xref: /linux/drivers/mtd/ubi/eba.c (revision 2241f81c91f211b512bd2c3a26a4a74258d0e008)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Author: Artem Bityutskiy (Битюцкий Артём)
6  */
7 
8 /*
9  * The UBI Eraseblock Association (EBA) sub-system.
10  *
11  * This sub-system is responsible for I/O to/from logical eraseblock.
12  *
13  * Although in this implementation the EBA table is fully kept and managed in
14  * RAM, which assumes poor scalability, it might be (partially) maintained on
15  * flash in future implementations.
16  *
17  * The EBA sub-system implements per-logical eraseblock locking. Before
18  * accessing a logical eraseblock it is locked for reading or writing. The
19  * per-logical eraseblock locking is implemented by means of the lock tree. The
20  * lock tree is an RB-tree which refers all the currently locked logical
21  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
22  * They are indexed by (@vol_id, @lnum) pairs.
23  *
24  * EBA also maintains the global sequence counter which is incremented each
25  * time a logical eraseblock is mapped to a physical eraseblock and it is
26  * stored in the volume identifier header. This means that each VID header has
27  * a unique sequence number. The sequence number is only increased an we assume
28  * 64 bits is enough to never overflow.
29  */
30 
31 #include <linux/slab.h>
32 #include <linux/crc32.h>
33 #include <linux/err.h>
34 #include "ubi.h"
35 
36 /**
37  * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
38  * @pnum: the physical eraseblock number attached to the LEB
39  *
40  * This structure is encoding a LEB -> PEB association. Note that the LEB
41  * number is not stored here, because it is the index used to access the
42  * entries table.
43  */
44 struct ubi_eba_entry {
45 	int pnum;
46 };
47 
48 /**
49  * struct ubi_eba_table - LEB -> PEB association information
50  * @entries: the LEB to PEB mapping (one entry per LEB).
51  *
52  * This structure is private to the EBA logic and should be kept here.
53  * It is encoding the LEB to PEB association table, and is subject to
54  * changes.
55  */
56 struct ubi_eba_table {
57 	struct ubi_eba_entry *entries;
58 };
59 
60 /**
61  * ubi_next_sqnum - get next sequence number.
62  * @ubi: UBI device description object
63  *
64  * This function returns next sequence number to use, which is just the current
65  * global sequence counter value. It also increases the global sequence
66  * counter.
67  */
68 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
69 {
70 	unsigned long long sqnum;
71 
72 	spin_lock(&ubi->ltree_lock);
73 	sqnum = ubi->global_sqnum++;
74 	spin_unlock(&ubi->ltree_lock);
75 
76 	return sqnum;
77 }
78 
79 /**
80  * ubi_get_compat - get compatibility flags of a volume.
81  * @ubi: UBI device description object
82  * @vol_id: volume ID
83  *
84  * This function returns compatibility flags for an internal volume. User
85  * volumes have no compatibility flags, so %0 is returned.
86  */
87 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
88 {
89 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
90 		return UBI_LAYOUT_VOLUME_COMPAT;
91 	return 0;
92 }
93 
94 /**
95  * ubi_eba_get_ldesc - get information about a LEB
96  * @vol: volume description object
97  * @lnum: logical eraseblock number
98  * @ldesc: the LEB descriptor to fill
99  *
100  * Used to query information about a specific LEB.
101  * It is currently only returning the physical position of the LEB, but will be
102  * extended to provide more information.
103  */
104 void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
105 		       struct ubi_eba_leb_desc *ldesc)
106 {
107 	ldesc->lnum = lnum;
108 	ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
109 }
110 
111 /**
112  * ubi_eba_create_table - allocate a new EBA table and initialize it with all
113  *			  LEBs unmapped
114  * @vol: volume containing the EBA table to copy
115  * @nentries: number of entries in the table
116  *
117  * Allocate a new EBA table and initialize it with all LEBs unmapped.
118  * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
119  */
120 struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
121 					   int nentries)
122 {
123 	struct ubi_eba_table *tbl;
124 	int err = -ENOMEM;
125 	int i;
126 
127 	tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
128 	if (!tbl)
129 		return ERR_PTR(-ENOMEM);
130 
131 	tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
132 				     GFP_KERNEL);
133 	if (!tbl->entries)
134 		goto err;
135 
136 	for (i = 0; i < nentries; i++)
137 		tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
138 
139 	return tbl;
140 
141 err:
142 	kfree(tbl);
143 
144 	return ERR_PTR(err);
145 }
146 
147 /**
148  * ubi_eba_destroy_table - destroy an EBA table
149  * @tbl: the table to destroy
150  *
151  * Destroy an EBA table.
152  */
153 void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
154 {
155 	if (!tbl)
156 		return;
157 
158 	kfree(tbl->entries);
159 	kfree(tbl);
160 }
161 
162 /**
163  * ubi_eba_copy_table - copy the EBA table attached to vol into another table
164  * @vol: volume containing the EBA table to copy
165  * @dst: destination
166  * @nentries: number of entries to copy
167  *
168  * Copy the EBA table stored in vol into the one pointed by dst.
169  */
170 void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
171 			int nentries)
172 {
173 	struct ubi_eba_table *src;
174 	int i;
175 
176 	ubi_assert(dst && vol && vol->eba_tbl);
177 
178 	src = vol->eba_tbl;
179 
180 	for (i = 0; i < nentries; i++)
181 		dst->entries[i].pnum = src->entries[i].pnum;
182 }
183 
184 /**
185  * ubi_eba_replace_table - assign a new EBA table to a volume
186  * @vol: volume containing the EBA table to copy
187  * @tbl: new EBA table
188  *
189  * Assign a new EBA table to the volume and release the old one.
190  */
191 void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
192 {
193 	ubi_eba_destroy_table(vol->eba_tbl);
194 	vol->eba_tbl = tbl;
195 }
196 
197 /**
198  * ltree_lookup - look up the lock tree.
199  * @ubi: UBI device description object
200  * @vol_id: volume ID
201  * @lnum: logical eraseblock number
202  *
203  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
204  * object if the logical eraseblock is locked and %NULL if it is not.
205  * @ubi->ltree_lock has to be locked.
206  */
207 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
208 					    int lnum)
209 {
210 	struct rb_node *p;
211 
212 	p = ubi->ltree.rb_node;
213 	while (p) {
214 		struct ubi_ltree_entry *le;
215 
216 		le = rb_entry(p, struct ubi_ltree_entry, rb);
217 
218 		if (vol_id < le->vol_id)
219 			p = p->rb_left;
220 		else if (vol_id > le->vol_id)
221 			p = p->rb_right;
222 		else {
223 			if (lnum < le->lnum)
224 				p = p->rb_left;
225 			else if (lnum > le->lnum)
226 				p = p->rb_right;
227 			else
228 				return le;
229 		}
230 	}
231 
232 	return NULL;
233 }
234 
235 /**
236  * ltree_add_entry - add new entry to the lock tree.
