xref: /linux/drivers/mtd/ubi/build.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  * Copyright (c) Nokia Corporation, 2007
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём),
7  *         Frank Haverkamp
8  */
9 
10 /*
11  * This file includes UBI initialization and building of UBI devices.
12  *
13  * When UBI is initialized, it attaches all the MTD devices specified as the
14  * module load parameters or the kernel boot parameters. If MTD devices were
15  * specified, UBI does not attach any MTD device, but it is possible to do
16  * later using the "UBI control device".
17  */
18 
19 #include <linux/err.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/stringify.h>
23 #include <linux/namei.h>
24 #include <linux/stat.h>
25 #include <linux/miscdevice.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/log2.h>
28 #include <linux/kthread.h>
29 #include <linux/kernel.h>
30 #include <linux/of.h>
31 #include <linux/slab.h>
32 #include <linux/major.h>
33 #include "ubi.h"
34 
35 /* Maximum length of the 'mtd=' parameter */
36 #define MTD_PARAM_LEN_MAX 64
37 
38 /* Maximum number of comma-separated items in the 'mtd=' parameter */
39 #define MTD_PARAM_MAX_COUNT 6
40 
41 /* Maximum value for the number of bad PEBs per 1024 PEBs */
42 #define MAX_MTD_UBI_BEB_LIMIT 768
43 
44 #ifdef CONFIG_MTD_UBI_MODULE
45 #define ubi_is_module() 1
46 #else
47 #define ubi_is_module() 0
48 #endif
49 
50 /**
51  * struct mtd_dev_param - MTD device parameter description data structure.
52  * @name: MTD character device node path, MTD device name, or MTD device number
53  *        string
54  * @ubi_num: UBI number
55  * @vid_hdr_offs: VID header offset
56  * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
57  * @enable_fm: enable fastmap when value is non-zero
58  * @need_resv_pool: reserve pool->max_size pebs when value is none-zero
59  */
60 struct mtd_dev_param {
61 	char name[MTD_PARAM_LEN_MAX];
62 	int ubi_num;
63 	int vid_hdr_offs;
64 	int max_beb_per1024;
65 	int enable_fm;
66 	int need_resv_pool;
67 };
68 
69 /* Numbers of elements set in the @mtd_dev_param array */
70 static int mtd_devs;
71 
72 /* MTD devices specification parameters */
73 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
74 #ifdef CONFIG_MTD_UBI_FASTMAP
75 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
76 static bool fm_autoconvert;
77 static bool fm_debug;
78 #endif
79 
80 /* Slab cache for wear-leveling entries */
81 struct kmem_cache *ubi_wl_entry_slab;
82 
83 /* UBI control character device */
84 static struct miscdevice ubi_ctrl_cdev = {
85 	.minor = MISC_DYNAMIC_MINOR,
86 	.name = "ubi_ctrl",
87 	.fops = &ubi_ctrl_cdev_operations,
88 };
89 
90 /* All UBI devices in system */
91 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
92 
93 /* Serializes UBI devices creations and removals */
94 DEFINE_MUTEX(ubi_devices_mutex);
95 
96 /* Protects @ubi_devices, @ubi->ref_count and @ubi->is_dead */
97 static DEFINE_SPINLOCK(ubi_devices_lock);
98 
99 /* "Show" method for files in '/<sysfs>/class/ubi/' */
100 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
101 static ssize_t version_show(const struct class *class, const struct class_attribute *attr,
102 			    char *buf)
103 {
104 	return sprintf(buf, "%d\n", UBI_VERSION);
105 }
106 static CLASS_ATTR_RO(version);
107 
108 static struct attribute *ubi_class_attrs[] = {
109 	&class_attr_version.attr,
110 	NULL,
111 };
112 ATTRIBUTE_GROUPS(ubi_class);
113 
114 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
115 const struct class ubi_class = {
116 	.name		= UBI_NAME_STR,
117 	.class_groups	= ubi_class_groups,
118 };
119 
120 static ssize_t dev_attribute_show(struct device *dev,
121 				  struct device_attribute *attr, char *buf);
122 
123 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
124 static struct device_attribute dev_eraseblock_size =
125 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_avail_eraseblocks =
127 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_total_eraseblocks =
129 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_volumes_count =
131 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_max_ec =
133 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
134 static struct device_attribute dev_reserved_for_bad =
135 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
136 static struct device_attribute dev_bad_peb_count =
137 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
138 static struct device_attribute dev_max_vol_count =
139 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
140 static struct device_attribute dev_min_io_size =
141 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
142 static struct device_attribute dev_bgt_enabled =
143 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
144 static struct device_attribute dev_mtd_num =
145 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
146 static struct device_attribute dev_ro_mode =
147 	__ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
148 
149 /**
150  * ubi_volume_notify - send a volume change notification.
151  * @ubi: UBI device description object
152  * @vol: volume description object of the changed volume
153  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
154  *
155  * This is a helper function which notifies all subscribers about a volume
156  * change event (creation, removal, re-sizing, re-naming, updating). Returns
157  * zero in case of success and a negative error code in case of failure.
158  */
159 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
160 {
161 	int ret;
162 	struct ubi_notification nt;
163 
164 	ubi_do_get_device_info(ubi, &nt.di);
165 	ubi_do_get_volume_info(ubi, vol, &nt.vi);
166 
167 	switch (ntype) {
168 	case UBI_VOLUME_ADDED:
169 	case UBI_VOLUME_REMOVED:
170 	case UBI_VOLUME_RESIZED:
171 	case UBI_VOLUME_RENAMED:
172 		ret = ubi_update_fastmap(ubi);
173 		if (ret)
174 			ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
175 	}
176 
177 	return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
178 }
179 
180 /**
181  * ubi_notify_all - send a notification to all volumes.
182  * @ubi: UBI device description object
183  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
184  * @nb: the notifier to call
185  *
186  * This function walks all volumes of UBI device @ubi and sends the @ntype
187  * notification for each volume. If @nb is %NULL, then all registered notifiers
188  * are called, otherwise only the @nb notifier is called. Returns the number of
189  * sent notifications.
190  */
191 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
192 {
193 	struct ubi_notification nt;
194 	int i, count = 0;
195 
196 	ubi_do_get_device_info(ubi, &nt.di);
197 
198 	mutex_lock(&ubi->device_mutex);
199 	for (i = 0; i < ubi->vtbl_slots; i++) {
200 		/*
201 		 * Since the @ubi->device is locked, and we are not going to
202 		 * change @ubi->volumes, we do not have to lock
203 		 * @ubi->volumes_lock.
