1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём), 7 * Frank Haverkamp 8 */ 9 10 /* 11 * This file includes UBI initialization and building of UBI devices. 12 * 13 * When UBI is initialized, it attaches all the MTD devices specified as the 14 * module load parameters or the kernel boot parameters. If MTD devices were 15 * specified, UBI does not attach any MTD device, but it is possible to do 16 * later using the "UBI control device". 17 */ 18 19 #include <linux/err.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/stringify.h> 23 #include <linux/namei.h> 24 #include <linux/stat.h> 25 #include <linux/miscdevice.h> 26 #include <linux/mtd/partitions.h> 27 #include <linux/log2.h> 28 #include <linux/kthread.h> 29 #include <linux/kernel.h> 30 #include <linux/slab.h> 31 #include <linux/major.h> 32 #include "ubi.h" 33 34 /* Maximum length of the 'mtd=' parameter */ 35 #define MTD_PARAM_LEN_MAX 64 36 37 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 38 #define MTD_PARAM_MAX_COUNT 4 39 40 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 41 #define MAX_MTD_UBI_BEB_LIMIT 768 42 43 #ifdef CONFIG_MTD_UBI_MODULE 44 #define ubi_is_module() 1 45 #else 46 #define ubi_is_module() 0 47 #endif 48 49 /** 50 * struct mtd_dev_param - MTD device parameter description data structure. 51 * @name: MTD character device node path, MTD device name, or MTD device number 52 * string 53 * @ubi_num: UBI number 54 * @vid_hdr_offs: VID header offset 55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 56 */ 57 struct mtd_dev_param { 58 char name[MTD_PARAM_LEN_MAX]; 59 int ubi_num; 60 int vid_hdr_offs; 61 int max_beb_per1024; 62 }; 63 64 /* Numbers of elements set in the @mtd_dev_param array */ 65 static int mtd_devs; 66 67 /* MTD devices specification parameters */ 68 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 69 #ifdef CONFIG_MTD_UBI_FASTMAP 70 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 71 static bool fm_autoconvert; 72 static bool fm_debug; 73 #endif 74 75 /* Slab cache for wear-leveling entries */ 76 struct kmem_cache *ubi_wl_entry_slab; 77 78 /* UBI control character device */ 79 static struct miscdevice ubi_ctrl_cdev = { 80 .minor = MISC_DYNAMIC_MINOR, 81 .name = "ubi_ctrl", 82 .fops = &ubi_ctrl_cdev_operations, 83 }; 84 85 /* All UBI devices in system */ 86 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 87 88 /* Serializes UBI devices creations and removals */ 89 DEFINE_MUTEX(ubi_devices_mutex); 90 91 /* Protects @ubi_devices and @ubi->ref_count */ 92 static DEFINE_SPINLOCK(ubi_devices_lock); 93 94 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 95 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 96 static ssize_t version_show(struct class *class, struct class_attribute *attr, 97 char *buf) 98 { 99 return sprintf(buf, "%d\n", UBI_VERSION); 100 } 101 static CLASS_ATTR_RO(version); 102 103 static struct attribute *ubi_class_attrs[] = { 104 &class_attr_version.attr, 105 NULL, 106 }; 107 ATTRIBUTE_GROUPS(ubi_class); 108 109 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 110 struct class ubi_class = { 111 .name = UBI_NAME_STR, 112 .owner = THIS_MODULE, 113 .class_groups = ubi_class_groups, 114 }; 115 116 static ssize_t dev_attribute_show(struct device *dev, 117 struct device_attribute *attr, char *buf); 118 119 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 120 static struct device_attribute dev_eraseblock_size = 121 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 122 static struct device_attribute dev_avail_eraseblocks = 123 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 124 static struct device_attribute dev_total_eraseblocks = 125 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 126 static struct device_attribute dev_volumes_count = 127 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 128 static struct device_attribute dev_max_ec = 129 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 130 static struct device_attribute dev_reserved_for_bad = 131 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 132 static struct device_attribute dev_bad_peb_count = 133 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 134 static struct device_attribute dev_max_vol_count = 135 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 136 static struct device_attribute dev_min_io_size = 137 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_bgt_enabled = 139 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_mtd_num = 141 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 142 static struct device_attribute dev_ro_mode = 143 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 144 145 /** 146 * ubi_volume_notify - send a volume change notification. 147 * @ubi: UBI device description object 148 * @vol: volume description object of the changed volume 149 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 150 * 151 * This is a helper function which notifies all subscribers about a volume 152 * change event (creation, removal, re-sizing, re-naming, updating). Returns 153 * zero in case of success and a negative error code in case of failure. 154 */ 155 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 156 { 157 int ret; 158 struct ubi_notification nt; 159 160 ubi_do_get_device_info(ubi, &nt.di); 161 ubi_do_get_volume_info(ubi, vol, &nt.vi); 162 163 switch (ntype) { 164 case UBI_VOLUME_ADDED: 165 case UBI_VOLUME_REMOVED: 166 case UBI_VOLUME_RESIZED: 167 case UBI_VOLUME_RENAMED: 168 ret = ubi_update_fastmap(ubi); 169 if (ret) 170 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 171 } 172 173 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 174 } 175 176 /** 177 * ubi_notify_all - send a notification to all volumes. 