1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём), 20 * Frank Haverkamp 21 */ 22 23 /* 24 * This file includes UBI initialization and building of UBI devices. 25 * 26 * When UBI is initialized, it attaches all the MTD devices specified as the 27 * module load parameters or the kernel boot parameters. If MTD devices were 28 * specified, UBI does not attach any MTD device, but it is possible to do 29 * later using the "UBI control device". 30 * 31 * At the moment we only attach UBI devices by scanning, which will become a 32 * bottleneck when flashes reach certain large size. Then one may improve UBI 33 * and add other methods, although it does not seem to be easy to do. 34 */ 35 36 #include <linux/err.h> 37 #include <linux/module.h> 38 #include <linux/moduleparam.h> 39 #include <linux/stringify.h> 40 #include <linux/namei.h> 41 #include <linux/stat.h> 42 #include <linux/miscdevice.h> 43 #include <linux/log2.h> 44 #include <linux/kthread.h> 45 #include <linux/kernel.h> 46 #include <linux/slab.h> 47 #include "ubi.h" 48 49 /* Maximum length of the 'mtd=' parameter */ 50 #define MTD_PARAM_LEN_MAX 64 51 52 #ifdef CONFIG_MTD_UBI_MODULE 53 #define ubi_is_module() 1 54 #else 55 #define ubi_is_module() 0 56 #endif 57 58 /** 59 * struct mtd_dev_param - MTD device parameter description data structure. 60 * @name: MTD character device node path, MTD device name, or MTD device number 61 * string 62 * @vid_hdr_offs: VID header offset 63 */ 64 struct mtd_dev_param { 65 char name[MTD_PARAM_LEN_MAX]; 66 int vid_hdr_offs; 67 }; 68 69 /* Numbers of elements set in the @mtd_dev_param array */ 70 static int __initdata mtd_devs; 71 72 /* MTD devices specification parameters */ 73 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES]; 74 75 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 76 struct class *ubi_class; 77 78 /* Slab cache for wear-leveling entries */ 79 struct kmem_cache *ubi_wl_entry_slab; 80 81 /* UBI control character device */ 82 static struct miscdevice ubi_ctrl_cdev = { 83 .minor = MISC_DYNAMIC_MINOR, 84 .name = "ubi_ctrl", 85 .fops = &ubi_ctrl_cdev_operations, 86 }; 87 88 /* All UBI devices in system */ 89 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 90 91 /* Serializes UBI devices creations and removals */ 92 DEFINE_MUTEX(ubi_devices_mutex); 93 94 /* Protects @ubi_devices and @ubi->ref_count */ 95 static DEFINE_SPINLOCK(ubi_devices_lock); 96 97 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 98 static ssize_t ubi_version_show(struct class *class, struct class_attribute *attr, 99 char *buf) 100 { 101 return sprintf(buf, "%d\n", UBI_VERSION); 102 } 103 104 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 105 static struct class_attribute ubi_version = 106 __ATTR(version, S_IRUGO, ubi_version_show, NULL); 107 108 static ssize_t dev_attribute_show(struct device *dev, 109 struct device_attribute *attr, char *buf); 110 111 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 112 static struct device_attribute dev_eraseblock_size = 113 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 114 static struct device_attribute dev_avail_eraseblocks = 115 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 116 static struct device_attribute dev_total_eraseblocks = 117 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 118 static struct device_attribute dev_volumes_count = 119 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 120 static struct device_attribute dev_max_ec = 121 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 122 static struct device_attribute dev_reserved_for_bad = 123 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 124 static struct device_attribute dev_bad_peb_count = 125 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 126 static struct device_attribute dev_max_vol_count = 127 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 128 static struct device_attribute dev_min_io_size = 129 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 130 static struct device_attribute dev_bgt_enabled = 131 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 132 static struct device_attribute dev_mtd_num = 133 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 134 135 /** 136 * ubi_volume_notify - send a volume change notification. 137 * @ubi: UBI device description object 138 * @vol: volume description object of the changed volume 139 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 140 * 141 * This is a helper function which notifies all subscribers about a volume 142 * change event (creation, removal, re-sizing, re-naming, updating). Returns 143 * zero in case of success and a negative error code in case of failure. 144 */ 145 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 146 { 147 struct ubi_notification nt; 148 149 ubi_do_get_device_info(ubi, &nt.di); 150 ubi_do_get_volume_info(ubi, vol, &nt.vi); 151 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 152 } 153 154 /** 155 * ubi_notify_all - send a notification to all volumes. 156 * @ubi: UBI device description object 157 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 158 * @nb: the notifier to call 159 * 160 * This function walks all volumes of UBI device @ubi and sends the @ntype 161 * notification for each volume. If @nb is %NULL, then all registered notifiers 162 * are called, otherwise only the @nb notifier is called. Returns the number of 163 * sent notifications. 