1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём), 7 * Frank Haverkamp 8 */ 9 10 /* 11 * This file includes UBI initialization and building of UBI devices. 12 * 13 * When UBI is initialized, it attaches all the MTD devices specified as the 14 * module load parameters or the kernel boot parameters. If MTD devices were 15 * specified, UBI does not attach any MTD device, but it is possible to do 16 * later using the "UBI control device". 17 */ 18 19 #include <linux/err.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/stringify.h> 23 #include <linux/namei.h> 24 #include <linux/stat.h> 25 #include <linux/miscdevice.h> 26 #include <linux/mtd/partitions.h> 27 #include <linux/log2.h> 28 #include <linux/kthread.h> 29 #include <linux/kernel.h> 30 #include <linux/slab.h> 31 #include <linux/major.h> 32 #include "ubi.h" 33 34 /* Maximum length of the 'mtd=' parameter */ 35 #define MTD_PARAM_LEN_MAX 64 36 37 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 38 #define MTD_PARAM_MAX_COUNT 4 39 40 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 41 #define MAX_MTD_UBI_BEB_LIMIT 768 42 43 #ifdef CONFIG_MTD_UBI_MODULE 44 #define ubi_is_module() 1 45 #else 46 #define ubi_is_module() 0 47 #endif 48 49 /** 50 * struct mtd_dev_param - MTD device parameter description data structure. 51 * @name: MTD character device node path, MTD device name, or MTD device number 52 * string 53 * @vid_hdr_offs: VID header offset 54 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 55 */ 56 struct mtd_dev_param { 57 char name[MTD_PARAM_LEN_MAX]; 58 int ubi_num; 59 int vid_hdr_offs; 60 int max_beb_per1024; 61 }; 62 63 /* Numbers of elements set in the @mtd_dev_param array */ 64 static int mtd_devs; 65 66 /* MTD devices specification parameters */ 67 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 68 #ifdef CONFIG_MTD_UBI_FASTMAP 69 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 70 static bool fm_autoconvert; 71 static bool fm_debug; 72 #endif 73 74 /* Slab cache for wear-leveling entries */ 75 struct kmem_cache *ubi_wl_entry_slab; 76 77 /* UBI control character device */ 78 static struct miscdevice ubi_ctrl_cdev = { 79 .minor = MISC_DYNAMIC_MINOR, 80 .name = "ubi_ctrl", 81 .fops = &ubi_ctrl_cdev_operations, 82 }; 83 84 /* All UBI devices in system */ 85 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 86 87 /* Serializes UBI devices creations and removals */ 88 DEFINE_MUTEX(ubi_devices_mutex); 89 90 /* Protects @ubi_devices and @ubi->ref_count */ 91 static DEFINE_SPINLOCK(ubi_devices_lock); 92 93 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 94 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 95 static ssize_t version_show(struct class *class, struct class_attribute *attr, 96 char *buf) 97 { 98 return sprintf(buf, "%d\n", UBI_VERSION); 99 } 100 static CLASS_ATTR_RO(version); 101 102 static struct attribute *ubi_class_attrs[] = { 103 &class_attr_version.attr, 104 NULL, 105 }; 106 ATTRIBUTE_GROUPS(ubi_class); 107 108 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 109 struct class ubi_class = { 110 .name = UBI_NAME_STR, 111 .owner = THIS_MODULE, 112 .class_groups = ubi_class_groups, 113 }; 114 115 static ssize_t dev_attribute_show(struct device *dev, 116 struct device_attribute *attr, char *buf); 117 118 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 119 static struct device_attribute dev_eraseblock_size = 120 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 121 static struct device_attribute dev_avail_eraseblocks = 122 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 123 static struct device_attribute dev_total_eraseblocks = 124 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 125 static struct device_attribute dev_volumes_count = 126 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 127 static struct device_attribute dev_max_ec = 128 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 129 static struct device_attribute dev_reserved_for_bad = 130 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 131 static struct device_attribute dev_bad_peb_count = 132 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 133 static struct device_attribute dev_max_vol_count = 134 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 135 static struct device_attribute dev_min_io_size = 136 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 137 static struct device_attribute dev_bgt_enabled = 138 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 139 static struct device_attribute dev_mtd_num = 140 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 141 static struct device_attribute dev_ro_mode = 142 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 143 144 /** 145 * ubi_volume_notify - send a volume change notification. 146 * @ubi: UBI device description object 147 * @vol: volume description object of the changed volume 148 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 149 * 150 * This is a helper function which notifies all subscribers about a volume 151 * change event (creation, removal, re-sizing, re-naming, updating). Returns 152 * zero in case of success and a negative error code in case of failure. 153 */ 154 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 155 { 156 int ret; 157 struct ubi_notification nt; 158 159 ubi_do_get_device_info(ubi, &nt.di); 160 ubi_do_get_volume_info(ubi, vol, &nt.vi); 161 162 switch (ntype) { 163 case UBI_VOLUME_ADDED: 164 case UBI_VOLUME_REMOVED: 165 case UBI_VOLUME_RESIZED: 166 case UBI_VOLUME_RENAMED: 167 ret = ubi_update_fastmap(ubi); 168 if (ret) 169 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 170 } 171 172 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 173 } 174 175 /** 176 * ubi_notify_all - send a notification to all volumes. 