xref: /linux/drivers/mtd/ubi/build.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём),
20  *         Frank Haverkamp
21  */
22 
23 /*
24  * This file includes UBI initialization and building of UBI devices.
25  *
26  * When UBI is initialized, it attaches all the MTD devices specified as the
27  * module load parameters or the kernel boot parameters. If MTD devices were
28  * specified, UBI does not attach any MTD device, but it is possible to do
29  * later using the "UBI control device".
30  */
31 
32 #include <linux/err.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/stringify.h>
36 #include <linux/namei.h>
37 #include <linux/stat.h>
38 #include <linux/miscdevice.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/log2.h>
41 #include <linux/kthread.h>
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/major.h>
45 #include "ubi.h"
46 
47 /* Maximum length of the 'mtd=' parameter */
48 #define MTD_PARAM_LEN_MAX 64
49 
50 /* Maximum number of comma-separated items in the 'mtd=' parameter */
51 #define MTD_PARAM_MAX_COUNT 4
52 
53 /* Maximum value for the number of bad PEBs per 1024 PEBs */
54 #define MAX_MTD_UBI_BEB_LIMIT 768
55 
56 #ifdef CONFIG_MTD_UBI_MODULE
57 #define ubi_is_module() 1
58 #else
59 #define ubi_is_module() 0
60 #endif
61 
62 /**
63  * struct mtd_dev_param - MTD device parameter description data structure.
64  * @name: MTD character device node path, MTD device name, or MTD device number
65  *        string
66  * @vid_hdr_offs: VID header offset
67  * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
68  */
69 struct mtd_dev_param {
70 	char name[MTD_PARAM_LEN_MAX];
71 	int ubi_num;
72 	int vid_hdr_offs;
73 	int max_beb_per1024;
74 };
75 
76 /* Numbers of elements set in the @mtd_dev_param array */
77 static int __initdata mtd_devs;
78 
79 /* MTD devices specification parameters */
80 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
81 #ifdef CONFIG_MTD_UBI_FASTMAP
82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
83 static bool fm_autoconvert;
84 static bool fm_debug;
85 #endif
86 
87 /* Slab cache for wear-leveling entries */
88 struct kmem_cache *ubi_wl_entry_slab;
89 
90 /* UBI control character device */
91 static struct miscdevice ubi_ctrl_cdev = {
92 	.minor = MISC_DYNAMIC_MINOR,
93 	.name = "ubi_ctrl",
94 	.fops = &ubi_ctrl_cdev_operations,
95 };
96 
97 /* All UBI devices in system */
98 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
99 
100 /* Serializes UBI devices creations and removals */
101 DEFINE_MUTEX(ubi_devices_mutex);
102 
103 /* Protects @ubi_devices and @ubi->ref_count */
104 static DEFINE_SPINLOCK(ubi_devices_lock);
105 
106 /* "Show" method for files in '/<sysfs>/class/ubi/' */
107 static ssize_t ubi_version_show(struct class *class,
108 				struct class_attribute *attr, char *buf)
109 {
110 	return sprintf(buf, "%d\n", UBI_VERSION);
111 }
112 
113 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
114 static struct class_attribute ubi_class_attrs[] = {
115 	__ATTR(version, S_IRUGO, ubi_version_show, NULL),
116 	__ATTR_NULL
117 };
118 
119 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
120 struct class ubi_class = {
121 	.name		= UBI_NAME_STR,
122 	.owner		= THIS_MODULE,
123 	.class_attrs	= ubi_class_attrs,
124 };
125 
126 static ssize_t dev_attribute_show(struct device *dev,
127 				  struct device_attribute *attr, char *buf);
128 
129 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
130 static struct device_attribute dev_eraseblock_size =
131 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_avail_eraseblocks =
133 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
134 static struct device_attribute dev_total_eraseblocks =
135 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
136 static struct device_attribute dev_volumes_count =
137 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
138 static struct device_attribute dev_max_ec =
139 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
140 static struct device_attribute dev_reserved_for_bad =
141 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
142 static struct device_attribute dev_bad_peb_count =
143 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
144 static struct device_attribute dev_max_vol_count =
145 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
146 static struct device_attribute dev_min_io_size =
147 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
148 static struct device_attribute dev_bgt_enabled =
149 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
150 static struct device_attribute dev_mtd_num =
151 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
152 static struct device_attribute dev_ro_mode =
153 	__ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
154 
155 /**
156  * ubi_volume_notify - send a volume change notification.
157  * @ubi: UBI device description object
158  * @vol: volume description object of the changed volume
159  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
160  *
161  * This is a helper function which notifies all subscribers about a volume
162  * change event (creation, removal, re-sizing, re-naming, updating). Returns
163  * zero in case of success and a negative error code in case of failure.
164  */
165 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
166 {
167 	int ret;
168 	struct ubi_notification nt;
169 
170 	ubi_do_get_device_info(ubi, &nt.di);
171 	ubi_do_get_volume_info(ubi, vol, &nt.vi);
172 
173 	switch (ntype) {
174 	case UBI_VOLUME_ADDED:
175 	case UBI_VOLUME_REMOVED:
176 	case UBI_VOLUME_RESIZED:
177 	case UBI_VOLUME_RENAMED:
178 		ret = ubi_update_fastmap(ubi);
179 		if (ret)
180 			ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
181 	}
182 
183 	return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
184 }
185 
186 /**
187  * ubi_notify_all - send a notification to all volumes.
188  * @ubi: UBI device description object
189  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
190  * @nb: the notifier to call
191  *
192  * This function walks all volumes of UBI device @ubi and sends the @ntype
193  * notification for each volume. If @nb is %NULL, then all registered notifiers
194  * are called, otherwise only the @nb notifier is called. Returns the number of
195  * sent notifications.
196  */
197 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
198 {
199 	struct ubi_notification nt;
200 	int i, count = 0;
201 
202 	ubi_do_get_device_info(ubi, &nt.di);
203 
204 	mutex_lock(&ubi->device_mutex);
205 	for (i = 0; i < ubi->vtbl_slots; i++) {
206 		/*
207 		 * Since the @ubi->device is locked, and we are not going to
208 		 * change @ubi->volumes, we do not have to lock
209 		 * @ubi->volumes_lock.