237  * @ubi: UBI device description object
238  * @vol_id: volume ID
239  * @lnum: logical eraseblock number
240  *
241  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
242  * lock tree. If such entry is already there, its usage counter is increased.
243  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
244  * failed.
245  */
246 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
247 					       int vol_id, int lnum)
248 {
249 	struct ubi_ltree_entry *le, *le1, *le_free;
250 
251 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
252 	if (!le)
253 		return ERR_PTR(-ENOMEM);
254 
255 	le->users = 0;
256 	init_rwsem(&le->mutex);
257 	le->vol_id = vol_id;
258 	le->lnum = lnum;
259 
260 	spin_lock(&ubi->ltree_lock);
261 	le1 = ltree_lookup(ubi, vol_id, lnum);
262 
263 	if (le1) {
264 		/*
265 		 * This logical eraseblock is already locked. The newly
266 		 * allocated lock entry is not needed.
267 		 */
268 		le_free = le;
269 		le = le1;
270 	} else {
271 		struct rb_node **p, *parent = NULL;
272 
273 		/*
274 		 * No lock entry, add the newly allocated one to the
275 		 * @ubi->ltree RB-tree.
276 		 */
277 		le_free = NULL;
278 
279 		p = &ubi->ltree.rb_node;
280 		while (*p) {
281 			parent = *p;
282 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
283 
284 			if (vol_id < le1->vol_id)
285 				p = &(*p)->rb_left;
286 			else if (vol_id > le1->vol_id)
287 				p = &(*p)->rb_right;
288 			else {
289 				ubi_assert(lnum != le1->lnum);
290 				if (lnum < le1->lnum)
291 					p = &(*p)->rb_left;
292 				else
293 					p = &(*p)->rb_right;
294 			}
295 		}
296 
297 		rb_link_node(&le->rb, parent, p);
298 		rb_insert_color(&le->rb, &ubi->ltree);
299 	}
300 	le->users += 1;
301 	spin_unlock(&ubi->ltree_lock);
302 
303 	kfree(le_free);
304 	return le;
305 }
306 
307 /**
308  * leb_read_lock - lock logical eraseblock for reading.
309  * @ubi: UBI device description object
310  * @vol_id: volume ID
311  * @lnum: logical eraseblock number
312  *
313  * This function locks a logical eraseblock for reading. Returns zero in case
314  * of success and a negative error code in case of failure.
315  */
316 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
317 {
318 	struct ubi_ltree_entry *le;
319 
320 	le = ltree_add_entry(ubi, vol_id, lnum);
321 	if (IS_ERR(le))
322 		return PTR_ERR(le);
323 	down_read(&le->mutex);
324 	return 0;
325 }
326 
327 /**
328  * leb_read_unlock - unlock logical eraseblock.
329  * @ubi: UBI device description object
330  * @vol_id: volume ID
331  * @lnum: logical eraseblock number
332  */
333 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
334 {
335 	struct ubi_ltree_entry *le;
336 
337 	spin_lock(&ubi->ltree_lock);
338 	le = ltree_lookup(ubi, vol_id, lnum);
339 	le->users -= 1;
340 	ubi_assert(le->users >= 0);
341 	up_read(&le->mutex);
342 	if (le->users == 0) {
343 		rb_erase(&le->rb, &ubi->ltree);
344 		kfree(le);
345 	}
346 	spin_unlock(&ubi->ltree_lock);
347 }
348 
349 /**
350  * leb_write_lock - lock logical eraseblock for writing.
351  * @ubi: UBI device description object
352  * @vol_id: volume ID
353  * @lnum: logical eraseblock number
354  *
355  * This function locks a logical eraseblock for writing. Returns zero in case
356  * of success and a negative error code in case of failure.
357  */
358 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
359 {
360 	struct ubi_ltree_entry *le;
361 
362 	le = ltree_add_entry(ubi, vol_id, lnum);
363 	if (IS_ERR(le))
364 		return PTR_ERR(le);
365 	down_write(&le->mutex);
366 	return 0;
367 }
368 
369 /**
370  * leb_write_trylock - try to lock logical eraseblock for writing.
371  * @ubi: UBI device description object
372  * @vol_id: volume ID
373  * @lnum: logical eraseblock number
374  *
375  * This function locks a logical eraseblock for writing if there is no
376  * contention and does nothing if there is contention. Returns %0 in case of
377  * success, %1 in case of contention, and a negative error code in case of
378  * failure.
379  */
380 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
381 {
382 	struct ubi_ltree_entry *le;
383 
384 	le = ltree_add_entry(ubi, vol_id, lnum);
385 	if (IS_ERR(le))
386 		return PTR_ERR(le);
387 	if (down_write_trylock(&le->mutex))
388 		return 0;
389 
390 	/* Contention, cancel */
391 	spin_lock(&ubi->ltree_lock);
392 	le->users -= 1;
393 	ubi_assert(le->users >= 0);
394 	if (le->users == 0) {
395 		rb_erase(&le->rb, &ubi->ltree);
396 		kfree(le);
397 	}
398 	spin_unlock(&ubi->ltree_lock);
399 
400 	return 1;
401 }
402 
403 /**
404  * leb_write_unlock - unlock logical eraseblock.
405  * @ubi: UBI device description object
406  * @vol_id: volume ID
407  * @lnum: logical eraseblock number
408  */
409 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
410 {
411 	struct ubi_ltree_entry *le;
412 
413 	spin_lock(&ubi->ltree_lock);
414 	le = ltree_lookup(ubi, vol_id, lnum);
415 	le->users -= 1;
416 	ubi_assert(le->users >= 0);
417 	up_write(&le->mutex);
418 	if (le->users == 0) {
419 		rb_erase(&le->rb, &ubi->ltree);
420 		kfree(le);
421 	}
422 	spin_unlock(&ubi->ltree_lock);
423 }
424 
425 /**
426  * ubi_eba_is_mapped - check if a LEB is mapped.
427  * @vol: volume description object
428  * @lnum: logical eraseblock number
429  *
430  * This function returns true if the LEB is mapped, false otherwise.
431  */
432 bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
433 {
434 	return vol->eba_tbl->entries[lnum].pnum >= 0;
435 }
436 
437 /**
438  * ubi_eba_unmap_leb - un-map logical eraseblock.
