1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём), 7 * Frank Haverkamp 8 */ 9 10 /* 11 * This file includes UBI initialization and building of UBI devices. 12 * 13 * When UBI is initialized, it attaches all the MTD devices specified as the 14 * module load parameters or the kernel boot parameters. If MTD devices were 15 * specified, UBI does not attach any MTD device, but it is possible to do 16 * later using the "UBI control device". 17 */ 18 19 #include <linux/err.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/stringify.h> 23 #include <linux/namei.h> 24 #include <linux/stat.h> 25 #include <linux/miscdevice.h> 26 #include <linux/mtd/partitions.h> 27 #include <linux/log2.h> 28 #include <linux/kthread.h> 29 #include <linux/kernel.h> 30 #include <linux/slab.h> 31 #include <linux/major.h> 32 #include "ubi.h" 33 34 /* Maximum length of the 'mtd=' parameter */ 35 #define MTD_PARAM_LEN_MAX 64 36 37 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 38 #define MTD_PARAM_MAX_COUNT 5 39 40 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 41 #define MAX_MTD_UBI_BEB_LIMIT 768 42 43 #ifdef CONFIG_MTD_UBI_MODULE 44 #define ubi_is_module() 1 45 #else 46 #define ubi_is_module() 0 47 #endif 48 49 /** 50 * struct mtd_dev_param - MTD device parameter description data structure. 51 * @name: MTD character device node path, MTD device name, or MTD device number 52 * string 53 * @ubi_num: UBI number 54 * @vid_hdr_offs: VID header offset 55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 56 * @enable_fm: enable fastmap when value is non-zero 57 */ 58 struct mtd_dev_param { 59 char name[MTD_PARAM_LEN_MAX]; 60 int ubi_num; 61 int vid_hdr_offs; 62 int max_beb_per1024; 63 int enable_fm; 64 }; 65 66 /* Numbers of elements set in the @mtd_dev_param array */ 67 static int mtd_devs; 68 69 /* MTD devices specification parameters */ 70 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 71 #ifdef CONFIG_MTD_UBI_FASTMAP 72 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 73 static bool fm_autoconvert; 74 static bool fm_debug; 75 #endif 76 77 /* Slab cache for wear-leveling entries */ 78 struct kmem_cache *ubi_wl_entry_slab; 79 80 /* UBI control character device */ 81 static struct miscdevice ubi_ctrl_cdev = { 82 .minor = MISC_DYNAMIC_MINOR, 83 .name = "ubi_ctrl", 84 .fops = &ubi_ctrl_cdev_operations, 85 }; 86 87 /* All UBI devices in system */ 88 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 89 90 /* Serializes UBI devices creations and removals */ 91 DEFINE_MUTEX(ubi_devices_mutex); 92 93 /* Protects @ubi_devices and @ubi->ref_count */ 94 static DEFINE_SPINLOCK(ubi_devices_lock); 95 96 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 97 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 98 static ssize_t version_show(const struct class *class, const struct class_attribute *attr, 99 char *buf) 100 { 101 return sprintf(buf, "%d\n", UBI_VERSION); 102 } 103 static CLASS_ATTR_RO(version); 104 105 static struct attribute *ubi_class_attrs[] = { 106 &class_attr_version.attr, 107 NULL, 108 }; 109 ATTRIBUTE_GROUPS(ubi_class); 110 111 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 112 struct class ubi_class = { 113 .name = UBI_NAME_STR, 114 .class_groups = ubi_class_groups, 115 }; 116 117 static ssize_t dev_attribute_show(struct device *dev, 118 struct device_attribute *attr, char *buf); 119 120 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 121 static struct device_attribute dev_eraseblock_size = 122 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 123 static struct device_attribute dev_avail_eraseblocks = 124 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 125 static struct device_attribute dev_total_eraseblocks = 126 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 127 static struct device_attribute dev_volumes_count = 128 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 129 static struct device_attribute dev_max_ec = 130 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 131 static struct device_attribute dev_reserved_for_bad = 132 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 133 static struct device_attribute dev_bad_peb_count = 134 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 135 static struct device_attribute dev_max_vol_count = 136 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 137 static struct device_attribute dev_min_io_size = 138 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 139 static struct device_attribute dev_bgt_enabled = 140 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 141 static struct device_attribute dev_mtd_num = 142 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 143 static struct device_attribute dev_ro_mode = 144 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 145 146 /** 147 * ubi_volume_notify - send a volume change notification. 148 * @ubi: UBI device description object 149 * @vol: volume description object of the changed volume 150 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 151 * 152 * This is a helper function which notifies all subscribers about a volume 153 * change event (creation, removal, re-sizing, re-naming, updating). Returns 154 * zero in case of success and a negative error code in case of failure. 155 */ 156 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 157 { 158 int ret; 159 struct ubi_notification nt; 160 161 ubi_do_get_device_info(ubi, &nt.di); 162 ubi_do_get_volume_info(ubi, vol, &nt.vi); 163 164 switch (ntype) { 165 case UBI_VOLUME_ADDED: 166 case UBI_VOLUME_REMOVED: 167 case UBI_VOLUME_RESIZED: 168 case UBI_VOLUME_RENAMED: 169 ret = ubi_update_fastmap(ubi); 170 if (ret) 171 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 172 } 173 174 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 175 } 176 177 /** 178 * ubi_notify_all - send a notification to all volumes. 