204 		 */
205 		if (!ubi->volumes[i])
206 			continue;
207 
208 		ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
209 		if (nb)
210 			nb->notifier_call(nb, ntype, &nt);
211 		else
212 			blocking_notifier_call_chain(&ubi_notifiers, ntype,
213 						     &nt);
214 		count += 1;
215 	}
216 	mutex_unlock(&ubi->device_mutex);
217 
218 	return count;
219 }
220 
221 /**
222  * ubi_enumerate_volumes - send "add" notification for all existing volumes.
223  * @nb: the notifier to call
224  *
225  * This function walks all UBI devices and volumes and sends the
226  * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
227  * registered notifiers are called, otherwise only the @nb notifier is called.
228  * Returns the number of sent notifications.
229  */
230 int ubi_enumerate_volumes(struct notifier_block *nb)
231 {
232 	int i, count = 0;
233 
234 	/*
235 	 * Since the @ubi_devices_mutex is locked, and we are not going to
236 	 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
237 	 */
238 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
239 		struct ubi_device *ubi = ubi_devices[i];
240 
241 		if (!ubi)
242 			continue;
243 		count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
244 	}
245 
246 	return count;
247 }
248 
249 /**
250  * ubi_get_device - get UBI device.
251  * @ubi_num: UBI device number
252  *
253  * This function returns UBI device description object for UBI device number
254  * @ubi_num, or %NULL if the device does not exist. This function increases the
255  * device reference count to prevent removal of the device. In other words, the
256  * device cannot be removed if its reference count is not zero.
257  */
258 struct ubi_device *ubi_get_device(int ubi_num)
259 {
260 	struct ubi_device *ubi;
261 
262 	spin_lock(&ubi_devices_lock);
263 	ubi = ubi_devices[ubi_num];
264 	if (ubi && ubi->is_dead)
265 		ubi = NULL;
266 
267 	if (ubi) {
268 		ubi_assert(ubi->ref_count >= 0);
269 		ubi->ref_count += 1;
270 		get_device(&ubi->dev);
271 	}
272 	spin_unlock(&ubi_devices_lock);
273 
274 	return ubi;
275 }
276 
277 /**
278  * ubi_put_device - drop an UBI device reference.
279  * @ubi: UBI device description object
280  */
281 void ubi_put_device(struct ubi_device *ubi)
282 {
283 	spin_lock(&ubi_devices_lock);
284 	ubi->ref_count -= 1;
285 	put_device(&ubi->dev);
286 	spin_unlock(&ubi_devices_lock);
287 }
288 
289 /**
290  * ubi_get_by_major - get UBI device by character device major number.
291  * @major: major number
292  *
293  * This function is similar to 'ubi_get_device()', but it searches the device
294  * by its major number.
295  */
296 struct ubi_device *ubi_get_by_major(int major)
297 {
298 	int i;
299 	struct ubi_device *ubi;
300 
301 	spin_lock(&ubi_devices_lock);
302 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
303 		ubi = ubi_devices[i];
304 		if (ubi && !ubi->is_dead && MAJOR(ubi->cdev.dev) == major) {
305 			ubi_assert(ubi->ref_count >= 0);
306 			ubi->ref_count += 1;
307 			get_device(&ubi->dev);
308 			spin_unlock(&ubi_devices_lock);
309 			return ubi;
310 		}
311 	}
312 	spin_unlock(&ubi_devices_lock);
313 
314 	return NULL;
315 }
316 
317 /**
318  * ubi_major2num - get UBI device number by character device major number.
319  * @major: major number
320  *
321  * This function searches UBI device number object by its major number. If UBI
322  * device was not found, this function returns -ENODEV, otherwise the UBI device
323  * number is returned.
324  */
325 int ubi_major2num(int major)
326 {
327 	int i, ubi_num = -ENODEV;
328 
329 	spin_lock(&ubi_devices_lock);
330 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
331 		struct ubi_device *ubi = ubi_devices[i];
332 
333 		if (ubi && !ubi->is_dead && MAJOR(ubi->cdev.dev) == major) {
334 			ubi_num = ubi->ubi_num;
335 			break;
336 		}
337 	}
338 	spin_unlock(&ubi_devices_lock);
339 
340 	return ubi_num;
341 }
342 
343 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
344 static ssize_t dev_attribute_show(struct device *dev,
345 				  struct device_attribute *attr, char *buf)
346 {
347 	ssize_t ret;
348 	struct ubi_device *ubi;
349 
350 	/*
351 	 * The below code looks weird, but it actually makes sense. We get the
352 	 * UBI device reference from the contained 'struct ubi_device'. But it
353 	 * is unclear if the device was removed or not yet. Indeed, if the
354 	 * device was removed before we increased its reference count,
355 	 * 'ubi_get_device()' will return -ENODEV and we fail.
356 	 *
357 	 * Remember, 'struct ubi_device' is freed in the release function, so
358 	 * we still can use 'ubi->ubi_num'.
359 	 */
360 	ubi = container_of(dev, struct ubi_device, dev);
361 
362 	if (attr == &dev_eraseblock_size)
363 		ret = sprintf(buf, "%d\n", ubi->leb_size);
364 	else if (attr == &dev_avail_eraseblocks)
365 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
366 	else if (attr == &dev_total_eraseblocks)
367 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
368 	else if (attr == &dev_volumes_count)
369 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
370 	else if (attr == &dev_max_ec)
371 		ret = sprintf(buf, "%d\n", ubi->max_ec);
372 	else if (attr == &dev_reserved_for_bad)
373 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
374 	else if (attr == &dev_bad_peb_count)
375 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
376 	else if (attr == &dev_max_vol_count)
377 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
378 	else if (attr == &dev_min_io_size)
379 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
380 	else if (attr == &dev_bgt_enabled)
381 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
382 	else if (attr == &dev_mtd_num)
383 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
384 	else if (attr == &dev_ro_mode)
385 		ret = sprintf(buf, "%d\n", ubi->ro_mode);
386 	else
387 		ret = -EINVAL;
388 
389 	return ret;
390 }
391 
392 static struct attribute *ubi_dev_attrs[] = {
393 	&dev_eraseblock_size.attr,
394 	&dev_avail_eraseblocks.attr,
395 	&dev_total_eraseblocks.attr,
396 	&dev_volumes_count.attr,
397 	&dev_max_ec.attr,
398 	&dev_reserved_for_bad.attr,
399 	&dev_bad_peb_count.attr,
400 	&dev_max_vol_count.attr,
401 	&dev_min_io_size.attr,
402 	&dev_bgt_enabled.attr,
403 	&dev_mtd_num.attr,
404 	&dev_ro_mode.attr,
405 	NULL
406 };
407 ATTRIBUTE_GROUPS(ubi_dev);
408 
409 static void dev_release(struct device *dev)
410 {
411 	struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
412 
413 	kfree(ubi);
414 }
415 
416 /**
417  * kill_volumes - destroy all user volumes.