164 */ 165 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 166 { 167 struct ubi_notification nt; 168 int i, count = 0; 169 170 ubi_do_get_device_info(ubi, &nt.di); 171 172 mutex_lock(&ubi->device_mutex); 173 for (i = 0; i < ubi->vtbl_slots; i++) { 174 /* 175 * Since the @ubi->device is locked, and we are not going to 176 * change @ubi->volumes, we do not have to lock 177 * @ubi->volumes_lock. 178 */ 179 if (!ubi->volumes[i]) 180 continue; 181 182 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 183 if (nb) 184 nb->notifier_call(nb, ntype, &nt); 185 else 186 blocking_notifier_call_chain(&ubi_notifiers, ntype, 187 &nt); 188 count += 1; 189 } 190 mutex_unlock(&ubi->device_mutex); 191 192 return count; 193 } 194 195 /** 196 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 197 * @nb: the notifier to call 198 * 199 * This function walks all UBI devices and volumes and sends the 200 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 201 * registered notifiers are called, otherwise only the @nb notifier is called. 202 * Returns the number of sent notifications. 203 */ 204 int ubi_enumerate_volumes(struct notifier_block *nb) 205 { 206 int i, count = 0; 207 208 /* 209 * Since the @ubi_devices_mutex is locked, and we are not going to 210 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 211 */ 212 for (i = 0; i < UBI_MAX_DEVICES; i++) { 213 struct ubi_device *ubi = ubi_devices[i]; 214 215 if (!ubi) 216 continue; 217 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 218 } 219 220 return count; 221 } 222 223 /** 224 * ubi_get_device - get UBI device. 225 * @ubi_num: UBI device number 226 * 227 * This function returns UBI device description object for UBI device number 228 * @ubi_num, or %NULL if the device does not exist. This function increases the 229 * device reference count to prevent removal of the device. In other words, the 230 * device cannot be removed if its reference count is not zero. 231 */ 232 struct ubi_device *ubi_get_device(int ubi_num) 233 { 234 struct ubi_device *ubi; 235 236 spin_lock(&ubi_devices_lock); 237 ubi = ubi_devices[ubi_num]; 238 if (ubi) { 239 ubi_assert(ubi->ref_count >= 0); 240 ubi->ref_count += 1; 241 get_device(&ubi->dev); 242 } 243 spin_unlock(&ubi_devices_lock); 244 245 return ubi; 246 } 247 248 /** 249 * ubi_put_device - drop an UBI device reference. 250 * @ubi: UBI device description object 251 */ 252 void ubi_put_device(struct ubi_device *ubi) 253 { 254 spin_lock(&ubi_devices_lock); 255 ubi->ref_count -= 1; 256 put_device(&ubi->dev); 257 spin_unlock(&ubi_devices_lock); 258 } 259 260 /** 261 * ubi_get_by_major - get UBI device by character device major number. 262 * @major: major number 263 * 264 * This function is similar to 'ubi_get_device()', but it searches the device 265 * by its major number. 266 */ 267 struct ubi_device *ubi_get_by_major(int major) 268 { 269 int i; 270 struct ubi_device *ubi; 271 272 spin_lock(&ubi_devices_lock); 273 for (i = 0; i < UBI_MAX_DEVICES; i++) { 274 ubi = ubi_devices[i]; 275 if (ubi && MAJOR(ubi->cdev.dev) == major) { 276 ubi_assert(ubi->ref_count >= 0); 277 ubi->ref_count += 1; 278 get_device(&ubi->dev); 279 spin_unlock(&ubi_devices_lock); 280 return ubi; 281 } 282 } 283 spin_unlock(&ubi_devices_lock); 284 285 return NULL; 286 } 287 288 /** 289 * ubi_major2num - get UBI device number by character device major number. 290 * @major: major number 291 * 292 * This function searches UBI device number object by its major number. If UBI 293 * device was not found, this function returns -ENODEV, otherwise the UBI device 294 * number is returned. 295 */ 296 int ubi_major2num(int major) 297 { 298 int i, ubi_num = -ENODEV; 299 300 spin_lock(&ubi_devices_lock); 301 for (i = 0; i < UBI_MAX_DEVICES; i++) { 302 struct ubi_device *ubi = ubi_devices[i]; 303 304 if (ubi && MAJOR(ubi->cdev.dev) == major) { 305 ubi_num = ubi->ubi_num; 306 break; 307 } 308 } 309 spin_unlock(&ubi_devices_lock); 310 311 return ubi_num; 312 } 313 314 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 315 static ssize_t dev_attribute_show(struct device *dev, 316 struct device_attribute *attr, char *buf) 317 { 318 ssize_t ret; 319 struct ubi_device *ubi; 320 321 /* 322 * The below code looks weird, but it actually makes sense. We get the 323 * UBI device reference from the contained 'struct ubi_device'. But it 324 * is unclear if the device was removed or not yet. Indeed, if the 325 * device was removed before we increased its reference count, 326 * 'ubi_get_device()' will return -ENODEV and we fail. 327 * 328 * Remember, 'struct ubi_device' is freed in the release function, so 329 * we still can use 'ubi->ubi_num'. 330 */ 331 ubi = container_of(dev, struct ubi_device, dev); 332 ubi = ubi_get_device(ubi->ubi_num); 333 if (!ubi) 334 return -ENODEV; 335 336 if (attr == &dev_eraseblock_size) 337 ret = sprintf(buf, "%d\n", ubi->leb_size); 338 else if (attr == &dev_avail_eraseblocks) 339 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 340 else if (attr == &dev_total_eraseblocks) 341 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 342 else if (attr == &dev_volumes_count) 343 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 344 else if (attr == &dev_max_ec) 345 ret = sprintf(buf, "%d\n", ubi->max_ec); 346 else if (attr == &dev_reserved_for_bad) 347 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 348 else if (attr == &dev_bad_peb_count) 349 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 350 else if (attr == &dev_max_vol_count) 351 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 352 else if (attr == &dev_min_io_size) 353 ret = sprintf(buf, "%d\n", ubi->min_io_size); 354 else if (attr == &dev_bgt_enabled) 355 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 356 else if (attr == &dev_mtd_num) 357 ret = sprintf(buf, "%d\n", ubi->mtd->index); 358 else 359 ret = -EINVAL; 360 361 ubi_put_device(ubi); 362 return ret; 363 } 364 365 static void dev_release(struct device *dev) 366 { 367 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 368 369 kfree(ubi); 370 } 371 372 /** 373 * ubi_sysfs_init - initialize sysfs for an UBI device. 