178 * @ubi: UBI device description object 179 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 180 * @nb: the notifier to call 181 * 182 * This function walks all volumes of UBI device @ubi and sends the @ntype 183 * notification for each volume. If @nb is %NULL, then all registered notifiers 184 * are called, otherwise only the @nb notifier is called. Returns the number of 185 * sent notifications. 186 */ 187 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 188 { 189 struct ubi_notification nt; 190 int i, count = 0; 191 192 ubi_do_get_device_info(ubi, &nt.di); 193 194 mutex_lock(&ubi->device_mutex); 195 for (i = 0; i < ubi->vtbl_slots; i++) { 196 /* 197 * Since the @ubi->device is locked, and we are not going to 198 * change @ubi->volumes, we do not have to lock 199 * @ubi->volumes_lock. 200 */ 201 if (!ubi->volumes[i]) 202 continue; 203 204 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 205 if (nb) 206 nb->notifier_call(nb, ntype, &nt); 207 else 208 blocking_notifier_call_chain(&ubi_notifiers, ntype, 209 &nt); 210 count += 1; 211 } 212 mutex_unlock(&ubi->device_mutex); 213 214 return count; 215 } 216 217 /** 218 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 219 * @nb: the notifier to call 220 * 221 * This function walks all UBI devices and volumes and sends the 222 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 223 * registered notifiers are called, otherwise only the @nb notifier is called. 224 * Returns the number of sent notifications. 225 */ 226 int ubi_enumerate_volumes(struct notifier_block *nb) 227 { 228 int i, count = 0; 229 230 /* 231 * Since the @ubi_devices_mutex is locked, and we are not going to 232 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 233 */ 234 for (i = 0; i < UBI_MAX_DEVICES; i++) { 235 struct ubi_device *ubi = ubi_devices[i]; 236 237 if (!ubi) 238 continue; 239 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 240 } 241 242 return count; 243 } 244 245 /** 246 * ubi_get_device - get UBI device. 247 * @ubi_num: UBI device number 248 * 249 * This function returns UBI device description object for UBI device number 250 * @ubi_num, or %NULL if the device does not exist. This function increases the 251 * device reference count to prevent removal of the device. In other words, the 252 * device cannot be removed if its reference count is not zero. 253 */ 254 struct ubi_device *ubi_get_device(int ubi_num) 255 { 256 struct ubi_device *ubi; 257 258 spin_lock(&ubi_devices_lock); 259 ubi = ubi_devices[ubi_num]; 260 if (ubi) { 261 ubi_assert(ubi->ref_count >= 0); 262 ubi->ref_count += 1; 263 get_device(&ubi->dev); 264 } 265 spin_unlock(&ubi_devices_lock); 266 267 return ubi; 268 } 269 270 /** 271 * ubi_put_device - drop an UBI device reference. 272 * @ubi: UBI device description object 273 */ 274 void ubi_put_device(struct ubi_device *ubi) 275 { 276 spin_lock(&ubi_devices_lock); 277 ubi->ref_count -= 1; 278 put_device(&ubi->dev); 279 spin_unlock(&ubi_devices_lock); 280 } 281 282 /** 283 * ubi_get_by_major - get UBI device by character device major number. 284 * @major: major number 285 * 286 * This function is similar to 'ubi_get_device()', but it searches the device 287 * by its major number. 288 */ 289 struct ubi_device *ubi_get_by_major(int major) 290 { 291 int i; 292 struct ubi_device *ubi; 293 294 spin_lock(&ubi_devices_lock); 295 for (i = 0; i < UBI_MAX_DEVICES; i++) { 296 ubi = ubi_devices[i]; 297 if (ubi && MAJOR(ubi->cdev.dev) == major) { 298 ubi_assert(ubi->ref_count >= 0); 299 ubi->ref_count += 1; 300 get_device(&ubi->dev); 301 spin_unlock(&ubi_devices_lock); 302 return ubi; 303 } 304 } 305 spin_unlock(&ubi_devices_lock); 306 307 return NULL; 308 } 309 310 /** 311 * ubi_major2num - get UBI device number by character device major number. 312 * @major: major number 313 * 314 * This function searches UBI device number object by its major number. If UBI 315 * device was not found, this function returns -ENODEV, otherwise the UBI device 316 * number is returned. 317 */ 318 int ubi_major2num(int major) 319 { 320 int i, ubi_num = -ENODEV; 321 322 spin_lock(&ubi_devices_lock); 323 for (i = 0; i < UBI_MAX_DEVICES; i++) { 324 struct ubi_device *ubi = ubi_devices[i]; 325 326 if (ubi && MAJOR(ubi->cdev.dev) == major) { 327 ubi_num = ubi->ubi_num; 328 break; 329 } 330 } 331 spin_unlock(&ubi_devices_lock); 332 333 return ubi_num; 334 } 335 336 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 337 static ssize_t dev_attribute_show(struct device *dev, 338 struct device_attribute *attr, char *buf) 339 { 340 ssize_t ret; 341 struct ubi_device *ubi; 342 343 /* 344 * The below code looks weird, but it actually makes sense. We get the 345 * UBI device reference from the contained 'struct ubi_device'. But it 346 * is unclear if the device was removed or not yet. Indeed, if the 347 * device was removed before we increased its reference count, 348 * 'ubi_get_device()' will return -ENODEV and we fail. 349 * 350 * Remember, 'struct ubi_device' is freed in the release function, so 351 * we still can use 'ubi->ubi_num'. 