210 		 */
211 		if (!ubi->volumes[i])
212 			continue;
213 
214 		ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
215 		if (nb)
216 			nb->notifier_call(nb, ntype, &nt);
217 		else
218 			blocking_notifier_call_chain(&ubi_notifiers, ntype,
219 						     &nt);
220 		count += 1;
221 	}
222 	mutex_unlock(&ubi->device_mutex);
223 
224 	return count;
225 }
226 
227 /**
228  * ubi_enumerate_volumes - send "add" notification for all existing volumes.
229  * @nb: the notifier to call
230  *
231  * This function walks all UBI devices and volumes and sends the
232  * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
233  * registered notifiers are called, otherwise only the @nb notifier is called.
234  * Returns the number of sent notifications.
235  */
236 int ubi_enumerate_volumes(struct notifier_block *nb)
237 {
238 	int i, count = 0;
239 
240 	/*
241 	 * Since the @ubi_devices_mutex is locked, and we are not going to
242 	 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
243 	 */
244 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
245 		struct ubi_device *ubi = ubi_devices[i];
246 
247 		if (!ubi)
248 			continue;
249 		count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
250 	}
251 
252 	return count;
253 }
254 
255 /**
256  * ubi_get_device - get UBI device.
257  * @ubi_num: UBI device number
258  *
259  * This function returns UBI device description object for UBI device number
260  * @ubi_num, or %NULL if the device does not exist. This function increases the
261  * device reference count to prevent removal of the device. In other words, the
262  * device cannot be removed if its reference count is not zero.
263  */
264 struct ubi_device *ubi_get_device(int ubi_num)
265 {
266 	struct ubi_device *ubi;
267 
268 	spin_lock(&ubi_devices_lock);
269 	ubi = ubi_devices[ubi_num];
270 	if (ubi) {
271 		ubi_assert(ubi->ref_count >= 0);
272 		ubi->ref_count += 1;
273 		get_device(&ubi->dev);
274 	}
275 	spin_unlock(&ubi_devices_lock);
276 
277 	return ubi;
278 }
279 
280 /**
281  * ubi_put_device - drop an UBI device reference.
282  * @ubi: UBI device description object
283  */
284 void ubi_put_device(struct ubi_device *ubi)
285 {
286 	spin_lock(&ubi_devices_lock);
287 	ubi->ref_count -= 1;
288 	put_device(&ubi->dev);
289 	spin_unlock(&ubi_devices_lock);
290 }
291 
292 /**
293  * ubi_get_by_major - get UBI device by character device major number.
294  * @major: major number
295  *
296  * This function is similar to 'ubi_get_device()', but it searches the device
297  * by its major number.
298  */
299 struct ubi_device *ubi_get_by_major(int major)
300 {
301 	int i;
302 	struct ubi_device *ubi;
303 
304 	spin_lock(&ubi_devices_lock);
305 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
306 		ubi = ubi_devices[i];
307 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
308 			ubi_assert(ubi->ref_count >= 0);
309 			ubi->ref_count += 1;
310 			get_device(&ubi->dev);
311 			spin_unlock(&ubi_devices_lock);
312 			return ubi;
313 		}
314 	}
315 	spin_unlock(&ubi_devices_lock);
316 
317 	return NULL;
318 }
319 
320 /**
321  * ubi_major2num - get UBI device number by character device major number.
322  * @major: major number
323  *
324  * This function searches UBI device number object by its major number. If UBI
325  * device was not found, this function returns -ENODEV, otherwise the UBI device
326  * number is returned.
327  */
328 int ubi_major2num(int major)
329 {
330 	int i, ubi_num = -ENODEV;
331 
332 	spin_lock(&ubi_devices_lock);
333 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
334 		struct ubi_device *ubi = ubi_devices[i];
335 
336 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
337 			ubi_num = ubi->ubi_num;
338 			break;
339 		}
340 	}
341 	spin_unlock(&ubi_devices_lock);
342 
343 	return ubi_num;
344 }
345 
346 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
347 static ssize_t dev_attribute_show(struct device *dev,
348 				  struct device_attribute *attr, char *buf)
349 {
350 	ssize_t ret;
351 	struct ubi_device *ubi;
352 
353 	/*
354 	 * The below code looks weird, but it actually makes sense. We get the
355 	 * UBI device reference from the contained 'struct ubi_device'. But it
356 	 * is unclear if the device was removed or not yet. Indeed, if the
357 	 * device was removed before we increased its reference count,
358 	 * 'ubi_get_device()' will return -ENODEV and we fail.
359 	 *
360 	 * Remember, 'struct ubi_device' is freed in the release function, so
361 	 * we still can use 'ubi->ubi_num'.