179 * @ubi: UBI device description object 180 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 181 * @nb: the notifier to call 182 * 183 * This function walks all volumes of UBI device @ubi and sends the @ntype 184 * notification for each volume. If @nb is %NULL, then all registered notifiers 185 * are called, otherwise only the @nb notifier is called. Returns the number of 186 * sent notifications. 187 */ 188 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 189 { 190 struct ubi_notification nt; 191 int i, count = 0; 192 193 ubi_do_get_device_info(ubi, &nt.di); 194 195 mutex_lock(&ubi->device_mutex); 196 for (i = 0; i < ubi->vtbl_slots; i++) { 197 /* 198 * Since the @ubi->device is locked, and we are not going to 199 * change @ubi->volumes, we do not have to lock 200 * @ubi->volumes_lock. 201 */ 202 if (!ubi->volumes[i]) 203 continue; 204 205 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 206 if (nb) 207 nb->notifier_call(nb, ntype, &nt); 208 else 209 blocking_notifier_call_chain(&ubi_notifiers, ntype, 210 &nt); 211 count += 1; 212 } 213 mutex_unlock(&ubi->device_mutex); 214 215 return count; 216 } 217 218 /** 219 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 220 * @nb: the notifier to call 221 * 222 * This function walks all UBI devices and volumes and sends the 223 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 224 * registered notifiers are called, otherwise only the @nb notifier is called. 225 * Returns the number of sent notifications. 226 */ 227 int ubi_enumerate_volumes(struct notifier_block *nb) 228 { 229 int i, count = 0; 230 231 /* 232 * Since the @ubi_devices_mutex is locked, and we are not going to 233 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 234 */ 235 for (i = 0; i < UBI_MAX_DEVICES; i++) { 236 struct ubi_device *ubi = ubi_devices[i]; 237 238 if (!ubi) 239 continue; 240 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 241 } 242 243 return count; 244 } 245 246 /** 247 * ubi_get_device - get UBI device. 248 * @ubi_num: UBI device number 249 * 250 * This function returns UBI device description object for UBI device number 251 * @ubi_num, or %NULL if the device does not exist. This function increases the 252 * device reference count to prevent removal of the device. In other words, the 253 * device cannot be removed if its reference count is not zero. 254 */ 255 struct ubi_device *ubi_get_device(int ubi_num) 256 { 257 struct ubi_device *ubi; 258 259 spin_lock(&ubi_devices_lock); 260 ubi = ubi_devices[ubi_num]; 261 if (ubi) { 262 ubi_assert(ubi->ref_count >= 0); 263 ubi->ref_count += 1; 264 get_device(&ubi->dev); 265 } 266 spin_unlock(&ubi_devices_lock); 267 268 return ubi; 269 } 270 271 /** 272 * ubi_put_device - drop an UBI device reference. 273 * @ubi: UBI device description object 274 */ 275 void ubi_put_device(struct ubi_device *ubi) 276 { 277 spin_lock(&ubi_devices_lock); 278 ubi->ref_count -= 1; 279 put_device(&ubi->dev); 280 spin_unlock(&ubi_devices_lock); 281 } 282 283 /** 284 * ubi_get_by_major - get UBI device by character device major number. 285 * @major: major number 286 * 287 * This function is similar to 'ubi_get_device()', but it searches the device 288 * by its major number. 289 */ 290 struct ubi_device *ubi_get_by_major(int major) 291 { 292 int i; 293 struct ubi_device *ubi; 294 295 spin_lock(&ubi_devices_lock); 296 for (i = 0; i < UBI_MAX_DEVICES; i++) { 297 ubi = ubi_devices[i]; 298 if (ubi && MAJOR(ubi->cdev.dev) == major) { 299 ubi_assert(ubi->ref_count >= 0); 300 ubi->ref_count += 1; 301 get_device(&ubi->dev); 302 spin_unlock(&ubi_devices_lock); 303 return ubi; 304 } 305 } 306 spin_unlock(&ubi_devices_lock); 307 308 return NULL; 309 } 310 311 /** 312 * ubi_major2num - get UBI device number by character device major number. 313 * @major: major number 314 * 315 * This function searches UBI device number object by its major number. If UBI 316 * device was not found, this function returns -ENODEV, otherwise the UBI device 317 * number is returned. 318 */ 319 int ubi_major2num(int major) 320 { 321 int i, ubi_num = -ENODEV; 322 323 spin_lock(&ubi_devices_lock); 324 for (i = 0; i < UBI_MAX_DEVICES; i++) { 325 struct ubi_device *ubi = ubi_devices[i]; 326 327 if (ubi && MAJOR(ubi->cdev.dev) == major) { 328 ubi_num = ubi->ubi_num; 329 break; 330 } 331 } 332 spin_unlock(&ubi_devices_lock); 333 334 return ubi_num; 335 } 336 337 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 338 static ssize_t dev_attribute_show(struct device *dev, 339 struct device_attribute *attr, char *buf) 340 { 341 ssize_t ret; 342 struct ubi_device *ubi; 343 344 /* 345 * The below code looks weird, but it actually makes sense. We get the 346 * UBI device reference from the contained 'struct ubi_device'. But it 347 * is unclear if the device was removed or not yet. Indeed, if the 348 * device was removed before we increased its reference count, 349 * 'ubi_get_device()' will return -ENODEV and we fail. 350 * 351 * Remember, 'struct ubi_device' is freed in the release function, so 352 * we still can use 'ubi->ubi_num'. 