352 */ 353 ubi = container_of(dev, struct ubi_device, dev); 354 ubi = ubi_get_device(ubi->ubi_num); 355 if (!ubi) 356 return -ENODEV; 357 358 if (attr == &dev_eraseblock_size) 359 ret = sprintf(buf, "%d\n", ubi->leb_size); 360 else if (attr == &dev_avail_eraseblocks) 361 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 362 else if (attr == &dev_total_eraseblocks) 363 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 364 else if (attr == &dev_volumes_count) 365 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 366 else if (attr == &dev_max_ec) 367 ret = sprintf(buf, "%d\n", ubi->max_ec); 368 else if (attr == &dev_reserved_for_bad) 369 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 370 else if (attr == &dev_bad_peb_count) 371 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 372 else if (attr == &dev_max_vol_count) 373 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 374 else if (attr == &dev_min_io_size) 375 ret = sprintf(buf, "%d\n", ubi->min_io_size); 376 else if (attr == &dev_bgt_enabled) 377 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 378 else if (attr == &dev_mtd_num) 379 ret = sprintf(buf, "%d\n", ubi->mtd->index); 380 else if (attr == &dev_ro_mode) 381 ret = sprintf(buf, "%d\n", ubi->ro_mode); 382 else 383 ret = -EINVAL; 384 385 ubi_put_device(ubi); 386 return ret; 387 } 388 389 static struct attribute *ubi_dev_attrs[] = { 390 &dev_eraseblock_size.attr, 391 &dev_avail_eraseblocks.attr, 392 &dev_total_eraseblocks.attr, 393 &dev_volumes_count.attr, 394 &dev_max_ec.attr, 395 &dev_reserved_for_bad.attr, 396 &dev_bad_peb_count.attr, 397 &dev_max_vol_count.attr, 398 &dev_min_io_size.attr, 399 &dev_bgt_enabled.attr, 400 &dev_mtd_num.attr, 401 &dev_ro_mode.attr, 402 NULL 403 }; 404 ATTRIBUTE_GROUPS(ubi_dev); 405 406 static void dev_release(struct device *dev) 407 { 408 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 409 410 kfree(ubi); 411 } 412 413 /** 414 * kill_volumes - destroy all user volumes. 415 * @ubi: UBI device description object 416 */ 417 static void kill_volumes(struct ubi_device *ubi) 418 { 419 int i; 420 421 for (i = 0; i < ubi->vtbl_slots; i++) 422 if (ubi->volumes[i]) 423 ubi_free_volume(ubi, ubi->volumes[i]); 424 } 425 426 /** 427 * uif_init - initialize user interfaces for an UBI device. 428 * @ubi: UBI device description object 429 * 430 * This function initializes various user interfaces for an UBI device. If the 431 * initialization fails at an early stage, this function frees all the 432 * resources it allocated, returns an error. 433 * 434 * This function returns zero in case of success and a negative error code in 435 * case of failure. 436 */ 437 static int uif_init(struct ubi_device *ubi) 438 { 439 int i, err; 440 dev_t dev; 441 442 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 443 444 /* 445 * Major numbers for the UBI character devices are allocated 446 * dynamically. Major numbers of volume character devices are 447 * equivalent to ones of the corresponding UBI character device. Minor 448 * numbers of UBI character devices are 0, while minor numbers of 449 * volume character devices start from 1. Thus, we allocate one major 450 * number and ubi->vtbl_slots + 1 minor numbers. 451 */ 452 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 453 if (err) { 454 ubi_err(ubi, "cannot register UBI character devices"); 455 return err; 456 } 457 458 ubi->dev.devt = dev; 459 460 ubi_assert(MINOR(dev) == 0); 461 cdev_init(&ubi->cdev, &ubi_cdev_operations); 462 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 463 ubi->cdev.owner = THIS_MODULE; 464 465 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 466 err = cdev_device_add(&ubi->cdev, &ubi->dev); 467 if (err) 468 goto out_unreg; 469 470 for (i = 0; i < ubi->vtbl_slots; i++) 471 if (ubi->volumes[i]) { 472 err = ubi_add_volume(ubi, ubi->volumes[i]); 473 if (err) { 474 ubi_err(ubi, "cannot add volume %d", i); 475 goto out_volumes; 476 } 477 } 478 479 return 0; 480 481 out_volumes: 482 kill_volumes(ubi); 483 cdev_device_del(&ubi->cdev, &ubi->dev); 484 out_unreg: 485 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 486 ubi_err(ubi, "cannot initialize UBI %s, error %d", 487 ubi->ubi_name, err); 488 return err; 489 } 490 491 /** 492 * uif_close - close user interfaces for an UBI device. 493 * @ubi: UBI device description object 494 * 495 * Note, since this function un-registers UBI volume device objects (@vol->dev), 496 * the memory allocated voe the volumes is freed as well (in the release 497 * function). 498 */ 499 static void uif_close(struct ubi_device *ubi) 500 { 501 kill_volumes(ubi); 502 cdev_device_del(&ubi->cdev, &ubi->dev); 503 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 504 } 505 506 /** 507 * ubi_free_volumes_from - free volumes from specific index. 508 * @ubi: UBI device description object 509 * @from: the start index used for volume free. 510 */ 511 static void ubi_free_volumes_from(struct ubi_device *ubi, int from) 512 { 513 int i; 514 515 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 516 if (!ubi->volumes[i]) 517 continue; 518 ubi_eba_replace_table(ubi->volumes[i], NULL); 519 ubi_fastmap_destroy_checkmap(ubi->volumes[i]); 520 kfree(ubi->volumes[i]); 521 ubi->volumes[i] = NULL; 522 } 523 } 524 525 /** 526 * ubi_free_all_volumes - free all volumes. 527 * @ubi: UBI device description object 528 */ 529 void ubi_free_all_volumes(struct ubi_device *ubi) 530 { 531 ubi_free_volumes_from(ubi, 0); 532 } 533 534 /** 535 * ubi_free_internal_volumes - free internal volumes. 536 * @ubi: UBI device description object 537 */ 538 void ubi_free_internal_volumes(struct ubi_device *ubi) 539 { 540 ubi_free_volumes_from(ubi, ubi->vtbl_slots); 541 } 542 543 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 544 { 545 int limit, device_pebs; 546 uint64_t device_size; 547 548 if (!max_beb_per1024) { 549 /* 550 * Since max_beb_per1024 has not been set by the user in either 551 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the 552 * limit if it is supported by the device. 