177 * @ubi: UBI device description object 178 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 179 * @nb: the notifier to call 180 * 181 * This function walks all volumes of UBI device @ubi and sends the @ntype 182 * notification for each volume. If @nb is %NULL, then all registered notifiers 183 * are called, otherwise only the @nb notifier is called. Returns the number of 184 * sent notifications. 185 */ 186 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 187 { 188 struct ubi_notification nt; 189 int i, count = 0; 190 191 ubi_do_get_device_info(ubi, &nt.di); 192 193 mutex_lock(&ubi->device_mutex); 194 for (i = 0; i < ubi->vtbl_slots; i++) { 195 /* 196 * Since the @ubi->device is locked, and we are not going to 197 * change @ubi->volumes, we do not have to lock 198 * @ubi->volumes_lock. 199 */ 200 if (!ubi->volumes[i]) 201 continue; 202 203 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 204 if (nb) 205 nb->notifier_call(nb, ntype, &nt); 206 else 207 blocking_notifier_call_chain(&ubi_notifiers, ntype, 208 &nt); 209 count += 1; 210 } 211 mutex_unlock(&ubi->device_mutex); 212 213 return count; 214 } 215 216 /** 217 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 218 * @nb: the notifier to call 219 * 220 * This function walks all UBI devices and volumes and sends the 221 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 222 * registered notifiers are called, otherwise only the @nb notifier is called. 223 * Returns the number of sent notifications. 224 */ 225 int ubi_enumerate_volumes(struct notifier_block *nb) 226 { 227 int i, count = 0; 228 229 /* 230 * Since the @ubi_devices_mutex is locked, and we are not going to 231 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 232 */ 233 for (i = 0; i < UBI_MAX_DEVICES; i++) { 234 struct ubi_device *ubi = ubi_devices[i]; 235 236 if (!ubi) 237 continue; 238 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 239 } 240 241 return count; 242 } 243 244 /** 245 * ubi_get_device - get UBI device. 246 * @ubi_num: UBI device number 247 * 248 * This function returns UBI device description object for UBI device number 249 * @ubi_num, or %NULL if the device does not exist. This function increases the 250 * device reference count to prevent removal of the device. In other words, the 251 * device cannot be removed if its reference count is not zero. 252 */ 253 struct ubi_device *ubi_get_device(int ubi_num) 254 { 255 struct ubi_device *ubi; 256 257 spin_lock(&ubi_devices_lock); 258 ubi = ubi_devices[ubi_num]; 259 if (ubi) { 260 ubi_assert(ubi->ref_count >= 0); 261 ubi->ref_count += 1; 262 get_device(&ubi->dev); 263 } 264 spin_unlock(&ubi_devices_lock); 265 266 return ubi; 267 } 268 269 /** 270 * ubi_put_device - drop an UBI device reference. 271 * @ubi: UBI device description object 272 */ 273 void ubi_put_device(struct ubi_device *ubi) 274 { 275 spin_lock(&ubi_devices_lock); 276 ubi->ref_count -= 1; 277 put_device(&ubi->dev); 278 spin_unlock(&ubi_devices_lock); 279 } 280 281 /** 282 * ubi_get_by_major - get UBI device by character device major number. 283 * @major: major number 284 * 285 * This function is similar to 'ubi_get_device()', but it searches the device 286 * by its major number. 287 */ 288 struct ubi_device *ubi_get_by_major(int major) 289 { 290 int i; 291 struct ubi_device *ubi; 292 293 spin_lock(&ubi_devices_lock); 294 for (i = 0; i < UBI_MAX_DEVICES; i++) { 295 ubi = ubi_devices[i]; 296 if (ubi && MAJOR(ubi->cdev.dev) == major) { 297 ubi_assert(ubi->ref_count >= 0); 298 ubi->ref_count += 1; 299 get_device(&ubi->dev); 300 spin_unlock(&ubi_devices_lock); 301 return ubi; 302 } 303 } 304 spin_unlock(&ubi_devices_lock); 305 306 return NULL; 307 } 308 309 /** 310 * ubi_major2num - get UBI device number by character device major number. 311 * @major: major number 312 * 313 * This function searches UBI device number object by its major number. If UBI 314 * device was not found, this function returns -ENODEV, otherwise the UBI device 315 * number is returned. 316 */ 317 int ubi_major2num(int major) 318 { 319 int i, ubi_num = -ENODEV; 320 321 spin_lock(&ubi_devices_lock); 322 for (i = 0; i < UBI_MAX_DEVICES; i++) { 323 struct ubi_device *ubi = ubi_devices[i]; 324 325 if (ubi && MAJOR(ubi->cdev.dev) == major) { 326 ubi_num = ubi->ubi_num; 327 break; 328 } 329 } 330 spin_unlock(&ubi_devices_lock); 331 332 return ubi_num; 333 } 334 335 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 336 static ssize_t dev_attribute_show(struct device *dev, 337 struct device_attribute *attr, char *buf) 338 { 339 ssize_t ret; 340 struct ubi_device *ubi; 341 342 /* 343 * The below code looks weird, but it actually makes sense. We get the 344 * UBI device reference from the contained 'struct ubi_device'. But it 345 * is unclear if the device was removed or not yet. Indeed, if the 346 * device was removed before we increased its reference count, 347 * 'ubi_get_device()' will return -ENODEV and we fail. 348 * 349 * Remember, 'struct ubi_device' is freed in the release function, so 350 * we still can use 'ubi->ubi_num'. 