xref: /linux/drivers/mtd/ubi/build.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём),
20  *         Frank Haverkamp
21  */
22 
23 /*
24  * This file includes UBI initialization and building of UBI devices.
25  *
26  * When UBI is initialized, it attaches all the MTD devices specified as the
27  * module load parameters or the kernel boot parameters. If MTD devices were
28  * specified, UBI does not attach any MTD device, but it is possible to do
29  * later using the "UBI control device".
30  *
31  * At the moment we only attach UBI devices by scanning, which will become a
32  * bottleneck when flashes reach certain large size. Then one may improve UBI
33  * and add other methods, although it does not seem to be easy to do.
34  */
35 
36 #include <linux/err.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/stringify.h>
40 #include <linux/namei.h>
41 #include <linux/stat.h>
42 #include <linux/miscdevice.h>
43 #include <linux/log2.h>
44 #include <linux/kthread.h>
45 #include <linux/kernel.h>
46 #include <linux/slab.h>
47 #include "ubi.h"
48 
49 /* Maximum length of the 'mtd=' parameter */
50 #define MTD_PARAM_LEN_MAX 64
51 
52 #ifdef CONFIG_MTD_UBI_MODULE
53 #define ubi_is_module() 1
54 #else
55 #define ubi_is_module() 0
56 #endif
57 
58 /**
59  * struct mtd_dev_param - MTD device parameter description data structure.
60  * @name: MTD character device node path, MTD device name, or MTD device number
61  *        string
62  * @vid_hdr_offs: VID header offset
63  */
64 struct mtd_dev_param {
65 	char name[MTD_PARAM_LEN_MAX];
66 	int vid_hdr_offs;
67 };
68 
69 /* Numbers of elements set in the @mtd_dev_param array */
70 static int __initdata mtd_devs;
71 
72 /* MTD devices specification parameters */
73 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
74 
75 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
76 struct class *ubi_class;
77 
78 /* Slab cache for wear-leveling entries */
79 struct kmem_cache *ubi_wl_entry_slab;
80 
81 /* UBI control character device */
82 static struct miscdevice ubi_ctrl_cdev = {
83 	.minor = MISC_DYNAMIC_MINOR,
84 	.name = "ubi_ctrl",
85 	.fops = &ubi_ctrl_cdev_operations,
86 };
87 
88 /* All UBI devices in system */
89 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
90 
91 /* Serializes UBI devices creations and removals */
92 DEFINE_MUTEX(ubi_devices_mutex);
93 
94 /* Protects @ubi_devices and @ubi->ref_count */
95 static DEFINE_SPINLOCK(ubi_devices_lock);
96 
97 /* "Show" method for files in '/<sysfs>/class/ubi/' */
98 static ssize_t ubi_version_show(struct class *class, struct class_attribute *attr,
99 				char *buf)
100 {
101 	return sprintf(buf, "%d\n", UBI_VERSION);
102 }
103 
104 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
105 static struct class_attribute ubi_version =
106 	__ATTR(version, S_IRUGO, ubi_version_show, NULL);
107 
108 static ssize_t dev_attribute_show(struct device *dev,
109 				  struct device_attribute *attr, char *buf);
110 
111 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
112 static struct device_attribute dev_eraseblock_size =
113 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
114 static struct device_attribute dev_avail_eraseblocks =
115 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
116 static struct device_attribute dev_total_eraseblocks =
117 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
118 static struct device_attribute dev_volumes_count =
119 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
120 static struct device_attribute dev_max_ec =
121 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
122 static struct device_attribute dev_reserved_for_bad =
123 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_bad_peb_count =
125 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_max_vol_count =
127 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_min_io_size =
129 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_bgt_enabled =
131 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_mtd_num =
133 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
134 
135 /**
136  * ubi_volume_notify - send a volume change notification.
137  * @ubi: UBI device description object
138  * @vol: volume description object of the changed volume
139  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
140  *
141  * This is a helper function which notifies all subscribers about a volume
142  * change event (creation, removal, re-sizing, re-naming, updating). Returns
143  * zero in case of success and a negative error code in case of failure.
144  */
145 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
146 {
147 	struct ubi_notification nt;
148 
149 	ubi_do_get_device_info(ubi, &nt.di);
150 	ubi_do_get_volume_info(ubi, vol, &nt.vi);
151 	return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
152 }
153 
154 /**
155  * ubi_notify_all - send a notification to all volumes.
156  * @ubi: UBI device description object
157  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
158  * @nb: the notifier to call
159  *
160  * This function walks all volumes of UBI device @ubi and sends the @ntype
161  * notification for each volume. If @nb is %NULL, then all registered notifiers
162  * are called, otherwise only the @nb notifier is called. Returns the number of
163  * sent notifications.
164  */
165 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
166 {
167 	struct ubi_notification nt;
168 	int i, count = 0;
169 
170 	ubi_do_get_device_info(ubi, &nt.di);
171 
172 	mutex_lock(&ubi->device_mutex);
173 	for (i = 0; i < ubi->vtbl_slots; i++) {
174 		/*
175 		 * Since the @ubi->device is locked, and we are not going to
176 		 * change @ubi->volumes, we do not have to lock
177 		 * @ubi->volumes_lock.
178 		 */
179 		if (!ubi->volumes[i])
180 			continue;
181 
182 		ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
183 		if (nb)
184 			nb->notifier_call(nb, ntype, &nt);
185 		else
186 			blocking_notifier_call_chain(&ubi_notifiers, ntype,
187 						     &nt);
188 		count += 1;
189 	}
190 	mutex_unlock(&ubi->device_mutex);
191 
192 	return count;
193 }
194 
195 /**
196  * ubi_enumerate_volumes - send "add" notification for all existing volumes.
