffer has to contain the 718 * alignment. In all other cases, @len has to be aligned. 719 * 720 * It is prohibited to write more then once to logical eraseblocks of static 721 * volumes. This function returns zero in case of success and a negative error 722 * code in case of failure. 723 */ 724 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, 725 int lnum, const void *buf, int len, int dtype, 726 int used_ebs) 727 { 728 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id; 729 struct ubi_vid_hdr *vid_hdr; 730 uint32_t crc; 731 732 if (ubi->ro_mode) 733 return -EROFS; 734 735 if (lnum == used_ebs - 1) 736 /* If this is the last LEB @len may be unaligned */ 737 len = ALIGN(data_size, ubi->min_io_size); 738 else 739 ubi_assert(!(len & (ubi->min_io_size - 1))); 740 741 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 742 if (!vid_hdr) 743 return -ENOMEM; 744 745 err = leb_write_lock(ubi, vol_id, lnum); 746 if (err) { 747 ubi_free_vid_hdr(ubi, vid_hdr); 748 return err; 749 } 750 751 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 752 vid_hdr->vol_id = cpu_to_be32(vol_id); 753 vid_hdr->lnum = cpu_to_be32(lnum); 754 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 755 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 756 757 crc = crc32(UBI_CRC32_INIT, buf, data_size); 758 vid_hdr->vol_type = UBI_VID_STATIC; 759 vid_hdr->data_size = cpu_to_be32(data_size); 760 vid_hdr->used_ebs = cpu_to_be32(used_ebs); 761 vid_hdr->data_crc = cpu_to_be32(crc); 762 763 retry: 764 pnum = ubi_wl_get_peb(ubi, dtype); 765 if (pnum < 0) { 766 ubi_free_vid_hdr(ubi, vid_hdr); 767 leb_write_unlock(ubi, vol_id, lnum); 768 return pnum; 769 } 770 771 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d", 772 len, vol_id, lnum, pnum, used_ebs); 773 774 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 775 if (err) { 776 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 777 vol_id, lnum, pnum); 778 goto write_error; 779 } 780 781 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 782 if (err) { 783 ubi_warn("failed to write %d bytes of data to PEB %d", 784 len, pnum); 785 goto write_error; 786 } 787 788 ubi_assert(vol->eba_tbl[lnum] < 0); 789 vol->eba_tbl[lnum] = pnum; 790 791 leb_write_unlock(ubi, vol_id, lnum); 792 ubi_free_vid_hdr(ubi, vid_hdr); 793 return 0; 794 795 write_error: 796 if (err != -EIO || !ubi->bad_allowed) { 797 /* 798 * This flash device does not admit of bad eraseblocks or 799 * something nasty and unexpected happened. Switch to read-only 800 * mode just in case. 801 */ 802 ubi_ro_mode(ubi); 803 leb_write_unlock(ubi, vol_id, lnum); 804 ubi_free_vid_hdr(ubi, vid_hdr); 805 return err; 806 } 807 808 err = ubi_wl_put_peb(ubi, pnum, 1); 809 if (err || ++tries > UBI_IO_RETRIES) { 810 ubi_ro_mode(ubi); 811 leb_write_unlock(ubi, vol_id, lnum); 812 ubi_free_vid_hdr(ubi, vid_hdr); 813 return err; 814 } 815 816 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 817 ubi_msg("try another PEB"); 818 goto retry; 819 } 820 821 /* 822 * ubi_eba_atomic_leb_change - change logical eraseblock atomically. 823 * @ubi: UBI device description object 824 * @vol: volume description object 825 * @lnum: logical eraseblock number 826 * @buf: data to write 827 * @len: how many bytes to write 828 * @dtype: data type 829 * 830 * This function changes the contents of a logical eraseblock atomically. @buf 831 * has to contain new logical eraseblock data, and @len - the length of the 832 * data, which has to be aligned. This function guarantees that in case of an 833 * unclean reboot the old contents is preserved. Returns zero in case of 834 * success and a negative error code in case of failure. 835 * 836 * UBI reserves one LEB for the "atomic LEB change" operation, so only one 837 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. 