362 	 */
363 	ubi = container_of(dev, struct ubi_device, dev);
364 	ubi = ubi_get_device(ubi->ubi_num);
365 	if (!ubi)
366 		return -ENODEV;
367 
368 	if (attr == &dev_eraseblock_size)
369 		ret = sprintf(buf, "%d\n", ubi->leb_size);
370 	else if (attr == &dev_avail_eraseblocks)
371 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
372 	else if (attr == &dev_total_eraseblocks)
373 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
374 	else if (attr == &dev_volumes_count)
375 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
376 	else if (attr == &dev_max_ec)
377 		ret = sprintf(buf, "%d\n", ubi->max_ec);
378 	else if (attr == &dev_reserved_for_bad)
379 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
380 	else if (attr == &dev_bad_peb_count)
381 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
382 	else if (attr == &dev_max_vol_count)
383 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
384 	else if (attr == &dev_min_io_size)
385 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
386 	else if (attr == &dev_bgt_enabled)
387 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
388 	else if (attr == &dev_mtd_num)
389 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
390 	else if (attr == &dev_ro_mode)
391 		ret = sprintf(buf, "%d\n", ubi->ro_mode);
392 	else
393 		ret = -EINVAL;
394 
395 	ubi_put_device(ubi);
396 	return ret;
397 }
398 
399 static struct attribute *ubi_dev_attrs[] = {
400 	&dev_eraseblock_size.attr,
401 	&dev_avail_eraseblocks.attr,
402 	&dev_total_eraseblocks.attr,
403 	&dev_volumes_count.attr,
404 	&dev_max_ec.attr,
405 	&dev_reserved_for_bad.attr,
406 	&dev_bad_peb_count.attr,
407 	&dev_max_vol_count.attr,
408 	&dev_min_io_size.attr,
409 	&dev_bgt_enabled.attr,
410 	&dev_mtd_num.attr,
411 	&dev_ro_mode.attr,
412 	NULL
413 };
414 ATTRIBUTE_GROUPS(ubi_dev);
415 
416 static void dev_release(struct device *dev)
417 {
418 	struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
419 
420 	kfree(ubi);
421 }
422 
423 /**
424  * ubi_sysfs_init - initialize sysfs for an UBI device.
425  * @ubi: UBI device description object
426  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
427  *       taken
428  *
429  * This function returns zero in case of success and a negative error code in
430  * case of failure.
431  */
432 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
433 {
434 	int err;
435 
436 	ubi->dev.release = dev_release;
437 	ubi->dev.devt = ubi->cdev.dev;
438 	ubi->dev.class = &ubi_class;
439 	ubi->dev.groups = ubi_dev_groups;
440 	dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
441 	err = device_register(&ubi->dev);
442 	if (err)
443 		return err;
444 
445 	*ref = 1;
446 	return 0;
447 }
448 
449 /**
450  * ubi_sysfs_close - close sysfs for an UBI device.
451  * @ubi: UBI device description object
452  */
453 static void ubi_sysfs_close(struct ubi_device *ubi)
454 {
455 	device_unregister(&ubi->dev);
456 }
457 
458 /**
459  * kill_volumes - destroy all user volumes.
460  * @ubi: UBI device description object
461  */
462 static void kill_volumes(struct ubi_device *ubi)
463 {
464 	int i;
465 
466 	for (i = 0; i < ubi->vtbl_slots; i++)
467 		if (ubi->volumes[i])
468 			ubi_free_volume(ubi, ubi->volumes[i]);
469 }
470 
471 /**
472  * uif_init - initialize user interfaces for an UBI device.
473  * @ubi: UBI device description object
474  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
475  *       taken, otherwise set to %0
476  *
477  * This function initializes various user interfaces for an UBI device. If the
478  * initialization fails at an early stage, this function frees all the
479  * resources it allocated, returns an error, and @ref is set to %0. However,
480  * if the initialization fails after the UBI device was registered in the
481  * driver core subsystem, this function takes a reference to @ubi->dev, because
482  * otherwise the release function ('dev_release()') would free whole @ubi
483  * object. The @ref argument is set to %1 in this case. The caller has to put
484  * this reference.
485  *
486  * This function returns zero in case of success and a negative error code in
487  * case of failure.
488  */
489 static int uif_init(struct ubi_device *ubi, int *ref)
490 {
491 	int i, err;
492 	dev_t dev;
493 
494 	*ref = 0;
495 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
496 
497 	/*
498 	 * Major numbers for the UBI character devices are allocated
499 	 * dynamically. Major numbers of volume character devices are
500 	 * equivalent to ones of the corresponding UBI character device. Minor
501 	 * numbers of UBI character devices are 0, while minor numbers of
502 	 * volume character devices start from 1. Thus, we allocate one major
503 	 * number and ubi->vtbl_slots + 1 minor numbers.
504 	 */
505 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
506 	if (err) {
507 		ubi_err(ubi, "cannot register UBI character devices");
508 		return err;
509 	}
510 
511 	ubi_assert(MINOR(dev) == 0);
512 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
513 	dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
514 	ubi->cdev.owner = THIS_MODULE;
515 
516 	err = cdev_add(&ubi->cdev, dev, 1);
517 	if (err) {
518 		ubi_err(ubi, "cannot add character device");
519 		goto out_unreg;
520 	}
521 
522 	err = ubi_sysfs_init(ubi, ref);
523 	if (err)
524 		goto out_sysfs;
525 
526 	for (i = 0; i < ubi->vtbl_slots; i++)
527 		if (ubi->volumes[i]) {
528 			err = ubi_add_volume(ubi, ubi->volumes[i]);
529 			if (err) {
530 				ubi_err(ubi, "cannot add volume %d", i);
531 				goto out_volumes;
532 			}
533 		}
534 
535 	return 0;
536 
537 out_volumes:
538 	kill_volumes(ubi);
539 out_sysfs:
540 	if (*ref)
541 		get_device(&ubi->dev);
542 	ubi_sysfs_close(ubi);
543 	cdev_del(&ubi->cdev);
544 out_unreg:
545 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
546 	ubi_err(ubi, "cannot initialize UBI %s, error %d",
547 		ubi->ubi_name, err);
548 	return err;
549 }
550 
551 /**
552  * uif_close - close user interfaces for an UBI device.
553  * @ubi: UBI device description object
554  *
555  * Note, since this function un-registers UBI volume device objects (@vol->dev),
556  * the memory allocated voe the volumes is freed as well (in the release
557  * function).
558  */
559 static void uif_close(struct ubi_device *ubi)
560 {
561 	kill_volumes(ubi);
562 	ubi_sysfs_close(ubi);
563 	cdev_del(&ubi->cdev);
564 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
565 }
566 
567 /**
568  * ubi_free_internal_volumes - free internal volumes.