351 */ 352 ubi = container_of(dev, struct ubi_device, dev); 353 ubi = ubi_get_device(ubi->ubi_num); 354 if (!ubi) 355 return -ENODEV; 356 357 if (attr == &dev_eraseblock_size) 358 ret = sprintf(buf, "%d\n", ubi->leb_size); 359 else if (attr == &dev_avail_eraseblocks) 360 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 361 else if (attr == &dev_total_eraseblocks) 362 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 363 else if (attr == &dev_volumes_count) 364 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 365 else if (attr == &dev_max_ec) 366 ret = sprintf(buf, "%d\n", ubi->max_ec); 367 else if (attr == &dev_reserved_for_bad) 368 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 369 else if (attr == &dev_bad_peb_count) 370 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 371 else if (attr == &dev_max_vol_count) 372 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 373 else if (attr == &dev_min_io_size) 374 ret = sprintf(buf, "%d\n", ubi->min_io_size); 375 else if (attr == &dev_bgt_enabled) 376 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 377 else if (attr == &dev_mtd_num) 378 ret = sprintf(buf, "%d\n", ubi->mtd->index); 379 else if (attr == &dev_ro_mode) 380 ret = sprintf(buf, "%d\n", ubi->ro_mode); 381 else 382 ret = -EINVAL; 383 384 ubi_put_device(ubi); 385 return ret; 386 } 387 388 static struct attribute *ubi_dev_attrs[] = { 389 &dev_eraseblock_size.attr, 390 &dev_avail_eraseblocks.attr, 391 &dev_total_eraseblocks.attr, 392 &dev_volumes_count.attr, 393 &dev_max_ec.attr, 394 &dev_reserved_for_bad.attr, 395 &dev_bad_peb_count.attr, 396 &dev_max_vol_count.attr, 397 &dev_min_io_size.attr, 398 &dev_bgt_enabled.attr, 399 &dev_mtd_num.attr, 400 &dev_ro_mode.attr, 401 NULL 402 }; 403 ATTRIBUTE_GROUPS(ubi_dev); 404 405 static void dev_release(struct device *dev) 406 { 407 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 408 409 kfree(ubi); 410 } 411 412 /** 413 * kill_volumes - destroy all user volumes. 414 * @ubi: UBI device description object 415 */ 416 static void kill_volumes(struct ubi_device *ubi) 417 { 418 int i; 419 420 for (i = 0; i < ubi->vtbl_slots; i++) 421 if (ubi->volumes[i]) 422 ubi_free_volume(ubi, ubi->volumes[i]); 423 } 424 425 /** 426 * uif_init - initialize user interfaces for an UBI device. 427 * @ubi: UBI device description object 428 * 429 * This function initializes various user interfaces for an UBI device. If the 430 * initialization fails at an early stage, this function frees all the 431 * resources it allocated, returns an error. 432 * 433 * This function returns zero in case of success and a negative error code in 434 * case of failure. 435 */ 436 static int uif_init(struct ubi_device *ubi) 437 { 438 int i, err; 439 dev_t dev; 440 441 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 442 443 /* 444 * Major numbers for the UBI character devices are allocated 445 * dynamically. Major numbers of volume character devices are 446 * equivalent to ones of the corresponding UBI character device. Minor 447 * numbers of UBI character devices are 0, while minor numbers of 448 * volume character devices start from 1. Thus, we allocate one major 449 * number and ubi->vtbl_slots + 1 minor numbers. 450 */ 451 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 452 if (err) { 453 ubi_err(ubi, "cannot register UBI character devices"); 454 return err; 455 } 456 457 ubi->dev.devt = dev; 458 459 ubi_assert(MINOR(dev) == 0); 460 cdev_init(&ubi->cdev, &ubi_cdev_operations); 461 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 462 ubi->cdev.owner = THIS_MODULE; 463 464 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 465 err = cdev_device_add(&ubi->cdev, &ubi->dev); 466 if (err) 467 goto out_unreg; 468 469 for (i = 0; i < ubi->vtbl_slots; i++) 470 if (ubi->volumes[i]) { 471 err = ubi_add_volume(ubi, ubi->volumes[i]); 472 if (err) { 473 ubi_err(ubi, "cannot add volume %d", i); 474 goto out_volumes; 475 } 476 } 477 478 return 0; 479 480 out_volumes: 481 kill_volumes(ubi); 482 cdev_device_del(&ubi->cdev, &ubi->dev); 483 out_unreg: 484 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 485 ubi_err(ubi, "cannot initialize UBI %s, error %d", 486 ubi->ubi_name, err); 487 return err; 488 } 489 490 /** 491 * uif_close - close user interfaces for an UBI device. 492 * @ubi: UBI device description object 493 * 494 * Note, since this function un-registers UBI volume device objects (@vol->dev), 495 * the memory allocated voe the volumes is freed as well (in the release 496 * function). 497 */ 498 static void uif_close(struct ubi_device *ubi) 499 { 500 kill_volumes(ubi); 501 cdev_device_del(&ubi->cdev, &ubi->dev); 502 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 503 } 504 505 /** 506 * ubi_free_internal_volumes - free internal volumes. 507 * @ubi: UBI device description object 508 */ 509 void ubi_free_internal_volumes(struct ubi_device *ubi) 510 { 511 int i; 512 513 for (i = ubi->vtbl_slots; 514 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 515 ubi_eba_replace_table(ubi->volumes[i], NULL); 516 ubi_fastmap_destroy_checkmap(ubi->volumes[i]); 517 kfree(ubi->volumes[i]); 518 } 519 } 520 521 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 522 { 523 int limit, device_pebs; 524 uint64_t device_size; 525 526 if (!max_beb_per1024) { 527 /* 528 * Since max_beb_per1024 has not been set by the user in either 529 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the 530 * limit if it is supported by the device. 531 */ 532 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size); 533 if (limit < 0) 534 return 0; 535 return limit; 536 } 537 538 /* 539 * Here we are using size of the entire flash chip and 540 * not just the MTD partition size because the maximum 541 * number of bad eraseblocks is a percentage of the 542 * whole device and bad eraseblocks are not fairly 543 * distributed over the flash chip. So the worst case 544 * is that all the bad eraseblocks of the chip are in 545 * the MTD partition we are attaching (ubi->mtd). 