353 */ 354 ubi = container_of(dev, struct ubi_device, dev); 355 356 if (attr == &dev_eraseblock_size) 357 ret = sprintf(buf, "%d\n", ubi->leb_size); 358 else if (attr == &dev_avail_eraseblocks) 359 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 360 else if (attr == &dev_total_eraseblocks) 361 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 362 else if (attr == &dev_volumes_count) 363 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 364 else if (attr == &dev_max_ec) 365 ret = sprintf(buf, "%d\n", ubi->max_ec); 366 else if (attr == &dev_reserved_for_bad) 367 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 368 else if (attr == &dev_bad_peb_count) 369 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 370 else if (attr == &dev_max_vol_count) 371 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 372 else if (attr == &dev_min_io_size) 373 ret = sprintf(buf, "%d\n", ubi->min_io_size); 374 else if (attr == &dev_bgt_enabled) 375 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 376 else if (attr == &dev_mtd_num) 377 ret = sprintf(buf, "%d\n", ubi->mtd->index); 378 else if (attr == &dev_ro_mode) 379 ret = sprintf(buf, "%d\n", ubi->ro_mode); 380 else 381 ret = -EINVAL; 382 383 return ret; 384 } 385 386 static struct attribute *ubi_dev_attrs[] = { 387 &dev_eraseblock_size.attr, 388 &dev_avail_eraseblocks.attr, 389 &dev_total_eraseblocks.attr, 390 &dev_volumes_count.attr, 391 &dev_max_ec.attr, 392 &dev_reserved_for_bad.attr, 393 &dev_bad_peb_count.attr, 394 &dev_max_vol_count.attr, 395 &dev_min_io_size.attr, 396 &dev_bgt_enabled.attr, 397 &dev_mtd_num.attr, 398 &dev_ro_mode.attr, 399 NULL 400 }; 401 ATTRIBUTE_GROUPS(ubi_dev); 402 403 static void dev_release(struct device *dev) 404 { 405 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 406 407 kfree(ubi); 408 } 409 410 /** 411 * kill_volumes - destroy all user volumes. 412 * @ubi: UBI device description object 413 */ 414 static void kill_volumes(struct ubi_device *ubi) 415 { 416 int i; 417 418 for (i = 0; i < ubi->vtbl_slots; i++) 419 if (ubi->volumes[i]) 420 ubi_free_volume(ubi, ubi->volumes[i]); 421 } 422 423 /** 424 * uif_init - initialize user interfaces for an UBI device. 425 * @ubi: UBI device description object 426 * 427 * This function initializes various user interfaces for an UBI device. If the 428 * initialization fails at an early stage, this function frees all the 429 * resources it allocated, returns an error. 430 * 431 * This function returns zero in case of success and a negative error code in 432 * case of failure. 433 */ 434 static int uif_init(struct ubi_device *ubi) 435 { 436 int i, err; 437 dev_t dev; 438 439 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 440 441 /* 442 * Major numbers for the UBI character devices are allocated 443 * dynamically. Major numbers of volume character devices are 444 * equivalent to ones of the corresponding UBI character device. Minor 445 * numbers of UBI character devices are 0, while minor numbers of 446 * volume character devices start from 1. Thus, we allocate one major 447 * number and ubi->vtbl_slots + 1 minor numbers. 448 */ 449 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 450 if (err) { 451 ubi_err(ubi, "cannot register UBI character devices"); 452 return err; 453 } 454 455 ubi->dev.devt = dev; 456 457 ubi_assert(MINOR(dev) == 0); 458 cdev_init(&ubi->cdev, &ubi_cdev_operations); 459 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 460 ubi->cdev.owner = THIS_MODULE; 461 462 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 463 err = cdev_device_add(&ubi->cdev, &ubi->dev); 464 if (err) 465 goto out_unreg; 466 467 for (i = 0; i < ubi->vtbl_slots; i++) 468 if (ubi->volumes[i]) { 469 err = ubi_add_volume(ubi, ubi->volumes[i]); 470 if (err) { 471 ubi_err(ubi, "cannot add volume %d", i); 472 ubi->volumes[i] = NULL; 473 goto out_volumes; 474 } 475 } 476 477 return 0; 478 479 out_volumes: 480 kill_volumes(ubi); 481 cdev_device_del(&ubi->cdev, &ubi->dev); 482 out_unreg: 483 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 484 ubi_err(ubi, "cannot initialize UBI %s, error %d", 485 ubi->ubi_name, err); 486 return err; 487 } 488 489 /** 490 * uif_close - close user interfaces for an UBI device. 491 * @ubi: UBI device description object 492 * 493 * Note, since this function un-registers UBI volume device objects (@vol->dev), 494 * the memory allocated voe the volumes is freed as well (in the release 495 * function). 496 */ 497 static void uif_close(struct ubi_device *ubi) 498 { 499 kill_volumes(ubi); 500 cdev_device_del(&ubi->cdev, &ubi->dev); 501 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 502 } 503 504 /** 505 * ubi_free_volumes_from - free volumes from specific index. 506 * @ubi: UBI device description object 507 * @from: the start index used for volume free. 508 */ 509 static void ubi_free_volumes_from(struct ubi_device *ubi, int from) 510 { 511 int i; 512 513 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 514 if (!ubi->volumes[i]) 515 continue; 516 ubi_eba_replace_table(ubi->volumes[i], NULL); 517 ubi_fastmap_destroy_checkmap(ubi->volumes[i]); 518 kfree(ubi->volumes[i]); 519 ubi->volumes[i] = NULL; 520 } 521 } 522 523 /** 524 * ubi_free_all_volumes - free all volumes. 525 * @ubi: UBI device description object 526 */ 527 void ubi_free_all_volumes(struct ubi_device *ubi) 528 { 529 ubi_free_volumes_from(ubi, 0); 530 } 531 532 /** 533 * ubi_free_internal_volumes - free internal volumes. 534 * @ubi: UBI device description object 535 */ 536 void ubi_free_internal_volumes(struct ubi_device *ubi) 537 { 538 ubi_free_volumes_from(ubi, ubi->vtbl_slots); 539 } 540 541 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 542 { 543 int limit, device_pebs; 544 uint64_t device_size; 545 546 if (!max_beb_per1024) { 547 /* 548 * Since max_beb_per1024 has not been set by the user in either 549 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the 550 * limit if it is supported by the device. 551 */ 552 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size); 553 if (limit < 0) 554 return 0; 555 return limit; 556 } 557 558 /* 559 * Here we are using size of the entire flash chip and 560 * not just the MTD partition size because the maximum 561 * number of bad eraseblocks is a percentage of the 562 * whole device and bad eraseblocks are not fairly 563 * distributed over the flash chip. So the worst case 564 * is that all the bad eraseblocks of the chip are in 565 * the MTD partition we are attaching (ubi->mtd). 566 */ 567 device_size = mtd_get_device_size(ubi->mtd); 568 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 569 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 570 571 /* Round it up */ 572 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 573 limit += 1; 574 575 return limit; 576 } 577 578 /** 579 * io_init - initialize I/O sub-system for a given UBI device. 