569  * @ubi: UBI device description object
570  */
571 void ubi_free_internal_volumes(struct ubi_device *ubi)
572 {
573 	int i;
574 
575 	for (i = ubi->vtbl_slots;
576 	     i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
577 		ubi_eba_replace_table(ubi->volumes[i], NULL);
578 		kfree(ubi->volumes[i]);
579 	}
580 }
581 
582 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
583 {
584 	int limit, device_pebs;
585 	uint64_t device_size;
586 
587 	if (!max_beb_per1024)
588 		return 0;
589 
590 	/*
591 	 * Here we are using size of the entire flash chip and
592 	 * not just the MTD partition size because the maximum
593 	 * number of bad eraseblocks is a percentage of the
594 	 * whole device and bad eraseblocks are not fairly
595 	 * distributed over the flash chip. So the worst case
596 	 * is that all the bad eraseblocks of the chip are in
597 	 * the MTD partition we are attaching (ubi->mtd).
598 	 */
599 	device_size = mtd_get_device_size(ubi->mtd);
600 	device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
601 	limit = mult_frac(device_pebs, max_beb_per1024, 1024);
602 
603 	/* Round it up */
604 	if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
605 		limit += 1;
606 
607 	return limit;
608 }
609 
610 /**
611  * io_init - initialize I/O sub-system for a given UBI device.
612  * @ubi: UBI device description object
613  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
614  *
615  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
616  * assumed:
617  *   o EC header is always at offset zero - this cannot be changed;
618  *   o VID header starts just after the EC header at the closest address
619  *     aligned to @io->hdrs_min_io_size;
620  *   o data starts just after the VID header at the closest address aligned to
621  *     @io->min_io_size
622  *
623  * This function returns zero in case of success and a negative error code in
624  * case of failure.
625  */
626 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
627 {
628 	dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
629 	dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
630 
631 	if (ubi->mtd->numeraseregions != 0) {
632 		/*
633 		 * Some flashes have several erase regions. Different regions
634 		 * may have different eraseblock size and other
635 		 * characteristics. It looks like mostly multi-region flashes
636 		 * have one "main" region and one or more small regions to
637 		 * store boot loader code or boot parameters or whatever. I
638 		 * guess we should just pick the largest region. But this is
639 		 * not implemented.
640 		 */
641 		ubi_err(ubi, "multiple regions, not implemented");
642 		return -EINVAL;
643 	}
644 
645 	if (ubi->vid_hdr_offset < 0)
646 		return -EINVAL;
647 
648 	/*
649 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
650 	 * physical eraseblocks maximum.
651 	 */
652 
653 	ubi->peb_size   = ubi->mtd->erasesize;
654 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
655 	ubi->flash_size = ubi->mtd->size;
656 
657 	if (mtd_can_have_bb(ubi->mtd)) {
658 		ubi->bad_allowed = 1;
659 		ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
660 	}
661 
662 	if (ubi->mtd->type == MTD_NORFLASH) {
663 		ubi_assert(ubi->mtd->writesize == 1);
664 		ubi->nor_flash = 1;
665 	}
666 
667 	ubi->min_io_size = ubi->mtd->writesize;
668 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
669 
670 	/*
671 	 * Make sure minimal I/O unit is power of 2. Note, there is no
672 	 * fundamental reason for this assumption. It is just an optimization
673 	 * which allows us to avoid costly division operations.
674 	 */
675 	if (!is_power_of_2(ubi->min_io_size)) {
676 		ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
677 			ubi->min_io_size);
678 		return -EINVAL;
679 	}
680 
681 	ubi_assert(ubi->hdrs_min_io_size > 0);
682 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
683 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
684 
685 	ubi->max_write_size = ubi->mtd->writebufsize;
686 	/*
687 	 * Maximum write size has to be greater or equivalent to min. I/O
688 	 * size, and be multiple of min. I/O size.
689 	 */
690 	if (ubi->max_write_size < ubi->min_io_size ||
691 	    ubi->max_write_size % ubi->min_io_size ||
692 	    !is_power_of_2(ubi->max_write_size)) {
693 		ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
694 			ubi->max_write_size, ubi->min_io_size);
695 		return -EINVAL;
696 	}
697 
698 	/* Calculate default aligned sizes of EC and VID headers */
699 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
700 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
701 
702 	dbg_gen("min_io_size      %d", ubi->min_io_size);
703 	dbg_gen("max_write_size   %d", ubi->max_write_size);
704 	dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
705 	dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
706 	dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
707 
708 	if (ubi->vid_hdr_offset == 0)
709 		/* Default offset */
710 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
711 				      ubi->ec_hdr_alsize;
712 	else {
713 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
714 						~(ubi->hdrs_min_io_size - 1);
715 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
716 						ubi->vid_hdr_aloffset;
717 	}
718 
719 	/* Similar for the data offset */
720 	ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
721 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
722 
723 	dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
724 	dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
725 	dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
726 	dbg_gen("leb_start        %d", ubi->leb_start);
727 
728 	/* The shift must be aligned to 32-bit boundary */
729 	if (ubi->vid_hdr_shift % 4) {
730 		ubi_err(ubi, "unaligned VID header shift %d",
731 			ubi->vid_hdr_shift);
732 		return -EINVAL;
733 	}
734 
735 	/* Check sanity */
736 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
737 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
738 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
739 	    ubi->leb_start & (ubi->min_io_size - 1)) {
740 		ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
741 			ubi->vid_hdr_offset, ubi->leb_start);
742 		return -EINVAL;
743 	}
744 
745 	/*
746 	 * Set maximum amount of physical erroneous eraseblocks to be 10%.
747 	 * Erroneous PEB are those which have read errors.
748 	 */
749 	ubi->max_erroneous = ubi->peb_count / 10;
750 	if (ubi->max_erroneous < 16)
751 		ubi->max_erroneous = 16;
752 	dbg_gen("max_erroneous    %d", ubi->max_erroneous);
753 
754 	/*
755 	 * It may happen that EC and VID headers are situated in one minimal
756 	 * I/O unit. In this case we can only accept this UBI image in
757 	 * read-only mode.