374 * @ubi: UBI device description object 375 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 376 * taken 377 * 378 * This function returns zero in case of success and a negative error code in 379 * case of failure. 380 */ 381 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref) 382 { 383 int err; 384 385 ubi->dev.release = dev_release; 386 ubi->dev.devt = ubi->cdev.dev; 387 ubi->dev.class = ubi_class; 388 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num); 389 err = device_register(&ubi->dev); 390 if (err) 391 return err; 392 393 *ref = 1; 394 err = device_create_file(&ubi->dev, &dev_eraseblock_size); 395 if (err) 396 return err; 397 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks); 398 if (err) 399 return err; 400 err = device_create_file(&ubi->dev, &dev_total_eraseblocks); 401 if (err) 402 return err; 403 err = device_create_file(&ubi->dev, &dev_volumes_count); 404 if (err) 405 return err; 406 err = device_create_file(&ubi->dev, &dev_max_ec); 407 if (err) 408 return err; 409 err = device_create_file(&ubi->dev, &dev_reserved_for_bad); 410 if (err) 411 return err; 412 err = device_create_file(&ubi->dev, &dev_bad_peb_count); 413 if (err) 414 return err; 415 err = device_create_file(&ubi->dev, &dev_max_vol_count); 416 if (err) 417 return err; 418 err = device_create_file(&ubi->dev, &dev_min_io_size); 419 if (err) 420 return err; 421 err = device_create_file(&ubi->dev, &dev_bgt_enabled); 422 if (err) 423 return err; 424 err = device_create_file(&ubi->dev, &dev_mtd_num); 425 return err; 426 } 427 428 /** 429 * ubi_sysfs_close - close sysfs for an UBI device. 430 * @ubi: UBI device description object 431 */ 432 static void ubi_sysfs_close(struct ubi_device *ubi) 433 { 434 device_remove_file(&ubi->dev, &dev_mtd_num); 435 device_remove_file(&ubi->dev, &dev_bgt_enabled); 436 device_remove_file(&ubi->dev, &dev_min_io_size); 437 device_remove_file(&ubi->dev, &dev_max_vol_count); 438 device_remove_file(&ubi->dev, &dev_bad_peb_count); 439 device_remove_file(&ubi->dev, &dev_reserved_for_bad); 440 device_remove_file(&ubi->dev, &dev_max_ec); 441 device_remove_file(&ubi->dev, &dev_volumes_count); 442 device_remove_file(&ubi->dev, &dev_total_eraseblocks); 443 device_remove_file(&ubi->dev, &dev_avail_eraseblocks); 444 device_remove_file(&ubi->dev, &dev_eraseblock_size); 445 device_unregister(&ubi->dev); 446 } 447 448 /** 449 * kill_volumes - destroy all user volumes. 450 * @ubi: UBI device description object 451 */ 452 static void kill_volumes(struct ubi_device *ubi) 453 { 454 int i; 455 456 for (i = 0; i < ubi->vtbl_slots; i++) 457 if (ubi->volumes[i]) 458 ubi_free_volume(ubi, ubi->volumes[i]); 459 } 460 461 /** 462 * uif_init - initialize user interfaces for an UBI device. 463 * @ubi: UBI device description object 464 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 465 * taken, otherwise set to %0 466 * 467 * This function initializes various user interfaces for an UBI device. If the 468 * initialization fails at an early stage, this function frees all the 469 * resources it allocated, returns an error, and @ref is set to %0. However, 470 * if the initialization fails after the UBI device was registered in the 471 * driver core subsystem, this function takes a reference to @ubi->dev, because 472 * otherwise the release function ('dev_release()') would free whole @ubi 473 * object. The @ref argument is set to %1 in this case. The caller has to put 474 * this reference. 475 * 476 * This function returns zero in case of success and a negative error code in 477 * case of failure. 478 */ 479 static int uif_init(struct ubi_device *ubi, int *ref) 480 { 481 int i, err; 482 dev_t dev; 483 484 *ref = 0; 485 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 486 487 /* 488 * Major numbers for the UBI character devices are allocated 489 * dynamically. Major numbers of volume character devices are 490 * equivalent to ones of the corresponding UBI character device. Minor 491 * numbers of UBI character devices are 0, while minor numbers of 492 * volume character devices start from 1. Thus, we allocate one major 493 * number and ubi->vtbl_slots + 1 minor numbers. 494 */ 495 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 496 if (err) { 497 ubi_err("cannot register UBI character devices"); 498 return err; 499 } 500 501 ubi_assert(MINOR(dev) == 0); 502 cdev_init(&ubi->cdev, &ubi_cdev_operations); 503 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 504 ubi->cdev.owner = THIS_MODULE; 505 506 err = cdev_add(&ubi->cdev, dev, 1); 507 if (err) { 508 ubi_err("cannot add character device"); 509 goto out_unreg; 510 } 511 512 err = ubi_sysfs_init(ubi, ref); 513 if (err) 514 goto out_sysfs; 515 516 for (i = 0; i < ubi->vtbl_slots; i++) 517 if (ubi->volumes[i]) { 518 err = ubi_add_volume(ubi, ubi->volumes[i]); 519 if (err) { 520 ubi_err("cannot add volume %d", i); 521 goto out_volumes; 522 } 523 } 524 525 return 0; 526 527 out_volumes: 528 kill_volumes(ubi); 529 out_sysfs: 530 if (*ref) 531 get_device(&ubi->dev); 532 ubi_sysfs_close(ubi); 533 cdev_del(&ubi->cdev); 534 out_unreg: 535 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 536 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err); 537 return err; 538 } 539 540 /** 541 * uif_close - close user interfaces for an UBI device. 