439  * @ubi: UBI device description object
440  * @vol: volume description object
441  * @lnum: logical eraseblock number
442  *
443  * This function un-maps logical eraseblock @lnum and schedules corresponding
444  * physical eraseblock for erasure. Returns zero in case of success and a
445  * negative error code in case of failure.
446  */
447 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
448 		      int lnum)
449 {
450 	int err, pnum, vol_id = vol->vol_id;
451 
452 	if (ubi->ro_mode)
453 		return -EROFS;
454 
455 	err = leb_write_lock(ubi, vol_id, lnum);
456 	if (err)
457 		return err;
458 
459 	pnum = vol->eba_tbl->entries[lnum].pnum;
460 	if (pnum < 0)
461 		/* This logical eraseblock is already unmapped */
462 		goto out_unlock;
463 
464 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
465 
466 	down_read(&ubi->fm_eba_sem);
467 	vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
468 	up_read(&ubi->fm_eba_sem);
469 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
470 
471 out_unlock:
472 	leb_write_unlock(ubi, vol_id, lnum);
473 	return err;
474 }
475 
476 #ifdef CONFIG_MTD_UBI_FASTMAP
477 /**
478  * check_mapping - check and fixup a mapping
479  * @ubi: UBI device description object
480  * @vol: volume description object
481  * @lnum: logical eraseblock number
482  * @pnum: physical eraseblock number
483  *
484  * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
485  * operations, if such an operation is interrupted the mapping still looks
486  * good, but upon first read an ECC is reported to the upper layer.
487  * Normaly during the full-scan at attach time this is fixed, for Fastmap
488  * we have to deal with it while reading.
489  * If the PEB behind a LEB shows this symthom we change the mapping to
490  * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
491  *
492  * Returns 0 on success, negative error code in case of failure.
493  */
494 static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
495 			 int *pnum)
496 {
497 	int err;
498 	struct ubi_vid_io_buf *vidb;
499 	struct ubi_vid_hdr *vid_hdr;
500 
501 	if (!ubi->fast_attach)
502 		return 0;
503 
504 	if (!vol->checkmap || test_bit(lnum, vol->checkmap))
505 		return 0;
506 
507 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
508 	if (!vidb)
509 		return -ENOMEM;
510 
511 	err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0);
512 	if (err > 0 && err != UBI_IO_BITFLIPS) {
513 		int torture = 0;
514 
515 		switch (err) {
516 			case UBI_IO_FF:
517 			case UBI_IO_FF_BITFLIPS:
518 			case UBI_IO_BAD_HDR:
519 			case UBI_IO_BAD_HDR_EBADMSG:
520 				break;
521 			default:
522 				ubi_assert(0);
523 		}
524 
525 		if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS)
526 			torture = 1;
527 
528 		down_read(&ubi->fm_eba_sem);
529 		vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
530 		up_read(&ubi->fm_eba_sem);
531 		ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture);
532 
533 		*pnum = UBI_LEB_UNMAPPED;
534 	} else if (err < 0) {
535 		ubi_err(ubi, "unable to read VID header back from PEB %i: %i",
536 			*pnum, err);
537 
538 		goto out_free;
539 	} else {
540 		int found_vol_id, found_lnum;
541 
542 		ubi_assert(err == 0 || err == UBI_IO_BITFLIPS);
543 
544 		vid_hdr = ubi_get_vid_hdr(vidb);
545 		found_vol_id = be32_to_cpu(vid_hdr->vol_id);
546 		found_lnum = be32_to_cpu(vid_hdr->lnum);
547 
548 		if (found_lnum != lnum || found_vol_id != vol->vol_id) {
549 			ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
550 				*pnum, found_vol_id, found_lnum, vol->vol_id, lnum);
551 			ubi_ro_mode(ubi);
552 			err = -EINVAL;
553 			goto out_free;
554 		}
555 	}
556 
557 	set_bit(lnum, vol->checkmap);
558 	err = 0;
559 
560 out_free:
561 	ubi_free_vid_buf(vidb);
562 
563 	return err;
564 }
565 #else
566 static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
567 		  int *pnum)
568 {
569 	return 0;
570 }
571 #endif
572 
573 /**
574  * ubi_eba_read_leb - read data.
575  * @ubi: UBI device description object
576  * @vol: volume description object
577  * @lnum: logical eraseblock number
578  * @buf: buffer to store the read data
579  * @offset: offset from where to read
580  * @len: how many bytes to read
581  * @check: data CRC check flag
582  *
583  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
584  * bytes. The @check flag only makes sense for static volumes and forces
585  * eraseblock data CRC checking.
586  *
587  * In case of success this function returns zero. In case of a static volume,
588  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
589  * returned for any volume type if an ECC error was detected by the MTD device
590  * driver. Other negative error cored may be returned in case of other errors.
591  */
592 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
593 		     void *buf, int offset, int len, int check)
594 {
595 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
596 	struct ubi_vid_io_buf *vidb;
597 	struct ubi_vid_hdr *vid_hdr;
598 	uint32_t crc;
599 
600 	err = leb_read_lock(ubi, vol_id, lnum);
601 	if (err)
602 		return err;
603 
604 	pnum = vol->eba_tbl->entries[lnum].pnum;
605 	if (pnum >= 0) {
606 		err = check_mapping(ubi, vol, lnum, &pnum);
607 		if (err < 0)
608 			goto out_unlock;
609 	}
610 
611 	if (pnum == UBI_LEB_UNMAPPED) {
612 		/*
613 		 * The logical eraseblock is not mapped, fill the whole buffer
614 		 * with 0xFF bytes. The exception is static volumes for which
615 		 * it is an error to read unmapped logical eraseblocks.
616 		 */
617 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
618 			len, offset, vol_id, lnum);
619 		leb_read_unlock(ubi, vol_id, lnum);
620 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
621 		memset(buf, 0xFF, len);
622 		return 0;
623 	}
624 
625 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
626 		len, offset, vol_id, lnum, pnum);
627 
628 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
629 		check = 0;
630 
631 retry:
632 	if (check) {
633 		vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
634 		if (!vidb) {
635 			err = -ENOMEM;
636 			goto out_unlock;
637 		}
638 
639 		vid_hdr = ubi_get_vid_hdr(vidb);
640 
641 		err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
642 		if (err && err != UBI_IO_BITFLIPS) {
643 			if (err > 0) {
644 				/*
645 				 * The header is either absent or corrupted.
646 				 * The former case means there is a bug -
647 				 * switch to read-only mode just in case.
648 				 * The latter case means a real corruption - we
649 				 * may try to recover data. FIXME: but this is
650 				 * not implemented.