838 */ 839 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, 840 int lnum, const void *buf, int len, int dtype) 841 { 842 int err, pnum, tries = 0, vol_id = vol->vol_id; 843 struct ubi_vid_hdr *vid_hdr; 844 uint32_t crc; 845 846 if (ubi->ro_mode) 847 return -EROFS; 848 849 if (len == 0) { 850 /* 851 * Special case when data length is zero. In this case the LEB 852 * has to be unmapped and mapped somewhere else. 853 */ 854 err = ubi_eba_unmap_leb(ubi, vol, lnum); 855 if (err) 856 return err; 857 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype); 858 } 859 860 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 861 if (!vid_hdr) 862 return -ENOMEM; 863 864 mutex_lock(&ubi->alc_mutex); 865 err = leb_write_lock(ubi, vol_id, lnum); 866 if (err) 867 goto out_mutex; 868 869 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 870 vid_hdr->vol_id = cpu_to_be32(vol_id); 871 vid_hdr->lnum = cpu_to_be32(lnum); 872 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 873 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 874 875 crc = crc32(UBI_CRC32_INIT, buf, len); 876 vid_hdr->vol_type = UBI_VID_DYNAMIC; 877 vid_hdr->data_size = cpu_to_be32(len); 878 vid_hdr->copy_flag = 1; 879 vid_hdr->data_crc = cpu_to_be32(crc); 880 881 retry: 882 pnum = ubi_wl_get_peb(ubi, dtype); 883 if (pnum < 0) { 884 err = pnum; 885 goto out_leb_unlock; 886 } 887 888 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d", 889 vol_id, lnum, vol->eba_tbl[lnum], pnum); 890 891 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 892 if (err) { 893 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 894 vol_id, lnum, pnum); 895 goto write_error; 896 } 897 898 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 899 if (err) { 900 ubi_warn("failed to write %d bytes of data to PEB %d", 901 len, pnum); 902 goto write_error; 903 } 904 905 if (vol->eba_tbl[lnum] >= 0) { 906 err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 0); 907 if (err) 908 goto out_leb_unlock; 909 } 910 911 vol->eba_tbl[lnum] = pnum; 912 913 out_leb_unlock: 914 leb_write_unlock(ubi, vol_id, lnum); 915 out_mutex: 916 mutex_unlock(&ubi->alc_mutex); 917 ubi_free_vid_hdr(ubi, vid_hdr); 918 return err; 919 920 write_error: 921 if (err != -EIO || !ubi->bad_allowed) { 922 /* 923 * This flash device does not admit of bad eraseblocks or 924 * something nasty and unexpected happened. Switch to read-only 925 * mode just in case. 926 */ 927 ubi_ro_mode(ubi); 928 goto out_leb_unlock; 929 } 930 931 err = ubi_wl_put_peb(ubi, pnum, 1); 932 if (err || ++tries > UBI_IO_RETRIES) { 933 ubi_ro_mode(ubi); 934 goto out_leb_unlock; 935 } 936 937 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 938 ubi_msg("try another PEB"); 939 goto retry; 940 } 941 942 /** 943 * ubi_eba_copy_leb - copy logical eraseblock. 944 * @ubi: UBI device description object 945 * @from: physical eraseblock number from where to copy 946 * @to: physical eraseblock number where to copy 947 * @vid_hdr: VID header of the @from physical eraseblock 948 * 949 * This function copies logical eraseblock from physical eraseblock @from to 950 * physical eraseblock @to. The @vid_hdr buffer may be changed by this 951 * function. Returns: 952 * o %0 in case of success; 953 * o %1 if the operation was canceled and should be tried later (e.g., 954 * because a bit-flip was detected at the target PEB); 955 * o %2 if the volume is being deleted and this LEB should not be moved. 956 */ 957 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, 958 struct ubi_vid_hdr *vid_hdr) 959 { 960 int err, vol_id, lnum, data_size, aldata_size, idx; 961 struct ubi_volume *vol; 962 uint32_t crc; 963 964 vol_id = be32_to_cpu(vid_hdr->vol_id); 965 lnum = be32_to_cpu(vid_hdr->lnum); 966 967 dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); 968 969 if (vid_hdr->vol_type == UBI_VID_STATIC) { 970 data_size = be32_to_cpu(vid_hdr->data_size); 971 aldata_size = ALIGN(data_size, ubi->min_io_size); 972 } else 973 data_size = aldata_size = 974 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); 975 976 idx = vol_id2idx(ubi, vol_id); 977 spin_lock(&ubi->volumes_lock); 978 /* 979 * Note, we may race with volume deletion, which means that the volume 980 * this logical eraseblock belongs to might be being deleted. Since the 981 * volume deletion unmaps all the volume's logical eraseblocks, it will 982 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. 