197  * @nb: the notifier to call
198  *
199  * This function walks all UBI devices and volumes and sends the
200  * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
201  * registered notifiers are called, otherwise only the @nb notifier is called.
202  * Returns the number of sent notifications.
203  */
204 int ubi_enumerate_volumes(struct notifier_block *nb)
205 {
206 	int i, count = 0;
207 
208 	/*
209 	 * Since the @ubi_devices_mutex is locked, and we are not going to
210 	 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
211 	 */
212 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
213 		struct ubi_device *ubi = ubi_devices[i];
214 
215 		if (!ubi)
216 			continue;
217 		count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
218 	}
219 
220 	return count;
221 }
222 
223 /**
224  * ubi_get_device - get UBI device.
225  * @ubi_num: UBI device number
226  *
227  * This function returns UBI device description object for UBI device number
228  * @ubi_num, or %NULL if the device does not exist. This function increases the
229  * device reference count to prevent removal of the device. In other words, the
230  * device cannot be removed if its reference count is not zero.
231  */
232 struct ubi_device *ubi_get_device(int ubi_num)
233 {
234 	struct ubi_device *ubi;
235 
236 	spin_lock(&ubi_devices_lock);
237 	ubi = ubi_devices[ubi_num];
238 	if (ubi) {
239 		ubi_assert(ubi->ref_count >= 0);
240 		ubi->ref_count += 1;
241 		get_device(&ubi->dev);
242 	}
243 	spin_unlock(&ubi_devices_lock);
244 
245 	return ubi;
246 }
247 
248 /**
249  * ubi_put_device - drop an UBI device reference.
250  * @ubi: UBI device description object
251  */
252 void ubi_put_device(struct ubi_device *ubi)
253 {
254 	spin_lock(&ubi_devices_lock);
255 	ubi->ref_count -= 1;
256 	put_device(&ubi->dev);
257 	spin_unlock(&ubi_devices_lock);
258 }
259 
260 /**
261  * ubi_get_by_major - get UBI device by character device major number.
262  * @major: major number
263  *
264  * This function is similar to 'ubi_get_device()', but it searches the device
265  * by its major number.
266  */
267 struct ubi_device *ubi_get_by_major(int major)
268 {
269 	int i;
270 	struct ubi_device *ubi;
271 
272 	spin_lock(&ubi_devices_lock);
273 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
274 		ubi = ubi_devices[i];
275 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
276 			ubi_assert(ubi->ref_count >= 0);
277 			ubi->ref_count += 1;
278 			get_device(&ubi->dev);
279 			spin_unlock(&ubi_devices_lock);
280 			return ubi;
281 		}
282 	}
283 	spin_unlock(&ubi_devices_lock);
284 
285 	return NULL;
286 }
287 
288 /**
289  * ubi_major2num - get UBI device number by character device major number.
290  * @major: major number
291  *
292  * This function searches UBI device number object by its major number. If UBI
293  * device was not found, this function returns -ENODEV, otherwise the UBI device
294  * number is returned.
295  */
296 int ubi_major2num(int major)
297 {
298 	int i, ubi_num = -ENODEV;
299 
300 	spin_lock(&ubi_devices_lock);
301 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
302 		struct ubi_device *ubi = ubi_devices[i];
303 
304 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
305 			ubi_num = ubi->ubi_num;
306 			break;
307 		}
308 	}
309 	spin_unlock(&ubi_devices_lock);
310 
311 	return ubi_num;
312 }
313 
314 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
315 static ssize_t dev_attribute_show(struct device *dev,
316 				  struct device_attribute *attr, char *buf)
317 {
318 	ssize_t ret;
319 	struct ubi_device *ubi;
320 
321 	/*
322 	 * The below code looks weird, but it actually makes sense. We get the
323 	 * UBI device reference from the contained 'struct ubi_device'. But it
324 	 * is unclear if the device was removed or not yet. Indeed, if the
325 	 * device was removed before we increased its reference count,
326 	 * 'ubi_get_device()' will return -ENODEV and we fail.
327 	 *
328 	 * Remember, 'struct ubi_device' is freed in the release function, so
329 	 * we still can use 'ubi->ubi_num'.
330 	 */
331 	ubi = container_of(dev, struct ubi_device, dev);
332 	ubi = ubi_get_device(ubi->ubi_num);
333 	if (!ubi)
334 		return -ENODEV;
335 
336 	if (attr == &dev_eraseblock_size)
337 		ret = sprintf(buf, "%d\n", ubi->leb_size);
338 	else if (attr == &dev_avail_eraseblocks)
339 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
340 	else if (attr == &dev_total_eraseblocks)
341 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
342 	else if (attr == &dev_volumes_count)
343 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
344 	else if (attr == &dev_max_ec)
345 		ret = sprintf(buf, "%d\n", ubi->max_ec);
346 	else if (attr == &dev_reserved_for_bad)
347 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
348 	else if (attr == &dev_bad_peb_count)
349 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
350 	else if (attr == &dev_max_vol_count)
351 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
352 	else if (attr == &dev_min_io_size)
353 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
354 	else if (attr == &dev_bgt_enabled)
355 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
356 	else if (attr == &dev_mtd_num)
357 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
358 	else
359 		ret = -EINVAL;
360 
361 	ubi_put_device(ubi);
362 	return ret;
363 }
364 
365 static void dev_release(struct device *dev)
366 {
367 	struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
368 
369 	kfree(ubi);
370 }
371 
372 /**
373  * ubi_sysfs_init - initialize sysfs for an UBI device.
374  * @ubi: UBI device description object
375  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
376  *       taken
377  *
378  * This function returns zero in case of success and a negative error code in
379  * case of failure.