542 * @ubi: UBI device description object 543 * 544 * Note, since this function un-registers UBI volume device objects (@vol->dev), 545 * the memory allocated voe the volumes is freed as well (in the release 546 * function). 547 */ 548 static void uif_close(struct ubi_device *ubi) 549 { 550 kill_volumes(ubi); 551 ubi_sysfs_close(ubi); 552 cdev_del(&ubi->cdev); 553 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 554 } 555 556 /** 557 * free_internal_volumes - free internal volumes. 558 * @ubi: UBI device description object 559 */ 560 static void free_internal_volumes(struct ubi_device *ubi) 561 { 562 int i; 563 564 for (i = ubi->vtbl_slots; 565 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 566 kfree(ubi->volumes[i]->eba_tbl); 567 kfree(ubi->volumes[i]); 568 } 569 } 570 571 /** 572 * attach_by_scanning - attach an MTD device using scanning method. 573 * @ubi: UBI device descriptor 574 * 575 * This function returns zero in case of success and a negative error code in 576 * case of failure. 577 * 578 * Note, currently this is the only method to attach UBI devices. Hopefully in 579 * the future we'll have more scalable attaching methods and avoid full media 580 * scanning. But even in this case scanning will be needed as a fall-back 581 * attaching method if there are some on-flash table corruptions. 582 */ 583 static int attach_by_scanning(struct ubi_device *ubi) 584 { 585 int err; 586 struct ubi_scan_info *si; 587 588 si = ubi_scan(ubi); 589 if (IS_ERR(si)) 590 return PTR_ERR(si); 591 592 ubi->bad_peb_count = si->bad_peb_count; 593 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; 594 ubi->max_ec = si->max_ec; 595 ubi->mean_ec = si->mean_ec; 596 597 err = ubi_read_volume_table(ubi, si); 598 if (err) 599 goto out_si; 600 601 err = ubi_wl_init_scan(ubi, si); 602 if (err) 603 goto out_vtbl; 604 605 err = ubi_eba_init_scan(ubi, si); 606 if (err) 607 goto out_wl; 608 609 ubi_scan_destroy_si(si); 610 return 0; 611 612 out_wl: 613 ubi_wl_close(ubi); 614 out_vtbl: 615 free_internal_volumes(ubi); 616 vfree(ubi->vtbl); 617 out_si: 618 ubi_scan_destroy_si(si); 619 return err; 620 } 621 622 /** 623 * io_init - initialize I/O sub-system for a given UBI device. 624 * @ubi: UBI device description object 625 * 626 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 627 * assumed: 628 * o EC header is always at offset zero - this cannot be changed; 629 * o VID header starts just after the EC header at the closest address 630 * aligned to @io->hdrs_min_io_size; 631 * o data starts just after the VID header at the closest address aligned to 632 * @io->min_io_size 633 * 634 * This function returns zero in case of success and a negative error code in 635 * case of failure. 636 */ 637 static int io_init(struct ubi_device *ubi) 638 { 639 if (ubi->mtd->numeraseregions != 0) { 640 /* 641 * Some flashes have several erase regions. Different regions 642 * may have different eraseblock size and other 643 * characteristics. It looks like mostly multi-region flashes 644 * have one "main" region and one or more small regions to 645 * store boot loader code or boot parameters or whatever. I 646 * guess we should just pick the largest region. But this is 647 * not implemented. 648 */ 649 ubi_err("multiple regions, not implemented"); 650 return -EINVAL; 651 } 652 653 if (ubi->vid_hdr_offset < 0) 654 return -EINVAL; 655 656 /* 657 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 658 * physical eraseblocks maximum. 659 */ 660 661 ubi->peb_size = ubi->mtd->erasesize; 662 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 663 ubi->flash_size = ubi->mtd->size; 664 665 if (ubi->mtd->block_isbad && ubi->mtd->block_markbad) 666 ubi->bad_allowed = 1; 667 668 if (ubi->mtd->type == MTD_NORFLASH) { 669 ubi_assert(ubi->mtd->writesize == 1); 670 ubi->nor_flash = 1; 671 } 672 673 ubi->min_io_size = ubi->mtd->writesize; 674 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 675 676 /* 677 * Make sure minimal I/O unit is power of 2. Note, there is no 678 * fundamental reason for this assumption. It is just an optimization 679 * which allows us to avoid costly division operations. 