1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём), 7 * Frank Haverkamp 8 */ 9 10 /* 11 * This file includes UBI initialization and building of UBI devices. 12 * 13 * When UBI is initialized, it attaches all the MTD devices specified as the 14 * module load parameters or the kernel boot parameters. If MTD devices were 15 * specified, UBI does not attach any MTD device, but it is possible to do 16 * later using the "UBI control device". 17 */ 18 19 #include <linux/err.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/stringify.h> 23 #include <linux/namei.h> 24 #include <linux/stat.h> 25 #include <linux/miscdevice.h> 26 #include <linux/mtd/partitions.h> 27 #include <linux/log2.h> 28 #include <linux/kthread.h> 29 #include <linux/kernel.h> 30 #include <linux/slab.h> 31 #include <linux/major.h> 32 #include "ubi.h" 33 34 /* Maximum length of the 'mtd=' parameter */ 35 #define MTD_PARAM_LEN_MAX 64 36 37 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 38 #define MTD_PARAM_MAX_COUNT 5 39 40 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 41 #define MAX_MTD_UBI_BEB_LIMIT 768 42 43 #ifdef CONFIG_MTD_UBI_MODULE 44 #define ubi_is_module() 1 45 #else 46 #define ubi_is_module() 0 47 #endif 48 49 /** 50 * struct mtd_dev_param - MTD device parameter description data structure. 51 * @name: MTD character device node path, MTD device name, or MTD device number 52 * string 53 * @ubi_num: UBI number 54 * @vid_hdr_offs: VID header offset 55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 56 * @enable_fm: enable fastmap when value is non-zero 57 */ 58 struct mtd_dev_param { 59 char name[MTD_PARAM_LEN_MAX]; 60 int ubi_num; 61 int vid_hdr_offs; 62 int max_beb_per1024; 63 int enable_fm; 64 }; 65 66 /* Numbers of elements set in the @mtd_dev_param array */ 67 static int mtd_devs; 68 69 /* MTD devices specification parameters */ 70 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 71 #ifdef CONFIG_MTD_UBI_FASTMAP 72 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 73 static bool fm_autoconvert; 74 static bool fm_debug; 75 #endif 76 77 /* Slab cache for wear-leveling entries */ 78 struct kmem_cache *ubi_wl_entry_slab; 79 80 /* UBI control character device */ 81 static struct miscdevice ubi_ctrl_cdev = { 82 .minor = MISC_DYNAMIC_MINOR, 83 .name = "ubi_ctrl", 84 .fops = &ubi_ctrl_cdev_operations, 85 }; 86 87 /* All UBI devices in system */ 88 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 89 90 /* Serializes UBI devices creations and removals */ 91 DEFINE_MUTEX(ubi_devices_mutex); 92 93 /* Protects @ubi_devices and @ubi->ref_count */ 94 static DEFINE_SPINLOCK(ubi_devices_lock); 95 96 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 97 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 98 static ssize_t version_show(struct class *class, struct class_attribute *attr, 99 char *buf) 100 { 101 return sprintf(buf, "%d\n", UBI_VERSION); 102 } 103 static CLASS_ATTR_RO(version); 104 105 static struct attribute *ubi_class_attrs[] = { 106 &class_attr_version.attr, 107 NULL, 108 }; 109 ATTRIBUTE_GROUPS(ubi_class); 110 111 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 112 struct class ubi_class = { 113 .name = UBI_NAME_STR, 114 .class_groups = ubi_class_groups, 115 }; 116 117 static ssize_t dev_attribute_show(struct device *dev, 118 struct device_attribute *attr, char *buf); 119 120 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 121 static struct device_attribute dev_eraseblock_size = 122 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 123 static struct device_attribute dev_avail_eraseblocks = 124 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 125 static struct device_attribute dev_total_eraseblocks = 126 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 127 static struct device_attribute dev_volumes_count = 128 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 129 static struct device_attribute dev_max_ec = 130 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 131 static struct device_attribute dev_reserved_for_bad = 132 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 133 static struct device_attribute dev_bad_peb_count = 134 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 135 static struct device_attribute dev_max_vol_count = 136 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 137 static struct device_attribute dev_min_io_size = 138 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 139 static struct device_attribute dev_bgt_enabled = 140 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 141 static struct device_attribute dev_mtd_num = 142 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 143 static struct device_attribute dev_ro_mode = 144 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 145 146 /** 147 * ubi_volume_notify - send a volume change notification. 148 * @ubi: UBI device description object 149 * @vol: volume description object of the changed volume 150 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 151 * 152 * This is a helper function which notifies all subscribers about a volume 153 * change event (creation, removal, re-sizing, re-naming, updating). Returns 154 * zero in case of success and a negative error code in case of failure. 155 */ 156 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 157 { 158 int ret; 159 struct ubi_notification nt; 160 161 ubi_do_get_device_info(ubi, &nt.di); 162 ubi_do_get_volume_info(ubi, vol, &nt.vi); 163 164 switch (ntype) { 165 case UBI_VOLUME_ADDED: 166 case UBI_VOLUME_REMOVED: 167 case UBI_VOLUME_RESIZED: 168 case UBI_VOLUME_RENAMED: 169 ret = ubi_update_fastmap(ubi); 170 if (ret) 171 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 172 } 173 174 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 175 } 176 177 /** 178 * ubi_notify_all - send a notification to all volumes. 