380  */
381 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
382 {
383 	int err;
384 
385 	ubi->dev.release = dev_release;
386 	ubi->dev.devt = ubi->cdev.dev;
387 	ubi->dev.class = ubi_class;
388 	dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
389 	err = device_register(&ubi->dev);
390 	if (err)
391 		return err;
392 
393 	*ref = 1;
394 	err = device_create_file(&ubi->dev, &dev_eraseblock_size);
395 	if (err)
396 		return err;
397 	err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
398 	if (err)
399 		return err;
400 	err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
401 	if (err)
402 		return err;
403 	err = device_create_file(&ubi->dev, &dev_volumes_count);
404 	if (err)
405 		return err;
406 	err = device_create_file(&ubi->dev, &dev_max_ec);
407 	if (err)
408 		return err;
409 	err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
410 	if (err)
411 		return err;
412 	err = device_create_file(&ubi->dev, &dev_bad_peb_count);
413 	if (err)
414 		return err;
415 	err = device_create_file(&ubi->dev, &dev_max_vol_count);
416 	if (err)
417 		return err;
418 	err = device_create_file(&ubi->dev, &dev_min_io_size);
419 	if (err)
420 		return err;
421 	err = device_create_file(&ubi->dev, &dev_bgt_enabled);
422 	if (err)
423 		return err;
424 	err = device_create_file(&ubi->dev, &dev_mtd_num);
425 	return err;
426 }
427 
428 /**
429  * ubi_sysfs_close - close sysfs for an UBI device.
430  * @ubi: UBI device description object
431  */
432 static void ubi_sysfs_close(struct ubi_device *ubi)
433 {
434 	device_remove_file(&ubi->dev, &dev_mtd_num);
435 	device_remove_file(&ubi->dev, &dev_bgt_enabled);
436 	device_remove_file(&ubi->dev, &dev_min_io_size);
437 	device_remove_file(&ubi->dev, &dev_max_vol_count);
438 	device_remove_file(&ubi->dev, &dev_bad_peb_count);
439 	device_remove_file(&ubi->dev, &dev_reserved_for_bad);
440 	device_remove_file(&ubi->dev, &dev_max_ec);
441 	device_remove_file(&ubi->dev, &dev_volumes_count);
442 	device_remove_file(&ubi->dev, &dev_total_eraseblocks);
443 	device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
444 	device_remove_file(&ubi->dev, &dev_eraseblock_size);
445 	device_unregister(&ubi->dev);
446 }
447 
448 /**
449  * kill_volumes - destroy all user volumes.
450  * @ubi: UBI device description object
451  */
452 static void kill_volumes(struct ubi_device *ubi)
453 {
454 	int i;
455 
456 	for (i = 0; i < ubi->vtbl_slots; i++)
457 		if (ubi->volumes[i])
458 			ubi_free_volume(ubi, ubi->volumes[i]);
459 }
460 
461 /**
462  * uif_init - initialize user interfaces for an UBI device.
463  * @ubi: UBI device description object
464  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
465  *       taken, otherwise set to %0
466  *
467  * This function initializes various user interfaces for an UBI device. If the
468  * initialization fails at an early stage, this function frees all the
469  * resources it allocated, returns an error, and @ref is set to %0. However,
470  * if the initialization fails after the UBI device was registered in the
471  * driver core subsystem, this function takes a reference to @ubi->dev, because
472  * otherwise the release function ('dev_release()') would free whole @ubi
473  * object. The @ref argument is set to %1 in this case. The caller has to put
474  * this reference.
475  *
476  * This function returns zero in case of success and a negative error code in
477  * case of failure.
478  */
479 static int uif_init(struct ubi_device *ubi, int *ref)
480 {
481 	int i, err;
482 	dev_t dev;
483 
484 	*ref = 0;
485 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
486 
487 	/*
488 	 * Major numbers for the UBI character devices are allocated
489 	 * dynamically. Major numbers of volume character devices are
490 	 * equivalent to ones of the corresponding UBI character device. Minor
491 	 * numbers of UBI character devices are 0, while minor numbers of
492 	 * volume character devices start from 1. Thus, we allocate one major
493 	 * number and ubi->vtbl_slots + 1 minor numbers.
494 	 */
495 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
496 	if (err) {
497 		ubi_err("cannot register UBI character devices");
498 		return err;
499 	}
500 
501 	ubi_assert(MINOR(dev) == 0);
502 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
503 	dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
504 	ubi->cdev.owner = THIS_MODULE;
505 
506 	err = cdev_add(&ubi->cdev, dev, 1);
507 	if (err) {
508 		ubi_err("cannot add character device");
509 		goto out_unreg;
510 	}
511 
512 	err = ubi_sysfs_init(ubi, ref);
513 	if (err)
514 		goto out_sysfs;
515 
516 	for (i = 0; i < ubi->vtbl_slots; i++)
517 		if (ubi->volumes[i]) {
518 			err = ubi_add_volume(ubi, ubi->volumes[i]);
519 			if (err) {
520 				ubi_err("cannot add volume %d", i);
521 				goto out_volumes;
522 			}
523 		}
524 
525 	return 0;
526 
527 out_volumes:
528 	kill_volumes(ubi);
529 out_sysfs:
530 	if (*ref)
531 		get_device(&ubi->dev);
532 	ubi_sysfs_close(ubi);
533 	cdev_del(&ubi->cdev);
534 out_unreg:
535 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
536 	ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
537 	return err;
538 }
539 
540 /**
541  * uif_close - close user interfaces for an UBI device.
542  * @ubi: UBI device description object
543  *
544  * Note, since this function un-registers UBI volume device objects (@vol->dev),
545  * the memory allocated voe the volumes is freed as well (in the release
546  * function).
547  */
548 static void uif_close(struct ubi_device *ubi)
549 {
550 	kill_volumes(ubi);
551 	ubi_sysfs_close(ubi);
552 	cdev_del(&ubi->cdev);
553 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
554 }
555 
556 /**
557  * free_internal_volumes - free internal volumes.