580 * @ubi: UBI device description object 581 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 582 * 583 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 584 * assumed: 585 * o EC header is always at offset zero - this cannot be changed; 586 * o VID header starts just after the EC header at the closest address 587 * aligned to @io->hdrs_min_io_size; 588 * o data starts just after the VID header at the closest address aligned to 589 * @io->min_io_size 590 * 591 * This function returns zero in case of success and a negative error code in 592 * case of failure. 593 */ 594 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 595 { 596 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 597 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 598 599 if (ubi->mtd->numeraseregions != 0) { 600 /* 601 * Some flashes have several erase regions. Different regions 602 * may have different eraseblock size and other 603 * characteristics. It looks like mostly multi-region flashes 604 * have one "main" region and one or more small regions to 605 * store boot loader code or boot parameters or whatever. I 606 * guess we should just pick the largest region. But this is 607 * not implemented. 608 */ 609 ubi_err(ubi, "multiple regions, not implemented"); 610 return -EINVAL; 611 } 612 613 if (ubi->vid_hdr_offset < 0) 614 return -EINVAL; 615 616 /* 617 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 618 * physical eraseblocks maximum. 619 */ 620 621 ubi->peb_size = ubi->mtd->erasesize; 622 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 623 ubi->flash_size = ubi->mtd->size; 624 625 if (mtd_can_have_bb(ubi->mtd)) { 626 ubi->bad_allowed = 1; 627 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 628 } 629 630 if (ubi->mtd->type == MTD_NORFLASH) 631 ubi->nor_flash = 1; 632 633 ubi->min_io_size = ubi->mtd->writesize; 634 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 635 636 /* 637 * Make sure minimal I/O unit is power of 2. Note, there is no 638 * fundamental reason for this assumption. It is just an optimization 639 * which allows us to avoid costly division operations. 640 */ 641 if (!is_power_of_2(ubi->min_io_size)) { 642 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 643 ubi->min_io_size); 644 return -EINVAL; 645 } 646 647 ubi_assert(ubi->hdrs_min_io_size > 0); 648 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 649 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 650 651 ubi->max_write_size = ubi->mtd->writebufsize; 652 /* 653 * Maximum write size has to be greater or equivalent to min. I/O 654 * size, and be multiple of min. I/O size. 655 */ 656 if (ubi->max_write_size < ubi->min_io_size || 657 ubi->max_write_size % ubi->min_io_size || 658 !is_power_of_2(ubi->max_write_size)) { 659 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 660 ubi->max_write_size, ubi->min_io_size); 661 return -EINVAL; 662 } 663 664 /* Calculate default aligned sizes of EC and VID headers */ 665 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 666 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 667 668 dbg_gen("min_io_size %d", ubi->min_io_size); 669 dbg_gen("max_write_size %d", ubi->max_write_size); 670 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 671 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 672 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 673 674 if (ubi->vid_hdr_offset == 0) 675 /* Default offset */ 676 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 677 ubi->ec_hdr_alsize; 678 else { 679 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 680 ~(ubi->hdrs_min_io_size - 1); 681 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 682 ubi->vid_hdr_aloffset; 683 } 684 685 /* 686 * Memory allocation for VID header is ubi->vid_hdr_alsize 687 * which is described in comments in io.c. 688 * Make sure VID header shift + UBI_VID_HDR_SIZE not exceeds 689 * ubi->vid_hdr_alsize, so that all vid header operations 690 * won't access memory out of bounds. 691 */ 692 if ((ubi->vid_hdr_shift + UBI_VID_HDR_SIZE) > ubi->vid_hdr_alsize) { 693 ubi_err(ubi, "Invalid VID header offset %d, VID header shift(%d)" 694 " + VID header size(%zu) > VID header aligned size(%d).", 695 ubi->vid_hdr_offset, ubi->vid_hdr_shift, 696 UBI_VID_HDR_SIZE, ubi->vid_hdr_alsize); 697 return -EINVAL; 698 } 699 700 /* Similar for the data offset */ 701 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 702 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 703 704 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 705 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 706 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 707 dbg_gen("leb_start %d", ubi->leb_start); 708 709 /* The shift must be aligned to 32-bit boundary */ 710 if (ubi->vid_hdr_shift % 4) { 711 ubi_err(ubi, "unaligned VID header shift %d", 712 ubi->vid_hdr_shift); 713 return -EINVAL; 714 } 715 716 /* Check sanity */ 717 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 718 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 719 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 720 ubi->leb_start & (ubi->min_io_size - 1)) { 721 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 722 ubi->vid_hdr_offset, ubi->leb_start); 723 return -EINVAL; 724 } 725 726 /* 727 * Set maximum amount of physical erroneous eraseblocks to be 10%. 728 * Erroneous PEB are those which have read errors. 