179 * @ubi: UBI device description object 180 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 181 * @nb: the notifier to call 182 * 183 * This function walks all volumes of UBI device @ubi and sends the @ntype 184 * notification for each volume. If @nb is %NULL, then all registered notifiers 185 * are called, otherwise only the @nb notifier is called. Returns the number of 186 * sent notifications. 187 */ 188 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 189 { 190 struct ubi_notification nt; 191 int i, count = 0; 192 193 ubi_do_get_device_info(ubi, &nt.di); 194 195 mutex_lock(&ubi->device_mutex); 196 for (i = 0; i < ubi->vtbl_slots; i++) { 197 /* 198 * Since the @ubi->device is locked, and we are not going to 199 * change @ubi->volumes, we do not have to lock 200 * @ubi->volumes_lock. 201 */ 202 if (!ubi->volumes[i]) 203 continue; 204 205 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 206 if (nb) 207 nb->notifier_call(nb, ntype, &nt); 208 else 209 blocking_notifier_call_chain(&ubi_notifiers, ntype, 210 &nt); 211 count += 1; 212 } 213 mutex_unlock(&ubi->device_mutex); 214 215 return count; 216 } 217 218 /** 219 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 220 * @nb: the notifier to call 221 * 222 * This function walks all UBI devices and volumes and sends the 223 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 224 * registered notifiers are called, otherwise only the @nb notifier is called. 225 * Returns the number of sent notifications. 226 */ 227 int ubi_enumerate_volumes(struct notifier_block *nb) 228 { 229 int i, count = 0; 230 231 /* 232 * Since the @ubi_devices_mutex is locked, and we are not going to 233 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 234 */ 235 for (i = 0; i < UBI_MAX_DEVICES; i++) { 236 struct ubi_device *ubi = ubi_devices[i]; 237 238 if (!ubi) 239 continue; 240 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 241 } 242 243 return count; 244 } 245 246 /** 247 * ubi_get_device - get UBI device. 248 * @ubi_num: UBI device number 249 * 250 * This function returns UBI device description object for UBI device number 251 * @ubi_num, or %NULL if the device does not exist. This function increases the 252 * device reference count to prevent removal of the device. In other words, the 253 * device cannot be removed if its reference count is not zero. 254 */ 255 struct ubi_device *ubi_get_device(int ubi_num) 256 { 257 struct ubi_device *ubi; 258 259 spin_lock(&ubi_devices_lock); 260 ubi = ubi_devices[ubi_num]; 261 if (ubi) { 262 ubi_assert(ubi->ref_count >= 0); 263 ubi->ref_count += 1; 264 get_device(&ubi->dev); 265 } 266 spin_unlock(&ubi_devices_lock); 267 268 return ubi; 269 } 270 271 /** 272 * ubi_put_device - drop an UBI device reference. 273 * @ubi: UBI device description object 274 */ 275 void ubi_put_device(struct ubi_device *ubi) 276 { 277 spin_lock(&ubi_devices_lock); 278 ubi->ref_count -= 1; 279 put_device(&ubi->dev); 280 spin_unlock(&ubi_devices_lock); 281 } 282 283 /** 284 * ubi_get_by_major - get UBI device by character device major number. 285 * @major: major number 286 * 287 * This function is similar to 'ubi_get_device()', but it searches the device 288 * by its major number. 289 */ 290 struct ubi_device *ubi_get_by_major(int major) 291 { 292 int i; 293 struct ubi_device *ubi; 294 295 spin_lock(&ubi_devices_lock); 296 for (i = 0; i < UBI_MAX_DEVICES; i++) { 297 ubi = ubi_devices[i]; 298 if (ubi && MAJOR(ubi->cdev.dev) == major) { 299 ubi_assert(ubi->ref_count >= 0); 300 ubi->ref_count += 1; 301 get_device(&ubi->dev); 302 spin_unlock(&ubi_devices_lock); 303 return ubi; 304 } 305 } 306 spin_unlock(&ubi_devices_lock); 307 308 return NULL; 309 } 310 311 /** 312 * ubi_major2num - get UBI device number by character device major number. 313 * @major: major number 314 * 315 * This function searches UBI device number object by its major number. If UBI 316 * device was not found, this function returns -ENODEV, otherwise the UBI device 317 * number is returned. 318 */ 319 int ubi_major2num(int major) 320 { 321 int i, ubi_num = -ENODEV; 322 323 spin_lock(&ubi_devices_lock); 324 for (i = 0; i < UBI_MAX_DEVICES; i++) { 325 struct ubi_device *ubi = ubi_devices[i]; 326 327 if (ubi && MAJOR(ubi->cdev.dev) == major) { 328 ubi_num = ubi->ubi_num; 329 break; 330 } 331 } 332 spin_unlock(&ubi_devices_lock); 333 334 return ubi_num; 335 } 336 337 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 338 static ssize_t dev_attribute_show(struct device *dev, 339 struct device_attribute *attr, char *buf) 340 { 341 ssize_t ret; 342 struct ubi_device *ubi; 343 344 /* 345 * The below code looks weird, but it actually makes sense. We get the 346 * UBI device reference from the contained 'struct ubi_device'. But it 347 * is unclear if the device was removed or not yet. Indeed, if the 348 * device was removed before we increased its reference count, 349 * 'ubi_get_device()' will return -ENODEV and we fail. 350 * 351 * Remember, 'struct ubi_device' is freed in the release function, so 352 * we still can use 'ubi->ubi_num'. 