680 */ 681 if (!is_power_of_2(ubi->min_io_size)) { 682 ubi_err("min. I/O unit (%d) is not power of 2", 683 ubi->min_io_size); 684 return -EINVAL; 685 } 686 687 ubi_assert(ubi->hdrs_min_io_size > 0); 688 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 689 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 690 691 /* Calculate default aligned sizes of EC and VID headers */ 692 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 693 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 694 695 dbg_msg("min_io_size %d", ubi->min_io_size); 696 dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 697 dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 698 dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 699 700 if (ubi->vid_hdr_offset == 0) 701 /* Default offset */ 702 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 703 ubi->ec_hdr_alsize; 704 else { 705 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 706 ~(ubi->hdrs_min_io_size - 1); 707 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 708 ubi->vid_hdr_aloffset; 709 } 710 711 /* Similar for the data offset */ 712 ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE; 713 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 714 715 dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset); 716 dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 717 dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift); 718 dbg_msg("leb_start %d", ubi->leb_start); 719 720 /* The shift must be aligned to 32-bit boundary */ 721 if (ubi->vid_hdr_shift % 4) { 722 ubi_err("unaligned VID header shift %d", 723 ubi->vid_hdr_shift); 724 return -EINVAL; 725 } 726 727 /* Check sanity */ 728 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 729 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 730 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 731 ubi->leb_start & (ubi->min_io_size - 1)) { 732 ubi_err("bad VID header (%d) or data offsets (%d)", 733 ubi->vid_hdr_offset, ubi->leb_start); 734 return -EINVAL; 735 } 736 737 /* 738 * Set maximum amount of physical erroneous eraseblocks to be 10%. 739 * Erroneous PEB are those which have read errors. 740 */ 741 ubi->max_erroneous = ubi->peb_count / 10; 742 if (ubi->max_erroneous < 16) 743 ubi->max_erroneous = 16; 744 dbg_msg("max_erroneous %d", ubi->max_erroneous); 745 746 /* 747 * It may happen that EC and VID headers are situated in one minimal 748 * I/O unit. In this case we can only accept this UBI image in 749 * read-only mode. 750 */ 751 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 752 ubi_warn("EC and VID headers are in the same minimal I/O unit, " 753 "switch to read-only mode"); 754 ubi->ro_mode = 1; 755 } 756 757 ubi->leb_size = ubi->peb_size - ubi->leb_start; 758 759 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 760 ubi_msg("MTD device %d is write-protected, attach in " 761 "read-only mode", ubi->mtd->index); 762 ubi->ro_mode = 1; 763 } 764 765 ubi_msg("physical eraseblock size: %d bytes (%d KiB)", 766 ubi->peb_size, ubi->peb_size >> 10); 767 ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size); 768 ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size); 769 if (ubi->hdrs_min_io_size != ubi->min_io_size) 770 ubi_msg("sub-page size: %d", 771 ubi->hdrs_min_io_size); 772 ubi_msg("VID header offset: %d (aligned %d)", 773 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset); 774 ubi_msg("data offset: %d", ubi->leb_start); 775 776 /* 777 * Note, ideally, we have to initialize ubi->bad_peb_count here. But 778 * unfortunately, MTD does not provide this information. We should loop 779 * over all physical eraseblocks and invoke mtd->block_is_bad() for 780 * each physical eraseblock. So, we skip ubi->bad_peb_count 781 * uninitialized and initialize it after scanning. 782 */ 783 784 return 0; 785 } 786 787 /** 788 * autoresize - re-size the volume which has the "auto-resize" flag set. 789 * @ubi: UBI device description object 790 * @vol_id: ID of the volume to re-size 791 * 792 * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in 793 * the volume table to the largest possible size. See comments in ubi-header.h 794 * for more description of the flag. Returns zero in case of success and a 795 * negative error code in case of failure. 796 */ 797 static int autoresize(struct ubi_device *ubi, int vol_id) 798 { 799 struct ubi_volume_desc desc; 800 struct ubi_volume *vol = ubi->volumes[vol_id]; 801 int err, old_reserved_pebs = vol->reserved_pebs; 802 803 /* 804 * Clear the auto-resize flag in the volume in-memory copy of the 805 * volume table, and 'ubi_resize_volume()' will propagate this change 806 * to the flash. 807 */ 808 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 809 810 if (ubi->avail_pebs == 0) { 811 struct ubi_vtbl_record vtbl_rec; 812 813 /* 814 * No available PEBs to re-size the volume, clear the flag on 815 * flash and exit. 816 */ 817 memcpy(&vtbl_rec, &ubi->vtbl[vol_id], 818 sizeof(struct ubi_vtbl_record)); 819 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 820 if (err) 821 ubi_err("cannot clean auto-resize flag for volume %d", 822 vol_id); 823 } else { 824 desc.vol = vol; 825 err = ubi_resize_volume(&desc, 826 old_reserved_pebs + ubi->avail_pebs); 827 if (err) 828 ubi_err("cannot auto-resize volume %d", vol_id); 829 } 830 831 if (err) 832 return err; 833 834 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id, 835 vol->name, old_reserved_pebs, vol->reserved_pebs); 836 return 0; 837 } 838 839 /** 840 * ubi_attach_mtd_dev - attach an MTD device. 841 * @mtd: MTD device description object 842 * @ubi_num: number to assign to the new UBI device 843 * @vid_hdr_offset: VID header offset 844 * 845 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 846 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 847 * which case this function finds a vacant device number and assigns it 848 * automatically. Returns the new UBI device number in case of success and a 849 * negative error code in case of failure. 850 * 851 * Note, the invocations of this function has to be serialized by the 852 * @ubi_devices_mutex. 