729 */ 730 ubi->max_erroneous = ubi->peb_count / 10; 731 if (ubi->max_erroneous < 16) 732 ubi->max_erroneous = 16; 733 dbg_gen("max_erroneous %d", ubi->max_erroneous); 734 735 /* 736 * It may happen that EC and VID headers are situated in one minimal 737 * I/O unit. In this case we can only accept this UBI image in 738 * read-only mode. 739 */ 740 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 741 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 742 ubi->ro_mode = 1; 743 } 744 745 ubi->leb_size = ubi->peb_size - ubi->leb_start; 746 747 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 748 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 749 ubi->mtd->index); 750 ubi->ro_mode = 1; 751 } 752 753 /* 754 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 755 * unfortunately, MTD does not provide this information. We should loop 756 * over all physical eraseblocks and invoke mtd->block_is_bad() for 757 * each physical eraseblock. So, we leave @ubi->bad_peb_count 758 * uninitialized so far. 759 */ 760 761 return 0; 762 } 763 764 /** 765 * autoresize - re-size the volume which has the "auto-resize" flag set. 766 * @ubi: UBI device description object 767 * @vol_id: ID of the volume to re-size 768 * 769 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 770 * the volume table to the largest possible size. See comments in ubi-header.h 771 * for more description of the flag. Returns zero in case of success and a 772 * negative error code in case of failure. 773 */ 774 static int autoresize(struct ubi_device *ubi, int vol_id) 775 { 776 struct ubi_volume_desc desc; 777 struct ubi_volume *vol = ubi->volumes[vol_id]; 778 int err, old_reserved_pebs = vol->reserved_pebs; 779 780 if (ubi->ro_mode) { 781 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 782 return 0; 783 } 784 785 /* 786 * Clear the auto-resize flag in the volume in-memory copy of the 787 * volume table, and 'ubi_resize_volume()' will propagate this change 788 * to the flash. 789 */ 790 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 791 792 if (ubi->avail_pebs == 0) { 793 struct ubi_vtbl_record vtbl_rec; 794 795 /* 796 * No available PEBs to re-size the volume, clear the flag on 797 * flash and exit. 798 */ 799 vtbl_rec = ubi->vtbl[vol_id]; 800 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 801 if (err) 802 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 803 vol_id); 804 } else { 805 desc.vol = vol; 806 err = ubi_resize_volume(&desc, 807 old_reserved_pebs + ubi->avail_pebs); 808 if (err) 809 ubi_err(ubi, "cannot auto-resize volume %d", 810 vol_id); 811 } 812 813 if (err) 814 return err; 815 816 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 817 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 818 return 0; 819 } 820 821 /** 822 * ubi_attach_mtd_dev - attach an MTD device. 823 * @mtd: MTD device description object 824 * @ubi_num: number to assign to the new UBI device 825 * @vid_hdr_offset: VID header offset 826 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 827 * @disable_fm: whether disable fastmap 828 * 829 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 830 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 831 * which case this function finds a vacant device number and assigns it 832 * automatically. Returns the new UBI device number in case of success and a 833 * negative error code in case of failure. 834 * 835 * If @disable_fm is true, ubi doesn't create new fastmap even the module param 836 * 'fm_autoconvert' is set, and existed old fastmap will be destroyed after 837 * doing full scanning. 838 * 839 * Note, the invocations of this function has to be serialized by the 840 * @ubi_devices_mutex. 841 */ 842 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 843 int vid_hdr_offset, int max_beb_per1024, bool disable_fm) 844 { 845 struct ubi_device *ubi; 846 int i, err; 847 848 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 849 return -EINVAL; 850 851 if (!max_beb_per1024) 852 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 853 854 /* 855 * Check if we already have the same MTD device attached. 856 * 857 * Note, this function assumes that UBI devices creations and deletions 858 * are serialized, so it does not take the &ubi_devices_lock. 859 */ 860 for (i = 0; i < UBI_MAX_DEVICES; i++) { 861 ubi = ubi_devices[i]; 862 if (ubi && mtd->index == ubi->mtd->index) { 863 pr_err("ubi: mtd%d is already attached to ubi%d\n", 864 mtd->index, i); 865 return -EEXIST; 866 } 867 } 868 869 /* 870 * Make sure this MTD device is not emulated on top of an UBI volume 871 * already. Well, generally this recursion works fine, but there are 872 * different problems like the UBI module takes a reference to itself 873 * by attaching (and thus, opening) the emulated MTD device. This 874 * results in inability to unload the module. And in general it makes 875 * no sense to attach emulated MTD devices, so we prohibit this. 876 */ 877 if (mtd->type == MTD_UBIVOLUME) { 878 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n", 879 mtd->index); 880 return -EINVAL; 881 } 882 883 /* 884 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes. 885 * MLC NAND is different and needs special care, otherwise UBI or UBIFS 886 * will die soon and you will lose all your data. 887 * Relax this rule if the partition we're attaching to operates in SLC 888 * mode. 889 */ 890 if (mtd->type == MTD_MLCNANDFLASH && 891 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) { 892 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n", 893 mtd->index); 894 return -EINVAL; 895 } 896 897 if (ubi_num == UBI_DEV_NUM_AUTO) { 898 /* Search for an empty slot in the @ubi_devices array */ 899 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 900 if (!ubi_devices[ubi_num]) 901 break; 902 if (ubi_num == UBI_MAX_DEVICES) { 903 pr_err("ubi: only %d UBI devices may be created\n", 904 UBI_MAX_DEVICES); 905 return -ENFILE; 906 } 907 } else { 908 if (ubi_num >= UBI_MAX_DEVICES) 909 return -EINVAL; 910 911 /* Make sure ubi_num is not busy */ 912 if (ubi_devices[ubi_num]) { 913 pr_err("ubi: ubi%i already exists\n", ubi_num); 914 return -EEXIST; 915 } 916 } 917 918 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 