553 */ 554 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size); 555 if (limit < 0) 556 return 0; 557 return limit; 558 } 559 560 /* 561 * Here we are using size of the entire flash chip and 562 * not just the MTD partition size because the maximum 563 * number of bad eraseblocks is a percentage of the 564 * whole device and bad eraseblocks are not fairly 565 * distributed over the flash chip. So the worst case 566 * is that all the bad eraseblocks of the chip are in 567 * the MTD partition we are attaching (ubi->mtd). 568 */ 569 device_size = mtd_get_device_size(ubi->mtd); 570 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 571 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 572 573 /* Round it up */ 574 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 575 limit += 1; 576 577 return limit; 578 } 579 580 /** 581 * io_init - initialize I/O sub-system for a given UBI device. 582 * @ubi: UBI device description object 583 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 584 * 585 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 586 * assumed: 587 * o EC header is always at offset zero - this cannot be changed; 588 * o VID header starts just after the EC header at the closest address 589 * aligned to @io->hdrs_min_io_size; 590 * o data starts just after the VID header at the closest address aligned to 591 * @io->min_io_size 592 * 593 * This function returns zero in case of success and a negative error code in 594 * case of failure. 595 */ 596 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 597 { 598 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 599 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 600 601 if (ubi->mtd->numeraseregions != 0) { 602 /* 603 * Some flashes have several erase regions. Different regions 604 * may have different eraseblock size and other 605 * characteristics. It looks like mostly multi-region flashes 606 * have one "main" region and one or more small regions to 607 * store boot loader code or boot parameters or whatever. I 608 * guess we should just pick the largest region. But this is 609 * not implemented. 610 */ 611 ubi_err(ubi, "multiple regions, not implemented"); 612 return -EINVAL; 613 } 614 615 if (ubi->vid_hdr_offset < 0) 616 return -EINVAL; 617 618 /* 619 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 620 * physical eraseblocks maximum. 621 */ 622 623 ubi->peb_size = ubi->mtd->erasesize; 624 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 625 ubi->flash_size = ubi->mtd->size; 626 627 if (mtd_can_have_bb(ubi->mtd)) { 628 ubi->bad_allowed = 1; 629 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 630 } 631 632 if (ubi->mtd->type == MTD_NORFLASH) 633 ubi->nor_flash = 1; 634 635 ubi->min_io_size = ubi->mtd->writesize; 636 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 637 638 /* 639 * Make sure minimal I/O unit is power of 2. Note, there is no 640 * fundamental reason for this assumption. It is just an optimization 641 * which allows us to avoid costly division operations. 642 */ 643 if (!is_power_of_2(ubi->min_io_size)) { 644 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 645 ubi->min_io_size); 646 return -EINVAL; 647 } 648 649 ubi_assert(ubi->hdrs_min_io_size > 0); 650 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 651 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 652 653 ubi->max_write_size = ubi->mtd->writebufsize; 654 /* 655 * Maximum write size has to be greater or equivalent to min. I/O 656 * size, and be multiple of min. I/O size. 657 */ 658 if (ubi->max_write_size < ubi->min_io_size || 659 ubi->max_write_size % ubi->min_io_size || 660 !is_power_of_2(ubi->max_write_size)) { 661 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 662 ubi->max_write_size, ubi->min_io_size); 663 return -EINVAL; 664 } 665 666 /* Calculate default aligned sizes of EC and VID headers */ 667 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 668 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 669 670 dbg_gen("min_io_size %d", ubi->min_io_size); 671 dbg_gen("max_write_size %d", ubi->max_write_size); 672 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 673 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 674 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 675 676 if (ubi->vid_hdr_offset == 0) 677 /* Default offset */ 678 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 679 ubi->ec_hdr_alsize; 680 else { 681 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 682 ~(ubi->hdrs_min_io_size - 1); 683 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 684 ubi->vid_hdr_aloffset; 685 } 686 687 /* Similar for the data offset */ 688 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 689 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 690 691 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 692 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 693 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 694 dbg_gen("leb_start %d", ubi->leb_start); 695 696 /* The shift must be aligned to 32-bit boundary */ 697 if (ubi->vid_hdr_shift % 4) { 698 ubi_err(ubi, "unaligned VID header shift %d", 699 ubi->vid_hdr_shift); 700 return -EINVAL; 701 } 702 703 /* Check sanity */ 704 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 705 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 706 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 707 ubi->leb_start & (ubi->min_io_size - 1)) { 708 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 709 ubi->vid_hdr_offset, ubi->leb_start); 710 return -EINVAL; 711 } 712 713 /* 714 * Set maximum amount of physical erroneous eraseblocks to be 10%. 715 * Erroneous PEB are those which have read errors. 