651 				 */
652 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
653 				    err == UBI_IO_BAD_HDR) {
654 					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
655 						 pnum, vol_id, lnum);
656 					err = -EBADMSG;
657 				} else {
658 					/*
659 					 * Ending up here in the non-Fastmap case
660 					 * is a clear bug as the VID header had to
661 					 * be present at scan time to have it referenced.
662 					 * With fastmap the story is more complicated.
663 					 * Fastmap has the mapping info without the need
664 					 * of a full scan. So the LEB could have been
665 					 * unmapped, Fastmap cannot know this and keeps
666 					 * the LEB referenced.
667 					 * This is valid and works as the layer above UBI
668 					 * has to do bookkeeping about used/referenced
669 					 * LEBs in any case.
670 					 */
671 					if (ubi->fast_attach) {
672 						err = -EBADMSG;
673 					} else {
674 						err = -EINVAL;
675 						ubi_ro_mode(ubi);
676 					}
677 				}
678 			}
679 			goto out_free;
680 		} else if (err == UBI_IO_BITFLIPS)
681 			scrub = 1;
682 
683 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
684 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
685 
686 		crc = be32_to_cpu(vid_hdr->data_crc);
687 		ubi_free_vid_buf(vidb);
688 	}
689 
690 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
691 	if (err) {
692 		if (err == UBI_IO_BITFLIPS)
693 			scrub = 1;
694 		else if (mtd_is_eccerr(err)) {
695 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
696 				goto out_unlock;
697 			scrub = 1;
698 			if (!check) {
699 				ubi_msg(ubi, "force data checking");
700 				check = 1;
701 				goto retry;
702 			}
703 		} else
704 			goto out_unlock;
705 	}
706 
707 	if (check) {
708 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
709 		if (crc1 != crc) {
710 			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
711 				 crc1, crc);
712 			err = -EBADMSG;
713 			goto out_unlock;
714 		}
715 	}
716 
717 	if (scrub)
718 		err = ubi_wl_scrub_peb(ubi, pnum);
719 
720 	leb_read_unlock(ubi, vol_id, lnum);
721 	return err;
722 
723 out_free:
724 	ubi_free_vid_buf(vidb);
725 out_unlock:
726 	leb_read_unlock(ubi, vol_id, lnum);
727 	return err;
728 }
729 
730 /**
731  * ubi_eba_read_leb_sg - read data into a scatter gather list.
732  * @ubi: UBI device description object
733  * @vol: volume description object
734  * @lnum: logical eraseblock number
735  * @sgl: UBI scatter gather list to store the read data
736  * @offset: offset from where to read
737  * @len: how many bytes to read
738  * @check: data CRC check flag
739  *
740  * This function works exactly like ubi_eba_read_leb(). But instead of
741  * storing the read data into a buffer it writes to an UBI scatter gather
742  * list.
743  */
744 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
745 			struct ubi_sgl *sgl, int lnum, int offset, int len,
746 			int check)
747 {
748 	int to_read;
749 	int ret;
750 	struct scatterlist *sg;
751 
752 	for (;;) {
753 		ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
754 		sg = &sgl->sg[sgl->list_pos];
755 		if (len < sg->length - sgl->page_pos)
756 			to_read = len;
757 		else
758 			to_read = sg->length - sgl->page_pos;
759 
760 		ret = ubi_eba_read_leb(ubi, vol, lnum,
761 				       sg_virt(sg) + sgl->page_pos, offset,
762 				       to_read, check);
763 		if (ret < 0)
764 			return ret;
765 
766 		offset += to_read;
767 		len -= to_read;
768 		if (!len) {
769 			sgl->page_pos += to_read;
770 			if (sgl->page_pos == sg->length) {
771 				sgl->list_pos++;
772 				sgl->page_pos = 0;
773 			}
774 
775 			break;
776 		}
777 
778 		sgl->list_pos++;
779 		sgl->page_pos = 0;
780 	}
781 
782 	return ret;
783 }
784 
785 /**
786  * try_recover_peb - try to recover from write failure.
787  * @vol: volume description object
788  * @pnum: the physical eraseblock to recover
789  * @lnum: logical eraseblock number
790  * @buf: data which was not written because of the write failure
791  * @offset: offset of the failed write
792  * @len: how many bytes should have been written
793  * @vidb: VID buffer
794  * @retry: whether the caller should retry in case of failure
795  *
796  * This function is called in case of a write failure and moves all good data
797  * from the potentially bad physical eraseblock to a good physical eraseblock.
798  * This function also writes the data which was not written due to the failure.
799  * Returns 0 in case of success, and a negative error code in case of failure.
800  * In case of failure, the %retry parameter is set to false if this is a fatal
801  * error (retrying won't help), and true otherwise.
802  */
803 static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
804 			   const void *buf, int offset, int len,
805 			   struct ubi_vid_io_buf *vidb, bool *retry)
806 {
807 	struct ubi_device *ubi = vol->ubi;
808 	struct ubi_vid_hdr *vid_hdr;
809 	int new_pnum, err, vol_id = vol->vol_id, data_size;
810 	uint32_t crc;
811 
812 	*retry = false;
813 
814 	new_pnum = ubi_wl_get_peb(ubi);
815 	if (new_pnum < 0) {
816 		err = new_pnum;
817 		goto out_put;
818 	}
819 
820 	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
821 		pnum, new_pnum);
822 
823 	err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
824 	if (err && err != UBI_IO_BITFLIPS) {
825 		if (err > 0)
826 			err = -EIO;
827 		goto out_put;
828 	}
829 
830 	vid_hdr = ubi_get_vid_hdr(vidb);
831 	ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
832 
833 	mutex_lock(&ubi->buf_mutex);
834 	memset(ubi->peb_buf + offset, 0xFF, len);
835 
836 	/* Read everything before the area where the write failure happened */
837 	if (offset > 0) {
838 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
839 		if (err && err != UBI_IO_BITFLIPS)
840 			goto out_unlock;
841 	}
842 
843 	*retry = true;
844 
845 	memcpy(ubi->peb_buf + offset, buf, len);
846 
847 	data_size = offset + len;
848 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
849 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
850 	vid_hdr->copy_flag = 1;
851 	vid_hdr->data_size = cpu_to_be32(data_size);
852 	vid_hdr->data_crc = cpu_to_be32(crc);
853 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
854 	if (err)
855 		goto out_unlock;
856 
857 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
858 
859 out_unlock:
860 	mutex_unlock(&ubi->buf_mutex);
861 
862 	if (!err)
863 		vol->eba_tbl->entries[lnum].pnum = new_pnum;
864 
865 out_put:
866 	up_read(&ubi->fm_eba_sem);
867 
868 	if (!err) {
869 		ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
870 		ubi_msg(ubi, "data was successfully recovered");
871 	} else if (new_pnum >= 0) {
872 		/*
873 		 * Bad luck? This physical eraseblock is bad too? Crud. Let's
874 		 * try to get another one.