353 */ 354 ubi = container_of(dev, struct ubi_device, dev); 355 356 if (attr == &dev_eraseblock_size) 357 ret = sprintf(buf, "%d\n", ubi->leb_size); 358 else if (attr == &dev_avail_eraseblocks) 359 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 360 else if (attr == &dev_total_eraseblocks) 361 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 362 else if (attr == &dev_volumes_count) 363 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 364 else if (attr == &dev_max_ec) 365 ret = sprintf(buf, "%d\n", ubi->max_ec); 366 else if (attr == &dev_reserved_for_bad) 367 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 368 else if (attr == &dev_bad_peb_count) 369 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 370 else if (attr == &dev_max_vol_count) 371 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 372 else if (attr == &dev_min_io_size) 373 ret = sprintf(buf, "%d\n", ubi->min_io_size); 374 else if (attr == &dev_bgt_enabled) 375 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 376 else if (attr == &dev_mtd_num) 377 ret = sprintf(buf, "%d\n", ubi->mtd->index); 378 else if (attr == &dev_ro_mode) 379 ret = sprintf(buf, "%d\n", ubi->ro_mode); 380 else 381 ret = -EINVAL; 382 383 return ret; 384 } 385 386 static struct attribute *ubi_dev_attrs[] = { 387 &dev_eraseblock_size.attr, 388 &dev_avail_eraseblocks.attr, 389 &dev_total_eraseblocks.attr, 390 &dev_volumes_count.attr, 391 &dev_max_ec.attr, 392 &dev_reserved_for_bad.attr, 393 &dev_bad_peb_count.attr, 394 &dev_max_vol_count.attr, 395 &dev_min_io_size.attr, 396 &dev_bgt_enabled.attr, 397 &dev_mtd_num.attr, 398 &dev_ro_mode.attr, 399 NULL 400 }; 401 ATTRIBUTE_GROUPS(ubi_dev); 402 403 static void dev_release(struct device *dev) 404 { 405 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 406 407 kfree(ubi); 408 } 409 410 /** 411 * kill_volumes - destroy all user volumes. 412 * @ubi: UBI device description object 413 */ 414 static void kill_volumes(struct ubi_device *ubi) 415 { 416 int i; 417 418 for (i = 0; i < ubi->vtbl_slots; i++) 419 if (ubi->volumes[i]) 420 ubi_free_volume(ubi, ubi->volumes[i]); 421 } 422 423 /** 424 * uif_init - initialize user interfaces for an UBI device. 425 * @ubi: UBI device description object 426 * 427 * This function initializes various user interfaces for an UBI device. If the 428 * initialization fails at an early stage, this function frees all the 429 * resources it allocated, returns an error. 430 * 431 * This function returns zero in case of success and a negative error code in 432 * case of failure. 433 */ 434 static int uif_init(struct ubi_device *ubi) 435 { 436 int i, err; 437 dev_t dev; 438 439 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 440 441 /* 442 * Major numbers for the UBI character devices are allocated 443 * dynamically. Major numbers of volume character devices are 444 * equivalent to ones of the corresponding UBI character device. Minor 445 * numbers of UBI character devices are 0, while minor numbers of 446 * volume character devices start from 1. Thus, we allocate one major 447 * number and ubi->vtbl_slots + 1 minor numbers. 448 */ 449 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 450 if (err) { 451 ubi_err(ubi, "cannot register UBI character devices"); 452 return err; 453 } 454 455 ubi->dev.devt = dev; 456 457 ubi_assert(MINOR(dev) == 0); 458 cdev_init(&ubi->cdev, &ubi_cdev_operations); 459 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 460 ubi->cdev.owner = THIS_MODULE; 461 462 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 463 err = cdev_device_add(&ubi->cdev, &ubi->dev); 464 if (err) 465 goto out_unreg; 466 467 for (i = 0; i < ubi->vtbl_slots; i++) 468 if (ubi->volumes[i]) { 469 err = ubi_add_volume(ubi, ubi->volumes[i]); 470 if (err) { 471 ubi_err(ubi, "cannot add volume %d", i); 472 ubi->volumes[i] = NULL; 473 goto out_volumes; 474 } 475 } 476 477 return 0; 478 479 out_volumes: 480 kill_volumes(ubi); 481 cdev_device_del(&ubi->cdev, &ubi->dev); 482 out_unreg: 483 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 484 ubi_err(ubi, "cannot initialize UBI %s, error %d", 485 ubi->ubi_name, err); 486 return err; 487 } 488 489 /** 490 * uif_close - close user interfaces for an UBI device. 491 * @ubi: UBI device description object 492 * 493 * Note, since this function un-registers UBI volume device objects (@vol->dev), 494 * the memory allocated voe the volumes is freed as well (in the release 495 * function). 496 */ 497 static void uif_close(struct ubi_device *ubi) 498 { 499 kill_volumes(ubi); 500 cdev_device_del(&ubi->cdev, &ubi->dev); 501 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 502 } 503 504 /** 505 * ubi_free_volumes_from - free volumes from specific index. 506 * @ubi: UBI device description object 507 * @from: the start index used for volume free. 508 */ 509 static void ubi_free_volumes_from(struct ubi_device *ubi, int from) 510 { 511 int i; 512 513 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 514 if (!ubi->volumes[i]) 515 continue; 516 ubi_eba_replace_table(ubi->volumes[i], NULL); 517 ubi_fastmap_destroy_checkmap(ubi->volumes[i]); 518 kfree(ubi->volumes[i]); 519 ubi->volumes[i] = NULL; 520 } 521 } 522 523 /** 524 * ubi_free_all_volumes - free all volumes. 525 * @ubi: UBI device description object 526 */ 527 void ubi_free_all_volumes(struct ubi_device *ubi) 528 { 529 ubi_free_volumes_from(ubi, 0); 530 } 531 532 /** 533 * ubi_free_internal_volumes - free internal volumes. 534 * @ubi: UBI device description object 535 */ 536 void ubi_free_internal_volumes(struct ubi_device *ubi) 537 { 538 ubi_free_volumes_from(ubi, ubi->vtbl_slots); 539 } 540 541 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 542 { 543 int limit, device_pebs; 544 uint64_t device_size; 545 546 if (!max_beb_per1024) { 547 /* 548 * Since max_beb_per1024 has not been set by the user in either 549 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the 550 * limit if it is supported by the device. 551 */ 552 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size); 553 if (limit < 0) 554 return 0; 555 return limit; 556 } 557 558 /* 559 * Here we are using size of the entire flash chip and 560 * not just the MTD partition size because the maximum 561 * number of bad eraseblocks is a percentage of the 562 * whole device and bad eraseblocks are not fairly 563 * distributed over the flash chip. So the worst case 564 * is that all the bad eraseblocks of the chip are in 565 * the MTD partition we are attaching (ubi->mtd). 