853 */ 854 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) 855 { 856 struct ubi_device *ubi; 857 int i, err, ref = 0; 858 859 /* 860 * Check if we already have the same MTD device attached. 861 * 862 * Note, this function assumes that UBI devices creations and deletions 863 * are serialized, so it does not take the &ubi_devices_lock. 864 */ 865 for (i = 0; i < UBI_MAX_DEVICES; i++) { 866 ubi = ubi_devices[i]; 867 if (ubi && mtd->index == ubi->mtd->index) { 868 dbg_err("mtd%d is already attached to ubi%d", 869 mtd->index, i); 870 return -EEXIST; 871 } 872 } 873 874 /* 875 * Make sure this MTD device is not emulated on top of an UBI volume 876 * already. Well, generally this recursion works fine, but there are 877 * different problems like the UBI module takes a reference to itself 878 * by attaching (and thus, opening) the emulated MTD device. This 879 * results in inability to unload the module. And in general it makes 880 * no sense to attach emulated MTD devices, so we prohibit this. 881 */ 882 if (mtd->type == MTD_UBIVOLUME) { 883 ubi_err("refuse attaching mtd%d - it is already emulated on " 884 "top of UBI", mtd->index); 885 return -EINVAL; 886 } 887 888 if (ubi_num == UBI_DEV_NUM_AUTO) { 889 /* Search for an empty slot in the @ubi_devices array */ 890 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 891 if (!ubi_devices[ubi_num]) 892 break; 893 if (ubi_num == UBI_MAX_DEVICES) { 894 dbg_err("only %d UBI devices may be created", 895 UBI_MAX_DEVICES); 896 return -ENFILE; 897 } 898 } else { 899 if (ubi_num >= UBI_MAX_DEVICES) 900 return -EINVAL; 901 902 /* Make sure ubi_num is not busy */ 903 if (ubi_devices[ubi_num]) { 904 dbg_err("ubi%d already exists", ubi_num); 905 return -EEXIST; 906 } 907 } 908 909 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 910 if (!ubi) 911 return -ENOMEM; 912 913 ubi->mtd = mtd; 914 ubi->ubi_num = ubi_num; 915 ubi->vid_hdr_offset = vid_hdr_offset; 916 ubi->autoresize_vol_id = -1; 917 918 mutex_init(&ubi->buf_mutex); 919 mutex_init(&ubi->ckvol_mutex); 920 mutex_init(&ubi->device_mutex); 921 spin_lock_init(&ubi->volumes_lock); 922 923 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num); 924 925 err = io_init(ubi); 926 if (err) 927 goto out_free; 928 929 err = -ENOMEM; 930 ubi->peb_buf1 = vmalloc(ubi->peb_size); 931 if (!ubi->peb_buf1) 932 goto out_free; 933 934 ubi->peb_buf2 = vmalloc(ubi->peb_size); 935 if (!ubi->peb_buf2) 936 goto out_free; 937 938 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 939 mutex_init(&ubi->dbg_buf_mutex); 940 ubi->dbg_peb_buf = vmalloc(ubi->peb_size); 941 if (!ubi->dbg_peb_buf) 942 goto out_free; 943 #endif 944 945 err = attach_by_scanning(ubi); 946 if (err) { 947 dbg_err("failed to attach by scanning, error %d", err); 948 goto out_free; 949 } 950 951 if (ubi->autoresize_vol_id != -1) { 952 err = autoresize(ubi, ubi->autoresize_vol_id); 953 if (err) 954 goto out_detach; 955 } 956 957 err = uif_init(ubi, &ref); 958 if (err) 959 goto out_detach; 960 961 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name); 962 if (IS_ERR(ubi->bgt_thread)) { 963 err = PTR_ERR(ubi->bgt_thread); 964 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name, 965 err); 966 goto out_uif; 967 } 968 969 ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num); 970 ubi_msg("MTD device name: \"%s\"", mtd->name); 971 ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20); 972 ubi_msg("number of good PEBs: %d", ubi->good_peb_count); 973 ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count); 974 ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots); 975 ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD); 976 ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT); 977 ubi_msg("number of user volumes: %d", 978 ubi->vol_count - UBI_INT_VOL_COUNT); 979 ubi_msg("available PEBs: %d", ubi->avail_pebs); 980 ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs); 981 ubi_msg("number of PEBs reserved for bad PEB handling: %d", 982 ubi->beb_rsvd_pebs); 983 ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec); 984 ubi_msg("image sequence number: %d", ubi->image_seq); 985 986 /* 987 * The below lock makes sure we do not race with 'ubi_thread()' which 988 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 989 */ 990 spin_lock(&ubi->wl_lock); 991 if (!DBG_DISABLE_BGT) 992 ubi->thread_enabled = 1; 993 wake_up_process(ubi->bgt_thread); 994 spin_unlock(&ubi->wl_lock); 995 996 ubi_devices[ubi_num] = ubi; 997 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 998 return ubi_num; 999 1000 out_uif: 1001 uif_close(ubi); 1002 out_detach: 1003 ubi_wl_close(ubi); 1004 free_internal_volumes(ubi); 1005 vfree(ubi->vtbl); 1006 out_free: 1007 vfree(ubi->peb_buf1); 1008 vfree(ubi->peb_buf2); 1009 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1010 vfree(ubi->dbg_peb_buf); 1011 #endif 1012 if (ref) 1013 put_device(&ubi->dev); 1014 else 1015 kfree(ubi); 1016 return err; 1017 } 1018 1019 /** 1020 * ubi_detach_mtd_dev - detach an MTD device. 1021 * @ubi_num: UBI device number to detach from 1022 * @anyway: detach MTD even if device reference count is not zero 1023 * 1024 * This function destroys an UBI device number @ubi_num and detaches the 1025 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1026 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1027 * exist. 1028 * 1029 * Note, the invocations of this function has to be serialized by the 1030 * @ubi_devices_mutex. 