758 	 */
759 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
760 		ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
761 		ubi->ro_mode = 1;
762 	}
763 
764 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
765 
766 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
767 		ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
768 			ubi->mtd->index);
769 		ubi->ro_mode = 1;
770 	}
771 
772 	/*
773 	 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
774 	 * unfortunately, MTD does not provide this information. We should loop
775 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
776 	 * each physical eraseblock. So, we leave @ubi->bad_peb_count
777 	 * uninitialized so far.
778 	 */
779 
780 	return 0;
781 }
782 
783 /**
784  * autoresize - re-size the volume which has the "auto-resize" flag set.
785  * @ubi: UBI device description object
786  * @vol_id: ID of the volume to re-size
787  *
788  * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
789  * the volume table to the largest possible size. See comments in ubi-header.h
790  * for more description of the flag. Returns zero in case of success and a
791  * negative error code in case of failure.
792  */
793 static int autoresize(struct ubi_device *ubi, int vol_id)
794 {
795 	struct ubi_volume_desc desc;
796 	struct ubi_volume *vol = ubi->volumes[vol_id];
797 	int err, old_reserved_pebs = vol->reserved_pebs;
798 
799 	if (ubi->ro_mode) {
800 		ubi_warn(ubi, "skip auto-resize because of R/O mode");
801 		return 0;
802 	}
803 
804 	/*
805 	 * Clear the auto-resize flag in the volume in-memory copy of the
806 	 * volume table, and 'ubi_resize_volume()' will propagate this change
807 	 * to the flash.
808 	 */
809 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
810 
811 	if (ubi->avail_pebs == 0) {
812 		struct ubi_vtbl_record vtbl_rec;
813 
814 		/*
815 		 * No available PEBs to re-size the volume, clear the flag on
816 		 * flash and exit.
817 		 */
818 		vtbl_rec = ubi->vtbl[vol_id];
819 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
820 		if (err)
821 			ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
822 				vol_id);
823 	} else {
824 		desc.vol = vol;
825 		err = ubi_resize_volume(&desc,
826 					old_reserved_pebs + ubi->avail_pebs);
827 		if (err)
828 			ubi_err(ubi, "cannot auto-resize volume %d",
829 				vol_id);
830 	}
831 
832 	if (err)
833 		return err;
834 
835 	ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
836 		vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
837 	return 0;
838 }
839 
840 /**
841  * ubi_attach_mtd_dev - attach an MTD device.
842  * @mtd: MTD device description object
843  * @ubi_num: number to assign to the new UBI device
844  * @vid_hdr_offset: VID header offset
845  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
846  *
847  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
848  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
849  * which case this function finds a vacant device number and assigns it
850  * automatically. Returns the new UBI device number in case of success and a
851  * negative error code in case of failure.
852  *
853  * Note, the invocations of this function has to be serialized by the
854  * @ubi_devices_mutex.
855  */
856 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
857 		       int vid_hdr_offset, int max_beb_per1024)
858 {
859 	struct ubi_device *ubi;
860 	int i, err, ref = 0;
861 
862 	if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
863 		return -EINVAL;
864 
865 	if (!max_beb_per1024)
866 		max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
867 
868 	/*
869 	 * Check if we already have the same MTD device attached.
870 	 *
871 	 * Note, this function assumes that UBI devices creations and deletions
872 	 * are serialized, so it does not take the &ubi_devices_lock.
873 	 */
874 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
875 		ubi = ubi_devices[i];
876 		if (ubi && mtd->index == ubi->mtd->index) {
877 			pr_err("ubi: mtd%d is already attached to ubi%d",
878 				mtd->index, i);
879 			return -EEXIST;
880 		}
881 	}
882 
883 	/*
884 	 * Make sure this MTD device is not emulated on top of an UBI volume
885 	 * already. Well, generally this recursion works fine, but there are
886 	 * different problems like the UBI module takes a reference to itself
887 	 * by attaching (and thus, opening) the emulated MTD device. This
888 	 * results in inability to unload the module. And in general it makes
889 	 * no sense to attach emulated MTD devices, so we prohibit this.
890 	 */
891 	if (mtd->type == MTD_UBIVOLUME) {
892 		pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI",
893 			mtd->index);
894 		return -EINVAL;
895 	}
896 
897 	if (ubi_num == UBI_DEV_NUM_AUTO) {
898 		/* Search for an empty slot in the @ubi_devices array */
899 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
900 			if (!ubi_devices[ubi_num])
901 				break;
902 		if (ubi_num == UBI_MAX_DEVICES) {
903 			pr_err("ubi: only %d UBI devices may be created",
904 				UBI_MAX_DEVICES);
905 			return -ENFILE;
906 		}
907 	} else {
908 		if (ubi_num >= UBI_MAX_DEVICES)
909 			return -EINVAL;
910 
911 		/* Make sure ubi_num is not busy */
912 		if (ubi_devices[ubi_num]) {
913 			pr_err("ubi: ubi%i already exists", ubi_num);
914 			return -EEXIST;
915 		}
916 	}
917 
918 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
919 	if (!ubi)
920 		return -ENOMEM;
921 
922 	ubi->mtd = mtd;
923 	ubi->ubi_num = ubi_num;
924 	ubi->vid_hdr_offset = vid_hdr_offset;
925 	ubi->autoresize_vol_id = -1;
926 
927 #ifdef CONFIG_MTD_UBI_FASTMAP
928 	ubi->fm_pool.used = ubi->fm_pool.size = 0;
929 	ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
930 
931 	/*
932 	 * fm_pool.max_size is 5% of the total number of PEBs but it's also
933 	 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
934 	 */
935 	ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
936 		ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
937 	ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