716 */ 717 ubi->max_erroneous = ubi->peb_count / 10; 718 if (ubi->max_erroneous < 16) 719 ubi->max_erroneous = 16; 720 dbg_gen("max_erroneous %d", ubi->max_erroneous); 721 722 /* 723 * It may happen that EC and VID headers are situated in one minimal 724 * I/O unit. In this case we can only accept this UBI image in 725 * read-only mode. 726 */ 727 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 728 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 729 ubi->ro_mode = 1; 730 } 731 732 ubi->leb_size = ubi->peb_size - ubi->leb_start; 733 734 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 735 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 736 ubi->mtd->index); 737 ubi->ro_mode = 1; 738 } 739 740 /* 741 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 742 * unfortunately, MTD does not provide this information. We should loop 743 * over all physical eraseblocks and invoke mtd->block_is_bad() for 744 * each physical eraseblock. So, we leave @ubi->bad_peb_count 745 * uninitialized so far. 746 */ 747 748 return 0; 749 } 750 751 /** 752 * autoresize - re-size the volume which has the "auto-resize" flag set. 753 * @ubi: UBI device description object 754 * @vol_id: ID of the volume to re-size 755 * 756 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 757 * the volume table to the largest possible size. See comments in ubi-header.h 758 * for more description of the flag. Returns zero in case of success and a 759 * negative error code in case of failure. 760 */ 761 static int autoresize(struct ubi_device *ubi, int vol_id) 762 { 763 struct ubi_volume_desc desc; 764 struct ubi_volume *vol = ubi->volumes[vol_id]; 765 int err, old_reserved_pebs = vol->reserved_pebs; 766 767 if (ubi->ro_mode) { 768 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 769 return 0; 770 } 771 772 /* 773 * Clear the auto-resize flag in the volume in-memory copy of the 774 * volume table, and 'ubi_resize_volume()' will propagate this change 775 * to the flash. 776 */ 777 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 778 779 if (ubi->avail_pebs == 0) { 780 struct ubi_vtbl_record vtbl_rec; 781 782 /* 783 * No available PEBs to re-size the volume, clear the flag on 784 * flash and exit. 785 */ 786 vtbl_rec = ubi->vtbl[vol_id]; 787 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 788 if (err) 789 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 790 vol_id); 791 } else { 792 desc.vol = vol; 793 err = ubi_resize_volume(&desc, 794 old_reserved_pebs + ubi->avail_pebs); 795 if (err) 796 ubi_err(ubi, "cannot auto-resize volume %d", 797 vol_id); 798 } 799 800 if (err) 801 return err; 802 803 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 804 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 805 return 0; 806 } 807 808 /** 809 * ubi_attach_mtd_dev - attach an MTD device. 810 * @mtd: MTD device description object 811 * @ubi_num: number to assign to the new UBI device 812 * @vid_hdr_offset: VID header offset 813 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 814 * 815 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 816 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 817 * which case this function finds a vacant device number and assigns it 818 * automatically. Returns the new UBI device number in case of success and a 819 * negative error code in case of failure. 820 * 821 * Note, the invocations of this function has to be serialized by the 822 * @ubi_devices_mutex. 823 */ 824 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 825 int vid_hdr_offset, int max_beb_per1024) 826 { 827 struct ubi_device *ubi; 828 int i, err; 829 830 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 831 return -EINVAL; 832 833 if (!max_beb_per1024) 834 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 835 836 /* 837 * Check if we already have the same MTD device attached. 838 * 839 * Note, this function assumes that UBI devices creations and deletions 840 * are serialized, so it does not take the &ubi_devices_lock. 841 */ 842 for (i = 0; i < UBI_MAX_DEVICES; i++) { 843 ubi = ubi_devices[i]; 844 if (ubi && mtd->index == ubi->mtd->index) { 845 pr_err("ubi: mtd%d is already attached to ubi%d\n", 846 mtd->index, i); 847 return -EEXIST; 848 } 849 } 850 851 /* 852 * Make sure this MTD device is not emulated on top of an UBI volume 853 * already. Well, generally this recursion works fine, but there are 854 * different problems like the UBI module takes a reference to itself 855 * by attaching (and thus, opening) the emulated MTD device. This 856 * results in inability to unload the module. And in general it makes 857 * no sense to attach emulated MTD devices, so we prohibit this. 858 */ 859 if (mtd->type == MTD_UBIVOLUME) { 860 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n", 861 mtd->index); 862 return -EINVAL; 863 } 864 865 /* 866 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes. 867 * MLC NAND is different and needs special care, otherwise UBI or UBIFS 868 * will die soon and you will lose all your data. 869 * Relax this rule if the partition we're attaching to operates in SLC 870 * mode. 871 */ 872 if (mtd->type == MTD_MLCNANDFLASH && 873 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) { 874 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n", 875 mtd->index); 876 return -EINVAL; 877 } 878 879 if (ubi_num == UBI_DEV_NUM_AUTO) { 880 /* Search for an empty slot in the @ubi_devices array */ 881 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 882 if (!ubi_devices[ubi_num]) 883 break; 884 if (ubi_num == UBI_MAX_DEVICES) { 885 pr_err("ubi: only %d UBI devices may be created\n", 886 UBI_MAX_DEVICES); 887 return -ENFILE; 888 } 889 } else { 890 if (ubi_num >= UBI_MAX_DEVICES) 891 return -EINVAL; 892 893 /* Make sure ubi_num is not busy */ 894 if (ubi_devices[ubi_num]) { 895 pr_err("ubi: ubi%i already exists\n", ubi_num); 896 return -EEXIST; 897 } 898 } 899 