1031 */ 1032 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1033 { 1034 struct ubi_device *ubi; 1035 1036 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1037 return -EINVAL; 1038 1039 ubi = ubi_get_device(ubi_num); 1040 if (!ubi) 1041 return -EINVAL; 1042 1043 spin_lock(&ubi_devices_lock); 1044 put_device(&ubi->dev); 1045 ubi->ref_count -= 1; 1046 if (ubi->ref_count) { 1047 if (!anyway) { 1048 spin_unlock(&ubi_devices_lock); 1049 return -EBUSY; 1050 } 1051 /* This may only happen if there is a bug */ 1052 ubi_err("%s reference count %d, destroy anyway", 1053 ubi->ubi_name, ubi->ref_count); 1054 } 1055 ubi_devices[ubi_num] = NULL; 1056 spin_unlock(&ubi_devices_lock); 1057 1058 ubi_assert(ubi_num == ubi->ubi_num); 1059 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1060 dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num); 1061 1062 /* 1063 * Before freeing anything, we have to stop the background thread to 1064 * prevent it from doing anything on this device while we are freeing. 1065 */ 1066 if (ubi->bgt_thread) 1067 kthread_stop(ubi->bgt_thread); 1068 1069 /* 1070 * Get a reference to the device in order to prevent 'dev_release()' 1071 * from freeing the @ubi object. 1072 */ 1073 get_device(&ubi->dev); 1074 1075 uif_close(ubi); 1076 ubi_wl_close(ubi); 1077 free_internal_volumes(ubi); 1078 vfree(ubi->vtbl); 1079 put_mtd_device(ubi->mtd); 1080 vfree(ubi->peb_buf1); 1081 vfree(ubi->peb_buf2); 1082 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1083 vfree(ubi->dbg_peb_buf); 1084 #endif 1085 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num); 1086 put_device(&ubi->dev); 1087 return 0; 1088 } 1089 1090 /** 1091 * open_mtd_by_chdev - open an MTD device by its character device node path. 1092 * @mtd_dev: MTD character device node path 1093 * 1094 * This helper function opens an MTD device by its character node device path. 1095 * Returns MTD device description object in case of success and a negative 1096 * error code in case of failure. 1097 */ 1098 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1099 { 1100 int err, major, minor, mode; 1101 struct path path; 1102 1103 /* Probably this is an MTD character device node path */ 1104 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1105 if (err) 1106 return ERR_PTR(err); 1107 1108 /* MTD device number is defined by the major / minor numbers */ 1109 major = imajor(path.dentry->d_inode); 1110 minor = iminor(path.dentry->d_inode); 1111 mode = path.dentry->d_inode->i_mode; 1112 path_put(&path); 1113 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode)) 1114 return ERR_PTR(-EINVAL); 1115 1116 if (minor & 1) 1117 /* 1118 * Just do not think the "/dev/mtdrX" devices support is need, 1119 * so do not support them to avoid doing extra work. 1120 */ 1121 return ERR_PTR(-EINVAL); 1122 1123 return get_mtd_device(NULL, minor / 2); 1124 } 1125 1126 /** 1127 * open_mtd_device - open MTD device by name, character device path, or number. 1128 * @mtd_dev: name, character device node path, or MTD device device number 1129 * 1130 * This function tries to open and MTD device described by @mtd_dev string, 1131 * which is first treated as ASCII MTD device number, and if it is not true, it 1132 * is treated as MTD device name, and if that is also not true, it is treated 1133 * as MTD character device node path. Returns MTD device description object in 1134 * case of success and a negative error code in case of failure. 1135 */ 1136 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1137 { 1138 struct mtd_info *mtd; 1139 int mtd_num; 1140 char *endp; 1141 1142 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1143 if (*endp != '\0' || mtd_dev == endp) { 1144 /* 1145 * This does not look like an ASCII integer, probably this is 1146 * MTD device name. 1147 */ 1148 mtd = get_mtd_device_nm(mtd_dev); 1149 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1150 /* Probably this is an MTD character device node path */ 1151 mtd = open_mtd_by_chdev(mtd_dev); 1152 } else 1153 mtd = get_mtd_device(NULL, mtd_num); 1154 1155 return mtd; 1156 } 1157 1158 static int __init ubi_init(void) 1159 { 1160 int err, i, k; 1161 1162 /* Ensure that EC and VID headers have correct size */ 1163 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1164 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1165 1166 if (mtd_devs > UBI_MAX_DEVICES) { 1167 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES); 1168 return -EINVAL; 1169 } 1170 1171 /* Create base sysfs directory and sysfs files */ 1172 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR); 1173 if (IS_ERR(ubi_class)) { 1174 err = PTR_ERR(ubi_class); 1175 ubi_err("cannot create UBI class"); 1176 goto out; 1177 } 1178 1179 err = class_create_file(ubi_class, &ubi_version); 1180 if (err) { 1181 ubi_err("cannot create sysfs file"); 1182 goto out_class; 1183 } 1184 1185 err = misc_register(&ubi_ctrl_cdev); 1186 if (err) { 1187 ubi_err("cannot register device"); 1188 goto out_version; 1189 } 1190 1191 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1192 sizeof(struct ubi_wl_entry), 1193 0, 0, NULL); 1194 if (!ubi_wl_entry_slab) 1195 goto out_dev_unreg; 1196 1197 /* Attach MTD devices */ 1198 for (i = 0; i < mtd_devs; i++) { 1199 struct mtd_dev_param *p = &mtd_dev_param[i]; 1200 struct mtd_info *mtd; 1201 1202 cond_resched(); 1203 1204 mtd = open_mtd_device(p->name); 1205 if (IS_ERR(mtd)) { 1206 err = PTR_ERR(mtd); 1207 goto out_detach; 1208 } 1209 1210 mutex_lock(&ubi_devices_mutex); 1211 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO, 1212 p->vid_hdr_offs); 1213 mutex_unlock(&ubi_devices_mutex); 1214 if (err < 0) { 1215 ubi_err("cannot attach mtd%d", mtd->index); 1216 put_mtd_device(mtd); 1217 1218 /* 1219 * Originally UBI stopped initializing on any error. 