418  * @ubi: UBI device description object
419  */
420 static void kill_volumes(struct ubi_device *ubi)
421 {
422 	int i;
423 
424 	for (i = 0; i < ubi->vtbl_slots; i++)
425 		if (ubi->volumes[i])
426 			ubi_free_volume(ubi, ubi->volumes[i]);
427 }
428 
429 /**
430  * uif_init - initialize user interfaces for an UBI device.
431  * @ubi: UBI device description object
432  *
433  * This function initializes various user interfaces for an UBI device. If the
434  * initialization fails at an early stage, this function frees all the
435  * resources it allocated, returns an error.
436  *
437  * This function returns zero in case of success and a negative error code in
438  * case of failure.
439  */
440 static int uif_init(struct ubi_device *ubi)
441 {
442 	int i, err;
443 	dev_t dev;
444 
445 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
446 
447 	/*
448 	 * Major numbers for the UBI character devices are allocated
449 	 * dynamically. Major numbers of volume character devices are
450 	 * equivalent to ones of the corresponding UBI character device. Minor
451 	 * numbers of UBI character devices are 0, while minor numbers of
452 	 * volume character devices start from 1. Thus, we allocate one major
453 	 * number and ubi->vtbl_slots + 1 minor numbers.
454 	 */
455 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
456 	if (err) {
457 		ubi_err(ubi, "cannot register UBI character devices");
458 		return err;
459 	}
460 
461 	ubi->dev.devt = dev;
462 
463 	ubi_assert(MINOR(dev) == 0);
464 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
465 	dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
466 	ubi->cdev.owner = THIS_MODULE;
467 
468 	dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
469 	err = cdev_device_add(&ubi->cdev, &ubi->dev);
470 	if (err)
471 		goto out_unreg;
472 
473 	for (i = 0; i < ubi->vtbl_slots; i++)
474 		if (ubi->volumes[i]) {
475 			err = ubi_add_volume(ubi, ubi->volumes[i]);
476 			if (err) {
477 				ubi_err(ubi, "cannot add volume %d", i);
478 				ubi->volumes[i] = NULL;
479 				goto out_volumes;
480 			}
481 		}
482 
483 	return 0;
484 
485 out_volumes:
486 	kill_volumes(ubi);
487 	cdev_device_del(&ubi->cdev, &ubi->dev);
488 out_unreg:
489 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
490 	ubi_err(ubi, "cannot initialize UBI %s, error %d",
491 		ubi->ubi_name, err);
492 	return err;
493 }
494 
495 /**
496  * uif_close - close user interfaces for an UBI device.
497  * @ubi: UBI device description object
498  *
499  * Note, since this function un-registers UBI volume device objects (@vol->dev),
500  * the memory allocated voe the volumes is freed as well (in the release
501  * function).
502  */
503 static void uif_close(struct ubi_device *ubi)
504 {
505 	kill_volumes(ubi);
506 	cdev_device_del(&ubi->cdev, &ubi->dev);
507 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
508 }
509 
510 /**
511  * ubi_free_volumes_from - free volumes from specific index.
512  * @ubi: UBI device description object
513  * @from: the start index used for volume free.
514  */
515 static void ubi_free_volumes_from(struct ubi_device *ubi, int from)
516 {
517 	int i;
518 
519 	for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
520 		if (!ubi->volumes[i] || ubi->volumes[i]->is_dead)
521 			continue;
522 		ubi_eba_replace_table(ubi->volumes[i], NULL);
523 		ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
524 		kfree(ubi->volumes[i]);
525 		ubi->volumes[i] = NULL;
526 	}
527 }
528 
529 /**
530  * ubi_free_all_volumes - free all volumes.
531  * @ubi: UBI device description object
532  */
533 void ubi_free_all_volumes(struct ubi_device *ubi)
534 {
535 	ubi_free_volumes_from(ubi, 0);
536 }
537 
538 /**
539  * ubi_free_internal_volumes - free internal volumes.
540  * @ubi: UBI device description object
541  */
542 void ubi_free_internal_volumes(struct ubi_device *ubi)
543 {
544 	ubi_free_volumes_from(ubi, ubi->vtbl_slots);
545 }
546 
547 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
548 {
549 	int limit, device_pebs;
550 	uint64_t device_size;
551 
552 	if (!max_beb_per1024) {
553 		/*
554 		 * Since max_beb_per1024 has not been set by the user in either
555 		 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
556 		 * limit if it is supported by the device.
557 		 */
558 		limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
559 		if (limit < 0)
560 			return 0;
561 		return limit;
562 	}
563 
564 	/*
565 	 * Here we are using size of the entire flash chip and
566 	 * not just the MTD partition size because the maximum
567 	 * number of bad eraseblocks is a percentage of the
568 	 * whole device and bad eraseblocks are not fairly
569 	 * distributed over the flash chip. So the worst case
570 	 * is that all the bad eraseblocks of the chip are in
571 	 * the MTD partition we are attaching (ubi->mtd).
572 	 */
573 	device_size = mtd_get_device_size(ubi->mtd);
574 	device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
575 	limit = mult_frac(device_pebs, max_beb_per1024, 1024);
576 
577 	/* Round it up */
578 	if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
579 		limit += 1;
580 
581 	return limit;
582 }
583 
584 /**
585  * io_init - initialize I/O sub-system for a given UBI device.
586  * @ubi: UBI device description object
587  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
588  *
589  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
590  * assumed:
591  *   o EC header is always at offset zero - this cannot be changed;
592  *   o VID header starts just after the EC header at the closest address
593  *     aligned to @io->hdrs_min_io_size;
594  *   o data starts just after the VID header at the closest address aligned to
595  *     @io->min_io_size
596  *
597  * This function returns zero in case of success and a negative error code in
598  * case of failure.