558  * @ubi: UBI device description object
559  */
560 static void free_internal_volumes(struct ubi_device *ubi)
561 {
562 	int i;
563 
564 	for (i = ubi->vtbl_slots;
565 	     i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
566 		kfree(ubi->volumes[i]->eba_tbl);
567 		kfree(ubi->volumes[i]);
568 	}
569 }
570 
571 /**
572  * attach_by_scanning - attach an MTD device using scanning method.
573  * @ubi: UBI device descriptor
574  *
575  * This function returns zero in case of success and a negative error code in
576  * case of failure.
577  *
578  * Note, currently this is the only method to attach UBI devices. Hopefully in
579  * the future we'll have more scalable attaching methods and avoid full media
580  * scanning. But even in this case scanning will be needed as a fall-back
581  * attaching method if there are some on-flash table corruptions.
582  */
583 static int attach_by_scanning(struct ubi_device *ubi)
584 {
585 	int err;
586 	struct ubi_scan_info *si;
587 
588 	si = ubi_scan(ubi);
589 	if (IS_ERR(si))
590 		return PTR_ERR(si);
591 
592 	ubi->bad_peb_count = si->bad_peb_count;
593 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
594 	ubi->max_ec = si->max_ec;
595 	ubi->mean_ec = si->mean_ec;
596 
597 	err = ubi_read_volume_table(ubi, si);
598 	if (err)
599 		goto out_si;
600 
601 	err = ubi_wl_init_scan(ubi, si);
602 	if (err)
603 		goto out_vtbl;
604 
605 	err = ubi_eba_init_scan(ubi, si);
606 	if (err)
607 		goto out_wl;
608 
609 	ubi_scan_destroy_si(si);
610 	return 0;
611 
612 out_wl:
613 	ubi_wl_close(ubi);
614 out_vtbl:
615 	free_internal_volumes(ubi);
616 	vfree(ubi->vtbl);
617 out_si:
618 	ubi_scan_destroy_si(si);
619 	return err;
620 }
621 
622 /**
623  * io_init - initialize I/O sub-system for a given UBI device.
624  * @ubi: UBI device description object
625  *
626  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
627  * assumed:
628  *   o EC header is always at offset zero - this cannot be changed;
629  *   o VID header starts just after the EC header at the closest address
630  *     aligned to @io->hdrs_min_io_size;
631  *   o data starts just after the VID header at the closest address aligned to
632  *     @io->min_io_size
633  *
634  * This function returns zero in case of success and a negative error code in
635  * case of failure.
636  */
637 static int io_init(struct ubi_device *ubi)
638 {
639 	if (ubi->mtd->numeraseregions != 0) {
640 		/*
641 		 * Some flashes have several erase regions. Different regions
642 		 * may have different eraseblock size and other
643 		 * characteristics. It looks like mostly multi-region flashes
644 		 * have one "main" region and one or more small regions to
645 		 * store boot loader code or boot parameters or whatever. I
646 		 * guess we should just pick the largest region. But this is
647 		 * not implemented.
648 		 */
649 		ubi_err("multiple regions, not implemented");
650 		return -EINVAL;
651 	}
652 
653 	if (ubi->vid_hdr_offset < 0)
654 		return -EINVAL;
655 
656 	/*
657 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
658 	 * physical eraseblocks maximum.
659 	 */
660 
661 	ubi->peb_size   = ubi->mtd->erasesize;
662 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
663 	ubi->flash_size = ubi->mtd->size;
664 
665 	if (ubi->mtd->block_isbad && ubi->mtd->block_markbad)
666 		ubi->bad_allowed = 1;
667 
668 	if (ubi->mtd->type == MTD_NORFLASH) {
669 		ubi_assert(ubi->mtd->writesize == 1);
670 		ubi->nor_flash = 1;
671 	}
672 
673 	ubi->min_io_size = ubi->mtd->writesize;
674 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
675 
676 	/*
677 	 * Make sure minimal I/O unit is power of 2. Note, there is no
678 	 * fundamental reason for this assumption. It is just an optimization
679 	 * which allows us to avoid costly division operations.
680 	 */
681 	if (!is_power_of_2(ubi->min_io_size)) {
682 		ubi_err("min. I/O unit (%d) is not power of 2",
683 			ubi->min_io_size);
684 		return -EINVAL;
685 	}
686 
687 	ubi_assert(ubi->hdrs_min_io_size > 0);
688 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
689 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
690 
691 	/* Calculate default aligned sizes of EC and VID headers */
692 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
693 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
694 
695 	dbg_msg("min_io_size      %d", ubi->min_io_size);
696 	dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
697 	dbg_msg("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
698 	dbg_msg("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
699 
700 	if (ubi->vid_hdr_offset == 0)
701 		/* Default offset */
702 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
703 				      ubi->ec_hdr_alsize;
704 	else {
705 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
706 						~(ubi->hdrs_min_io_size - 1);
707 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
708 						ubi->vid_hdr_aloffset;
709 	}
710 
711 	/* Similar for the data offset */
712 	ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE;
713 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
714 
715 	dbg_msg("vid_hdr_offset   %d", ubi->vid_hdr_offset);
716 	dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
717 	dbg_msg("vid_hdr_shift    %d", ubi->vid_hdr_shift);
718 	dbg_msg("leb_start        %d", ubi->leb_start);
719 
720 	/* The shift must be aligned to 32-bit boundary */
721 	if (ubi->vid_hdr_shift % 4) {
722 		ubi_err("unaligned VID header shift %d",
723 			ubi->vid_hdr_shift);
724 		return -EINVAL;
725 	}
726 
727 	/* Check sanity */
728 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
729 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
730 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
731 	    ubi->leb_start & (ubi->min_io_size - 1)) {
732 		ubi_err("bad VID header (%d) or data offsets (%d)",
733 			ubi->vid_hdr_offset, ubi->leb_start);
734 		return -EINVAL;
735 	}
736 
737 	/*
738 	 * Set maximum amount of physical erroneous eraseblocks to be 10%.