919 if (!ubi) 920 return -ENOMEM; 921 922 device_initialize(&ubi->dev); 923 ubi->dev.release = dev_release; 924 ubi->dev.class = &ubi_class; 925 ubi->dev.groups = ubi_dev_groups; 926 ubi->dev.parent = &mtd->dev; 927 928 ubi->mtd = mtd; 929 ubi->ubi_num = ubi_num; 930 ubi->vid_hdr_offset = vid_hdr_offset; 931 ubi->autoresize_vol_id = -1; 932 933 #ifdef CONFIG_MTD_UBI_FASTMAP 934 ubi->fm_pool.used = ubi->fm_pool.size = 0; 935 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 936 937 /* 938 * fm_pool.max_size is 5% of the total number of PEBs but it's also 939 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 940 */ 941 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 942 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 943 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 944 UBI_FM_MIN_POOL_SIZE); 945 946 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 947 ubi->fm_disabled = (!fm_autoconvert || disable_fm) ? 1 : 0; 948 if (fm_debug) 949 ubi_enable_dbg_chk_fastmap(ubi); 950 951 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 952 <= UBI_FM_MAX_START) { 953 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 954 UBI_FM_MAX_START); 955 ubi->fm_disabled = 1; 956 } 957 958 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 959 ubi_msg(ubi, "default fastmap WL pool size: %d", 960 ubi->fm_wl_pool.max_size); 961 #else 962 ubi->fm_disabled = 1; 963 #endif 964 mutex_init(&ubi->buf_mutex); 965 mutex_init(&ubi->ckvol_mutex); 966 mutex_init(&ubi->device_mutex); 967 spin_lock_init(&ubi->volumes_lock); 968 init_rwsem(&ubi->fm_protect); 969 init_rwsem(&ubi->fm_eba_sem); 970 971 ubi_msg(ubi, "attaching mtd%d", mtd->index); 972 973 err = io_init(ubi, max_beb_per1024); 974 if (err) 975 goto out_free; 976 977 err = -ENOMEM; 978 ubi->peb_buf = vmalloc(ubi->peb_size); 979 if (!ubi->peb_buf) 980 goto out_free; 981 982 #ifdef CONFIG_MTD_UBI_FASTMAP 983 ubi->fm_size = ubi_calc_fm_size(ubi); 984 ubi->fm_buf = vzalloc(ubi->fm_size); 985 if (!ubi->fm_buf) 986 goto out_free; 987 #endif 988 err = ubi_attach(ubi, disable_fm ? 1 : 0); 989 if (err) { 990 ubi_err(ubi, "failed to attach mtd%d, error %d", 991 mtd->index, err); 992 goto out_free; 993 } 994 995 if (ubi->autoresize_vol_id != -1) { 996 err = autoresize(ubi, ubi->autoresize_vol_id); 997 if (err) 998 goto out_detach; 999 } 1000 1001 err = uif_init(ubi); 1002 if (err) 1003 goto out_detach; 1004 1005 err = ubi_debugfs_init_dev(ubi); 1006 if (err) 1007 goto out_uif; 1008 1009 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 1010 if (IS_ERR(ubi->bgt_thread)) { 1011 err = PTR_ERR(ubi->bgt_thread); 1012 ubi_err(ubi, "cannot spawn \"%s\", error %d", 1013 ubi->bgt_name, err); 1014 goto out_debugfs; 1015 } 1016 1017 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 1018 mtd->index, mtd->name, ubi->flash_size >> 20); 1019 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1020 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1021 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 1022 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1023 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1024 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1025 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1026 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1027 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1028 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1029 ubi->vtbl_slots); 1030 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1031 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1032 ubi->image_seq); 1033 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1034 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1035 1036 /* 1037 * The below lock makes sure we do not race with 'ubi_thread()' which 1038 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1039 */ 1040 spin_lock(&ubi->wl_lock); 1041 ubi->thread_enabled = 1; 1042 wake_up_process(ubi->bgt_thread); 1043 spin_unlock(&ubi->wl_lock); 1044 1045 ubi_devices[ubi_num] = ubi; 1046 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1047 return ubi_num; 1048 1049 out_debugfs: 1050 ubi_debugfs_exit_dev(ubi); 1051 out_uif: 1052 uif_close(ubi); 1053 out_detach: 1054 ubi_wl_close(ubi); 1055 ubi_free_all_volumes(ubi); 1056 vfree(ubi->vtbl); 1057 out_free: 1058 vfree(ubi->peb_buf); 1059 vfree(ubi->fm_buf); 1060 put_device(&ubi->dev); 1061 return err; 1062 } 1063 1064 /** 1065 * ubi_detach_mtd_dev - detach an MTD device. 1066 * @ubi_num: UBI device number to detach from 1067 * @anyway: detach MTD even if device reference count is not zero 1068 * 1069 * This function destroys an UBI device number @ubi_num and detaches the 1070 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1071 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1072 * exist. 1073 * 1074 * Note, the invocations of this function has to be serialized by the 1075 * @ubi_devices_mutex. 1076 */ 1077 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1078 { 1079 struct ubi_device *ubi; 1080 1081 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1082 return -EINVAL; 1083 1084 ubi = ubi_get_device(ubi_num); 1085 if (!ubi) 1086 return -EINVAL; 1087 1088 spin_lock(&ubi_devices_lock); 1089 put_device(&ubi->dev); 1090 ubi->ref_count -= 1; 1091 if (ubi->ref_count) { 1092 if (!anyway) { 1093 spin_unlock(&ubi_devices_lock); 1094 return -EBUSY; 1095 } 1096 /* This may only happen if there is a bug */ 1097 ubi_err(ubi, "%s reference count %d, destroy anyway", 1098 ubi->ubi_name, ubi->ref_count); 1099 } 1100 ubi_devices[ubi_num] = NULL; 1101 spin_unlock(&ubi_devices_lock); 1102 1103 ubi_assert(ubi_num == ubi->ubi_num); 1104 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1105 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1106 #ifdef CONFIG_MTD_UBI_FASTMAP 1107 /* If we don't write a new fastmap at detach time we lose all 1108 * EC updates that have been made since the last written fastmap. 