599  */
600 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
601 {
602 	dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
603 	dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
604 
605 	if (ubi->mtd->numeraseregions != 0) {
606 		/*
607 		 * Some flashes have several erase regions. Different regions
608 		 * may have different eraseblock size and other
609 		 * characteristics. It looks like mostly multi-region flashes
610 		 * have one "main" region and one or more small regions to
611 		 * store boot loader code or boot parameters or whatever. I
612 		 * guess we should just pick the largest region. But this is
613 		 * not implemented.
614 		 */
615 		ubi_err(ubi, "multiple regions, not implemented");
616 		return -EINVAL;
617 	}
618 
619 	if (ubi->vid_hdr_offset < 0)
620 		return -EINVAL;
621 
622 	/*
623 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
624 	 * physical eraseblocks maximum.
625 	 */
626 
627 	ubi->peb_size   = ubi->mtd->erasesize;
628 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
629 	ubi->flash_size = ubi->mtd->size;
630 
631 	if (mtd_can_have_bb(ubi->mtd)) {
632 		ubi->bad_allowed = 1;
633 		ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
634 	}
635 
636 	if (ubi->mtd->type == MTD_NORFLASH)
637 		ubi->nor_flash = 1;
638 
639 	ubi->min_io_size = ubi->mtd->writesize;
640 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
641 
642 	/*
643 	 * Make sure minimal I/O unit is power of 2. Note, there is no
644 	 * fundamental reason for this assumption. It is just an optimization
645 	 * which allows us to avoid costly division operations.
646 	 */
647 	if (!is_power_of_2(ubi->min_io_size)) {
648 		ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
649 			ubi->min_io_size);
650 		return -EINVAL;
651 	}
652 
653 	ubi_assert(ubi->hdrs_min_io_size > 0);
654 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
655 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
656 
657 	ubi->max_write_size = ubi->mtd->writebufsize;
658 	/*
659 	 * Maximum write size has to be greater or equivalent to min. I/O
660 	 * size, and be multiple of min. I/O size.
661 	 */
662 	if (ubi->max_write_size < ubi->min_io_size ||
663 	    ubi->max_write_size % ubi->min_io_size ||
664 	    !is_power_of_2(ubi->max_write_size)) {
665 		ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
666 			ubi->max_write_size, ubi->min_io_size);
667 		return -EINVAL;
668 	}
669 
670 	/* Calculate default aligned sizes of EC and VID headers */
671 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
672 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
673 
674 	dbg_gen("min_io_size      %d", ubi->min_io_size);
675 	dbg_gen("max_write_size   %d", ubi->max_write_size);
676 	dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
677 	dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
678 	dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
679 
680 	if (ubi->vid_hdr_offset == 0)
681 		/* Default offset */
682 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
683 				      ubi->ec_hdr_alsize;
684 	else {
685 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
686 						~(ubi->hdrs_min_io_size - 1);
687 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
688 						ubi->vid_hdr_aloffset;
689 	}
690 
691 	/*
692 	 * Memory allocation for VID header is ubi->vid_hdr_alsize
693 	 * which is described in comments in io.c.
694 	 * Make sure VID header shift + UBI_VID_HDR_SIZE not exceeds
695 	 * ubi->vid_hdr_alsize, so that all vid header operations
696 	 * won't access memory out of bounds.
697 	 */
698 	if ((ubi->vid_hdr_shift + UBI_VID_HDR_SIZE) > ubi->vid_hdr_alsize) {
699 		ubi_err(ubi, "Invalid VID header offset %d, VID header shift(%d)"
700 			" + VID header size(%zu) > VID header aligned size(%d).",
701 			ubi->vid_hdr_offset, ubi->vid_hdr_shift,
702 			UBI_VID_HDR_SIZE, ubi->vid_hdr_alsize);
703 		return -EINVAL;
704 	}
705 
706 	/* Similar for the data offset */
707 	ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
708 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
709 
710 	dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
711 	dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
712 	dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
713 	dbg_gen("leb_start        %d", ubi->leb_start);
714 
715 	/* The shift must be aligned to 32-bit boundary */
716 	if (ubi->vid_hdr_shift % 4) {
717 		ubi_err(ubi, "unaligned VID header shift %d",
718 			ubi->vid_hdr_shift);
719 		return -EINVAL;
720 	}
721 
722 	/* Check sanity */
723 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
724 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
725 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
726 	    ubi->leb_start & (ubi->min_io_size - 1)) {
727 		ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
728 			ubi->vid_hdr_offset, ubi->leb_start);
729 		return -EINVAL;
730 	}
731 
732 	/*
733 	 * Set maximum amount of physical erroneous eraseblocks to be 10%.
734 	 * Erroneous PEB are those which have read errors.
735 	 */
736 	ubi->max_erroneous = ubi->peb_count / 10;
737 	if (ubi->max_erroneous < 16)
738 		ubi->max_erroneous = 16;
739 	dbg_gen("max_erroneous    %d", ubi->max_erroneous);
740 
741 	/*
742 	 * It may happen that EC and VID headers are situated in one minimal
743 	 * I/O unit. In this case we can only accept this UBI image in
744 	 * read-only mode.
745 	 */
746 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
747 		ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
748 		ubi->ro_mode = 1;
749 	}
750 
751 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
752 
753 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
754 		ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
755 			ubi->mtd->index);
756 		ubi->ro_mode = 1;
757 	}
758 
759 	/*
760 	 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
761 	 * unfortunately, MTD does not provide this information. We should loop
762 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
763 	 * each physical eraseblock. So, we leave @ubi->bad_peb_count
764 	 * uninitialized so far.
765 	 */
766 
767 	return 0;
768 }
769 
770 /**
771  * autoresize - re-size the volume which has the "auto-resize" flag set.
772  * @ubi: UBI device description object
773  * @vol_id: ID of the volume to re-size
774  *
775  * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
776  * the volume table to the largest possible size. See comments in ubi-header.h
777  * for more description of the flag. Returns zero in case of success and a
778  * negative error code in case of failure.
779  */
780 static int autoresize(struct ubi_device *ubi, int vol_id)
781 {
782 	struct ubi_volume_desc desc;
783 	struct ubi_volume *vol = ubi->volumes[vol_id];
784 	int err, old_reserved_pebs = vol->reserved_pebs;
785 
786 	if (ubi->ro_mode) {
787 		ubi_warn(ubi, "skip auto-resize because of R/O mode");
788 		return 0;
789 	}
790 
791 	/*
792 	 * Clear the auto-resize flag in the volume in-memory copy of the
793 	 * volume table, and 'ubi_resize_volume()' will propagate this change
794 	 * to the flash.