739 	 * Erroneous PEB are those which have read errors.
740 	 */
741 	ubi->max_erroneous = ubi->peb_count / 10;
742 	if (ubi->max_erroneous < 16)
743 		ubi->max_erroneous = 16;
744 	dbg_msg("max_erroneous    %d", ubi->max_erroneous);
745 
746 	/*
747 	 * It may happen that EC and VID headers are situated in one minimal
748 	 * I/O unit. In this case we can only accept this UBI image in
749 	 * read-only mode.
750 	 */
751 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
752 		ubi_warn("EC and VID headers are in the same minimal I/O unit, "
753 			 "switch to read-only mode");
754 		ubi->ro_mode = 1;
755 	}
756 
757 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
758 
759 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
760 		ubi_msg("MTD device %d is write-protected, attach in "
761 			"read-only mode", ubi->mtd->index);
762 		ubi->ro_mode = 1;
763 	}
764 
765 	ubi_msg("physical eraseblock size:   %d bytes (%d KiB)",
766 		ubi->peb_size, ubi->peb_size >> 10);
767 	ubi_msg("logical eraseblock size:    %d bytes", ubi->leb_size);
768 	ubi_msg("smallest flash I/O unit:    %d", ubi->min_io_size);
769 	if (ubi->hdrs_min_io_size != ubi->min_io_size)
770 		ubi_msg("sub-page size:              %d",
771 			ubi->hdrs_min_io_size);
772 	ubi_msg("VID header offset:          %d (aligned %d)",
773 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
774 	ubi_msg("data offset:                %d", ubi->leb_start);
775 
776 	/*
777 	 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
778 	 * unfortunately, MTD does not provide this information. We should loop
779 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
780 	 * each physical eraseblock. So, we skip ubi->bad_peb_count
781 	 * uninitialized and initialize it after scanning.
782 	 */
783 
784 	return 0;
785 }
786 
787 /**
788  * autoresize - re-size the volume which has the "auto-resize" flag set.
789  * @ubi: UBI device description object
790  * @vol_id: ID of the volume to re-size
791  *
792  * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
793  * the volume table to the largest possible size. See comments in ubi-header.h
794  * for more description of the flag. Returns zero in case of success and a
795  * negative error code in case of failure.
796  */
797 static int autoresize(struct ubi_device *ubi, int vol_id)
798 {
799 	struct ubi_volume_desc desc;
800 	struct ubi_volume *vol = ubi->volumes[vol_id];
801 	int err, old_reserved_pebs = vol->reserved_pebs;
802 
803 	/*
804 	 * Clear the auto-resize flag in the volume in-memory copy of the
805 	 * volume table, and 'ubi_resize_volume()' will propagate this change
806 	 * to the flash.
807 	 */
808 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
809 
810 	if (ubi->avail_pebs == 0) {
811 		struct ubi_vtbl_record vtbl_rec;
812 
813 		/*
814 		 * No available PEBs to re-size the volume, clear the flag on
815 		 * flash and exit.
816 		 */
817 		memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
818 		       sizeof(struct ubi_vtbl_record));
819 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
820 		if (err)
821 			ubi_err("cannot clean auto-resize flag for volume %d",
822 				vol_id);
823 	} else {
824 		desc.vol = vol;
825 		err = ubi_resize_volume(&desc,
826 					old_reserved_pebs + ubi->avail_pebs);
827 		if (err)
828 			ubi_err("cannot auto-resize volume %d", vol_id);
829 	}
830 
831 	if (err)
832 		return err;
833 
834 	ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
835 		vol->name, old_reserved_pebs, vol->reserved_pebs);
836 	return 0;
837 }
838 
839 /**
840  * ubi_attach_mtd_dev - attach an MTD device.
841  * @mtd: MTD device description object
842  * @ubi_num: number to assign to the new UBI device
843  * @vid_hdr_offset: VID header offset
844  *
845  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
846  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
847  * which case this function finds a vacant device number and assigns it
848  * automatically. Returns the new UBI device number in case of success and a
849  * negative error code in case of failure.
850  *
851  * Note, the invocations of this function has to be serialized by the
852  * @ubi_devices_mutex.
853  */
854 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
855 {
856 	struct ubi_device *ubi;
857 	int i, err, ref = 0;
858 
859 	/*
860 	 * Check if we already have the same MTD device attached.
861 	 *
862 	 * Note, this function assumes that UBI devices creations and deletions
863 	 * are serialized, so it does not take the &ubi_devices_lock.
864 	 */
865 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
866 		ubi = ubi_devices[i];
867 		if (ubi && mtd->index == ubi->mtd->index) {
868 			dbg_err("mtd%d is already attached to ubi%d",
869 				mtd->index, i);
870 			return -EEXIST;
871 		}
872 	}
873 
874 	/*
875 	 * Make sure this MTD device is not emulated on top of an UBI volume
876 	 * already. Well, generally this recursion works fine, but there are
877 	 * different problems like the UBI module takes a reference to itself
878 	 * by attaching (and thus, opening) the emulated MTD device. This
879 	 * results in inability to unload the module. And in general it makes
880 	 * no sense to attach emulated MTD devices, so we prohibit this.