938 		UBI_FM_MIN_POOL_SIZE);
939 
940 	ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
941 	ubi->fm_disabled = !fm_autoconvert;
942 	if (fm_debug)
943 		ubi_enable_dbg_chk_fastmap(ubi);
944 
945 	if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
946 	    <= UBI_FM_MAX_START) {
947 		ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
948 			UBI_FM_MAX_START);
949 		ubi->fm_disabled = 1;
950 	}
951 
952 	ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
953 	ubi_msg(ubi, "default fastmap WL pool size: %d",
954 		ubi->fm_wl_pool.max_size);
955 #else
956 	ubi->fm_disabled = 1;
957 #endif
958 	mutex_init(&ubi->buf_mutex);
959 	mutex_init(&ubi->ckvol_mutex);
960 	mutex_init(&ubi->device_mutex);
961 	spin_lock_init(&ubi->volumes_lock);
962 	init_rwsem(&ubi->fm_protect);
963 	init_rwsem(&ubi->fm_eba_sem);
964 
965 	ubi_msg(ubi, "attaching mtd%d", mtd->index);
966 
967 	err = io_init(ubi, max_beb_per1024);
968 	if (err)
969 		goto out_free;
970 
971 	err = -ENOMEM;
972 	ubi->peb_buf = vmalloc(ubi->peb_size);
973 	if (!ubi->peb_buf)
974 		goto out_free;
975 
976 #ifdef CONFIG_MTD_UBI_FASTMAP
977 	ubi->fm_size = ubi_calc_fm_size(ubi);
978 	ubi->fm_buf = vzalloc(ubi->fm_size);
979 	if (!ubi->fm_buf)
980 		goto out_free;
981 #endif
982 	err = ubi_attach(ubi, 0);
983 	if (err) {
984 		ubi_err(ubi, "failed to attach mtd%d, error %d",
985 			mtd->index, err);
986 		goto out_free;
987 	}
988 
989 	if (ubi->autoresize_vol_id != -1) {
990 		err = autoresize(ubi, ubi->autoresize_vol_id);
991 		if (err)
992 			goto out_detach;
993 	}
994 
995 	/* Make device "available" before it becomes accessible via sysfs */
996 	ubi_devices[ubi_num] = ubi;
997 
998 	err = uif_init(ubi, &ref);
999 	if (err)
1000 		goto out_detach;
1001 
1002 	err = ubi_debugfs_init_dev(ubi);
1003 	if (err)
1004 		goto out_uif;
1005 
1006 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1007 	if (IS_ERR(ubi->bgt_thread)) {
1008 		err = PTR_ERR(ubi->bgt_thread);
1009 		ubi_err(ubi, "cannot spawn \"%s\", error %d",
1010 			ubi->bgt_name, err);
1011 		goto out_debugfs;
1012 	}
1013 
1014 	ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1015 		mtd->index, mtd->name, ubi->flash_size >> 20);
1016 	ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1017 		ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1018 	ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1019 		ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1020 	ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1021 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1022 	ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1023 		ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1024 	ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1025 		ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1026 		ubi->vtbl_slots);
1027 	ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1028 		ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1029 		ubi->image_seq);
1030 	ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1031 		ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1032 
1033 	/*
1034 	 * The below lock makes sure we do not race with 'ubi_thread()' which
1035 	 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1036 	 */
1037 	spin_lock(&ubi->wl_lock);
1038 	ubi->thread_enabled = 1;
1039 	wake_up_process(ubi->bgt_thread);
1040 	spin_unlock(&ubi->wl_lock);
1041 
1042 	ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1043 	return ubi_num;
1044 
1045 out_debugfs:
1046 	ubi_debugfs_exit_dev(ubi);
1047 out_uif:
1048 	get_device(&ubi->dev);
1049 	ubi_assert(ref);
1050 	uif_close(ubi);
1051 out_detach:
1052 	ubi_devices[ubi_num] = NULL;
1053 	ubi_wl_close(ubi);
1054 	ubi_free_internal_volumes(ubi);
1055 	vfree(ubi->vtbl);
1056 out_free:
1057 	vfree(ubi->peb_buf);
1058 	vfree(ubi->fm_buf);
1059 	if (ref)
1060 		put_device(&ubi->dev);
1061 	else
1062 		kfree(ubi);
1063 	return err;
1064 }
1065 
1066 /**
1067  * ubi_detach_mtd_dev - detach an MTD device.
1068  * @ubi_num: UBI device number to detach from
1069  * @anyway: detach MTD even if device reference count is not zero
1070  *
1071  * This function destroys an UBI device number @ubi_num and detaches the
1072  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1073  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1074  * exist.
1075  *
1076  * Note, the invocations of this function has to be serialized by the
1077  * @ubi_devices_mutex.
1078  */
1079 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1080 {
1081 	struct ubi_device *ubi;
1082 
1083 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1084 		return -EINVAL;
1085 
1086 	ubi = ubi_get_device(ubi_num);
1087 	if (!ubi)
1088 		return -EINVAL;
1089 
1090 	spin_lock(&ubi_devices_lock);
1091 	put_device(&ubi->dev);
1092 	ubi->ref_count -= 1;
1093 	if (ubi->ref_count) {
1094 		if (!anyway) {
1095 			spin_unlock(&ubi_devices_lock);
1096 			return -EBUSY;
1097 		}
1098 		/* This may only happen if there is a bug */
1099 		ubi_err(ubi, "%s reference count %d, destroy anyway",
1100 			ubi->ubi_name, ubi->ref_count);
1101 	}
1102 	ubi_devices[ubi_num] = NULL;
1103 	spin_unlock(&ubi_devices_lock);
1104 
1105 	ubi_assert(ubi_num == ubi->ubi_num);
1106 	ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1107 	ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1108 #ifdef CONFIG_MTD_UBI_FASTMAP
1109 	/* If we don't write a new fastmap at detach time we lose all
1110 	 * EC updates that have been made since the last written fastmap.
1111 	 * In case of fastmap debugging we omit the update to simulate an
1112 	 * unclean shutdown. */
1113 	if (!ubi_dbg_chk_fastmap(ubi))
1114 		ubi_update_fastmap(ubi);
1115 #endif
1116 	/*
1117 	 * Before freeing anything, we have to stop the background thread to
1118 	 * prevent it from doing anything on this device while we are freeing.
1119 	 */
1120 	if (ubi->bgt_thread)
1121 		kthread_stop(ubi->bgt_thread);
1122 
1123 	/*
1124 	 * Get a reference to the device in order to prevent 'dev_release()'
1125 	 * from freeing the @ubi object.