900 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 901 if (!ubi) 902 return -ENOMEM; 903 904 device_initialize(&ubi->dev); 905 ubi->dev.release = dev_release; 906 ubi->dev.class = &ubi_class; 907 ubi->dev.groups = ubi_dev_groups; 908 909 ubi->mtd = mtd; 910 ubi->ubi_num = ubi_num; 911 ubi->vid_hdr_offset = vid_hdr_offset; 912 ubi->autoresize_vol_id = -1; 913 914 #ifdef CONFIG_MTD_UBI_FASTMAP 915 ubi->fm_pool.used = ubi->fm_pool.size = 0; 916 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 917 918 /* 919 * fm_pool.max_size is 5% of the total number of PEBs but it's also 920 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 921 */ 922 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 923 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 924 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 925 UBI_FM_MIN_POOL_SIZE); 926 927 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 928 ubi->fm_disabled = !fm_autoconvert; 929 if (fm_debug) 930 ubi_enable_dbg_chk_fastmap(ubi); 931 932 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 933 <= UBI_FM_MAX_START) { 934 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 935 UBI_FM_MAX_START); 936 ubi->fm_disabled = 1; 937 } 938 939 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 940 ubi_msg(ubi, "default fastmap WL pool size: %d", 941 ubi->fm_wl_pool.max_size); 942 #else 943 ubi->fm_disabled = 1; 944 #endif 945 mutex_init(&ubi->buf_mutex); 946 mutex_init(&ubi->ckvol_mutex); 947 mutex_init(&ubi->device_mutex); 948 spin_lock_init(&ubi->volumes_lock); 949 init_rwsem(&ubi->fm_protect); 950 init_rwsem(&ubi->fm_eba_sem); 951 952 ubi_msg(ubi, "attaching mtd%d", mtd->index); 953 954 err = io_init(ubi, max_beb_per1024); 955 if (err) 956 goto out_free; 957 958 err = -ENOMEM; 959 ubi->peb_buf = vmalloc(ubi->peb_size); 960 if (!ubi->peb_buf) 961 goto out_free; 962 963 #ifdef CONFIG_MTD_UBI_FASTMAP 964 ubi->fm_size = ubi_calc_fm_size(ubi); 965 ubi->fm_buf = vzalloc(ubi->fm_size); 966 if (!ubi->fm_buf) 967 goto out_free; 968 #endif 969 err = ubi_attach(ubi, 0); 970 if (err) { 971 ubi_err(ubi, "failed to attach mtd%d, error %d", 972 mtd->index, err); 973 goto out_free; 974 } 975 976 if (ubi->autoresize_vol_id != -1) { 977 err = autoresize(ubi, ubi->autoresize_vol_id); 978 if (err) 979 goto out_detach; 980 } 981 982 /* Make device "available" before it becomes accessible via sysfs */ 983 ubi_devices[ubi_num] = ubi; 984 985 err = uif_init(ubi); 986 if (err) 987 goto out_detach; 988 989 err = ubi_debugfs_init_dev(ubi); 990 if (err) 991 goto out_uif; 992 993 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 994 if (IS_ERR(ubi->bgt_thread)) { 995 err = PTR_ERR(ubi->bgt_thread); 996 ubi_err(ubi, "cannot spawn \"%s\", error %d", 997 ubi->bgt_name, err); 998 goto out_debugfs; 999 } 1000 1001 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 1002 mtd->index, mtd->name, ubi->flash_size >> 20); 1003 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1004 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1005 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 1006 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1007 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1008 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1009 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1010 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1011 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1012 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1013 ubi->vtbl_slots); 1014 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1015 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1016 ubi->image_seq); 1017 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1018 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1019 1020 /* 1021 * The below lock makes sure we do not race with 'ubi_thread()' which 1022 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1023 */ 1024 spin_lock(&ubi->wl_lock); 1025 ubi->thread_enabled = 1; 1026 wake_up_process(ubi->bgt_thread); 1027 spin_unlock(&ubi->wl_lock); 1028 1029 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1030 return ubi_num; 1031 1032 out_debugfs: 1033 ubi_debugfs_exit_dev(ubi); 1034 out_uif: 1035 uif_close(ubi); 1036 out_detach: 1037 ubi_devices[ubi_num] = NULL; 1038 ubi_wl_close(ubi); 1039 ubi_free_all_volumes(ubi); 1040 vfree(ubi->vtbl); 1041 out_free: 1042 vfree(ubi->peb_buf); 1043 vfree(ubi->fm_buf); 1044 put_device(&ubi->dev); 1045 return err; 1046 } 1047 1048 /** 1049 * ubi_detach_mtd_dev - detach an MTD device. 1050 * @ubi_num: UBI device number to detach from 1051 * @anyway: detach MTD even if device reference count is not zero 1052 * 1053 * This function destroys an UBI device number @ubi_num and detaches the 1054 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1055 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1056 * exist. 1057 * 1058 * Note, the invocations of this function has to be serialized by the 1059 * @ubi_devices_mutex. 1060 */ 1061 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1062 { 1063 struct ubi_device *ubi; 1064 1065 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1066 return -EINVAL; 1067 1068 ubi = ubi_get_device(ubi_num); 1069 if (!ubi) 1070 return -EINVAL; 1071 1072 spin_lock(&ubi_devices_lock); 1073 put_device(&ubi->dev); 1074 ubi->ref_count -= 1; 1075 if (ubi->ref_count) { 1076 if (!anyway) { 1077 spin_unlock(&ubi_devices_lock); 1078 return -EBUSY; 1079 } 1080 /* This may only happen if there is a bug */ 1081 ubi_err(ubi, "%s reference count %d, destroy anyway", 1082 ubi->ubi_name, ubi->ref_count); 1083 } 1084 ubi_devices[ubi_num] = NULL; 1085 spin_unlock(&ubi_devices_lock); 1086 1087 ubi_assert(ubi_num == ubi->ubi_num); 1088 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1089 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1090 #ifdef CONFIG_MTD_UBI_FASTMAP 1091 /* If we don't write a new fastmap at detach time we lose all 1092 * EC updates that have been made since the last written fastmap. 