566 */ 567 device_size = mtd_get_device_size(ubi->mtd); 568 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 569 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 570 571 /* Round it up */ 572 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 573 limit += 1; 574 575 return limit; 576 } 577 578 /** 579 * io_init - initialize I/O sub-system for a given UBI device. 580 * @ubi: UBI device description object 581 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 582 * 583 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 584 * assumed: 585 * o EC header is always at offset zero - this cannot be changed; 586 * o VID header starts just after the EC header at the closest address 587 * aligned to @io->hdrs_min_io_size; 588 * o data starts just after the VID header at the closest address aligned to 589 * @io->min_io_size 590 * 591 * This function returns zero in case of success and a negative error code in 592 * case of failure. 593 */ 594 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 595 { 596 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 597 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 598 599 if (ubi->mtd->numeraseregions != 0) { 600 /* 601 * Some flashes have several erase regions. Different regions 602 * may have different eraseblock size and other 603 * characteristics. It looks like mostly multi-region flashes 604 * have one "main" region and one or more small regions to 605 * store boot loader code or boot parameters or whatever. I 606 * guess we should just pick the largest region. But this is 607 * not implemented. 608 */ 609 ubi_err(ubi, "multiple regions, not implemented"); 610 return -EINVAL; 611 } 612 613 if (ubi->vid_hdr_offset < 0) 614 return -EINVAL; 615 616 /* 617 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 618 * physical eraseblocks maximum. 619 */ 620 621 ubi->peb_size = ubi->mtd->erasesize; 622 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 623 ubi->flash_size = ubi->mtd->size; 624 625 if (mtd_can_have_bb(ubi->mtd)) { 626 ubi->bad_allowed = 1; 627 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 628 } 629 630 if (ubi->mtd->type == MTD_NORFLASH) 631 ubi->nor_flash = 1; 632 633 ubi->min_io_size = ubi->mtd->writesize; 634 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 635 636 /* 637 * Make sure minimal I/O unit is power of 2. Note, there is no 638 * fundamental reason for this assumption. It is just an optimization 639 * which allows us to avoid costly division operations. 640 */ 641 if (!is_power_of_2(ubi->min_io_size)) { 642 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 643 ubi->min_io_size); 644 return -EINVAL; 645 } 646 647 ubi_assert(ubi->hdrs_min_io_size > 0); 648 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 649 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 650 651 ubi->max_write_size = ubi->mtd->writebufsize; 652 /* 653 * Maximum write size has to be greater or equivalent to min. I/O 654 * size, and be multiple of min. I/O size. 655 */ 656 if (ubi->max_write_size < ubi->min_io_size || 657 ubi->max_write_size % ubi->min_io_size || 658 !is_power_of_2(ubi->max_write_size)) { 659 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 660 ubi->max_write_size, ubi->min_io_size); 661 return -EINVAL; 662 } 663 664 /* Calculate default aligned sizes of EC and VID headers */ 665 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 666 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 667 668 if (ubi->vid_hdr_offset && ((ubi->vid_hdr_offset + UBI_VID_HDR_SIZE) > 669 ubi->vid_hdr_alsize)) { 670 ubi_err(ubi, "VID header offset %d too large.", ubi->vid_hdr_offset); 671 return -EINVAL; 672 } 673 674 dbg_gen("min_io_size %d", ubi->min_io_size); 675 dbg_gen("max_write_size %d", ubi->max_write_size); 676 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 677 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 678 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 679 680 if (ubi->vid_hdr_offset == 0) 681 /* Default offset */ 682 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 683 ubi->ec_hdr_alsize; 684 else { 685 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 686 ~(ubi->hdrs_min_io_size - 1); 687 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 688 ubi->vid_hdr_aloffset; 689 } 690 691 /* Similar for the data offset */ 692 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 693 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 694 695 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 696 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 697 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 698 dbg_gen("leb_start %d", ubi->leb_start); 699 700 /* The shift must be aligned to 32-bit boundary */ 701 if (ubi->vid_hdr_shift % 4) { 702 ubi_err(ubi, "unaligned VID header shift %d", 703 ubi->vid_hdr_shift); 704 return -EINVAL; 705 } 706 707 /* Check sanity */ 708 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 709 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 710 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 711 ubi->leb_start & (ubi->min_io_size - 1)) { 712 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 713 ubi->vid_hdr_offset, ubi->leb_start); 714 return -EINVAL; 715 } 716 717 /* 718 * Set maximum amount of physical erroneous eraseblocks to be 10%. 719 * Erroneous PEB are those which have read errors. 