983 */ 984 vol = ubi->volumes[idx]; 985 if (!vol) { 986 /* No need to do further work, cancel */ 987 dbg_eba("volume %d is being removed, cancel", vol_id); 988 spin_unlock(&ubi->volumes_lock); 989 return 2; 990 } 991 spin_unlock(&ubi->volumes_lock); 992 993 /* 994 * We do not want anybody to write to this logical eraseblock while we 995 * are moving it, so lock it. 996 * 997 * Note, we are using non-waiting locking here, because we cannot sleep 998 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is 999 * unmapping the LEB which is mapped to the PEB we are going to move 1000 * (@from). This task locks the LEB and goes sleep in the 1001 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are 1002 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the 1003 * LEB is already locked, we just do not move it and return %1. 1004 */ 1005 err = leb_write_trylock(ubi, vol_id, lnum); 1006 if (err) { 1007 dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum); 1008 return err; 1009 } 1010 1011 /* 1012 * The LEB might have been put meanwhile, and the task which put it is 1013 * probably waiting on @ubi->move_mutex. No need to continue the work, 1014 * cancel it. 1015 */ 1016 if (vol->eba_tbl[lnum] != from) { 1017 dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to " 1018 "PEB %d, cancel", vol_id, lnum, from, 1019 vol->eba_tbl[lnum]); 1020 err = 1; 1021 goto out_unlock_leb; 1022 } 1023 1024 /* 1025 * OK, now the LEB is locked and we can safely start moving iy. Since 1026 * this function utilizes thie @ubi->peb1_buf buffer which is shared 1027 * with some other functions, so lock the buffer by taking the 1028 * @ubi->buf_mutex. 1029 */ 1030 mutex_lock(&ubi->buf_mutex); 1031 dbg_eba("read %d bytes of data", aldata_size); 1032 err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size); 1033 if (err && err != UBI_IO_BITFLIPS) { 1034 ubi_warn("error %d while reading data from PEB %d", 1035 err, from); 1036 goto out_unlock_buf; 1037 } 1038 1039 /* 1040 * Now we have got to calculate how much data we have to to copy. In 1041 * case of a static volume it is fairly easy - the VID header contains 1042 * the data size. In case of a dynamic volume it is more difficult - we 1043 * have to read the contents, cut 0xFF bytes from the end and copy only 1044 * the first part. We must do this to avoid writing 0xFF bytes as it 1045 * may have some side-effects. And not only this. It is important not 1046 * to include those 0xFFs to CRC because later the they may be filled 1047 * by data. 1048 */ 1049 if (vid_hdr->vol_type == UBI_VID_DYNAMIC) 1050 aldata_size = data_size = 1051 ubi_calc_data_len(ubi, ubi->peb_buf1, data_size); 1052 1053 cond_resched(); 1054 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size); 1055 cond_resched(); 1056 1057 /* 1058 * It may turn out to me that the whole @from physical eraseblock 1059 * contains only 0xFF bytes. Then we have to only write the VID header 1060 * and do not write any data. This also means we should not set 1061 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. 