795 	 */
796 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
797 
798 	if (ubi->avail_pebs == 0) {
799 		struct ubi_vtbl_record vtbl_rec;
800 
801 		/*
802 		 * No available PEBs to re-size the volume, clear the flag on
803 		 * flash and exit.
804 		 */
805 		vtbl_rec = ubi->vtbl[vol_id];
806 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
807 		if (err)
808 			ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
809 				vol_id);
810 	} else {
811 		desc.vol = vol;
812 		err = ubi_resize_volume(&desc,
813 					old_reserved_pebs + ubi->avail_pebs);
814 		if (err)
815 			ubi_err(ubi, "cannot auto-resize volume %d",
816 				vol_id);
817 	}
818 
819 	if (err)
820 		return err;
821 
822 	ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
823 		vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
824 	return 0;
825 }
826 
827 /**
828  * ubi_attach_mtd_dev - attach an MTD device.
829  * @mtd: MTD device description object
830  * @ubi_num: number to assign to the new UBI device
831  * @vid_hdr_offset: VID header offset
832  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
833  * @disable_fm: whether disable fastmap
834  * @need_resv_pool: whether reserve pebs to fill fm_pool
835  *
836  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
837  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
838  * which case this function finds a vacant device number and assigns it
839  * automatically. Returns the new UBI device number in case of success and a
840  * negative error code in case of failure.
841  *
842  * If @disable_fm is true, ubi doesn't create new fastmap even the module param
843  * 'fm_autoconvert' is set, and existed old fastmap will be destroyed after
844  * doing full scanning.
845  *
846  * Note, the invocations of this function has to be serialized by the
847  * @ubi_devices_mutex.
848  */
849 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
850 		       int vid_hdr_offset, int max_beb_per1024, bool disable_fm,
851 		       bool need_resv_pool)
852 {
853 	struct ubi_device *ubi;
854 	int i, err;
855 
856 	if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
857 		return -EINVAL;
858 
859 	if (!max_beb_per1024)
860 		max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
861 
862 	/*
863 	 * Check if we already have the same MTD device attached.
864 	 *
865 	 * Note, this function assumes that UBI devices creations and deletions
866 	 * are serialized, so it does not take the &ubi_devices_lock.
867 	 */
868 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
869 		ubi = ubi_devices[i];
870 		if (ubi && mtd->index == ubi->mtd->index) {
871 			pr_err("ubi: mtd%d is already attached to ubi%d\n",
872 				mtd->index, i);
873 			return -EEXIST;
874 		}
875 	}
876 
877 	/*
878 	 * Make sure this MTD device is not emulated on top of an UBI volume
879 	 * already. Well, generally this recursion works fine, but there are
880 	 * different problems like the UBI module takes a reference to itself
881 	 * by attaching (and thus, opening) the emulated MTD device. This
882 	 * results in inability to unload the module. And in general it makes
883 	 * no sense to attach emulated MTD devices, so we prohibit this.
884 	 */
885 	if (mtd->type == MTD_UBIVOLUME) {
886 		pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
887 			mtd->index);
888 		return -EINVAL;
889 	}
890 
891 	/*
892 	 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
893 	 * MLC NAND is different and needs special care, otherwise UBI or UBIFS
894 	 * will die soon and you will lose all your data.
895 	 * Relax this rule if the partition we're attaching to operates in SLC
896 	 * mode.
897 	 */
898 	if (mtd->type == MTD_MLCNANDFLASH &&
899 	    !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) {
900 		pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
901 			mtd->index);
902 		return -EINVAL;
903 	}
904 
905 	/* UBI cannot work on flashes with zero erasesize. */
906 	if (!mtd->erasesize) {
907 		pr_err("ubi: refuse attaching mtd%d - zero erasesize flash is not supported\n",
908 			mtd->index);
909 		return -EINVAL;
910 	}
911 
912 	if (ubi_num == UBI_DEV_NUM_AUTO) {
913 		/* Search for an empty slot in the @ubi_devices array */
914 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
915 			if (!ubi_devices[ubi_num])
916 				break;
917 		if (ubi_num == UBI_MAX_DEVICES) {
918 			pr_err("ubi: only %d UBI devices may be created\n",
919 				UBI_MAX_DEVICES);
920 			return -ENFILE;
921 		}
922 	} else {
923 		if (ubi_num >= UBI_MAX_DEVICES)
924 			return -EINVAL;
925 
926 		/* Make sure ubi_num is not busy */
927 		if (ubi_devices[ubi_num]) {
928 			pr_err("ubi: ubi%i already exists\n", ubi_num);
929 			return -EEXIST;
930 		}
931 	}
932 
933 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
934 	if (!ubi)
935 		return -ENOMEM;
936 
937 	device_initialize(&ubi->dev);
938 	ubi->dev.release = dev_release;
939 	ubi->dev.class = &ubi_class;
940 	ubi->dev.groups = ubi_dev_groups;
941 	ubi->dev.parent = &mtd->dev;
942 
943 	ubi->mtd = mtd;
944 	ubi->ubi_num = ubi_num;
945 	ubi->vid_hdr_offset = vid_hdr_offset;
946 	ubi->autoresize_vol_id = -1;
947 
948 #ifdef CONFIG_MTD_UBI_FASTMAP
949 	ubi->fm_pool.used = ubi->fm_pool.size = 0;
950 	ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
951 
952 	/*
953 	 * fm_pool.max_size is 5% of the total number of PEBs but it's also
954 	 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
955 	 */
956 	ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
957 		ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
958 	ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
959 		UBI_FM_MIN_POOL_SIZE);
960 
961 	ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
962 	ubi->fm_pool_rsv_cnt = need_resv_pool ? ubi->fm_pool.max_size : 0;
963 	ubi->fm_disabled = (!fm_autoconvert || disable_fm) ? 1 : 0;
964 	if (fm_debug)
965 		ubi_enable_dbg_chk_fastmap(ubi);
966 
967 	if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
968 	    <= UBI_FM_MAX_START) {
969 		ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