881 	 */
882 	if (mtd->type == MTD_UBIVOLUME) {
883 		ubi_err("refuse attaching mtd%d - it is already emulated on "
884 			"top of UBI", mtd->index);
885 		return -EINVAL;
886 	}
887 
888 	if (ubi_num == UBI_DEV_NUM_AUTO) {
889 		/* Search for an empty slot in the @ubi_devices array */
890 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
891 			if (!ubi_devices[ubi_num])
892 				break;
893 		if (ubi_num == UBI_MAX_DEVICES) {
894 			dbg_err("only %d UBI devices may be created",
895 				UBI_MAX_DEVICES);
896 			return -ENFILE;
897 		}
898 	} else {
899 		if (ubi_num >= UBI_MAX_DEVICES)
900 			return -EINVAL;
901 
902 		/* Make sure ubi_num is not busy */
903 		if (ubi_devices[ubi_num]) {
904 			dbg_err("ubi%d already exists", ubi_num);
905 			return -EEXIST;
906 		}
907 	}
908 
909 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
910 	if (!ubi)
911 		return -ENOMEM;
912 
913 	ubi->mtd = mtd;
914 	ubi->ubi_num = ubi_num;
915 	ubi->vid_hdr_offset = vid_hdr_offset;
916 	ubi->autoresize_vol_id = -1;
917 
918 	mutex_init(&ubi->buf_mutex);
919 	mutex_init(&ubi->ckvol_mutex);
920 	mutex_init(&ubi->device_mutex);
921 	spin_lock_init(&ubi->volumes_lock);
922 
923 	ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
924 
925 	err = io_init(ubi);
926 	if (err)
927 		goto out_free;
928 
929 	err = -ENOMEM;
930 	ubi->peb_buf1 = vmalloc(ubi->peb_size);
931 	if (!ubi->peb_buf1)
932 		goto out_free;
933 
934 	ubi->peb_buf2 = vmalloc(ubi->peb_size);
935 	if (!ubi->peb_buf2)
936 		goto out_free;
937 
938 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
939 	mutex_init(&ubi->dbg_buf_mutex);
940 	ubi->dbg_peb_buf = vmalloc(ubi->peb_size);
941 	if (!ubi->dbg_peb_buf)
942 		goto out_free;
943 #endif
944 
945 	err = attach_by_scanning(ubi);
946 	if (err) {
947 		dbg_err("failed to attach by scanning, error %d", err);
948 		goto out_free;
949 	}
950 
951 	if (ubi->autoresize_vol_id != -1) {
952 		err = autoresize(ubi, ubi->autoresize_vol_id);
953 		if (err)
954 			goto out_detach;
955 	}
956 
957 	err = uif_init(ubi, &ref);
958 	if (err)
959 		goto out_detach;
960 
961 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
962 	if (IS_ERR(ubi->bgt_thread)) {
963 		err = PTR_ERR(ubi->bgt_thread);
964 		ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
965 			err);
966 		goto out_uif;
967 	}
968 
969 	ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
970 	ubi_msg("MTD device name:            \"%s\"", mtd->name);
971 	ubi_msg("MTD device size:            %llu MiB", ubi->flash_size >> 20);
972 	ubi_msg("number of good PEBs:        %d", ubi->good_peb_count);
973 	ubi_msg("number of bad PEBs:         %d", ubi->bad_peb_count);
974 	ubi_msg("max. allowed volumes:       %d", ubi->vtbl_slots);
975 	ubi_msg("wear-leveling threshold:    %d", CONFIG_MTD_UBI_WL_THRESHOLD);
976 	ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
977 	ubi_msg("number of user volumes:     %d",
978 		ubi->vol_count - UBI_INT_VOL_COUNT);
979 	ubi_msg("available PEBs:             %d", ubi->avail_pebs);
980 	ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
981 	ubi_msg("number of PEBs reserved for bad PEB handling: %d",
982 		ubi->beb_rsvd_pebs);
983 	ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
984 	ubi_msg("image sequence number: %d", ubi->image_seq);
985 
986 	/*
987 	 * The below lock makes sure we do not race with 'ubi_thread()' which
988 	 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
989 	 */
990 	spin_lock(&ubi->wl_lock);
991 	if (!DBG_DISABLE_BGT)
992 		ubi->thread_enabled = 1;
993 	wake_up_process(ubi->bgt_thread);
994 	spin_unlock(&ubi->wl_lock);
995 
996 	ubi_devices[ubi_num] = ubi;
997 	ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
998 	return ubi_num;
999 
1000 out_uif:
1001 	uif_close(ubi);
1002 out_detach:
1003 	ubi_wl_close(ubi);
1004 	free_internal_volumes(ubi);
1005 	vfree(ubi->vtbl);
1006 out_free:
1007 	vfree(ubi->peb_buf1);
1008 	vfree(ubi->peb_buf2);
1009 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1010 	vfree(ubi->dbg_peb_buf);
1011 #endif
1012 	if (ref)
1013 		put_device(&ubi->dev);
1014 	else
1015 		kfree(ubi);
1016 	return err;
1017 }
1018 
1019 /**
1020  * ubi_detach_mtd_dev - detach an MTD device.
1021  * @ubi_num: UBI device number to detach from
1022  * @anyway: detach MTD even if device reference count is not zero
1023  *
1024  * This function destroys an UBI device number @ubi_num and detaches the
1025  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1026  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1027  * exist.
1028  *
1029  * Note, the invocations of this function has to be serialized by the
1030  * @ubi_devices_mutex.
1031  */
1032 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1033 {
1034 	struct ubi_device *ubi;
1035 
1036 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1037 		return -EINVAL;
1038 
1039 	ubi = ubi_get_device(ubi_num);
1040 	if (!ubi)
1041 		return -EINVAL;
1042 
1043 	spin_lock(&ubi_devices_lock);
1044 	put_device(&ubi->dev);
1045 	ubi->ref_count -= 1;
1046 	if (ubi->ref_count) {
1047 		if (!anyway) {
1048 			spin_unlock(&ubi_devices_lock);
1049 			return -EBUSY;
1050 		}
1051 		/* This may only happen if there is a bug */
1052 		ubi_err("%s reference count %d, destroy anyway",
1053 			ubi->ubi_name, ubi->ref_count);
1054 	}
1055 	ubi_devices[ubi_num] = NULL;
1056 	spin_unlock(&ubi_devices_lock);
1057 
1058 	ubi_assert(ubi_num == ubi->ubi_num);
1059 	ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1060 	dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1061 
1062 	/*
1063 	 * Before freeing anything, we have to stop the background thread to
1064 	 * prevent it from doing anything on this device while we are freeing.