1062 */ 1063 if (data_size > 0) { 1064 vid_hdr->copy_flag = 1; 1065 vid_hdr->data_size = cpu_to_be32(data_size); 1066 vid_hdr->data_crc = cpu_to_be32(crc); 1067 } 1068 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 1069 1070 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); 1071 if (err) 1072 goto out_unlock_buf; 1073 1074 cond_resched(); 1075 1076 /* Read the VID header back and check if it was written correctly */ 1077 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); 1078 if (err) { 1079 if (err != UBI_IO_BITFLIPS) 1080 ubi_warn("cannot read VID header back from PEB %d", to); 1081 else 1082 err = 1; 1083 goto out_unlock_buf; 1084 } 1085 1086 if (data_size > 0) { 1087 err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size); 1088 if (err) 1089 goto out_unlock_buf; 1090 1091 cond_resched(); 1092 1093 /* 1094 * We've written the data and are going to read it back to make 1095 * sure it was written correctly. 1096 */ 1097 1098 err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size); 1099 if (err) { 1100 if (err != UBI_IO_BITFLIPS) 1101 ubi_warn("cannot read data back from PEB %d", 1102 to); 1103 else 1104 err = 1; 1105 goto out_unlock_buf; 1106 } 1107 1108 cond_resched(); 1109 1110 if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) { 1111 ubi_warn("read data back from PEB %d - it is different", 1112 to); 1113 goto out_unlock_buf; 1114 } 1115 } 1116 1117 ubi_assert(vol->eba_tbl[lnum] == from); 1118 vol->eba_tbl[lnum] = to; 1119 1120 out_unlock_buf: 1121 mutex_unlock(&ubi->buf_mutex); 1122 out_unlock_leb: 1123 leb_write_unlock(ubi, vol_id, lnum); 1124 return err; 1125 } 1126 1127 /** 1128 * ubi_eba_init_scan - initialize the EBA sub-system using scanning information. 1129 * @ubi: UBI device description object 1130 * @si: scanning information 1131 * 1132 * This function returns zero in case of success and a negative error code in 1133 * case of failure. 1134 */ 1135 int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1136 { 1137 int i, j, err, num_volumes; 1138 struct ubi_scan_volume *sv; 1139 struct ubi_volume *vol; 1140 struct ubi_scan_leb *seb; 1141 struct rb_node *rb; 1142 1143 dbg_eba("initialize EBA sub-system"); 1144 1145 spin_lock_init(&ubi->ltree_lock); 1146 mutex_init(&ubi->alc_mutex); 1147 ubi->ltree = RB_ROOT; 1148 1149 ubi->global_sqnum = si->max_sqnum + 1; 1150 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1151 1152 for (i = 0; i < num_volumes; i++) { 1153 vol = ubi->volumes[i]; 1154 if (!vol) 1155 continue; 1156 1157 cond_resched(); 1158 1159 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int), 1160 GFP_KERNEL); 1161 if (!vol->eba_tbl) { 1162 err = -ENOMEM; 1163 goto out_free; 1164 } 1165 1166 for (j = 0; j < vol->reserved_pebs; j++) 1167 vol->eba_tbl[j] = UBI_LEB_UNMAPPED; 1168 1169 sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i)); 1170 if (!sv) 1171 continue; 1172 1173 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { 1174 if (seb->lnum >= vol->reserved_pebs) 1175 /* 1176 * This may happen in case of an unclean reboot 1177 * during re-size. 1178 */ 1179 ubi_scan_move_to_list(sv, seb, &si->erase); 1180 vol->eba_tbl[seb->lnum] = seb->pnum; 1181 } 1182 } 1183 1184 if (ubi->avail_pebs < EBA_RESERVED_PEBS) { 1185 ubi_err("no enough physical eraseblocks (%d, need %d)", 1186 ubi->avail_pebs, EBA_RESERVED_PEBS); 1187 err = -ENOSPC; 1188 goto out_free; 1189 } 1190 ubi->avail_pebs -= EBA_RESERVED_PEBS; 1191 ubi->rsvd_pebs += EBA_RESERVED_PEBS; 1192 1193 if (ubi->bad_allowed) { 1194 ubi_calculate_reserved(ubi); 1195 1196 if (ubi->avail_pebs < ubi->beb_rsvd_level) { 1197 /* No enough free physical eraseblocks */ 1198 ubi->beb_rsvd_pebs = ubi->avail_pebs; 1199 ubi_warn("cannot reserve enough PEBs for bad PEB " 1200 "handling, reserved %d, need %d", 1201 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); 1202 } else 1203 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; 1204 1205 ubi->avail_pebs -= ubi->beb_rsvd_pebs; 1206 ubi->rsvd_pebs += ubi->beb_rsvd_pebs; 1207 } 1208 1209 dbg_eba("EBA sub-system is initialized"); 1210 return 0; 1211 1212 out_free: 1213 for (i = 0; i < num_volumes; i++) { 1214 if (!ubi->volumes[i]) 1215 continue; 1216 kfree(ubi->volumes[i]->eba_tbl); 1217 } 1218 return err; 1219 } 1220