546 */ 547 device_size = mtd_get_device_size(ubi->mtd); 548 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 549 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 550 551 /* Round it up */ 552 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 553 limit += 1; 554 555 return limit; 556 } 557 558 /** 559 * io_init - initialize I/O sub-system for a given UBI device. 560 * @ubi: UBI device description object 561 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 562 * 563 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 564 * assumed: 565 * o EC header is always at offset zero - this cannot be changed; 566 * o VID header starts just after the EC header at the closest address 567 * aligned to @io->hdrs_min_io_size; 568 * o data starts just after the VID header at the closest address aligned to 569 * @io->min_io_size 570 * 571 * This function returns zero in case of success and a negative error code in 572 * case of failure. 573 */ 574 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 575 { 576 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 577 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 578 579 if (ubi->mtd->numeraseregions != 0) { 580 /* 581 * Some flashes have several erase regions. Different regions 582 * may have different eraseblock size and other 583 * characteristics. It looks like mostly multi-region flashes 584 * have one "main" region and one or more small regions to 585 * store boot loader code or boot parameters or whatever. I 586 * guess we should just pick the largest region. But this is 587 * not implemented. 588 */ 589 ubi_err(ubi, "multiple regions, not implemented"); 590 return -EINVAL; 591 } 592 593 if (ubi->vid_hdr_offset < 0) 594 return -EINVAL; 595 596 /* 597 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 598 * physical eraseblocks maximum. 599 */ 600 601 ubi->peb_size = ubi->mtd->erasesize; 602 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 603 ubi->flash_size = ubi->mtd->size; 604 605 if (mtd_can_have_bb(ubi->mtd)) { 606 ubi->bad_allowed = 1; 607 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 608 } 609 610 if (ubi->mtd->type == MTD_NORFLASH) { 611 ubi_assert(ubi->mtd->writesize == 1); 612 ubi->nor_flash = 1; 613 } 614 615 ubi->min_io_size = ubi->mtd->writesize; 616 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 617 618 /* 619 * Make sure minimal I/O unit is power of 2. Note, there is no 620 * fundamental reason for this assumption. It is just an optimization 621 * which allows us to avoid costly division operations. 622 */ 623 if (!is_power_of_2(ubi->min_io_size)) { 624 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 625 ubi->min_io_size); 626 return -EINVAL; 627 } 628 629 ubi_assert(ubi->hdrs_min_io_size > 0); 630 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 631 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 632 633 ubi->max_write_size = ubi->mtd->writebufsize; 634 /* 635 * Maximum write size has to be greater or equivalent to min. I/O 636 * size, and be multiple of min. I/O size. 637 */ 638 if (ubi->max_write_size < ubi->min_io_size || 639 ubi->max_write_size % ubi->min_io_size || 640 !is_power_of_2(ubi->max_write_size)) { 641 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 642 ubi->max_write_size, ubi->min_io_size); 643 return -EINVAL; 644 } 645 646 /* Calculate default aligned sizes of EC and VID headers */ 647 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 648 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 649 650 dbg_gen("min_io_size %d", ubi->min_io_size); 651 dbg_gen("max_write_size %d", ubi->max_write_size); 652 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 653 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 654 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 655 656 if (ubi->vid_hdr_offset == 0) 657 /* Default offset */ 658 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 659 ubi->ec_hdr_alsize; 660 else { 661 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 662 ~(ubi->hdrs_min_io_size - 1); 663 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 664 ubi->vid_hdr_aloffset; 665 } 666 667 /* Similar for the data offset */ 668 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 669 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 670 671 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 672 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 673 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 674 dbg_gen("leb_start %d", ubi->leb_start); 675 676 /* The shift must be aligned to 32-bit boundary */ 677 if (ubi->vid_hdr_shift % 4) { 678 ubi_err(ubi, "unaligned VID header shift %d", 679 ubi->vid_hdr_shift); 680 return -EINVAL; 681 } 682 683 /* Check sanity */ 684 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 685 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 686 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 687 ubi->leb_start & (ubi->min_io_size - 1)) { 688 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 689 ubi->vid_hdr_offset, ubi->leb_start); 690 return -EINVAL; 691 } 692 693 /* 694 * Set maximum amount of physical erroneous eraseblocks to be 10%. 695 * Erroneous PEB are those which have read errors. 