1093 * In case of fastmap debugging we omit the update to simulate an 1094 * unclean shutdown. */ 1095 if (!ubi_dbg_chk_fastmap(ubi)) 1096 ubi_update_fastmap(ubi); 1097 #endif 1098 /* 1099 * Before freeing anything, we have to stop the background thread to 1100 * prevent it from doing anything on this device while we are freeing. 1101 */ 1102 if (ubi->bgt_thread) 1103 kthread_stop(ubi->bgt_thread); 1104 1105 #ifdef CONFIG_MTD_UBI_FASTMAP 1106 cancel_work_sync(&ubi->fm_work); 1107 #endif 1108 ubi_debugfs_exit_dev(ubi); 1109 uif_close(ubi); 1110 1111 ubi_wl_close(ubi); 1112 ubi_free_internal_volumes(ubi); 1113 vfree(ubi->vtbl); 1114 vfree(ubi->peb_buf); 1115 vfree(ubi->fm_buf); 1116 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1117 put_mtd_device(ubi->mtd); 1118 put_device(&ubi->dev); 1119 return 0; 1120 } 1121 1122 /** 1123 * open_mtd_by_chdev - open an MTD device by its character device node path. 1124 * @mtd_dev: MTD character device node path 1125 * 1126 * This helper function opens an MTD device by its character node device path. 1127 * Returns MTD device description object in case of success and a negative 1128 * error code in case of failure. 1129 */ 1130 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1131 { 1132 int err, minor; 1133 struct path path; 1134 struct kstat stat; 1135 1136 /* Probably this is an MTD character device node path */ 1137 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1138 if (err) 1139 return ERR_PTR(err); 1140 1141 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1142 path_put(&path); 1143 if (err) 1144 return ERR_PTR(err); 1145 1146 /* MTD device number is defined by the major / minor numbers */ 1147 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1148 return ERR_PTR(-EINVAL); 1149 1150 minor = MINOR(stat.rdev); 1151 1152 if (minor & 1) 1153 /* 1154 * Just do not think the "/dev/mtdrX" devices support is need, 1155 * so do not support them to avoid doing extra work. 1156 */ 1157 return ERR_PTR(-EINVAL); 1158 1159 return get_mtd_device(NULL, minor / 2); 1160 } 1161 1162 /** 1163 * open_mtd_device - open MTD device by name, character device path, or number. 1164 * @mtd_dev: name, character device node path, or MTD device device number 1165 * 1166 * This function tries to open and MTD device described by @mtd_dev string, 1167 * which is first treated as ASCII MTD device number, and if it is not true, it 1168 * is treated as MTD device name, and if that is also not true, it is treated 1169 * as MTD character device node path. Returns MTD device description object in 1170 * case of success and a negative error code in case of failure. 1171 */ 1172 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1173 { 1174 struct mtd_info *mtd; 1175 int mtd_num; 1176 char *endp; 1177 1178 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1179 if (*endp != '\0' || mtd_dev == endp) { 1180 /* 1181 * This does not look like an ASCII integer, probably this is 1182 * MTD device name. 1183 */ 1184 mtd = get_mtd_device_nm(mtd_dev); 1185 if (PTR_ERR(mtd) == -ENODEV) 1186 /* Probably this is an MTD character device node path */ 1187 mtd = open_mtd_by_chdev(mtd_dev); 1188 } else 1189 mtd = get_mtd_device(NULL, mtd_num); 1190 1191 return mtd; 1192 } 1193 1194 static int __init ubi_init(void) 1195 { 1196 int err, i, k; 1197 1198 /* Ensure that EC and VID headers have correct size */ 1199 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1200 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1201 1202 if (mtd_devs > UBI_MAX_DEVICES) { 1203 pr_err("UBI error: too many MTD devices, maximum is %d\n", 1204 UBI_MAX_DEVICES); 1205 return -EINVAL; 1206 } 1207 1208 /* Create base sysfs directory and sysfs files */ 1209 err = class_register(&ubi_class); 1210 if (err < 0) 1211 return err; 1212 1213 err = misc_register(&ubi_ctrl_cdev); 1214 if (err) { 1215 pr_err("UBI error: cannot register device\n"); 1216 goto out; 1217 } 1218 1219 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1220 sizeof(struct ubi_wl_entry), 1221 0, 0, NULL); 1222 if (!ubi_wl_entry_slab) { 1223 err = -ENOMEM; 1224 goto out_dev_unreg; 1225 } 1226 1227 err = ubi_debugfs_init(); 1228 if (err) 1229 goto out_slab; 1230 1231 1232 /* Attach MTD devices */ 1233 for (i = 0; i < mtd_devs; i++) { 1234 struct mtd_dev_param *p = &mtd_dev_param[i]; 1235 struct mtd_info *mtd; 1236 1237 cond_resched(); 1238 1239 mtd = open_mtd_device(p->name); 1240 if (IS_ERR(mtd)) { 1241 err = PTR_ERR(mtd); 1242 pr_err("UBI error: cannot open mtd %s, error %d\n", 1243 p->name, err); 1244 /* See comment below re-ubi_is_module(). */ 1245 if (ubi_is_module()) 1246 goto out_detach; 1247 continue; 1248 } 1249 1250 mutex_lock(&ubi_devices_mutex); 1251 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1252 p->vid_hdr_offs, p->max_beb_per1024); 1253 mutex_unlock(&ubi_devices_mutex); 1254 if (err < 0) { 1255 pr_err("UBI error: cannot attach mtd%d\n", 1256 mtd->index); 1257 put_mtd_device(mtd); 1258 1259 /* 1260 * Originally UBI stopped initializing on any error. 1261 * However, later on it was found out that this 1262 * behavior is not very good when UBI is compiled into 1263 * the kernel and the MTD devices to attach are passed 1264 * through the command line. Indeed, UBI failure 1265 * stopped whole boot sequence. 