720 */ 721 ubi->max_erroneous = ubi->peb_count / 10; 722 if (ubi->max_erroneous < 16) 723 ubi->max_erroneous = 16; 724 dbg_gen("max_erroneous %d", ubi->max_erroneous); 725 726 /* 727 * It may happen that EC and VID headers are situated in one minimal 728 * I/O unit. In this case we can only accept this UBI image in 729 * read-only mode. 730 */ 731 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 732 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 733 ubi->ro_mode = 1; 734 } 735 736 ubi->leb_size = ubi->peb_size - ubi->leb_start; 737 738 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 739 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 740 ubi->mtd->index); 741 ubi->ro_mode = 1; 742 } 743 744 /* 745 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 746 * unfortunately, MTD does not provide this information. We should loop 747 * over all physical eraseblocks and invoke mtd->block_is_bad() for 748 * each physical eraseblock. So, we leave @ubi->bad_peb_count 749 * uninitialized so far. 750 */ 751 752 return 0; 753 } 754 755 /** 756 * autoresize - re-size the volume which has the "auto-resize" flag set. 757 * @ubi: UBI device description object 758 * @vol_id: ID of the volume to re-size 759 * 760 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 761 * the volume table to the largest possible size. See comments in ubi-header.h 762 * for more description of the flag. Returns zero in case of success and a 763 * negative error code in case of failure. 764 */ 765 static int autoresize(struct ubi_device *ubi, int vol_id) 766 { 767 struct ubi_volume_desc desc; 768 struct ubi_volume *vol = ubi->volumes[vol_id]; 769 int err, old_reserved_pebs = vol->reserved_pebs; 770 771 if (ubi->ro_mode) { 772 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 773 return 0; 774 } 775 776 /* 777 * Clear the auto-resize flag in the volume in-memory copy of the 778 * volume table, and 'ubi_resize_volume()' will propagate this change 779 * to the flash. 780 */ 781 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 782 783 if (ubi->avail_pebs == 0) { 784 struct ubi_vtbl_record vtbl_rec; 785 786 /* 787 * No available PEBs to re-size the volume, clear the flag on 788 * flash and exit. 789 */ 790 vtbl_rec = ubi->vtbl[vol_id]; 791 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 792 if (err) 793 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 794 vol_id); 795 } else { 796 desc.vol = vol; 797 err = ubi_resize_volume(&desc, 798 old_reserved_pebs + ubi->avail_pebs); 799 if (err) 800 ubi_err(ubi, "cannot auto-resize volume %d", 801 vol_id); 802 } 803 804 if (err) 805 return err; 806 807 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 808 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 809 return 0; 810 } 811 812 /** 813 * ubi_attach_mtd_dev - attach an MTD device. 814 * @mtd: MTD device description object 815 * @ubi_num: number to assign to the new UBI device 816 * @vid_hdr_offset: VID header offset 817 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 818 * @disable_fm: whether disable fastmap 819 * 820 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 821 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 822 * which case this function finds a vacant device number and assigns it 823 * automatically. Returns the new UBI device number in case of success and a 824 * negative error code in case of failure. 825 * 826 * If @disable_fm is true, ubi doesn't create new fastmap even the module param 827 * 'fm_autoconvert' is set, and existed old fastmap will be destroyed after 828 * doing full scanning. 829 * 830 * Note, the invocations of this function has to be serialized by the 831 * @ubi_devices_mutex. 832 */ 833 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 834 int vid_hdr_offset, int max_beb_per1024, bool disable_fm) 835 { 836 struct ubi_device *ubi; 837 int i, err; 838 839 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 840 return -EINVAL; 841 842 if (!max_beb_per1024) 843 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 844 845 /* 846 * Check if we already have the same MTD device attached. 847 * 848 * Note, this function assumes that UBI devices creations and deletions 849 * are serialized, so it does not take the &ubi_devices_lock. 850 */ 851 for (i = 0; i < UBI_MAX_DEVICES; i++) { 852 ubi = ubi_devices[i]; 853 if (ubi && mtd->index == ubi->mtd->index) { 854 pr_err("ubi: mtd%d is already attached to ubi%d\n", 855 mtd->index, i); 856 return -EEXIST; 857 } 858 } 859 860 /* 861 * Make sure this MTD device is not emulated on top of an UBI volume 862 * already. Well, generally this recursion works fine, but there are 863 * different problems like the UBI module takes a reference to itself 864 * by attaching (and thus, opening) the emulated MTD device. This 865 * results in inability to unload the module. And in general it makes 866 * no sense to attach emulated MTD devices, so we prohibit this. 867 */ 868 if (mtd->type == MTD_UBIVOLUME) { 869 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n", 870 mtd->index); 871 return -EINVAL; 872 } 873 874 /* 875 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes. 876 * MLC NAND is different and needs special care, otherwise UBI or UBIFS 877 * will die soon and you will lose all your data. 878 * Relax this rule if the partition we're attaching to operates in SLC 879 * mode. 880 */ 881 if (mtd->type == MTD_MLCNANDFLASH && 882 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) { 883 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n", 884 mtd->index); 885 return -EINVAL; 886 } 887 888 if (ubi_num == UBI_DEV_NUM_AUTO) { 889 /* Search for an empty slot in the @ubi_devices array */ 890 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 891 if (!ubi_devices[ubi_num]) 892 break; 893 if (ubi_num == UBI_MAX_DEVICES) { 894 pr_err("ubi: only %d UBI devices may be created\n", 895 UBI_MAX_DEVICES); 896 return -ENFILE; 897 } 898 } else { 899 if (ubi_num >= UBI_MAX_DEVICES) 900 return -EINVAL; 901 902 /* Make sure ubi_num is not busy */ 903 if (ubi_devices[ubi_num]) { 904 pr_err("ubi: ubi%i already exists\n", ubi_num); 905 return -EEXIST; 906 } 907 } 908 909 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 910 if (!ubi) 911 return -ENOMEM; 912 913 device_initialize(&ubi->dev); 914 ubi->dev.release = dev_release; 915 ubi->dev.class = &ubi_class; 916 ubi->dev.groups = ubi_dev_groups; 917 ubi->dev.parent = &mtd->dev; 918 919 ubi->mtd = mtd; 920 ubi->ubi_num = ubi_num; 921 ubi->vid_hdr_offset = vid_hdr_offset; 922 ubi->autoresize_vol_id = -1; 923 924 #ifdef CONFIG_MTD_UBI_FASTMAP 925 ubi->fm_pool.used = ubi->fm_pool.size = 0; 926 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 927 928 /* 929 * fm_pool.max_size is 5% of the total number of PEBs but it's also 930 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 931 */ 932 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 933 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 934 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 935 UBI_FM_MIN_POOL_SIZE); 936 937 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 938 ubi->fm_disabled = (!fm_autoconvert || disable_fm) ? 