970 			UBI_FM_MAX_START);
971 		ubi->fm_disabled = 1;
972 	}
973 
974 	ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
975 	ubi_msg(ubi, "default fastmap WL pool size: %d",
976 		ubi->fm_wl_pool.max_size);
977 #else
978 	ubi->fm_disabled = 1;
979 #endif
980 	mutex_init(&ubi->buf_mutex);
981 	mutex_init(&ubi->ckvol_mutex);
982 	mutex_init(&ubi->device_mutex);
983 	spin_lock_init(&ubi->volumes_lock);
984 	init_rwsem(&ubi->fm_protect);
985 	init_rwsem(&ubi->fm_eba_sem);
986 
987 	ubi_msg(ubi, "attaching mtd%d", mtd->index);
988 
989 	err = io_init(ubi, max_beb_per1024);
990 	if (err)
991 		goto out_free;
992 
993 	err = -ENOMEM;
994 	ubi->peb_buf = vmalloc(ubi->peb_size);
995 	if (!ubi->peb_buf)
996 		goto out_free;
997 
998 #ifdef CONFIG_MTD_UBI_FASTMAP
999 	ubi->fm_size = ubi_calc_fm_size(ubi);
1000 	ubi->fm_buf = vzalloc(ubi->fm_size);
1001 	if (!ubi->fm_buf)
1002 		goto out_free;
1003 #endif
1004 	err = ubi_attach(ubi, disable_fm ? 1 : 0);
1005 	if (err) {
1006 		ubi_err(ubi, "failed to attach mtd%d, error %d",
1007 			mtd->index, err);
1008 		goto out_free;
1009 	}
1010 
1011 	if (ubi->autoresize_vol_id != -1) {
1012 		err = autoresize(ubi, ubi->autoresize_vol_id);
1013 		if (err)
1014 			goto out_detach;
1015 	}
1016 
1017 	err = uif_init(ubi);
1018 	if (err)
1019 		goto out_detach;
1020 
1021 	err = ubi_debugfs_init_dev(ubi);
1022 	if (err)
1023 		goto out_uif;
1024 
1025 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1026 	if (IS_ERR(ubi->bgt_thread)) {
1027 		err = PTR_ERR(ubi->bgt_thread);
1028 		ubi_err(ubi, "cannot spawn \"%s\", error %d",
1029 			ubi->bgt_name, err);
1030 		goto out_debugfs;
1031 	}
1032 
1033 	ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1034 		mtd->index, mtd->name, ubi->flash_size >> 20);
1035 	ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1036 		ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1037 	ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1038 		ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1039 	ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1040 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1041 	ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1042 		ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1043 	ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1044 		ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1045 		ubi->vtbl_slots);
1046 	ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1047 		ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1048 		ubi->image_seq);
1049 	ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1050 		ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1051 
1052 	/*
1053 	 * The below lock makes sure we do not race with 'ubi_thread()' which
1054 	 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1055 	 */
1056 	spin_lock(&ubi->wl_lock);
1057 	ubi->thread_enabled = 1;
1058 	wake_up_process(ubi->bgt_thread);
1059 	spin_unlock(&ubi->wl_lock);
1060 
1061 	ubi_devices[ubi_num] = ubi;
1062 	ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1063 	return ubi_num;
1064 
1065 out_debugfs:
1066 	ubi_debugfs_exit_dev(ubi);
1067 out_uif:
1068 	uif_close(ubi);
1069 out_detach:
1070 	ubi_wl_close(ubi);
1071 	ubi_free_all_volumes(ubi);
1072 	vfree(ubi->vtbl);
1073 out_free:
1074 	vfree(ubi->peb_buf);
1075 	vfree(ubi->fm_buf);
1076 	put_device(&ubi->dev);
1077 	return err;
1078 }
1079 
1080 /**
1081  * ubi_detach_mtd_dev - detach an MTD device.
1082  * @ubi_num: UBI device number to detach from
1083  * @anyway: detach MTD even if device reference count is not zero
1084  *
1085  * This function destroys an UBI device number @ubi_num and detaches the
1086  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1087  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1088  * exist.
1089  *
1090  * Note, the invocations of this function has to be serialized by the
1091  * @ubi_devices_mutex.
1092  */
1093 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1094 {
1095 	struct ubi_device *ubi;
1096 
1097 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1098 		return -EINVAL;
1099 
1100 	ubi = ubi_get_device(ubi_num);
1101 	if (!ubi)
1102 		return -EINVAL;
1103 
1104 	spin_lock(&ubi_devices_lock);
1105 	ubi->ref_count -= 1;
1106 	if (ubi->ref_count) {
1107 		if (!anyway) {
1108 			spin_unlock(&ubi_devices_lock);
1109 			return -EBUSY;
1110 		}
1111 		/* This may only happen if there is a bug */
1112 		ubi_err(ubi, "%s reference count %d, destroy anyway",
1113 			ubi->ubi_name, ubi->ref_count);
1114 	}
1115 	ubi->is_dead = true;
1116 	spin_unlock(&ubi_devices_lock);
1117 
1118 	ubi_notify_all(ubi, UBI_VOLUME_SHUTDOWN, NULL);
1119 
1120 	spin_lock(&ubi_devices_lock);
1121 	put_device(&ubi->dev);
1122 	ubi_devices[ubi_num] = NULL;
1123 	spin_unlock(&ubi_devices_lock);
1124 
1125 	ubi_assert(ubi_num == ubi->ubi_num);
1126 	ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1127 	ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1128 #ifdef CONFIG_MTD_UBI_FASTMAP
1129 	/* If we don't write a new fastmap at detach time we lose all
1130 	 * EC updates that have been made since the last written fastmap.
1131 	 * In case of fastmap debugging we omit the update to simulate an
1132 	 * unclean shutdown. */
1133 	if (!ubi_dbg_chk_fastmap(ubi))
1134 		ubi_update_fastmap(ubi);
1135 #endif
1136 	/*
1137 	 * Before freeing anything, we have to stop the background thread to
1138 	 * prevent it from doing anything on this device while we are freeing.
1139 	 */
1140 	if (ubi->bgt_thread)
1141 		kthread_stop(ubi->bgt_thread);
1142 
1143 #ifdef CONFIG_MTD_UBI_FASTMAP
1144 	cancel_work_sync(&ubi->fm_work);
1145 #endif
1146 	ubi_debugfs_exit_dev(ubi);
1147 	uif_close(ubi);
1148 
1149 	ubi_wl_close(ubi);
1150 	ubi_free_internal_volumes(ubi);
1151 	vfree(ubi->vtbl);
1152 	vfree(ubi->peb_buf);
1153 	vfree(ubi->fm_buf);
1154 	ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1155 	put_mtd_device(ubi->mtd);
1156 	put_device(&ubi->dev);
1157 	return 0;
1158 }
1159 
1160 /**
1161  * open_mtd_by_chdev - open an MTD device by its character device node path.