1109 * In case of fastmap debugging we omit the update to simulate an 1110 * unclean shutdown. */ 1111 if (!ubi_dbg_chk_fastmap(ubi)) 1112 ubi_update_fastmap(ubi); 1113 #endif 1114 /* 1115 * Before freeing anything, we have to stop the background thread to 1116 * prevent it from doing anything on this device while we are freeing. 1117 */ 1118 if (ubi->bgt_thread) 1119 kthread_stop(ubi->bgt_thread); 1120 1121 #ifdef CONFIG_MTD_UBI_FASTMAP 1122 cancel_work_sync(&ubi->fm_work); 1123 #endif 1124 ubi_debugfs_exit_dev(ubi); 1125 uif_close(ubi); 1126 1127 ubi_wl_close(ubi); 1128 ubi_free_internal_volumes(ubi); 1129 vfree(ubi->vtbl); 1130 vfree(ubi->peb_buf); 1131 vfree(ubi->fm_buf); 1132 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1133 put_mtd_device(ubi->mtd); 1134 put_device(&ubi->dev); 1135 return 0; 1136 } 1137 1138 /** 1139 * open_mtd_by_chdev - open an MTD device by its character device node path. 1140 * @mtd_dev: MTD character device node path 1141 * 1142 * This helper function opens an MTD device by its character node device path. 1143 * Returns MTD device description object in case of success and a negative 1144 * error code in case of failure. 1145 */ 1146 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1147 { 1148 int err, minor; 1149 struct path path; 1150 struct kstat stat; 1151 1152 /* Probably this is an MTD character device node path */ 1153 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1154 if (err) 1155 return ERR_PTR(err); 1156 1157 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1158 path_put(&path); 1159 if (err) 1160 return ERR_PTR(err); 1161 1162 /* MTD device number is defined by the major / minor numbers */ 1163 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1164 return ERR_PTR(-EINVAL); 1165 1166 minor = MINOR(stat.rdev); 1167 1168 if (minor & 1) 1169 /* 1170 * Just do not think the "/dev/mtdrX" devices support is need, 1171 * so do not support them to avoid doing extra work. 1172 */ 1173 return ERR_PTR(-EINVAL); 1174 1175 return get_mtd_device(NULL, minor / 2); 1176 } 1177 1178 /** 1179 * open_mtd_device - open MTD device by name, character device path, or number. 1180 * @mtd_dev: name, character device node path, or MTD device device number 1181 * 1182 * This function tries to open and MTD device described by @mtd_dev string, 1183 * which is first treated as ASCII MTD device number, and if it is not true, it 1184 * is treated as MTD device name, and if that is also not true, it is treated 1185 * as MTD character device node path. Returns MTD device description object in 1186 * case of success and a negative error code in case of failure. 1187 */ 1188 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1189 { 1190 struct mtd_info *mtd; 1191 int mtd_num; 1192 char *endp; 1193 1194 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1195 if (*endp != '\0' || mtd_dev == endp) { 1196 /* 1197 * This does not look like an ASCII integer, probably this is 1198 * MTD device name. 1199 */ 1200 mtd = get_mtd_device_nm(mtd_dev); 1201 if (PTR_ERR(mtd) == -ENODEV) 1202 /* Probably this is an MTD character device node path */ 1203 mtd = open_mtd_by_chdev(mtd_dev); 1204 } else 1205 mtd = get_mtd_device(NULL, mtd_num); 1206 1207 return mtd; 1208 } 1209 1210 static int __init ubi_init(void) 1211 { 1212 int err, i, k; 1213 1214 /* Ensure that EC and VID headers have correct size */ 1215 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1216 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1217 1218 if (mtd_devs > UBI_MAX_DEVICES) { 1219 pr_err("UBI error: too many MTD devices, maximum is %d\n", 1220 UBI_MAX_DEVICES); 1221 return -EINVAL; 1222 } 1223 1224 /* Create base sysfs directory and sysfs files */ 1225 err = class_register(&ubi_class); 1226 if (err < 0) 1227 return err; 1228 1229 err = misc_register(&ubi_ctrl_cdev); 1230 if (err) { 1231 pr_err("UBI error: cannot register device\n"); 1232 goto out; 1233 } 1234 1235 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1236 sizeof(struct ubi_wl_entry), 1237 0, 0, NULL); 1238 if (!ubi_wl_entry_slab) { 1239 err = -ENOMEM; 1240 goto out_dev_unreg; 1241 } 1242 1243 err = ubi_debugfs_init(); 1244 if (err) 1245 goto out_slab; 1246 1247 1248 /* Attach MTD devices */ 1249 for (i = 0; i < mtd_devs; i++) { 1250 struct mtd_dev_param *p = &mtd_dev_param[i]; 1251 struct mtd_info *mtd; 1252 1253 cond_resched(); 1254 1255 mtd = open_mtd_device(p->name); 1256 if (IS_ERR(mtd)) { 1257 err = PTR_ERR(mtd); 1258 pr_err("UBI error: cannot open mtd %s, error %d\n", 1259 p->name, err); 1260 /* See comment below re-ubi_is_module(). */ 1261 if (ubi_is_module()) 1262 goto out_detach; 1263 continue; 1264 } 1265 1266 mutex_lock(&ubi_devices_mutex); 1267 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1268 p->vid_hdr_offs, p->max_beb_per1024, 1269 p->enable_fm == 0); 1270 mutex_unlock(&ubi_devices_mutex); 1271 if (err < 0) { 1272 pr_err("UBI error: cannot attach mtd%d\n", 1273 mtd->index); 1274 put_mtd_device(mtd); 1275 1276 /* 1277 * Originally UBI stopped initializing on any error. 1278 * However, later on it was found out that this 1279 * behavior is not very good when UBI is compiled into 1280 * the kernel and the MTD devices to attach are passed 1281 * through the command line. Indeed, UBI failure 1282 * stopped whole boot sequence. 1283 * 1284 * To fix this, we changed the behavior for the 1285 * non-module case, but preserved the old behavior for 1286 * the module case, just for compatibility. This is a 1287 * little inconsistent, though. 