696 */ 697 ubi->max_erroneous = ubi->peb_count / 10; 698 if (ubi->max_erroneous < 16) 699 ubi->max_erroneous = 16; 700 dbg_gen("max_erroneous %d", ubi->max_erroneous); 701 702 /* 703 * It may happen that EC and VID headers are situated in one minimal 704 * I/O unit. In this case we can only accept this UBI image in 705 * read-only mode. 706 */ 707 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 708 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 709 ubi->ro_mode = 1; 710 } 711 712 ubi->leb_size = ubi->peb_size - ubi->leb_start; 713 714 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 715 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 716 ubi->mtd->index); 717 ubi->ro_mode = 1; 718 } 719 720 /* 721 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 722 * unfortunately, MTD does not provide this information. We should loop 723 * over all physical eraseblocks and invoke mtd->block_is_bad() for 724 * each physical eraseblock. So, we leave @ubi->bad_peb_count 725 * uninitialized so far. 726 */ 727 728 return 0; 729 } 730 731 /** 732 * autoresize - re-size the volume which has the "auto-resize" flag set. 733 * @ubi: UBI device description object 734 * @vol_id: ID of the volume to re-size 735 * 736 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 737 * the volume table to the largest possible size. See comments in ubi-header.h 738 * for more description of the flag. Returns zero in case of success and a 739 * negative error code in case of failure. 740 */ 741 static int autoresize(struct ubi_device *ubi, int vol_id) 742 { 743 struct ubi_volume_desc desc; 744 struct ubi_volume *vol = ubi->volumes[vol_id]; 745 int err, old_reserved_pebs = vol->reserved_pebs; 746 747 if (ubi->ro_mode) { 748 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 749 return 0; 750 } 751 752 /* 753 * Clear the auto-resize flag in the volume in-memory copy of the 754 * volume table, and 'ubi_resize_volume()' will propagate this change 755 * to the flash. 756 */ 757 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 758 759 if (ubi->avail_pebs == 0) { 760 struct ubi_vtbl_record vtbl_rec; 761 762 /* 763 * No available PEBs to re-size the volume, clear the flag on 764 * flash and exit. 765 */ 766 vtbl_rec = ubi->vtbl[vol_id]; 767 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 768 if (err) 769 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 770 vol_id); 771 } else { 772 desc.vol = vol; 773 err = ubi_resize_volume(&desc, 774 old_reserved_pebs + ubi->avail_pebs); 775 if (err) 776 ubi_err(ubi, "cannot auto-resize volume %d", 777 vol_id); 778 } 779 780 if (err) 781 return err; 782 783 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 784 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 785 return 0; 786 } 787 788 /** 789 * ubi_attach_mtd_dev - attach an MTD device. 790 * @mtd: MTD device description object 791 * @ubi_num: number to assign to the new UBI device 792 * @vid_hdr_offset: VID header offset 793 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 794 * 795 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 796 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 797 * which case this function finds a vacant device number and assigns it 798 * automatically. Returns the new UBI device number in case of success and a 799 * negative error code in case of failure. 800 * 801 * Note, the invocations of this function has to be serialized by the 802 * @ubi_devices_mutex. 803 */ 804 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 805 int vid_hdr_offset, int max_beb_per1024) 806 { 807 struct ubi_device *ubi; 808 int i, err; 809 810 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 811 return -EINVAL; 812 813 if (!max_beb_per1024) 814 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 815 816 /* 817 * Check if we already have the same MTD device attached. 818 * 819 * Note, this function assumes that UBI devices creations and deletions 820 * are serialized, so it does not take the &ubi_devices_lock. 821 */ 822 for (i = 0; i < UBI_MAX_DEVICES; i++) { 823 ubi = ubi_devices[i]; 824 if (ubi && mtd->index == ubi->mtd->index) { 825 pr_err("ubi: mtd%d is already attached to ubi%d\n", 826 mtd->index, i); 827 return -EEXIST; 828 } 829 } 830 831 /* 832 * Make sure this MTD device is not emulated on top of an UBI volume 833 * already. Well, generally this recursion works fine, but there are 834 * different problems like the UBI module takes a reference to itself 835 * by attaching (and thus, opening) the emulated MTD device. This 836 * results in inability to unload the module. And in general it makes 837 * no sense to attach emulated MTD devices, so we prohibit this. 838 */ 839 if (mtd->type == MTD_UBIVOLUME) { 840 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n", 841 mtd->index); 842 return -EINVAL; 843 } 844 845 /* 846 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes. 847 * MLC NAND is different and needs special care, otherwise UBI or UBIFS 848 * will die soon and you will lose all your data. 849 */ 850 if (mtd->type == MTD_MLCNANDFLASH) { 851 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n", 852 mtd->index); 853 return -EINVAL; 854 } 855 856 if (ubi_num == UBI_DEV_NUM_AUTO) { 857 /* Search for an empty slot in the @ubi_devices array */ 858 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 859 if (!ubi_devices[ubi_num]) 860 break; 861 if (ubi_num == UBI_MAX_DEVICES) { 862 pr_err("ubi: only %d UBI devices may be created\n", 863 UBI_MAX_DEVICES); 864 return -ENFILE; 865 } 866 } else { 867 if (ubi_num >= UBI_MAX_DEVICES) 868 return -EINVAL; 869 870 /* Make sure ubi_num is not busy */ 871 if (ubi_devices[ubi_num]) { 872 pr_err("ubi: ubi%i already exists\n", ubi_num); 873 return -EEXIST; 874 } 875 } 876 877 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 878 if (!ubi) 879 return -ENOMEM; 880 881 device_initialize(&ubi->dev); 882 ubi->dev.release = dev_release; 883 ubi->dev.class = &ubi_class; 884 ubi->dev.groups = ubi_dev_groups; 885 886 ubi->mtd = mtd; 887 ubi->ubi_num = ubi_num; 888 ubi->vid_hdr_offset = vid_hdr_offset; 889 ubi->autoresize_vol_id = -1; 890 891 #ifdef CONFIG_MTD_UBI_FASTMAP 892 ubi->fm_pool.used = ubi->fm_pool.size = 0; 893 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 894 895 /* 896 * fm_pool.max_size is 5% of the total number of PEBs but it's also 897 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 898 */ 899 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 900 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 901 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 902 UBI_FM_MIN_POOL_SIZE); 903 904 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 905 ubi->fm_disabled = !fm_autoconvert; 906 if (fm_debug) 907 ubi_enable_dbg_chk_fastmap(ubi); 908 909 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 910 <= UBI_FM_MAX_START) { 911 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 912 UBI_FM_MAX_START); 913 ubi->fm_disabled = 1; 914 } 915 916 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 917 ubi_msg(ubi, "default fastmap WL pool size: %d", 918 ubi->fm_wl_pool.max_size); 919 #else 920 ubi->fm_disabled = 1; 921 #endif 922 mutex_init(&ubi->buf_mutex); 923 mutex_init(&ubi->ckvol_mutex); 924 mutex_init(&ubi->device_mutex); 925 spin_lock_init(&ubi->volumes_lock); 926 init_rwsem(&ubi->fm_protect); 927 init_rwsem(&ubi->fm_eba_sem); 928 929 ubi_msg(ubi, "attaching mtd%d", mtd->index); 930 931 err = io_init(ubi, max_beb_per1024); 932 if (err) 933 goto out_free; 934 935 err = -ENOMEM; 936 ubi->peb_buf = vmalloc(ubi->peb_size); 937 if (!ubi->peb_buf) 938 goto out_free; 939 940 #ifdef CONFIG_MTD_UBI_FASTMAP 941 ubi->fm_size = ubi_calc_fm_size(ubi); 942 ubi->fm_buf = vzalloc(ubi->fm_size); 943 if (!ubi->fm_buf) 944 goto out_free; 945 #endif 946 err = ubi_attach(ubi, 0); 947 if (err) { 948 ubi_err(ubi, "failed to attach mtd%d, error %d", 949 mtd->index, err); 950 goto out_free; 951 } 952 953 if (ubi->autoresize_vol_id != -1) { 954 err = autoresize(ubi, ubi->autoresize_vol_id); 955 if (err) 956 goto out_detach; 957 } 958 959 /* Make device "available" before it becomes accessible via sysfs */ 960 ubi_devices[ubi_num] = ubi; 961 962 err = uif_init(ubi); 963 if (err) 964 goto out_detach; 965 966 err = ubi_debugfs_init_dev(ubi); 967 if (err) 968 goto out_uif; 969 970 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 971 if (IS_ERR(ubi->bgt_thread)) { 972 err = PTR_ERR(ubi->bgt_thread); 973 ubi_err(ubi, "cannot spawn \"%s\", error %d", 974 ubi->bgt_name, err); 975 goto out_debugfs; 976 } 977 978 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 979 mtd->index, mtd->name, ubi->flash_size >> 20); 980 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 981 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 982 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 983 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 984 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 985 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 986 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 987 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 988 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 989 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 990 ubi->vtbl_slots); 991 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 992 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 993 ubi->image_seq); 994 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 995 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 996 997 /* 998 * The below lock makes sure we do not race with 'ubi_thread()' which 999 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1000 */ 1001 spin_lock(&ubi->wl_lock); 1002 ubi->thread_enabled = 1; 1003 wake_up_process(ubi->bgt_thread); 1004 spin_unlock(&ubi->wl_lock); 1005 1006 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1007 return ubi_num; 1008 1009 out_debugfs: 1010 ubi_debugfs_exit_dev(ubi); 1011 out_uif: 1012 uif_close(ubi); 1013 out_detach: 1014 ubi_devices[ubi_num] = NULL; 1015 ubi_wl_close(ubi); 1016 ubi_free_internal_volumes(ubi); 1017 vfree(ubi->vtbl); 1018 out_free: 1019 vfree(ubi->peb_buf); 1020 vfree(ubi->fm_buf); 1021 put_device(&ubi->dev); 1022 return err; 1023 } 1024 1025 /** 1026 * ubi_detach_mtd_dev - detach an MTD device. 1027 * @ubi_num: UBI device number to detach from 1028 * @anyway: detach MTD even if device reference count is not zero 1029 * 1030 * This function destroys an UBI device number @ubi_num and detaches the 1031 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1032 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1033 * exist. 1034 * 1035 * Note, the invocations of this function has to be serialized by the 1036 * @ubi_devices_mutex. 1037 */ 1038 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1039 { 1040 struct ubi_device *ubi; 1041 1042 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1043 return -EINVAL; 1044 1045 ubi = ubi_get_device(ubi_num); 1046 if (!ubi) 1047 return -EINVAL; 1048 1049 spin_lock(&ubi_devices_lock); 1050 put_device(&ubi->dev); 1051 ubi->ref_count -= 1; 1052 if (ubi->ref_count) { 1053 if (!anyway) { 1054 spin_unlock(&ubi_devices_lock); 1055 return -EBUSY; 1056 } 1057 /* This may only happen if there is a bug */ 1058 ubi_err(ubi, "%s reference count %d, destroy anyway", 1059 ubi->ubi_name, ubi->ref_count); 1060 } 1061 ubi_devices[ubi_num] = NULL; 1062 spin_unlock(&ubi_devices_lock); 1063 1064 ubi_assert(ubi_num == ubi->ubi_num); 1065 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1066 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1067 #ifdef CONFIG_MTD_UBI_FASTMAP 1068 /* If we don't write a new fastmap at detach time we lose all 1069 * EC updates that have been made since the last written fastmap. 