875 		 */
876 		ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
877 		ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
878 	}
879 
880 	return err;
881 }
882 
883 /**
884  * recover_peb - recover from write failure.
885  * @ubi: UBI device description object
886  * @pnum: the physical eraseblock to recover
887  * @vol_id: volume ID
888  * @lnum: logical eraseblock number
889  * @buf: data which was not written because of the write failure
890  * @offset: offset of the failed write
891  * @len: how many bytes should have been written
892  *
893  * This function is called in case of a write failure and moves all good data
894  * from the potentially bad physical eraseblock to a good physical eraseblock.
895  * This function also writes the data which was not written due to the failure.
896  * Returns 0 in case of success, and a negative error code in case of failure.
897  * This function tries %UBI_IO_RETRIES before giving up.
898  */
899 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
900 		       const void *buf, int offset, int len)
901 {
902 	int err, idx = vol_id2idx(ubi, vol_id), tries;
903 	struct ubi_volume *vol = ubi->volumes[idx];
904 	struct ubi_vid_io_buf *vidb;
905 
906 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
907 	if (!vidb)
908 		return -ENOMEM;
909 
910 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
911 		bool retry;
912 
913 		err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
914 				      &retry);
915 		if (!err || !retry)
916 			break;
917 
918 		ubi_msg(ubi, "try again");
919 	}
920 
921 	ubi_free_vid_buf(vidb);
922 
923 	return err;
924 }
925 
926 /**
927  * try_write_vid_and_data - try to write VID header and data to a new PEB.
928  * @vol: volume description object
929  * @lnum: logical eraseblock number
930  * @vidb: the VID buffer to write
931  * @buf: buffer containing the data
932  * @offset: where to start writing data
933  * @len: how many bytes should be written
934  *
935  * This function tries to write VID header and data belonging to logical
936  * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
937  * in case of success and a negative error code in case of failure.
938  * In case of error, it is possible that something was still written to the
939  * flash media, but may be some garbage.
940  */
941 static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
942 				  struct ubi_vid_io_buf *vidb, const void *buf,
943 				  int offset, int len)
944 {
945 	struct ubi_device *ubi = vol->ubi;
946 	int pnum, opnum, err, err2, vol_id = vol->vol_id;
947 
948 	pnum = ubi_wl_get_peb(ubi);
949 	if (pnum < 0) {
950 		err = pnum;
951 		goto out_put;
952 	}
953 
954 	opnum = vol->eba_tbl->entries[lnum].pnum;
955 
956 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
957 		len, offset, vol_id, lnum, pnum);
958 
959 	err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
960 	if (err) {
961 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
962 			 vol_id, lnum, pnum);
963 		goto out_put;
964 	}
965 
966 	if (len) {
967 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
968 		if (err) {
969 			ubi_warn(ubi,
970 				 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
971 				 len, offset, vol_id, lnum, pnum);
972 			goto out_put;
973 		}
974 	}
975 
976 	vol->eba_tbl->entries[lnum].pnum = pnum;
977 
978 out_put:
979 	up_read(&ubi->fm_eba_sem);
980 
981 	if (err && pnum >= 0) {
982 		err2 = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
983 		if (err2) {
984 			ubi_warn(ubi, "failed to return physical eraseblock %d, error %d",
985 				 pnum, err2);
986 		}
987 	} else if (!err && opnum >= 0) {
988 		err2 = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
989 		if (err2) {
990 			ubi_warn(ubi, "failed to return physical eraseblock %d, error %d",
991 				 opnum, err2);
992 		}
993 	}
994 
995 	return err;
996 }
997 
998 /**
999  * ubi_eba_write_leb - write data to dynamic volume.
1000  * @ubi: UBI device description object
1001  * @vol: volume description object
1002  * @lnum: logical eraseblock number
1003  * @buf: the data to write
1004  * @offset: offset within the logical eraseblock where to write
1005  * @len: how many bytes to write
1006  *
1007  * This function writes data to logical eraseblock @lnum of a dynamic volume
1008  * @vol. Returns zero in case of success and a negative error code in case
1009  * of failure. In case of error, it is possible that something was still
1010  * written to the flash media, but may be some garbage.
1011  * This function retries %UBI_IO_RETRIES times before giving up.
1012  */
1013 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
1014 		      const void *buf, int offset, int len)
1015 {
1016 	int err, pnum, tries, vol_id = vol->vol_id;
1017 	struct ubi_vid_io_buf *vidb;
1018 	struct ubi_vid_hdr *vid_hdr;
1019 
1020 	if (ubi->ro_mode)
1021 		return -EROFS;
1022 
1023 	err = leb_write_lock(ubi, vol_id, lnum);
1024 	if (err)
1025 		return err;
1026 
1027 	pnum = vol->eba_tbl->entries[lnum].pnum;
1028 	if (pnum >= 0) {
1029 		err = check_mapping(ubi, vol, lnum, &pnum);
1030 		if (err < 0)
1031 			goto out;
1032 	}
1033 
1034 	if (pnum >= 0) {
1035 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
1036 			len, offset, vol_id, lnum, pnum);
1037 
1038 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
1039 		if (err) {
1040 			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
1041 			if (err == -EIO && ubi->bad_allowed)
1042 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
1043 						  offset, len);
1044 		}
1045 
1046 		goto out;
1047 	}
1048 
1049 	/*
1050 	 * The logical eraseblock is not mapped. We have to get a free physical
1051 	 * eraseblock and write the volume identifier header there first.
1052 	 */
1053 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1054 	if (!vidb) {
1055 		leb_write_unlock(ubi, vol_id, lnum);
1056 		return -ENOMEM;
1057 	}
1058 
1059 	vid_hdr = ubi_get_vid_hdr(vidb);
1060 
1061 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
1062 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1063 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1064 	vid_hdr->lnum = cpu_to_be32(lnum);
1065 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1066 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1067 
1068 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1069 		err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
1070 		if (err != -EIO || !ubi->bad_allowed)
1071 			break;
1072 
1073 		/*
1074 		 * Fortunately, this is the first write operation to this
1075 		 * physical eraseblock, so just put it and request a new one.
1076 		 * We assume that if this physical eraseblock went bad, the
1077 		 * erase code will handle that.
1078 		 */
1079 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1080 		ubi_msg(ubi, "try another PEB");
1081 	}
1082 
1083 	ubi_free_vid_buf(vidb);
1084 
1085 out:
1086 	if (err)
1087 		ubi_ro_mode(ubi);
1088 
1089 	leb_write_unlock(ubi, vol_id, lnum);
1090 
1091 	return err;
1092 }
1093 
1094 /**
1095  * ubi_eba_write_leb_st - write data to static volume.