1162  * @mtd_dev: MTD character device node path
1163  *
1164  * This helper function opens an MTD device by its character node device path.
1165  * Returns MTD device description object in case of success and a negative
1166  * error code in case of failure.
1167  */
1168 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1169 {
1170 	int err, minor;
1171 	struct path path;
1172 	struct kstat stat;
1173 
1174 	/* Probably this is an MTD character device node path */
1175 	err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1176 	if (err)
1177 		return ERR_PTR(err);
1178 
1179 	err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1180 	path_put(&path);
1181 	if (err)
1182 		return ERR_PTR(err);
1183 
1184 	/* MTD device number is defined by the major / minor numbers */
1185 	if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1186 		return ERR_PTR(-EINVAL);
1187 
1188 	minor = MINOR(stat.rdev);
1189 
1190 	if (minor & 1)
1191 		/*
1192 		 * Just do not think the "/dev/mtdrX" devices support is need,
1193 		 * so do not support them to avoid doing extra work.
1194 		 */
1195 		return ERR_PTR(-EINVAL);
1196 
1197 	return get_mtd_device(NULL, minor / 2);
1198 }
1199 
1200 /**
1201  * open_mtd_device - open MTD device by name, character device path, or number.
1202  * @mtd_dev: name, character device node path, or MTD device device number
1203  *
1204  * This function tries to open and MTD device described by @mtd_dev string,
1205  * which is first treated as ASCII MTD device number, and if it is not true, it
1206  * is treated as MTD device name, and if that is also not true, it is treated
1207  * as MTD character device node path. Returns MTD device description object in
1208  * case of success and a negative error code in case of failure.
1209  */
1210 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1211 {
1212 	struct mtd_info *mtd;
1213 	int mtd_num;
1214 	char *endp;
1215 
1216 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1217 	if (*endp != '\0' || mtd_dev == endp) {
1218 		/*
1219 		 * This does not look like an ASCII integer, probably this is
1220 		 * MTD device name.
1221 		 */
1222 		mtd = get_mtd_device_nm(mtd_dev);
1223 		if (PTR_ERR(mtd) == -ENODEV)
1224 			/* Probably this is an MTD character device node path */
1225 			mtd = open_mtd_by_chdev(mtd_dev);
1226 	} else
1227 		mtd = get_mtd_device(NULL, mtd_num);
1228 
1229 	return mtd;
1230 }
1231 
1232 static void ubi_notify_add(struct mtd_info *mtd)
1233 {
1234 	struct device_node *np = mtd_get_of_node(mtd);
1235 	int err;
1236 
1237 	if (!of_device_is_compatible(np, "linux,ubi"))
1238 		return;
1239 
1240 	/*
1241 	 * we are already holding &mtd_table_mutex, but still need
1242 	 * to bump refcount
1243 	 */
1244 	err = __get_mtd_device(mtd);
1245 	if (err)
1246 		return;
1247 
1248 	/* called while holding mtd_table_mutex */
1249 	mutex_lock_nested(&ubi_devices_mutex, SINGLE_DEPTH_NESTING);
1250 	err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO, 0, 0, false, false);
1251 	mutex_unlock(&ubi_devices_mutex);
1252 	if (err < 0)
1253 		__put_mtd_device(mtd);
1254 }
1255 
1256 static void ubi_notify_remove(struct mtd_info *mtd)
1257 {
1258 	/* do nothing for now */
1259 }
1260 
1261 static struct mtd_notifier ubi_mtd_notifier = {
1262 	.add = ubi_notify_add,
1263 	.remove = ubi_notify_remove,
1264 };
1265 
1266 static int __init ubi_init_attach(void)
1267 {
1268 	int err, i, k;
1269 
1270 	/* Attach MTD devices */
1271 	for (i = 0; i < mtd_devs; i++) {
1272 		struct mtd_dev_param *p = &mtd_dev_param[i];
1273 		struct mtd_info *mtd;
1274 
1275 		cond_resched();
1276 
1277 		mtd = open_mtd_device(p->name);
1278 		if (IS_ERR(mtd)) {
1279 			err = PTR_ERR(mtd);
1280 			pr_err("UBI error: cannot open mtd %s, error %d\n",
1281 			       p->name, err);
1282 			/* See comment below re-ubi_is_module(). */
1283 			if (ubi_is_module())
1284 				goto out_detach;
1285 			continue;
1286 		}
1287 
1288 		mutex_lock(&ubi_devices_mutex);
1289 		err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1290 					 p->vid_hdr_offs, p->max_beb_per1024,
1291 					 p->enable_fm == 0,
1292 					 p->need_resv_pool != 0);
1293 		mutex_unlock(&ubi_devices_mutex);
1294 		if (err < 0) {
1295 			pr_err("UBI error: cannot attach mtd%d\n",
1296 			       mtd->index);
1297 			put_mtd_device(mtd);
1298 
1299 			/*
1300 			 * Originally UBI stopped initializing on any error.
1301 			 * However, later on it was found out that this
1302 			 * behavior is not very good when UBI is compiled into
1303 			 * the kernel and the MTD devices to attach are passed
1304 			 * through the command line. Indeed, UBI failure
1305 			 * stopped whole boot sequence.
1306 			 *
1307 			 * To fix this, we changed the behavior for the
1308 			 * non-module case, but preserved the old behavior for
1309 			 * the module case, just for compatibility. This is a
1310 			 * little inconsistent, though.