1070 * In case of fastmap debugging we omit the update to simulate an 1071 * unclean shutdown. */ 1072 if (!ubi_dbg_chk_fastmap(ubi)) 1073 ubi_update_fastmap(ubi); 1074 #endif 1075 /* 1076 * Before freeing anything, we have to stop the background thread to 1077 * prevent it from doing anything on this device while we are freeing. 1078 */ 1079 if (ubi->bgt_thread) 1080 kthread_stop(ubi->bgt_thread); 1081 1082 #ifdef CONFIG_MTD_UBI_FASTMAP 1083 cancel_work_sync(&ubi->fm_work); 1084 #endif 1085 ubi_debugfs_exit_dev(ubi); 1086 uif_close(ubi); 1087 1088 ubi_wl_close(ubi); 1089 ubi_free_internal_volumes(ubi); 1090 vfree(ubi->vtbl); 1091 vfree(ubi->peb_buf); 1092 vfree(ubi->fm_buf); 1093 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1094 put_mtd_device(ubi->mtd); 1095 put_device(&ubi->dev); 1096 return 0; 1097 } 1098 1099 /** 1100 * open_mtd_by_chdev - open an MTD device by its character device node path. 1101 * @mtd_dev: MTD character device node path 1102 * 1103 * This helper function opens an MTD device by its character node device path. 1104 * Returns MTD device description object in case of success and a negative 1105 * error code in case of failure. 1106 */ 1107 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1108 { 1109 int err, minor; 1110 struct path path; 1111 struct kstat stat; 1112 1113 /* Probably this is an MTD character device node path */ 1114 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1115 if (err) 1116 return ERR_PTR(err); 1117 1118 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1119 path_put(&path); 1120 if (err) 1121 return ERR_PTR(err); 1122 1123 /* MTD device number is defined by the major / minor numbers */ 1124 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1125 return ERR_PTR(-EINVAL); 1126 1127 minor = MINOR(stat.rdev); 1128 1129 if (minor & 1) 1130 /* 1131 * Just do not think the "/dev/mtdrX" devices support is need, 1132 * so do not support them to avoid doing extra work. 1133 */ 1134 return ERR_PTR(-EINVAL); 1135 1136 return get_mtd_device(NULL, minor / 2); 1137 } 1138 1139 /** 1140 * open_mtd_device - open MTD device by name, character device path, or number. 1141 * @mtd_dev: name, character device node path, or MTD device device number 1142 * 1143 * This function tries to open and MTD device described by @mtd_dev string, 1144 * which is first treated as ASCII MTD device number, and if it is not true, it 1145 * is treated as MTD device name, and if that is also not true, it is treated 1146 * as MTD character device node path. Returns MTD device description object in 1147 * case of success and a negative error code in case of failure. 1148 */ 1149 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1150 { 1151 struct mtd_info *mtd; 1152 int mtd_num; 1153 char *endp; 1154 1155 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1156 if (*endp != '\0' || mtd_dev == endp) { 1157 /* 1158 * This does not look like an ASCII integer, probably this is 1159 * MTD device name. 1160 */ 1161 mtd = get_mtd_device_nm(mtd_dev); 1162 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1163 /* Probably this is an MTD character device node path */ 1164 mtd = open_mtd_by_chdev(mtd_dev); 1165 } else 1166 mtd = get_mtd_device(NULL, mtd_num); 1167 1168 return mtd; 1169 } 1170 1171 static int __init ubi_init(void) 1172 { 1173 int err, i, k; 1174 1175 /* Ensure that EC and VID headers have correct size */ 1176 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1177 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1178 1179 if (mtd_devs > UBI_MAX_DEVICES) { 1180 pr_err("UBI error: too many MTD devices, maximum is %d\n", 1181 UBI_MAX_DEVICES); 1182 return -EINVAL; 1183 } 1184 1185 /* Create base sysfs directory and sysfs files */ 1186 err = class_register(&ubi_class); 1187 if (err < 0) 1188 return err; 1189 1190 err = misc_register(&ubi_ctrl_cdev); 1191 if (err) { 1192 pr_err("UBI error: cannot register device\n"); 1193 goto out; 1194 } 1195 1196 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1197 sizeof(struct ubi_wl_entry), 1198 0, 0, NULL); 1199 if (!ubi_wl_entry_slab) { 1200 err = -ENOMEM; 1201 goto out_dev_unreg; 1202 } 1203 1204 err = ubi_debugfs_init(); 1205 if (err) 1206 goto out_slab; 1207 1208 1209 /* Attach MTD devices */ 1210 for (i = 0; i < mtd_devs; i++) { 1211 struct mtd_dev_param *p = &mtd_dev_param[i]; 1212 struct mtd_info *mtd; 1213 1214 cond_resched(); 1215 1216 mtd = open_mtd_device(p->name); 1217 if (IS_ERR(mtd)) { 1218 err = PTR_ERR(mtd); 1219 pr_err("UBI error: cannot open mtd %s, error %d\n", 1220 p->name, err); 1221 /* See comment below re-ubi_is_module(). */ 1222 if (ubi_is_module()) 1223 goto out_detach; 1224 continue; 1225 } 1226 1227 mutex_lock(&ubi_devices_mutex); 1228 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1229 p->vid_hdr_offs, p->max_beb_per1024); 1230 mutex_unlock(&ubi_devices_mutex); 1231 if (err < 0) { 1232 pr_err("UBI error: cannot attach mtd%d\n", 1233 mtd->index); 1234 put_mtd_device(mtd); 1235 1236 /* 1237 * Originally UBI stopped initializing on any error. 1238 * However, later on it was found out that this 1239 * behavior is not very good when UBI is compiled into 1240 * the kernel and the MTD devices to attach are passed 1241 * through the command line. Indeed, UBI failure 1242 * stopped whole boot sequence. 1243 * 1244 * To fix this, we changed the behavior for the 1245 * non-module case, but preserved the old behavior for 1246 * the module case, just for compatibility. This is a 1247 * little inconsistent, though. 