1266 * 1267 * To fix this, we changed the behavior for the 1268 * non-module case, but preserved the old behavior for 1269 * the module case, just for compatibility. This is a 1270 * little inconsistent, though. 1271 */ 1272 if (ubi_is_module()) 1273 goto out_detach; 1274 } 1275 } 1276 1277 err = ubiblock_init(); 1278 if (err) { 1279 pr_err("UBI error: block: cannot initialize, error %d\n", err); 1280 1281 /* See comment above re-ubi_is_module(). */ 1282 if (ubi_is_module()) 1283 goto out_detach; 1284 } 1285 1286 return 0; 1287 1288 out_detach: 1289 for (k = 0; k < i; k++) 1290 if (ubi_devices[k]) { 1291 mutex_lock(&ubi_devices_mutex); 1292 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1293 mutex_unlock(&ubi_devices_mutex); 1294 } 1295 ubi_debugfs_exit(); 1296 out_slab: 1297 kmem_cache_destroy(ubi_wl_entry_slab); 1298 out_dev_unreg: 1299 misc_deregister(&ubi_ctrl_cdev); 1300 out: 1301 class_unregister(&ubi_class); 1302 pr_err("UBI error: cannot initialize UBI, error %d\n", err); 1303 return err; 1304 } 1305 late_initcall(ubi_init); 1306 1307 static void __exit ubi_exit(void) 1308 { 1309 int i; 1310 1311 ubiblock_exit(); 1312 1313 for (i = 0; i < UBI_MAX_DEVICES; i++) 1314 if (ubi_devices[i]) { 1315 mutex_lock(&ubi_devices_mutex); 1316 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1317 mutex_unlock(&ubi_devices_mutex); 1318 } 1319 ubi_debugfs_exit(); 1320 kmem_cache_destroy(ubi_wl_entry_slab); 1321 misc_deregister(&ubi_ctrl_cdev); 1322 class_unregister(&ubi_class); 1323 } 1324 module_exit(ubi_exit); 1325 1326 /** 1327 * bytes_str_to_int - convert a number of bytes string into an integer. 1328 * @str: the string to convert 1329 * 1330 * This function returns positive resulting integer in case of success and a 1331 * negative error code in case of failure. 1332 */ 1333 static int bytes_str_to_int(const char *str) 1334 { 1335 char *endp; 1336 unsigned long result; 1337 1338 result = simple_strtoul(str, &endp, 0); 1339 if (str == endp || result >= INT_MAX) { 1340 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1341 return -EINVAL; 1342 } 1343 1344 switch (*endp) { 1345 case 'G': 1346 result *= 1024; 1347 fallthrough; 1348 case 'M': 1349 result *= 1024; 1350 fallthrough; 1351 case 'K': 1352 result *= 1024; 1353 break; 1354 case '\0': 1355 break; 1356 default: 1357 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1358 return -EINVAL; 1359 } 1360 1361 return result; 1362 } 1363 1364 /** 1365 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1366 * @val: the parameter value to parse 1367 * @kp: not used 1368 * 1369 * This function returns zero in case of success and a negative error code in 1370 * case of error. 1371 */ 1372 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp) 1373 { 1374 int i, len; 1375 struct mtd_dev_param *p; 1376 char buf[MTD_PARAM_LEN_MAX]; 1377 char *pbuf = &buf[0]; 1378 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1379 1380 if (!val) 1381 return -EINVAL; 1382 1383 if (mtd_devs == UBI_MAX_DEVICES) { 1384 pr_err("UBI error: too many parameters, max. is %d\n", 1385 UBI_MAX_DEVICES); 1386 return -EINVAL; 1387 } 1388 1389 len = strnlen(val, MTD_PARAM_LEN_MAX); 1390 if (len == MTD_PARAM_LEN_MAX) { 1391 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1392 val, MTD_PARAM_LEN_MAX); 1393 return -EINVAL; 1394 } 1395 1396 if (len == 0) { 1397 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1398 return 0; 1399 } 1400 1401 strcpy(buf, val); 1402 1403 /* Get rid of the final newline */ 1404 if (buf[len - 1] == '\n') 1405 buf[len - 1] = '\0'; 1406 1407 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1408 tokens[i] = strsep(&pbuf, ","); 1409 1410 if (pbuf) { 1411 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1412 return -EINVAL; 1413 } 1414 1415 p = &mtd_dev_param[mtd_devs]; 1416 strcpy(&p->name[0], tokens[0]); 1417 1418 token = tokens[1]; 1419 if (token) { 1420 p->vid_hdr_offs = bytes_str_to_int(token); 1421 1422 if (p->vid_hdr_offs < 0) 1423 return p->vid_hdr_offs; 1424 } 1425 1426 token = tokens[2]; 1427 if (token) { 1428 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1429 1430 if (err) { 1431 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1432 token); 1433 return -EINVAL; 1434 } 1435 } 1436 1437 token = tokens[3]; 1438 if (token) { 1439 int err = kstrtoint(token, 10, &p->ubi_num); 1440 1441 if (err) { 1442 pr_err("UBI error: bad value for ubi_num parameter: %s", 1443 token); 1444 return -EINVAL; 1445 } 1446 } else 1447 p->ubi_num = UBI_DEV_NUM_AUTO; 1448 1449 mtd_devs += 1; 1450 return 0; 1451 } 1452 1453 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1454 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1455 "Multiple \"mtd\" parameters may be specified.\n" 1456 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1457 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1458 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1459 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1460 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1461 "\n" 1462 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1463 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1464 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1465 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1466 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1467 #ifdef CONFIG_MTD_UBI_FASTMAP 1468 module_param(fm_autoconvert, bool, 0644); 1469 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1470 module_param(fm_debug, bool, 0); 1471 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1472 #endif 1473 MODULE_VERSION(__stringify(UBI_VERSION)); 1474 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1475 MODULE_AUTHOR("Artem Bityutskiy"); 1476 MODULE_LICENSE("GPL"); 1477