1096  * @ubi: UBI device description object
1097  * @vol: volume description object
1098  * @lnum: logical eraseblock number
1099  * @buf: data to write
1100  * @len: how many bytes to write
1101  * @used_ebs: how many logical eraseblocks will this volume contain
1102  *
1103  * This function writes data to logical eraseblock @lnum of static volume
1104  * @vol. The @used_ebs argument should contain total number of logical
1105  * eraseblock in this static volume.
1106  *
1107  * When writing to the last logical eraseblock, the @len argument doesn't have
1108  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1109  * to the real data size, although the @buf buffer has to contain the
1110  * alignment. In all other cases, @len has to be aligned.
1111  *
1112  * It is prohibited to write more than once to logical eraseblocks of static
1113  * volumes. This function returns zero in case of success and a negative error
1114  * code in case of failure.
1115  */
1116 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
1117 			 int lnum, const void *buf, int len, int used_ebs)
1118 {
1119 	int err, tries, data_size = len, vol_id = vol->vol_id;
1120 	struct ubi_vid_io_buf *vidb;
1121 	struct ubi_vid_hdr *vid_hdr;
1122 	uint32_t crc;
1123 
1124 	if (ubi->ro_mode)
1125 		return -EROFS;
1126 
1127 	if (lnum == used_ebs - 1)
1128 		/* If this is the last LEB @len may be unaligned */
1129 		len = ALIGN(data_size, ubi->min_io_size);
1130 	else
1131 		ubi_assert(!(len & (ubi->min_io_size - 1)));
1132 
1133 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1134 	if (!vidb)
1135 		return -ENOMEM;
1136 
1137 	vid_hdr = ubi_get_vid_hdr(vidb);
1138 
1139 	err = leb_write_lock(ubi, vol_id, lnum);
1140 	if (err)
1141 		goto out;
1142 
1143 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1144 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1145 	vid_hdr->lnum = cpu_to_be32(lnum);
1146 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1147 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1148 
1149 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
1150 	vid_hdr->vol_type = UBI_VID_STATIC;
1151 	vid_hdr->data_size = cpu_to_be32(data_size);
1152 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
1153 	vid_hdr->data_crc = cpu_to_be32(crc);
1154 
1155 	ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
1156 
1157 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1158 		err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1159 		if (err != -EIO || !ubi->bad_allowed)
1160 			break;
1161 
1162 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1163 		ubi_msg(ubi, "try another PEB");
1164 	}
1165 
1166 	if (err)
1167 		ubi_ro_mode(ubi);
1168 
1169 	leb_write_unlock(ubi, vol_id, lnum);
1170 
1171 out:
1172 	ubi_free_vid_buf(vidb);
1173 
1174 	return err;
1175 }
1176 
1177 /*
1178  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1179  * @ubi: UBI device description object
1180  * @vol: volume description object
1181  * @lnum: logical eraseblock number
1182  * @buf: data to write
1183  * @len: how many bytes to write
1184  *
1185  * This function changes the contents of a logical eraseblock atomically. @buf
1186  * has to contain new logical eraseblock data, and @len - the length of the
1187  * data, which has to be aligned. This function guarantees that in case of an
1188  * unclean reboot the old contents is preserved. Returns zero in case of
1189  * success and a negative error code in case of failure.
1190  *
1191  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1192  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1193  */
1194 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
1195 			      int lnum, const void *buf, int len)
1196 {
1197 	int err, tries, vol_id = vol->vol_id;
1198 	struct ubi_vid_io_buf *vidb;
1199 	struct ubi_vid_hdr *vid_hdr;
1200 	uint32_t crc;
1201 
1202 	if (ubi->ro_mode)
1203 		return -EROFS;
1204 
1205 	if (len == 0) {
1206 		/*
1207 		 * Special case when data length is zero. In this case the LEB
1208 		 * has to be unmapped and mapped somewhere else.
1209 		 */
1210 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
1211 		if (err)
1212 			return err;
1213 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
1214 	}
1215 
1216 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1217 	if (!vidb)
1218 		return -ENOMEM;
1219 
1220 	vid_hdr = ubi_get_vid_hdr(vidb);
1221 
1222 	mutex_lock(&ubi->alc_mutex);
1223 	err = leb_write_lock(ubi, vol_id, lnum);
1224 	if (err)
1225 		goto out_mutex;
1226 
1227 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1228 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1229 	vid_hdr->lnum = cpu_to_be32(lnum);
1230 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1231 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1232 
1233 	crc = crc32(UBI_CRC32_INIT, buf, len);
1234 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
1235 	vid_hdr->data_size = cpu_to_be32(len);
1236 	vid_hdr->copy_flag = 1;
1237 	vid_hdr->data_crc = cpu_to_be32(crc);
1238 
1239 	dbg_eba("change LEB %d:%d", vol_id, lnum);
1240 
1241 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1242 		err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1243 		if (err != -EIO || !ubi->bad_allowed)
1244 			break;
1245 
1246 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1247 		ubi_msg(ubi, "try another PEB");
1248 	}
1249 
1250 	/*
1251 	 * This flash device does not admit of bad eraseblocks or
1252 	 * something nasty and unexpected happened. Switch to read-only
1253 	 * mode just in case.
1254 	 */
1255 	if (err)
1256 		ubi_ro_mode(ubi);
1257 
1258 	leb_write_unlock(ubi, vol_id, lnum);
1259 
1260 out_mutex:
1261 	mutex_unlock(&ubi->alc_mutex);
1262 	ubi_free_vid_buf(vidb);
1263 	return err;
1264 }
1265 
1266 /**
1267  * is_error_sane - check whether a read error is sane.
1268  * @err: code of the error happened during reading
1269  *
1270  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1271  * cannot read data from the target PEB (an error @err happened). If the error
1272  * code is sane, then we treat this error as non-fatal. Otherwise the error is
1273  * fatal and UBI will be switched to R/O mode later.
1274  *
1275  * The idea is that we try not to switch to R/O mode if the read error is
1276  * something which suggests there was a real read problem. E.g., %-EIO. Or a
1277  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1278  * mode, simply because we do not know what happened at the MTD level, and we
1279  * cannot handle this. E.g., the underlying driver may have become crazy, and
1280  * it is safer to switch to R/O mode to preserve the data.
1281  *
1282  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1283  * which we have just written.