1248 */ 1249 if (ubi_is_module()) 1250 goto out_detach; 1251 } 1252 } 1253 1254 err = ubiblock_init(); 1255 if (err) { 1256 pr_err("UBI error: block: cannot initialize, error %d\n", err); 1257 1258 /* See comment above re-ubi_is_module(). */ 1259 if (ubi_is_module()) 1260 goto out_detach; 1261 } 1262 1263 return 0; 1264 1265 out_detach: 1266 for (k = 0; k < i; k++) 1267 if (ubi_devices[k]) { 1268 mutex_lock(&ubi_devices_mutex); 1269 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1270 mutex_unlock(&ubi_devices_mutex); 1271 } 1272 ubi_debugfs_exit(); 1273 out_slab: 1274 kmem_cache_destroy(ubi_wl_entry_slab); 1275 out_dev_unreg: 1276 misc_deregister(&ubi_ctrl_cdev); 1277 out: 1278 class_unregister(&ubi_class); 1279 pr_err("UBI error: cannot initialize UBI, error %d\n", err); 1280 return err; 1281 } 1282 late_initcall(ubi_init); 1283 1284 static void __exit ubi_exit(void) 1285 { 1286 int i; 1287 1288 ubiblock_exit(); 1289 1290 for (i = 0; i < UBI_MAX_DEVICES; i++) 1291 if (ubi_devices[i]) { 1292 mutex_lock(&ubi_devices_mutex); 1293 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1294 mutex_unlock(&ubi_devices_mutex); 1295 } 1296 ubi_debugfs_exit(); 1297 kmem_cache_destroy(ubi_wl_entry_slab); 1298 misc_deregister(&ubi_ctrl_cdev); 1299 class_unregister(&ubi_class); 1300 } 1301 module_exit(ubi_exit); 1302 1303 /** 1304 * bytes_str_to_int - convert a number of bytes string into an integer. 1305 * @str: the string to convert 1306 * 1307 * This function returns positive resulting integer in case of success and a 1308 * negative error code in case of failure. 1309 */ 1310 static int bytes_str_to_int(const char *str) 1311 { 1312 char *endp; 1313 unsigned long result; 1314 1315 result = simple_strtoul(str, &endp, 0); 1316 if (str == endp || result >= INT_MAX) { 1317 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1318 return -EINVAL; 1319 } 1320 1321 switch (*endp) { 1322 case 'G': 1323 result *= 1024; 1324 /* fall through */ 1325 case 'M': 1326 result *= 1024; 1327 /* fall through */ 1328 case 'K': 1329 result *= 1024; 1330 if (endp[1] == 'i' && endp[2] == 'B') 1331 endp += 2; 1332 case '\0': 1333 break; 1334 default: 1335 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1336 return -EINVAL; 1337 } 1338 1339 return result; 1340 } 1341 1342 /** 1343 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1344 * @val: the parameter value to parse 1345 * @kp: not used 1346 * 1347 * This function returns zero in case of success and a negative error code in 1348 * case of error. 1349 */ 1350 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp) 1351 { 1352 int i, len; 1353 struct mtd_dev_param *p; 1354 char buf[MTD_PARAM_LEN_MAX]; 1355 char *pbuf = &buf[0]; 1356 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1357 1358 if (!val) 1359 return -EINVAL; 1360 1361 if (mtd_devs == UBI_MAX_DEVICES) { 1362 pr_err("UBI error: too many parameters, max. is %d\n", 1363 UBI_MAX_DEVICES); 1364 return -EINVAL; 1365 } 1366 1367 len = strnlen(val, MTD_PARAM_LEN_MAX); 1368 if (len == MTD_PARAM_LEN_MAX) { 1369 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1370 val, MTD_PARAM_LEN_MAX); 1371 return -EINVAL; 1372 } 1373 1374 if (len == 0) { 1375 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1376 return 0; 1377 } 1378 1379 strcpy(buf, val); 1380 1381 /* Get rid of the final newline */ 1382 if (buf[len - 1] == '\n') 1383 buf[len - 1] = '\0'; 1384 1385 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1386 tokens[i] = strsep(&pbuf, ","); 1387 1388 if (pbuf) { 1389 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1390 return -EINVAL; 1391 } 1392 1393 p = &mtd_dev_param[mtd_devs]; 1394 strcpy(&p->name[0], tokens[0]); 1395 1396 token = tokens[1]; 1397 if (token) { 1398 p->vid_hdr_offs = bytes_str_to_int(token); 1399 1400 if (p->vid_hdr_offs < 0) 1401 return p->vid_hdr_offs; 1402 } 1403 1404 token = tokens[2]; 1405 if (token) { 1406 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1407 1408 if (err) { 1409 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1410 token); 1411 return -EINVAL; 1412 } 1413 } 1414 1415 token = tokens[3]; 1416 if (token) { 1417 int err = kstrtoint(token, 10, &p->ubi_num); 1418 1419 if (err) { 1420 pr_err("UBI error: bad value for ubi_num parameter: %s", 1421 token); 1422 return -EINVAL; 1423 } 1424 } else 1425 p->ubi_num = UBI_DEV_NUM_AUTO; 1426 1427 mtd_devs += 1; 1428 return 0; 1429 } 1430 1431 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1432 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1433 "Multiple \"mtd\" parameters may be specified.\n" 1434 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1435 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1436 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1437 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1438 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1439 "\n" 1440 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1441 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1442 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1443 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1444 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1445 #ifdef CONFIG_MTD_UBI_FASTMAP 1446 module_param(fm_autoconvert, bool, 0644); 1447 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1448 module_param(fm_debug, bool, 0); 1449 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1450 #endif 1451 MODULE_VERSION(__stringify(UBI_VERSION)); 1452 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1453 MODULE_AUTHOR("Artem Bityutskiy"); 1454 MODULE_LICENSE("GPL"); 1455