1 : 0; 939 if (fm_debug) 940 ubi_enable_dbg_chk_fastmap(ubi); 941 942 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 943 <= UBI_FM_MAX_START) { 944 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 945 UBI_FM_MAX_START); 946 ubi->fm_disabled = 1; 947 } 948 949 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 950 ubi_msg(ubi, "default fastmap WL pool size: %d", 951 ubi->fm_wl_pool.max_size); 952 #else 953 ubi->fm_disabled = 1; 954 #endif 955 mutex_init(&ubi->buf_mutex); 956 mutex_init(&ubi->ckvol_mutex); 957 mutex_init(&ubi->device_mutex); 958 spin_lock_init(&ubi->volumes_lock); 959 init_rwsem(&ubi->fm_protect); 960 init_rwsem(&ubi->fm_eba_sem); 961 962 ubi_msg(ubi, "attaching mtd%d", mtd->index); 963 964 err = io_init(ubi, max_beb_per1024); 965 if (err) 966 goto out_free; 967 968 err = -ENOMEM; 969 ubi->peb_buf = vmalloc(ubi->peb_size); 970 if (!ubi->peb_buf) 971 goto out_free; 972 973 #ifdef CONFIG_MTD_UBI_FASTMAP 974 ubi->fm_size = ubi_calc_fm_size(ubi); 975 ubi->fm_buf = vzalloc(ubi->fm_size); 976 if (!ubi->fm_buf) 977 goto out_free; 978 #endif 979 err = ubi_attach(ubi, disable_fm ? 1 : 0); 980 if (err) { 981 ubi_err(ubi, "failed to attach mtd%d, error %d", 982 mtd->index, err); 983 goto out_free; 984 } 985 986 if (ubi->autoresize_vol_id != -1) { 987 err = autoresize(ubi, ubi->autoresize_vol_id); 988 if (err) 989 goto out_detach; 990 } 991 992 err = uif_init(ubi); 993 if (err) 994 goto out_detach; 995 996 err = ubi_debugfs_init_dev(ubi); 997 if (err) 998 goto out_uif; 999 1000 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 1001 if (IS_ERR(ubi->bgt_thread)) { 1002 err = PTR_ERR(ubi->bgt_thread); 1003 ubi_err(ubi, "cannot spawn \"%s\", error %d", 1004 ubi->bgt_name, err); 1005 goto out_debugfs; 1006 } 1007 1008 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 1009 mtd->index, mtd->name, ubi->flash_size >> 20); 1010 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1011 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1012 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 1013 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1014 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1015 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1016 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1017 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1018 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1019 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1020 ubi->vtbl_slots); 1021 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1022 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1023 ubi->image_seq); 1024 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1025 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1026 1027 /* 1028 * The below lock makes sure we do not race with 'ubi_thread()' which 1029 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1030 */ 1031 spin_lock(&ubi->wl_lock); 1032 ubi->thread_enabled = 1; 1033 wake_up_process(ubi->bgt_thread); 1034 spin_unlock(&ubi->wl_lock); 1035 1036 ubi_devices[ubi_num] = ubi; 1037 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1038 return ubi_num; 1039 1040 out_debugfs: 1041 ubi_debugfs_exit_dev(ubi); 1042 out_uif: 1043 uif_close(ubi); 1044 out_detach: 1045 ubi_wl_close(ubi); 1046 ubi_free_all_volumes(ubi); 1047 vfree(ubi->vtbl); 1048 out_free: 1049 vfree(ubi->peb_buf); 1050 vfree(ubi->fm_buf); 1051 put_device(&ubi->dev); 1052 return err; 1053 } 1054 1055 /** 1056 * ubi_detach_mtd_dev - detach an MTD device. 1057 * @ubi_num: UBI device number to detach from 1058 * @anyway: detach MTD even if device reference count is not zero 1059 * 1060 * This function destroys an UBI device number @ubi_num and detaches the 1061 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1062 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1063 * exist. 1064 * 1065 * Note, the invocations of this function has to be serialized by the 1066 * @ubi_devices_mutex. 1067 */ 1068 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1069 { 1070 struct ubi_device *ubi; 1071 1072 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1073 return -EINVAL; 1074 1075 ubi = ubi_get_device(ubi_num); 1076 if (!ubi) 1077 return -EINVAL; 1078 1079 spin_lock(&ubi_devices_lock); 1080 put_device(&ubi->dev); 1081 ubi->ref_count -= 1; 1082 if (ubi->ref_count) { 1083 if (!anyway) { 1084 spin_unlock(&ubi_devices_lock); 1085 return -EBUSY; 1086 } 1087 /* This may only happen if there is a bug */ 1088 ubi_err(ubi, "%s reference count %d, destroy anyway", 1089 ubi->ubi_name, ubi->ref_count); 1090 } 1091 ubi_devices[ubi_num] = NULL; 1092 spin_unlock(&ubi_devices_lock); 1093 1094 ubi_assert(ubi_num == ubi->ubi_num); 1095 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1096 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1097 #ifdef CONFIG_MTD_UBI_FASTMAP 1098 /* If we don't write a new fastmap at detach time we lose all 1099 * EC updates that have been made since the last written fastmap. 