1126 	 */
1127 	get_device(&ubi->dev);
1128 
1129 	ubi_debugfs_exit_dev(ubi);
1130 	uif_close(ubi);
1131 
1132 	ubi_wl_close(ubi);
1133 	ubi_free_internal_volumes(ubi);
1134 	vfree(ubi->vtbl);
1135 	put_mtd_device(ubi->mtd);
1136 	vfree(ubi->peb_buf);
1137 	vfree(ubi->fm_buf);
1138 	ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1139 	put_device(&ubi->dev);
1140 	return 0;
1141 }
1142 
1143 /**
1144  * open_mtd_by_chdev - open an MTD device by its character device node path.
1145  * @mtd_dev: MTD character device node path
1146  *
1147  * This helper function opens an MTD device by its character node device path.
1148  * Returns MTD device description object in case of success and a negative
1149  * error code in case of failure.
1150  */
1151 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1152 {
1153 	int err, minor;
1154 	struct path path;
1155 	struct kstat stat;
1156 
1157 	/* Probably this is an MTD character device node path */
1158 	err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1159 	if (err)
1160 		return ERR_PTR(err);
1161 
1162 	err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1163 	path_put(&path);
1164 	if (err)
1165 		return ERR_PTR(err);
1166 
1167 	/* MTD device number is defined by the major / minor numbers */
1168 	if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1169 		return ERR_PTR(-EINVAL);
1170 
1171 	minor = MINOR(stat.rdev);
1172 
1173 	if (minor & 1)
1174 		/*
1175 		 * Just do not think the "/dev/mtdrX" devices support is need,
1176 		 * so do not support them to avoid doing extra work.
1177 		 */
1178 		return ERR_PTR(-EINVAL);
1179 
1180 	return get_mtd_device(NULL, minor / 2);
1181 }
1182 
1183 /**
1184  * open_mtd_device - open MTD device by name, character device path, or number.
1185  * @mtd_dev: name, character device node path, or MTD device device number
1186  *
1187  * This function tries to open and MTD device described by @mtd_dev string,
1188  * which is first treated as ASCII MTD device number, and if it is not true, it
1189  * is treated as MTD device name, and if that is also not true, it is treated
1190  * as MTD character device node path. Returns MTD device description object in
1191  * case of success and a negative error code in case of failure.
1192  */
1193 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1194 {
1195 	struct mtd_info *mtd;
1196 	int mtd_num;
1197 	char *endp;
1198 
1199 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1200 	if (*endp != '\0' || mtd_dev == endp) {
1201 		/*
1202 		 * This does not look like an ASCII integer, probably this is
1203 		 * MTD device name.
1204 		 */
1205 		mtd = get_mtd_device_nm(mtd_dev);
1206 		if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1207 			/* Probably this is an MTD character device node path */
1208 			mtd = open_mtd_by_chdev(mtd_dev);
1209 	} else
1210 		mtd = get_mtd_device(NULL, mtd_num);
1211 
1212 	return mtd;
1213 }
1214 
1215 static int __init ubi_init(void)
1216 {
1217 	int err, i, k;
1218 
1219 	/* Ensure that EC and VID headers have correct size */
1220 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1221 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1222 
1223 	if (mtd_devs > UBI_MAX_DEVICES) {
1224 		pr_err("UBI error: too many MTD devices, maximum is %d",
1225 		       UBI_MAX_DEVICES);
1226 		return -EINVAL;
1227 	}
1228 
1229 	/* Create base sysfs directory and sysfs files */
1230 	err = class_register(&ubi_class);
1231 	if (err < 0)
1232 		return err;
1233 
1234 	err = misc_register(&ubi_ctrl_cdev);
1235 	if (err) {
1236 		pr_err("UBI error: cannot register device");
1237 		goto out;
1238 	}
1239 
1240 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1241 					      sizeof(struct ubi_wl_entry),
1242 					      0, 0, NULL);
1243 	if (!ubi_wl_entry_slab) {
1244 		err = -ENOMEM;
1245 		goto out_dev_unreg;
1246 	}
1247 
1248 	err = ubi_debugfs_init();
1249 	if (err)
1250 		goto out_slab;
1251 
1252 
1253 	/* Attach MTD devices */
1254 	for (i = 0; i < mtd_devs; i++) {
1255 		struct mtd_dev_param *p = &mtd_dev_param[i];
1256 		struct mtd_info *mtd;
1257 
1258 		cond_resched();
1259 
1260 		mtd = open_mtd_device(p->name);
1261 		if (IS_ERR(mtd)) {
1262 			err = PTR_ERR(mtd);
1263 			pr_err("UBI error: cannot open mtd %s, error %d",
1264 			       p->name, err);
1265 			/* See comment below re-ubi_is_module(). */
1266 			if (ubi_is_module())
1267 				goto out_detach;
1268 			continue;
1269 		}
1270 
1271 		mutex_lock(&ubi_devices_mutex);
1272 		err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1273 					 p->vid_hdr_offs, p->max_beb_per1024);
1274 		mutex_unlock(&ubi_devices_mutex);
1275 		if (err < 0) {
1276 			pr_err("UBI error: cannot attach mtd%d",
1277 			       mtd->index);
1278 			put_mtd_device(mtd);
1279 
1280 			/*
1281 			 * Originally UBI stopped initializing on any error.
1282 			 * However, later on it was found out that this
1283 			 * behavior is not very good when UBI is compiled into
1284 			 * the kernel and the MTD devices to attach are passed
1285 			 * through the command line. Indeed, UBI failure
1286 			 * stopped whole boot sequence.
1287 			 *
1288 			 * To fix this, we changed the behavior for the
1289 			 * non-module case, but preserved the old behavior for
1290 			 * the module case, just for compatibility. This is a
1291 			 * little inconsistent, though.