1288 */ 1289 if (ubi_is_module()) 1290 goto out_detach; 1291 } 1292 } 1293 1294 err = ubiblock_init(); 1295 if (err) { 1296 pr_err("UBI error: block: cannot initialize, error %d\n", err); 1297 1298 /* See comment above re-ubi_is_module(). */ 1299 if (ubi_is_module()) 1300 goto out_detach; 1301 } 1302 1303 return 0; 1304 1305 out_detach: 1306 for (k = 0; k < i; k++) 1307 if (ubi_devices[k]) { 1308 mutex_lock(&ubi_devices_mutex); 1309 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1310 mutex_unlock(&ubi_devices_mutex); 1311 } 1312 ubi_debugfs_exit(); 1313 out_slab: 1314 kmem_cache_destroy(ubi_wl_entry_slab); 1315 out_dev_unreg: 1316 misc_deregister(&ubi_ctrl_cdev); 1317 out: 1318 class_unregister(&ubi_class); 1319 pr_err("UBI error: cannot initialize UBI, error %d\n", err); 1320 return err; 1321 } 1322 late_initcall(ubi_init); 1323 1324 static void __exit ubi_exit(void) 1325 { 1326 int i; 1327 1328 ubiblock_exit(); 1329 1330 for (i = 0; i < UBI_MAX_DEVICES; i++) 1331 if (ubi_devices[i]) { 1332 mutex_lock(&ubi_devices_mutex); 1333 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1334 mutex_unlock(&ubi_devices_mutex); 1335 } 1336 ubi_debugfs_exit(); 1337 kmem_cache_destroy(ubi_wl_entry_slab); 1338 misc_deregister(&ubi_ctrl_cdev); 1339 class_unregister(&ubi_class); 1340 } 1341 module_exit(ubi_exit); 1342 1343 /** 1344 * bytes_str_to_int - convert a number of bytes string into an integer. 1345 * @str: the string to convert 1346 * 1347 * This function returns positive resulting integer in case of success and a 1348 * negative error code in case of failure. 1349 */ 1350 static int bytes_str_to_int(const char *str) 1351 { 1352 char *endp; 1353 unsigned long result; 1354 1355 result = simple_strtoul(str, &endp, 0); 1356 if (str == endp || result >= INT_MAX) { 1357 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1358 return -EINVAL; 1359 } 1360 1361 switch (*endp) { 1362 case 'G': 1363 result *= 1024; 1364 fallthrough; 1365 case 'M': 1366 result *= 1024; 1367 fallthrough; 1368 case 'K': 1369 result *= 1024; 1370 break; 1371 case '\0': 1372 break; 1373 default: 1374 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1375 return -EINVAL; 1376 } 1377 1378 return result; 1379 } 1380 1381 /** 1382 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1383 * @val: the parameter value to parse 1384 * @kp: not used 1385 * 1386 * This function returns zero in case of success and a negative error code in 1387 * case of error. 1388 */ 1389 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp) 1390 { 1391 int i, len; 1392 struct mtd_dev_param *p; 1393 char buf[MTD_PARAM_LEN_MAX]; 1394 char *pbuf = &buf[0]; 1395 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1396 1397 if (!val) 1398 return -EINVAL; 1399 1400 if (mtd_devs == UBI_MAX_DEVICES) { 1401 pr_err("UBI error: too many parameters, max. is %d\n", 1402 UBI_MAX_DEVICES); 1403 return -EINVAL; 1404 } 1405 1406 len = strnlen(val, MTD_PARAM_LEN_MAX); 1407 if (len == MTD_PARAM_LEN_MAX) { 1408 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1409 val, MTD_PARAM_LEN_MAX); 1410 return -EINVAL; 1411 } 1412 1413 if (len == 0) { 1414 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1415 return 0; 1416 } 1417 1418 strcpy(buf, val); 1419 1420 /* Get rid of the final newline */ 1421 if (buf[len - 1] == '\n') 1422 buf[len - 1] = '\0'; 1423 1424 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1425 tokens[i] = strsep(&pbuf, ","); 1426 1427 if (pbuf) { 1428 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1429 return -EINVAL; 1430 } 1431 1432 p = &mtd_dev_param[mtd_devs]; 1433 strcpy(&p->name[0], tokens[0]); 1434 1435 token = tokens[1]; 1436 if (token) { 1437 p->vid_hdr_offs = bytes_str_to_int(token); 1438 1439 if (p->vid_hdr_offs < 0) 1440 return p->vid_hdr_offs; 1441 } 1442 1443 token = tokens[2]; 1444 if (token) { 1445 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1446 1447 if (err) { 1448 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s\n", 1449 token); 1450 return -EINVAL; 1451 } 1452 } 1453 1454 token = tokens[3]; 1455 if (token) { 1456 int err = kstrtoint(token, 10, &p->ubi_num); 1457 1458 if (err) { 1459 pr_err("UBI error: bad value for ubi_num parameter: %s\n", 1460 token); 1461 return -EINVAL; 1462 } 1463 } else 1464 p->ubi_num = UBI_DEV_NUM_AUTO; 1465 1466 token = tokens[4]; 1467 if (token) { 1468 int err = kstrtoint(token, 10, &p->enable_fm); 1469 1470 if (err) { 1471 pr_err("UBI error: bad value for enable_fm parameter: %s\n", 1472 token); 1473 return -EINVAL; 1474 } 1475 } else 1476 p->enable_fm = 0; 1477 1478 mtd_devs += 1; 1479 return 0; 1480 } 1481 1482 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1483 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1484 "Multiple \"mtd\" parameters may be specified.\n" 1485 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1486 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1487 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1488 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1489 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1490 "Optional \"enable_fm\" parameter determines whether to enable fastmap during attach. If the value is non-zero, fastmap is enabled. Default value is 0.\n" 1491 "\n" 1492 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1493 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1494 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1495 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1496 "example 5: mtd=1,0,0,5 mtd=2,0,0,6,1 - attach MTD device /dev/mtd1 to UBI 5 and disable fastmap; attach MTD device /dev/mtd2 to UBI 6 and enable fastmap.(only works when fastmap is enabled and fm_autoconvert=Y).\n" 1497 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1498 #ifdef CONFIG_MTD_UBI_FASTMAP 1499 module_param(fm_autoconvert, bool, 0644); 1500 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1501 module_param(fm_debug, bool, 0); 1502 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1503 #endif 1504 MODULE_VERSION(__stringify(UBI_VERSION)); 1505 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1506 MODULE_AUTHOR("Artem Bityutskiy"); 1507 MODULE_LICENSE("GPL"); 1508