1065 	 */
1066 	if (ubi->bgt_thread)
1067 		kthread_stop(ubi->bgt_thread);
1068 
1069 	/*
1070 	 * Get a reference to the device in order to prevent 'dev_release()'
1071 	 * from freeing the @ubi object.
1072 	 */
1073 	get_device(&ubi->dev);
1074 
1075 	uif_close(ubi);
1076 	ubi_wl_close(ubi);
1077 	free_internal_volumes(ubi);
1078 	vfree(ubi->vtbl);
1079 	put_mtd_device(ubi->mtd);
1080 	vfree(ubi->peb_buf1);
1081 	vfree(ubi->peb_buf2);
1082 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1083 	vfree(ubi->dbg_peb_buf);
1084 #endif
1085 	ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1086 	put_device(&ubi->dev);
1087 	return 0;
1088 }
1089 
1090 /**
1091  * open_mtd_by_chdev - open an MTD device by its character device node path.
1092  * @mtd_dev: MTD character device node path
1093  *
1094  * This helper function opens an MTD device by its character node device path.
1095  * Returns MTD device description object in case of success and a negative
1096  * error code in case of failure.
1097  */
1098 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1099 {
1100 	int err, major, minor, mode;
1101 	struct path path;
1102 
1103 	/* Probably this is an MTD character device node path */
1104 	err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1105 	if (err)
1106 		return ERR_PTR(err);
1107 
1108 	/* MTD device number is defined by the major / minor numbers */
1109 	major = imajor(path.dentry->d_inode);
1110 	minor = iminor(path.dentry->d_inode);
1111 	mode = path.dentry->d_inode->i_mode;
1112 	path_put(&path);
1113 	if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1114 		return ERR_PTR(-EINVAL);
1115 
1116 	if (minor & 1)
1117 		/*
1118 		 * Just do not think the "/dev/mtdrX" devices support is need,
1119 		 * so do not support them to avoid doing extra work.
1120 		 */
1121 		return ERR_PTR(-EINVAL);
1122 
1123 	return get_mtd_device(NULL, minor / 2);
1124 }
1125 
1126 /**
1127  * open_mtd_device - open MTD device by name, character device path, or number.
1128  * @mtd_dev: name, character device node path, or MTD device device number
1129  *
1130  * This function tries to open and MTD device described by @mtd_dev string,
1131  * which is first treated as ASCII MTD device number, and if it is not true, it
1132  * is treated as MTD device name, and if that is also not true, it is treated
1133  * as MTD character device node path. Returns MTD device description object in
1134  * case of success and a negative error code in case of failure.
1135  */
1136 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1137 {
1138 	struct mtd_info *mtd;
1139 	int mtd_num;
1140 	char *endp;
1141 
1142 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1143 	if (*endp != '\0' || mtd_dev == endp) {
1144 		/*
1145 		 * This does not look like an ASCII integer, probably this is
1146 		 * MTD device name.
1147 		 */
1148 		mtd = get_mtd_device_nm(mtd_dev);
1149 		if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1150 			/* Probably this is an MTD character device node path */
1151 			mtd = open_mtd_by_chdev(mtd_dev);
1152 	} else
1153 		mtd = get_mtd_device(NULL, mtd_num);
1154 
1155 	return mtd;
1156 }
1157 
1158 static int __init ubi_init(void)
1159 {
1160 	int err, i, k;
1161 
1162 	/* Ensure that EC and VID headers have correct size */
1163 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1164 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1165 
1166 	if (mtd_devs > UBI_MAX_DEVICES) {
1167 		ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1168 		return -EINVAL;
1169 	}
1170 
1171 	/* Create base sysfs directory and sysfs files */
1172 	ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1173 	if (IS_ERR(ubi_class)) {
1174 		err = PTR_ERR(ubi_class);
1175 		ubi_err("cannot create UBI class");
1176 		goto out;
1177 	}
1178 
1179 	err = class_create_file(ubi_class, &ubi_version);
1180 	if (err) {
1181 		ubi_err("cannot create sysfs file");
1182 		goto out_class;
1183 	}
1184 
1185 	err = misc_register(&ubi_ctrl_cdev);
1186 	if (err) {
1187 		ubi_err("cannot register device");
1188 		goto out_version;
1189 	}
1190 
1191 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1192 					      sizeof(struct ubi_wl_entry),
1193 					      0, 0, NULL);
1194 	if (!ubi_wl_entry_slab)
1195 		goto out_dev_unreg;
1196 
1197 	/* Attach MTD devices */
1198 	for (i = 0; i < mtd_devs; i++) {
1199 		struct mtd_dev_param *p = &mtd_dev_param[i];
1200 		struct mtd_info *mtd;
1201 
1202 		cond_resched();
1203 
1204 		mtd = open_mtd_device(p->name);
1205 		if (IS_ERR(mtd)) {
1206 			err = PTR_ERR(mtd);
1207 			goto out_detach;
1208 		}
1209 
1210 		mutex_lock(&ubi_devices_mutex);
1211 		err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1212 					 p->vid_hdr_offs);
1213 		mutex_unlock(&ubi_devices_mutex);
1214 		if (err < 0) {
1215 			ubi_err("cannot attach mtd%d", mtd->index);
1216 			put_mtd_device(mtd);
1217 
1218 			/*
1219 			 * Originally UBI stopped initializing on any error.