1292 			 */
1293 			if (ubi_is_module())
1294 				goto out_detach;
1295 		}
1296 	}
1297 
1298 	err = ubiblock_init();
1299 	if (err) {
1300 		pr_err("UBI error: block: cannot initialize, error %d", err);
1301 
1302 		/* See comment above re-ubi_is_module(). */
1303 		if (ubi_is_module())
1304 			goto out_detach;
1305 	}
1306 
1307 	return 0;
1308 
1309 out_detach:
1310 	for (k = 0; k < i; k++)
1311 		if (ubi_devices[k]) {
1312 			mutex_lock(&ubi_devices_mutex);
1313 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1314 			mutex_unlock(&ubi_devices_mutex);
1315 		}
1316 	ubi_debugfs_exit();
1317 out_slab:
1318 	kmem_cache_destroy(ubi_wl_entry_slab);
1319 out_dev_unreg:
1320 	misc_deregister(&ubi_ctrl_cdev);
1321 out:
1322 	class_unregister(&ubi_class);
1323 	pr_err("UBI error: cannot initialize UBI, error %d", err);
1324 	return err;
1325 }
1326 late_initcall(ubi_init);
1327 
1328 static void __exit ubi_exit(void)
1329 {
1330 	int i;
1331 
1332 	ubiblock_exit();
1333 
1334 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1335 		if (ubi_devices[i]) {
1336 			mutex_lock(&ubi_devices_mutex);
1337 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1338 			mutex_unlock(&ubi_devices_mutex);
1339 		}
1340 	ubi_debugfs_exit();
1341 	kmem_cache_destroy(ubi_wl_entry_slab);
1342 	misc_deregister(&ubi_ctrl_cdev);
1343 	class_unregister(&ubi_class);
1344 }
1345 module_exit(ubi_exit);
1346 
1347 /**
1348  * bytes_str_to_int - convert a number of bytes string into an integer.
1349  * @str: the string to convert
1350  *
1351  * This function returns positive resulting integer in case of success and a
1352  * negative error code in case of failure.
1353  */
1354 static int __init bytes_str_to_int(const char *str)
1355 {
1356 	char *endp;
1357 	unsigned long result;
1358 
1359 	result = simple_strtoul(str, &endp, 0);
1360 	if (str == endp || result >= INT_MAX) {
1361 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1362 		return -EINVAL;
1363 	}
1364 
1365 	switch (*endp) {
1366 	case 'G':
1367 		result *= 1024;
1368 	case 'M':
1369 		result *= 1024;
1370 	case 'K':
1371 		result *= 1024;
1372 		if (endp[1] == 'i' && endp[2] == 'B')
1373 			endp += 2;
1374 	case '\0':
1375 		break;
1376 	default:
1377 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1378 		return -EINVAL;
1379 	}
1380 
1381 	return result;
1382 }
1383 
1384 /**
1385  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1386  * @val: the parameter value to parse
1387  * @kp: not used
1388  *
1389  * This function returns zero in case of success and a negative error code in
1390  * case of error.
1391  */
1392 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1393 {
1394 	int i, len;
1395 	struct mtd_dev_param *p;
1396 	char buf[MTD_PARAM_LEN_MAX];
1397 	char *pbuf = &buf[0];
1398 	char *tokens[MTD_PARAM_MAX_COUNT], *token;
1399 
1400 	if (!val)
1401 		return -EINVAL;
1402 
1403 	if (mtd_devs == UBI_MAX_DEVICES) {
1404 		pr_err("UBI error: too many parameters, max. is %d\n",
1405 		       UBI_MAX_DEVICES);
1406 		return -EINVAL;
1407 	}
1408 
1409 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1410 	if (len == MTD_PARAM_LEN_MAX) {
1411 		pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1412 		       val, MTD_PARAM_LEN_MAX);
1413 		return -EINVAL;
1414 	}
1415 
1416 	if (len == 0) {
1417 		pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1418 		return 0;
1419 	}
1420 
1421 	strcpy(buf, val);
1422 
1423 	/* Get rid of the final newline */
1424 	if (buf[len - 1] == '\n')
1425 		buf[len - 1] = '\0';
1426 
1427 	for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1428 		tokens[i] = strsep(&pbuf, ",");
1429 
1430 	if (pbuf) {
1431 		pr_err("UBI error: too many arguments at \"%s\"\n", val);
1432 		return -EINVAL;
1433 	}
1434 
1435 	p = &mtd_dev_param[mtd_devs];
1436 	strcpy(&p->name[0], tokens[0]);
1437 
1438 	token = tokens[1];
1439 	if (token) {
1440 		p->vid_hdr_offs = bytes_str_to_int(token);
1441 
1442 		if (p->vid_hdr_offs < 0)
1443 			return p->vid_hdr_offs;
1444 	}
1445 
1446 	token = tokens[2];
1447 	if (token) {
1448 		int err = kstrtoint(token, 10, &p->max_beb_per1024);
1449 
1450 		if (err) {
1451 			pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1452 			       token);
1453 			return -EINVAL;
1454 		}
1455 	}
1456 
1457 	token = tokens[3];
1458 	if (token) {
1459 		int err = kstrtoint(token, 10, &p->ubi_num);
1460 
1461 		if (err) {
1462 			pr_err("UBI error: bad value for ubi_num parameter: %s",
1463 			       token);
1464 			return -EINVAL;
1465 		}
1466 	} else
1467 		p->ubi_num = UBI_DEV_NUM_AUTO;
1468 
1469 	mtd_devs += 1;
1470 	return 0;
1471 }
1472 
1473 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1474 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1475 		      "Multiple \"mtd\" parameters may be specified.\n"
1476 		      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1477 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1478 		      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1479 		      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1480 		      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1481 		      "\n"
1482 		      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1483 		      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1484 		      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1485 		      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1486 		      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1487 #ifdef CONFIG_MTD_UBI_FASTMAP
1488 module_param(fm_autoconvert, bool, 0644);
1489 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1490 module_param(fm_debug, bool, 0);
1491 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1492 #endif
1493 MODULE_VERSION(__stringify(UBI_VERSION));
1494 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1495 MODULE_AUTHOR("Artem Bityutskiy");
1496 MODULE_LICENSE("GPL");
1497