1284  */
1285 static int is_error_sane(int err)
1286 {
1287 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1288 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1289 		return 0;
1290 	return 1;
1291 }
1292 
1293 /**
1294  * ubi_eba_copy_leb - copy logical eraseblock.
1295  * @ubi: UBI device description object
1296  * @from: physical eraseblock number from where to copy
1297  * @to: physical eraseblock number where to copy
1298  * @vidb: data structure from where the VID header is derived
1299  *
1300  * This function copies logical eraseblock from physical eraseblock @from to
1301  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1302  * function. Returns:
1303  *   o %0 in case of success;
1304  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1305  *   o a negative error code in case of failure.
1306  */
1307 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1308 		     struct ubi_vid_io_buf *vidb)
1309 {
1310 	int err, vol_id, lnum, data_size, aldata_size, idx;
1311 	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1312 	struct ubi_volume *vol;
1313 	uint32_t crc;
1314 
1315 	ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
1316 
1317 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1318 	lnum = be32_to_cpu(vid_hdr->lnum);
1319 
1320 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1321 
1322 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1323 		data_size = be32_to_cpu(vid_hdr->data_size);
1324 		aldata_size = ALIGN(data_size, ubi->min_io_size);
1325 	} else
1326 		data_size = aldata_size =
1327 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1328 
1329 	idx = vol_id2idx(ubi, vol_id);
1330 	spin_lock(&ubi->volumes_lock);
1331 	/*
1332 	 * Note, we may race with volume deletion, which means that the volume
1333 	 * this logical eraseblock belongs to might be being deleted. Since the
1334 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1335 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1336 	 */
1337 	vol = ubi->volumes[idx];
1338 	spin_unlock(&ubi->volumes_lock);
1339 	if (!vol) {
1340 		/* No need to do further work, cancel */
1341 		dbg_wl("volume %d is being removed, cancel", vol_id);
1342 		return MOVE_CANCEL_RACE;
1343 	}
1344 
1345 	/*
1346 	 * We do not want anybody to write to this logical eraseblock while we
1347 	 * are moving it, so lock it.
1348 	 *
1349 	 * Note, we are using non-waiting locking here, because we cannot sleep
1350 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1351 	 * unmapping the LEB which is mapped to the PEB we are going to move
1352 	 * (@from). This task locks the LEB and goes sleep in the
1353 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1354 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1355 	 * LEB is already locked, we just do not move it and return
1356 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1357 	 * we do not know the reasons of the contention - it may be just a
1358 	 * normal I/O on this LEB, so we want to re-try.
1359 	 */
1360 	err = leb_write_trylock(ubi, vol_id, lnum);
1361 	if (err) {
1362 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1363 		return MOVE_RETRY;
1364 	}
1365 
1366 	/*
1367 	 * The LEB might have been put meanwhile, and the task which put it is
1368 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1369 	 * cancel it.
1370 	 */
1371 	if (vol->eba_tbl->entries[lnum].pnum != from) {
1372 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1373 		       vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
1374 		err = MOVE_CANCEL_RACE;
1375 		goto out_unlock_leb;
1376 	}
1377 
1378 	/*
1379 	 * OK, now the LEB is locked and we can safely start moving it. Since
1380 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1381 	 * with some other functions - we lock the buffer by taking the
1382 	 * @ubi->buf_mutex.
1383 	 */
1384 	mutex_lock(&ubi->buf_mutex);
1385 	dbg_wl("read %d bytes of data", aldata_size);
1386 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1387 	if (err && err != UBI_IO_BITFLIPS) {
1388 		ubi_warn(ubi, "error %d while reading data from PEB %d",
1389 			 err, from);
1390 		err = MOVE_SOURCE_RD_ERR;
1391 		goto out_unlock_buf;
1392 	}
1393 
1394 	/*
1395 	 * Now we have got to calculate how much data we have to copy. In
1396 	 * case of a static volume it is fairly easy - the VID header contains
1397 	 * the data size. In case of a dynamic volume it is more difficult - we
1398 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1399 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1400 	 * may have some side-effects. And not only this. It is important not
1401 	 * to include those 0xFFs to CRC because later the they may be filled
1402 	 * by data.
1403 	 */
1404 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1405 		aldata_size = data_size =
1406 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1407 
1408 	cond_resched();
1409 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1410 	cond_resched();
1411 
1412 	/*
1413 	 * It may turn out to be that the whole @from physical eraseblock
1414 	 * contains only 0xFF bytes. Then we have to only write the VID header
1415 	 * and do not write any data. This also means we should not set
1416 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1417 	 */
1418 	if (data_size > 0) {
1419 		vid_hdr->copy_flag = 1;
1420 		vid_hdr->data_size = cpu_to_be32(data_size);
1421 		vid_hdr->data_crc = cpu_to_be32(crc);
1422 	}
1423 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1424 
1425 	err = ubi_io_write_vid_hdr(ubi, to, vidb);
1426 	if (err) {
1427 		if (err == -EIO)
1428 			err = MOVE_TARGET_WR_ERR;
1429 		goto out_unlock_buf;
1430 	}
1431 
1432 	cond_resched();
1433 
1434 	/* Read the VID header back and check if it was written correctly */
1435 	err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
1436 	if (err) {
1437 		if (err != UBI_IO_BITFLIPS) {
1438 			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1439 				 err, to);
1440 			if (is_error_sane(err))
1441 				err = MOVE_TARGET_RD_ERR;
1442 		} else
1443 			err = MOVE_TARGET_BITFLIPS;
1444 		goto out_unlock_buf;
1445 	}
1446 
1447 	if (data_size > 0) {
1448 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1449 		if (err) {
1450 			if (err == -EIO)
1451 				err = MOVE_TARGET_WR_ERR;
1452 			goto out_unlock_buf;
1453 		}
1454 
1455 		cond_resched();
1456 	}
1457 
1458 	ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
1459 	vol->eba_tbl->entries[lnum].pnum = to;
1460 
1461 out_unlock_buf:
1462 	mutex_unlock(&ubi->buf_mutex);
1463 out_unlock_leb:
1464 	leb_write_unlock(ubi, vol_id, lnum);
1465 	return err;
1466 }
1467 
1468 /**
1469  * print_rsvd_warning - warn about not having enough reserved PEBs.
1470  * @ubi: UBI device description object
1471  * @ai: UBI attach info object
1472  *
1473  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1474  * cannot reserve enough PEBs for bad block handling. This function makes a
1475  * decision whether we have to print a warning or not. The algorithm is as
1476  * follows:
1477  *   o if this is a new UBI image, then just print the warning
1478  *   o if this is an UBI image which has already been used for some time, print
1479  *     a warning only if we can reserve less than 10% of the expected amount of
1480  *     the reserved PEB.