1100 * In case of fastmap debugging we omit the update to simulate an 1101 * unclean shutdown. */ 1102 if (!ubi_dbg_chk_fastmap(ubi)) 1103 ubi_update_fastmap(ubi); 1104 #endif 1105 /* 1106 * Before freeing anything, we have to stop the background thread to 1107 * prevent it from doing anything on this device while we are freeing. 1108 */ 1109 if (ubi->bgt_thread) 1110 kthread_stop(ubi->bgt_thread); 1111 1112 #ifdef CONFIG_MTD_UBI_FASTMAP 1113 cancel_work_sync(&ubi->fm_work); 1114 #endif 1115 ubi_debugfs_exit_dev(ubi); 1116 uif_close(ubi); 1117 1118 ubi_wl_close(ubi); 1119 ubi_free_internal_volumes(ubi); 1120 vfree(ubi->vtbl); 1121 vfree(ubi->peb_buf); 1122 vfree(ubi->fm_buf); 1123 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1124 put_mtd_device(ubi->mtd); 1125 put_device(&ubi->dev); 1126 return 0; 1127 } 1128 1129 /** 1130 * open_mtd_by_chdev - open an MTD device by its character device node path. 1131 * @mtd_dev: MTD character device node path 1132 * 1133 * This helper function opens an MTD device by its character node device path. 1134 * Returns MTD device description object in case of success and a negative 1135 * error code in case of failure. 1136 */ 1137 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1138 { 1139 int err, minor; 1140 struct path path; 1141 struct kstat stat; 1142 1143 /* Probably this is an MTD character device node path */ 1144 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1145 if (err) 1146 return ERR_PTR(err); 1147 1148 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1149 path_put(&path); 1150 if (err) 1151 return ERR_PTR(err); 1152 1153 /* MTD device number is defined by the major / minor numbers */ 1154 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1155 return ERR_PTR(-EINVAL); 1156 1157 minor = MINOR(stat.rdev); 1158 1159 if (minor & 1) 1160 /* 1161 * Just do not think the "/dev/mtdrX" devices support is need, 1162 * so do not support them to avoid doing extra work. 1163 */ 1164 return ERR_PTR(-EINVAL); 1165 1166 return get_mtd_device(NULL, minor / 2); 1167 } 1168 1169 /** 1170 * open_mtd_device - open MTD device by name, character device path, or number. 1171 * @mtd_dev: name, character device node path, or MTD device device number 1172 * 1173 * This function tries to open and MTD device described by @mtd_dev string, 1174 * which is first treated as ASCII MTD device number, and if it is not true, it 1175 * is treated as MTD device name, and if that is also not true, it is treated 1176 * as MTD character device node path. Returns MTD device description object in 1177 * case of success and a negative error code in case of failure. 1178 */ 1179 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1180 { 1181 struct mtd_info *mtd; 1182 int mtd_num; 1183 char *endp; 1184 1185 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1186 if (*endp != '\0' || mtd_dev == endp) { 1187 /* 1188 * This does not look like an ASCII integer, probably this is 1189 * MTD device name. 1190 */ 1191 mtd = get_mtd_device_nm(mtd_dev); 1192 if (PTR_ERR(mtd) == -ENODEV) 1193 /* Probably this is an MTD character device node path */ 1194 mtd = open_mtd_by_chdev(mtd_dev); 1195 } else 1196 mtd = get_mtd_device(NULL, mtd_num); 1197 1198 return mtd; 1199 } 1200 1201 static int __init ubi_init(void) 1202 { 1203 int err, i, k; 1204 1205 /* Ensure that EC and VID headers have correct size */ 1206 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1207 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1208 1209 if (mtd_devs > UBI_MAX_DEVICES) { 1210 pr_err("UBI error: too many MTD devices, maximum is %d\n", 1211 UBI_MAX_DEVICES); 1212 return -EINVAL; 1213 } 1214 1215 /* Create base sysfs directory and sysfs files */ 1216 err = class_register(&ubi_class); 1217 if (err < 0) 1218 return err; 1219 1220 err = misc_register(&ubi_ctrl_cdev); 1221 if (err) { 1222 pr_err("UBI error: cannot register device\n"); 1223 goto out; 1224 } 1225 1226 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1227 sizeof(struct ubi_wl_entry), 1228 0, 0, NULL); 1229 if (!ubi_wl_entry_slab) { 1230 err = -ENOMEM; 1231 goto out_dev_unreg; 1232 } 1233 1234 err = ubi_debugfs_init(); 1235 if (err) 1236 goto out_slab; 1237 1238 1239 /* Attach MTD devices */ 1240 for (i = 0; i < mtd_devs; i++) { 1241 struct mtd_dev_param *p = &mtd_dev_param[i]; 1242 struct mtd_info *mtd; 1243 1244 cond_resched(); 1245 1246 mtd = open_mtd_device(p->name); 1247 if (IS_ERR(mtd)) { 1248 err = PTR_ERR(mtd); 1249 pr_err("UBI error: cannot open mtd %s, error %d\n", 1250 p->name, err); 1251 /* See comment below re-ubi_is_module(). */ 1252 if (ubi_is_module()) 1253 goto out_detach; 1254 continue; 1255 } 1256 1257 mutex_lock(&ubi_devices_mutex); 1258 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1259 p->vid_hdr_offs, p->max_beb_per1024, 1260 p->enable_fm == 0 ? true : false); 1261 mutex_unlock(&ubi_devices_mutex); 1262 if (err < 0) { 1263 pr_err("UBI error: cannot attach mtd%d\n", 1264 mtd->index); 1265 put_mtd_device(mtd); 1266 1267 /* 1268 * Originally UBI stopped initializing on any error. 1269 * However, later on it was found out that this 1270 * behavior is not very good when UBI is compiled into 1271 * the kernel and the MTD devices to attach are passed 1272 * through the command line. Indeed, UBI failure 1273 * stopped whole boot sequence. 1274 * 1275 * To fix this, we changed the behavior for the 1276 * non-module case, but preserved the old behavior for 1277 * the module case, just for compatibility. This is a 1278 * little inconsistent, though. 