1220 			 * However, later on it was found out that this
1221 			 * behavior is not very good when UBI is compiled into
1222 			 * the kernel and the MTD devices to attach are passed
1223 			 * through the command line. Indeed, UBI failure
1224 			 * stopped whole boot sequence.
1225 			 *
1226 			 * To fix this, we changed the behavior for the
1227 			 * non-module case, but preserved the old behavior for
1228 			 * the module case, just for compatibility. This is a
1229 			 * little inconsistent, though.
1230 			 */
1231 			if (ubi_is_module())
1232 				goto out_detach;
1233 		}
1234 	}
1235 
1236 	return 0;
1237 
1238 out_detach:
1239 	for (k = 0; k < i; k++)
1240 		if (ubi_devices[k]) {
1241 			mutex_lock(&ubi_devices_mutex);
1242 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1243 			mutex_unlock(&ubi_devices_mutex);
1244 		}
1245 	kmem_cache_destroy(ubi_wl_entry_slab);
1246 out_dev_unreg:
1247 	misc_deregister(&ubi_ctrl_cdev);
1248 out_version:
1249 	class_remove_file(ubi_class, &ubi_version);
1250 out_class:
1251 	class_destroy(ubi_class);
1252 out:
1253 	ubi_err("UBI error: cannot initialize UBI, error %d", err);
1254 	return err;
1255 }
1256 module_init(ubi_init);
1257 
1258 static void __exit ubi_exit(void)
1259 {
1260 	int i;
1261 
1262 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1263 		if (ubi_devices[i]) {
1264 			mutex_lock(&ubi_devices_mutex);
1265 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1266 			mutex_unlock(&ubi_devices_mutex);
1267 		}
1268 	kmem_cache_destroy(ubi_wl_entry_slab);
1269 	misc_deregister(&ubi_ctrl_cdev);
1270 	class_remove_file(ubi_class, &ubi_version);
1271 	class_destroy(ubi_class);
1272 }
1273 module_exit(ubi_exit);
1274 
1275 /**
1276  * bytes_str_to_int - convert a number of bytes string into an integer.
1277  * @str: the string to convert
1278  *
1279  * This function returns positive resulting integer in case of success and a
1280  * negative error code in case of failure.
1281  */
1282 static int __init bytes_str_to_int(const char *str)
1283 {
1284 	char *endp;
1285 	unsigned long result;
1286 
1287 	result = simple_strtoul(str, &endp, 0);
1288 	if (str == endp || result >= INT_MAX) {
1289 		printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1290 		       str);
1291 		return -EINVAL;
1292 	}
1293 
1294 	switch (*endp) {
1295 	case 'G':
1296 		result *= 1024;
1297 	case 'M':
1298 		result *= 1024;
1299 	case 'K':
1300 		result *= 1024;
1301 		if (endp[1] == 'i' && endp[2] == 'B')
1302 			endp += 2;
1303 	case '\0':
1304 		break;
1305 	default:
1306 		printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1307 		       str);
1308 		return -EINVAL;
1309 	}
1310 
1311 	return result;
1312 }
1313 
1314 /**
1315  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1316  * @val: the parameter value to parse
1317  * @kp: not used
1318  *
1319  * This function returns zero in case of success and a negative error code in
1320  * case of error.
1321  */
1322 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1323 {
1324 	int i, len;
1325 	struct mtd_dev_param *p;
1326 	char buf[MTD_PARAM_LEN_MAX];
1327 	char *pbuf = &buf[0];
1328 	char *tokens[2] = {NULL, NULL};
1329 
1330 	if (!val)
1331 		return -EINVAL;
1332 
1333 	if (mtd_devs == UBI_MAX_DEVICES) {
1334 		printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1335 		       UBI_MAX_DEVICES);
1336 		return -EINVAL;
1337 	}
1338 
1339 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1340 	if (len == MTD_PARAM_LEN_MAX) {
1341 		printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1342 		       "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1343 		return -EINVAL;
1344 	}
1345 
1346 	if (len == 0) {
1347 		printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1348 		       "ignored\n");
1349 		return 0;
1350 	}
1351 
1352 	strcpy(buf, val);
1353 
1354 	/* Get rid of the final newline */
1355 	if (buf[len - 1] == '\n')
1356 		buf[len - 1] = '\0';
1357 
1358 	for (i = 0; i < 2; i++)
1359 		tokens[i] = strsep(&pbuf, ",");
1360 
1361 	if (pbuf) {
1362 		printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1363 		       val);
1364 		return -EINVAL;
1365 	}
1366 
1367 	p = &mtd_dev_param[mtd_devs];
1368 	strcpy(&p->name[0], tokens[0]);
1369 
1370 	if (tokens[1])
1371 		p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1372 
1373 	if (p->vid_hdr_offs < 0)
1374 		return p->vid_hdr_offs;
1375 
1376 	mtd_devs += 1;
1377 	return 0;
1378 }
1379 
1380 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1381 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1382 		      "mtd=<name|num|path>[,<vid_hdr_offs>].\n"
1383 		      "Multiple \"mtd\" parameters may be specified.\n"
1384 		      "MTD devices may be specified by their number, name, or "
1385 		      "path to the MTD character device node.\n"
1386 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1387 		      "header position to be used by UBI.\n"
1388 		      "Example 1: mtd=/dev/mtd0 - attach MTD device "
1389 		      "/dev/mtd0.\n"
1390 		      "Example 2: mtd=content,1984 mtd=4 - attach MTD device "
1391 		      "with name \"content\" using VID header offset 1984, and "
1392 		      "MTD device number 4 with default VID header offset.");
1393 
1394 MODULE_VERSION(__stringify(UBI_VERSION));
1395 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1396 MODULE_AUTHOR("Artem Bityutskiy");
1397 MODULE_LICENSE("GPL");
1398