1220 * However, later on it was found out that this 1221 * behavior is not very good when UBI is compiled into 1222 * the kernel and the MTD devices to attach are passed 1223 * through the command line. Indeed, UBI failure 1224 * stopped whole boot sequence. 1225 * 1226 * To fix this, we changed the behavior for the 1227 * non-module case, but preserved the old behavior for 1228 * the module case, just for compatibility. This is a 1229 * little inconsistent, though. 1230 */ 1231 if (ubi_is_module()) 1232 goto out_detach; 1233 } 1234 } 1235 1236 return 0; 1237 1238 out_detach: 1239 for (k = 0; k < i; k++) 1240 if (ubi_devices[k]) { 1241 mutex_lock(&ubi_devices_mutex); 1242 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1243 mutex_unlock(&ubi_devices_mutex); 1244 } 1245 kmem_cache_destroy(ubi_wl_entry_slab); 1246 out_dev_unreg: 1247 misc_deregister(&ubi_ctrl_cdev); 1248 out_version: 1249 class_remove_file(ubi_class, &ubi_version); 1250 out_class: 1251 class_destroy(ubi_class); 1252 out: 1253 ubi_err("UBI error: cannot initialize UBI, error %d", err); 1254 return err; 1255 } 1256 module_init(ubi_init); 1257 1258 static void __exit ubi_exit(void) 1259 { 1260 int i; 1261 1262 for (i = 0; i < UBI_MAX_DEVICES; i++) 1263 if (ubi_devices[i]) { 1264 mutex_lock(&ubi_devices_mutex); 1265 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1266 mutex_unlock(&ubi_devices_mutex); 1267 } 1268 kmem_cache_destroy(ubi_wl_entry_slab); 1269 misc_deregister(&ubi_ctrl_cdev); 1270 class_remove_file(ubi_class, &ubi_version); 1271 class_destroy(ubi_class); 1272 } 1273 module_exit(ubi_exit); 1274 1275 /** 1276 * bytes_str_to_int - convert a number of bytes string into an integer. 1277 * @str: the string to convert 1278 * 1279 * This function returns positive resulting integer in case of success and a 1280 * negative error code in case of failure. 1281 */ 1282 static int __init bytes_str_to_int(const char *str) 1283 { 1284 char *endp; 1285 unsigned long result; 1286 1287 result = simple_strtoul(str, &endp, 0); 1288 if (str == endp || result >= INT_MAX) { 1289 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n", 1290 str); 1291 return -EINVAL; 1292 } 1293 1294 switch (*endp) { 1295 case 'G': 1296 result *= 1024; 1297 case 'M': 1298 result *= 1024; 1299 case 'K': 1300 result *= 1024; 1301 if (endp[1] == 'i' && endp[2] == 'B') 1302 endp += 2; 1303 case '\0': 1304 break; 1305 default: 1306 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n", 1307 str); 1308 return -EINVAL; 1309 } 1310 1311 return result; 1312 } 1313 1314 /** 1315 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1316 * @val: the parameter value to parse 1317 * @kp: not used 1318 * 1319 * This function returns zero in case of success and a negative error code in 1320 * case of error. 1321 */ 1322 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1323 { 1324 int i, len; 1325 struct mtd_dev_param *p; 1326 char buf[MTD_PARAM_LEN_MAX]; 1327 char *pbuf = &buf[0]; 1328 char *tokens[2] = {NULL, NULL}; 1329 1330 if (!val) 1331 return -EINVAL; 1332 1333 if (mtd_devs == UBI_MAX_DEVICES) { 1334 printk(KERN_ERR "UBI error: too many parameters, max. is %d\n", 1335 UBI_MAX_DEVICES); 1336 return -EINVAL; 1337 } 1338 1339 len = strnlen(val, MTD_PARAM_LEN_MAX); 1340 if (len == MTD_PARAM_LEN_MAX) { 1341 printk(KERN_ERR "UBI error: parameter \"%s\" is too long, " 1342 "max. is %d\n", val, MTD_PARAM_LEN_MAX); 1343 return -EINVAL; 1344 } 1345 1346 if (len == 0) { 1347 printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - " 1348 "ignored\n"); 1349 return 0; 1350 } 1351 1352 strcpy(buf, val); 1353 1354 /* Get rid of the final newline */ 1355 if (buf[len - 1] == '\n') 1356 buf[len - 1] = '\0'; 1357 1358 for (i = 0; i < 2; i++) 1359 tokens[i] = strsep(&pbuf, ","); 1360 1361 if (pbuf) { 1362 printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n", 1363 val); 1364 return -EINVAL; 1365 } 1366 1367 p = &mtd_dev_param[mtd_devs]; 1368 strcpy(&p->name[0], tokens[0]); 1369 1370 if (tokens[1]) 1371 p->vid_hdr_offs = bytes_str_to_int(tokens[1]); 1372 1373 if (p->vid_hdr_offs < 0) 1374 return p->vid_hdr_offs; 1375 1376 mtd_devs += 1; 1377 return 0; 1378 } 1379 1380 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); 1381 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: " 1382 "mtd=<name|num|path>[,<vid_hdr_offs>].\n" 1383 "Multiple \"mtd\" parameters may be specified.\n" 1384 "MTD devices may be specified by their number, name, or " 1385 "path to the MTD character device node.\n" 1386 "Optional \"vid_hdr_offs\" parameter specifies UBI VID " 1387 "header position to be used by UBI.\n" 1388 "Example 1: mtd=/dev/mtd0 - attach MTD device " 1389 "/dev/mtd0.\n" 1390 "Example 2: mtd=content,1984 mtd=4 - attach MTD device " 1391 "with name \"content\" using VID header offset 1984, and " 1392 "MTD device number 4 with default VID header offset."); 1393 1394 MODULE_VERSION(__stringify(UBI_VERSION)); 1395 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1396 MODULE_AUTHOR("Artem Bityutskiy"); 1397 MODULE_LICENSE("GPL"); 1398