1481  *
1482  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1483  * of PEBs becomes smaller, which is normal and we do not want to scare users
1484  * with a warning every time they attach the MTD device. This was an issue
1485  * reported by real users.
1486  */
1487 static void print_rsvd_warning(struct ubi_device *ubi,
1488 			       struct ubi_attach_info *ai)
1489 {
1490 	/*
1491 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1492 	 * large number to distinguish between newly flashed and used images.
1493 	 */
1494 	if (ai->max_sqnum > (1 << 18)) {
1495 		int min = ubi->beb_rsvd_level / 10;
1496 
1497 		if (!min)
1498 			min = 1;
1499 		if (ubi->beb_rsvd_pebs > min)
1500 			return;
1501 	}
1502 
1503 	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1504 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1505 	if (ubi->corr_peb_count)
1506 		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1507 			 ubi->corr_peb_count);
1508 }
1509 
1510 /**
1511  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1512  * @ubi: UBI device description object
1513  * @ai_fastmap: UBI attach info object created by fastmap
1514  * @ai_scan: UBI attach info object created by scanning
1515  *
1516  * Returns < 0 in case of an internal error, 0 otherwise.
1517  * If a bad EBA table entry was found it will be printed out and
1518  * ubi_assert() triggers.
1519  */
1520 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1521 		   struct ubi_attach_info *ai_scan)
1522 {
1523 	int i, j, num_volumes, ret = 0;
1524 	int **scan_eba, **fm_eba;
1525 	struct ubi_ainf_volume *av;
1526 	struct ubi_volume *vol;
1527 	struct ubi_ainf_peb *aeb;
1528 	struct rb_node *rb;
1529 
1530 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1531 
1532 	scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL);
1533 	if (!scan_eba)
1534 		return -ENOMEM;
1535 
1536 	fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL);
1537 	if (!fm_eba) {
1538 		kfree(scan_eba);
1539 		return -ENOMEM;
1540 	}
1541 
1542 	for (i = 0; i < num_volumes; i++) {
1543 		vol = ubi->volumes[i];
1544 		if (!vol)
1545 			continue;
1546 
1547 		scan_eba[i] = kmalloc_array(vol->reserved_pebs,
1548 					    sizeof(**scan_eba),
1549 					    GFP_KERNEL);
1550 		if (!scan_eba[i]) {
1551 			ret = -ENOMEM;
1552 			goto out_free;
1553 		}
1554 
1555 		fm_eba[i] = kmalloc_array(vol->reserved_pebs,
1556 					  sizeof(**fm_eba),
1557 					  GFP_KERNEL);
1558 		if (!fm_eba[i]) {
1559 			ret = -ENOMEM;
1560 			goto out_free;
1561 		}
1562 
1563 		for (j = 0; j < vol->reserved_pebs; j++)
1564 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1565 
1566 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1567 		if (!av)
1568 			continue;
1569 
1570 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1571 			scan_eba[i][aeb->lnum] = aeb->pnum;
1572 
1573 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1574 		if (!av)
1575 			continue;
1576 
1577 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1578 			fm_eba[i][aeb->lnum] = aeb->pnum;
1579 
1580 		for (j = 0; j < vol->reserved_pebs; j++) {
1581 			if (scan_eba[i][j] != fm_eba[i][j]) {
1582 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1583 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1584 					continue;
1585 
1586 				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1587 					vol->vol_id, j, fm_eba[i][j],
1588 					scan_eba[i][j]);
1589 				ubi_assert(0);
1590 			}
1591 		}
1592 	}
1593 
1594 out_free:
1595 	for (i = 0; i < num_volumes; i++) {
1596 		if (!ubi->volumes[i])
1597 			continue;
1598 
1599 		kfree(scan_eba[i]);
1600 		kfree(fm_eba[i]);
1601 	}
1602 
1603 	kfree(scan_eba);
1604 	kfree(fm_eba);
1605 	return ret;
1606 }
1607 
1608 /**
1609  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1610  * @ubi: UBI device description object
1611  * @ai: attaching information
1612  *
1613  * This function returns zero in case of success and a negative error code in
1614  * case of failure.
1615  */
1616 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1617 {
1618 	int i, err, num_volumes;
1619 	struct ubi_ainf_volume *av;
1620 	struct ubi_volume *vol;
1621 	struct ubi_ainf_peb *aeb;
1622 	struct rb_node *rb;
1623 
1624 	dbg_eba("initialize EBA sub-system");
1625 
1626 	spin_lock_init(&ubi->ltree_lock);
1627 	mutex_init(&ubi->alc_mutex);
1628 	ubi->ltree = RB_ROOT;
1629 
1630 	ubi->global_sqnum = ai->max_sqnum + 1;
1631 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1632 
1633 	for (i = 0; i < num_volumes; i++) {
1634 		struct ubi_eba_table *tbl;
1635 
1636 		vol = ubi->volumes[i];
1637 		if (!vol)
1638 			continue;
1639 
1640 		cond_resched();
1641 
1642 		tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
1643 		if (IS_ERR(tbl)) {
1644 			err = PTR_ERR(tbl);
1645 			goto out_free;
1646 		}
1647 
1648 		ubi_eba_replace_table(vol, tbl);
1649 
1650 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1651 		if (!av)
1652 			continue;
1653 
1654 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1655 			if (aeb->lnum >= vol->reserved_pebs) {
1656 				/*
1657 				 * This may happen in case of an unclean reboot
1658 				 * during re-size.
1659 				 */
1660 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1661 			} else {
1662 				struct ubi_eba_entry *entry;
1663 
1664 				entry = &vol->eba_tbl->entries[aeb->lnum];
1665 				entry->pnum = aeb->pnum;
1666 			}
1667 		}
1668 	}
1669 
1670 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1671 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1672 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1673 		if (ubi->corr_peb_count)
1674 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1675 				ubi->corr_peb_count);
1676 		err = -ENOSPC;
1677 		goto out_free;
1678 	}
1679 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1680 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1681 
1682 	if (ubi->bad_allowed) {
1683 		ubi_calculate_reserved(ubi);
1684 
1685 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1686 			/* No enough free physical eraseblocks */
1687 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1688 			print_rsvd_warning(ubi, ai);
1689 		} else
1690 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1691 
1692 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1693 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1694 	}
1695 
1696 	dbg_eba("EBA sub-system is initialized");
1697 	return 0;
1698 
1699 out_free:
1700 	for (i = 0; i < num_volumes; i++) {
1701 		if (!ubi->volumes[i])
1702 			continue;
1703 		ubi_eba_replace_table(ubi->volumes[i], NULL);
1704 	}
1705 	return err;
1706 }
1707