1279 */ 1280 if (ubi_is_module()) 1281 goto out_detach; 1282 } 1283 } 1284 1285 err = ubiblock_init(); 1286 if (err) { 1287 pr_err("UBI error: block: cannot initialize, error %d\n", err); 1288 1289 /* See comment above re-ubi_is_module(). */ 1290 if (ubi_is_module()) 1291 goto out_detach; 1292 } 1293 1294 return 0; 1295 1296 out_detach: 1297 for (k = 0; k < i; k++) 1298 if (ubi_devices[k]) { 1299 mutex_lock(&ubi_devices_mutex); 1300 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1301 mutex_unlock(&ubi_devices_mutex); 1302 } 1303 ubi_debugfs_exit(); 1304 out_slab: 1305 kmem_cache_destroy(ubi_wl_entry_slab); 1306 out_dev_unreg: 1307 misc_deregister(&ubi_ctrl_cdev); 1308 out: 1309 class_unregister(&ubi_class); 1310 pr_err("UBI error: cannot initialize UBI, error %d\n", err); 1311 return err; 1312 } 1313 late_initcall(ubi_init); 1314 1315 static void __exit ubi_exit(void) 1316 { 1317 int i; 1318 1319 ubiblock_exit(); 1320 1321 for (i = 0; i < UBI_MAX_DEVICES; i++) 1322 if (ubi_devices[i]) { 1323 mutex_lock(&ubi_devices_mutex); 1324 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1325 mutex_unlock(&ubi_devices_mutex); 1326 } 1327 ubi_debugfs_exit(); 1328 kmem_cache_destroy(ubi_wl_entry_slab); 1329 misc_deregister(&ubi_ctrl_cdev); 1330 class_unregister(&ubi_class); 1331 } 1332 module_exit(ubi_exit); 1333 1334 /** 1335 * bytes_str_to_int - convert a number of bytes string into an integer. 1336 * @str: the string to convert 1337 * 1338 * This function returns positive resulting integer in case of success and a 1339 * negative error code in case of failure. 1340 */ 1341 static int bytes_str_to_int(const char *str) 1342 { 1343 char *endp; 1344 unsigned long result; 1345 1346 result = simple_strtoul(str, &endp, 0); 1347 if (str == endp || result >= INT_MAX) { 1348 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1349 return -EINVAL; 1350 } 1351 1352 switch (*endp) { 1353 case 'G': 1354 result *= 1024; 1355 fallthrough; 1356 case 'M': 1357 result *= 1024; 1358 fallthrough; 1359 case 'K': 1360 result *= 1024; 1361 break; 1362 case '\0': 1363 break; 1364 default: 1365 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1366 return -EINVAL; 1367 } 1368 1369 return result; 1370 } 1371 1372 /** 1373 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1374 * @val: the parameter value to parse 1375 * @kp: not used 1376 * 1377 * This function returns zero in case of success and a negative error code in 1378 * case of error. 1379 */ 1380 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp) 1381 { 1382 int i, len; 1383 struct mtd_dev_param *p; 1384 char buf[MTD_PARAM_LEN_MAX]; 1385 char *pbuf = &buf[0]; 1386 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1387 1388 if (!val) 1389 return -EINVAL; 1390 1391 if (mtd_devs == UBI_MAX_DEVICES) { 1392 pr_err("UBI error: too many parameters, max. is %d\n", 1393 UBI_MAX_DEVICES); 1394 return -EINVAL; 1395 } 1396 1397 len = strnlen(val, MTD_PARAM_LEN_MAX); 1398 if (len == MTD_PARAM_LEN_MAX) { 1399 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1400 val, MTD_PARAM_LEN_MAX); 1401 return -EINVAL; 1402 } 1403 1404 if (len == 0) { 1405 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1406 return 0; 1407 } 1408 1409 strcpy(buf, val); 1410 1411 /* Get rid of the final newline */ 1412 if (buf[len - 1] == '\n') 1413 buf[len - 1] = '\0'; 1414 1415 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1416 tokens[i] = strsep(&pbuf, ","); 1417 1418 if (pbuf) { 1419 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1420 return -EINVAL; 1421 } 1422 1423 p = &mtd_dev_param[mtd_devs]; 1424 strcpy(&p->name[0], tokens[0]); 1425 1426 token = tokens[1]; 1427 if (token) { 1428 p->vid_hdr_offs = bytes_str_to_int(token); 1429 1430 if (p->vid_hdr_offs < 0) 1431 return p->vid_hdr_offs; 1432 } 1433 1434 token = tokens[2]; 1435 if (token) { 1436 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1437 1438 if (err) { 1439 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s\n", 1440 token); 1441 return -EINVAL; 1442 } 1443 } 1444 1445 token = tokens[3]; 1446 if (token) { 1447 int err = kstrtoint(token, 10, &p->ubi_num); 1448 1449 if (err) { 1450 pr_err("UBI error: bad value for ubi_num parameter: %s\n", 1451 token); 1452 return -EINVAL; 1453 } 1454 } else 1455 p->ubi_num = UBI_DEV_NUM_AUTO; 1456 1457 token = tokens[4]; 1458 if (token) { 1459 int err = kstrtoint(token, 10, &p->enable_fm); 1460 1461 if (err) { 1462 pr_err("UBI error: bad value for enable_fm parameter: %s\n", 1463 token); 1464 return -EINVAL; 1465 } 1466 } else 1467 p->enable_fm = 0; 1468 1469 mtd_devs += 1; 1470 return 0; 1471 } 1472 1473 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1474 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1475 "Multiple \"mtd\" parameters may be specified.\n" 1476 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1477 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1478 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1479 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1480 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1481 "Optional \"enable_fm\" parameter determines whether to enable fastmap during attach. If the value is non-zero, fastmap is enabled. Default value is 0.\n" 1482 "\n" 1483 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1484 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1485 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1486 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1487 "example 5: mtd=1,0,0,5 mtd=2,0,0,6,1 - attach MTD device /dev/mtd1 to UBI 5 and disable fastmap; attach MTD device /dev/mtd2 to UBI 6 and enable fastmap.(only works when fastmap is enabled and fm_autoconvert=Y).\n" 1488 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1489 #ifdef CONFIG_MTD_UBI_FASTMAP 1490 module_param(fm_autoconvert, bool, 0644); 1491 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1492 module_param(fm_debug, bool, 0); 1493 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1494 #endif 1495 MODULE_VERSION(__stringify(UBI_VERSION)); 1496 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1497 MODULE_AUTHOR("Artem Bityutskiy"); 1498 MODULE_LICENSE("GPL"); 1499