1311 			 */
1312 			if (ubi_is_module())
1313 				goto out_detach;
1314 		}
1315 	}
1316 
1317 	return 0;
1318 
1319 out_detach:
1320 	for (k = 0; k < i; k++)
1321 		if (ubi_devices[k]) {
1322 			mutex_lock(&ubi_devices_mutex);
1323 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1324 			mutex_unlock(&ubi_devices_mutex);
1325 		}
1326 	return err;
1327 }
1328 #ifndef CONFIG_MTD_UBI_MODULE
1329 late_initcall(ubi_init_attach);
1330 #endif
1331 
1332 static int __init ubi_init(void)
1333 {
1334 	int err;
1335 
1336 	/* Ensure that EC and VID headers have correct size */
1337 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1338 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1339 
1340 	if (mtd_devs > UBI_MAX_DEVICES) {
1341 		pr_err("UBI error: too many MTD devices, maximum is %d\n",
1342 		       UBI_MAX_DEVICES);
1343 		return -EINVAL;
1344 	}
1345 
1346 	/* Create base sysfs directory and sysfs files */
1347 	err = class_register(&ubi_class);
1348 	if (err < 0)
1349 		return err;
1350 
1351 	err = misc_register(&ubi_ctrl_cdev);
1352 	if (err) {
1353 		pr_err("UBI error: cannot register device\n");
1354 		goto out;
1355 	}
1356 
1357 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1358 					      sizeof(struct ubi_wl_entry),
1359 					      0, 0, NULL);
1360 	if (!ubi_wl_entry_slab) {
1361 		err = -ENOMEM;
1362 		goto out_dev_unreg;
1363 	}
1364 
1365 	err = ubi_debugfs_init();
1366 	if (err)
1367 		goto out_slab;
1368 
1369 	err = ubiblock_init();
1370 	if (err) {
1371 		pr_err("UBI error: block: cannot initialize, error %d\n", err);
1372 
1373 		/* See comment above re-ubi_is_module(). */
1374 		if (ubi_is_module())
1375 			goto out_debugfs;
1376 	}
1377 
1378 	register_mtd_user(&ubi_mtd_notifier);
1379 
1380 	if (ubi_is_module()) {
1381 		err = ubi_init_attach();
1382 		if (err)
1383 			goto out_mtd_notifier;
1384 	}
1385 
1386 	return 0;
1387 
1388 out_mtd_notifier:
1389 	unregister_mtd_user(&ubi_mtd_notifier);
1390 	ubiblock_exit();
1391 out_debugfs:
1392 	ubi_debugfs_exit();
1393 out_slab:
1394 	kmem_cache_destroy(ubi_wl_entry_slab);
1395 out_dev_unreg:
1396 	misc_deregister(&ubi_ctrl_cdev);
1397 out:
1398 	class_unregister(&ubi_class);
1399 	pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1400 	return err;
1401 }
1402 device_initcall(ubi_init);
1403 
1404 
1405 static void __exit ubi_exit(void)
1406 {
1407 	int i;
1408 
1409 	ubiblock_exit();
1410 	unregister_mtd_user(&ubi_mtd_notifier);
1411 
1412 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1413 		if (ubi_devices[i]) {
1414 			mutex_lock(&ubi_devices_mutex);
1415 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1416 			mutex_unlock(&ubi_devices_mutex);
1417 		}
1418 	ubi_debugfs_exit();
1419 	kmem_cache_destroy(ubi_wl_entry_slab);
1420 	misc_deregister(&ubi_ctrl_cdev);
1421 	class_unregister(&ubi_class);
1422 }
1423 module_exit(ubi_exit);
1424 
1425 /**
1426  * bytes_str_to_int - convert a number of bytes string into an integer.
1427  * @str: the string to convert
1428  *
1429  * This function returns positive resulting integer in case of success and a
1430  * negative error code in case of failure.
1431  */
1432 static int bytes_str_to_int(const char *str)
1433 {
1434 	char *endp;
1435 	unsigned long result;
1436 
1437 	result = simple_strtoul(str, &endp, 0);
1438 	if (str == endp || result >= INT_MAX) {
1439 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1440 		return -EINVAL;
1441 	}
1442 
1443 	switch (*endp) {
1444 	case 'G':
1445 		result *= 1024;
1446 		fallthrough;
1447 	case 'M':
1448 		result *= 1024;
1449 		fallthrough;
1450 	case 'K':
1451 		result *= 1024;
1452 		break;
1453 	case '\0':
1454 		break;
1455 	default:
1456 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1457 		return -EINVAL;
1458 	}
1459 
1460 	return result;
1461 }
1462 
1463 /**
1464  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1465  * @val: the parameter value to parse
1466  * @kp: not used
1467  *
1468  * This function returns zero in case of success and a negative error code in
1469  * case of error.
1470  */
1471 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1472 {
1473 	int i, len;
1474 	struct mtd_dev_param *p;
1475 	char buf[MTD_PARAM_LEN_MAX];
1476 	char *pbuf = &buf[0];
1477 	char *tokens[MTD_PARAM_MAX_COUNT], *token;
1478 
1479 	if (!val)
1480 		return -EINVAL;
1481 
1482 	if (mtd_devs == UBI_MAX_DEVICES) {
1483 		pr_err("UBI error: too many parameters, max. is %d\n",
1484 		       UBI_MAX_DEVICES);
1485 		return -EINVAL;
1486 	}
1487 
1488 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1489 	if (len == MTD_PARAM_LEN_MAX) {
1490 		pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1491 		       val, MTD_PARAM_LEN_MAX);
1492 		return -EINVAL;
1493 	}
1494 
1495 	if (len == 0) {
1496 		pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1497 		return 0;
1498 	}
1499 
1500 	strcpy(buf, val);
1501 
1502 	/* Get rid of the final newline */
1503 	if (buf[len - 1] == '\n')
1504 		buf[len - 1] = '\0';
1505 
1506 	for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1507 		tokens[i] = strsep(&pbuf, ",");
1508 
1509 	if (pbuf) {
1510 		pr_err("UBI error: too many arguments at \"%s\"\n", val);
1511 		return -EINVAL;
1512 	}
1513 
1514 	p = &mtd_dev_param[mtd_devs];
1515 	strcpy(&p->name[0], tokens[0]);
1516 
1517 	token = tokens[1];
1518 	if (token) {
1519 		p->vid_hdr_offs = bytes_str_to_int(token);
1520 
1521 		if (p->vid_hdr_offs < 0)
1522 			return p->vid_hdr_offs;
1523 	}
1524 
1525 	token = tokens[2];
1526 	if (token) {
1527 		int err = kstrtoint(token, 10, &p->max_beb_per1024);
1528 
1529 		if (err) {
1530 			pr_err("UBI error: bad value for max_beb_per1024 parameter: %s\n",
1531 			       token);
1532 			return -EINVAL;
1533 		}
1534 	}
1535 
1536 	token = tokens[3];
1537 	if (token) {
1538 		int err = kstrtoint(token, 10, &p->ubi_num);
1539 
1540 		if (err) {
1541 			pr_err("UBI error: bad value for ubi_num parameter: %s\n",
1542 			       token);
1543 			return -EINVAL;
1544 		}
1545 	} else
1546 		p->ubi_num = UBI_DEV_NUM_AUTO;
1547 
1548 	token = tokens[4];
1549 	if (token) {
1550 		int err = kstrtoint(token, 10, &p->enable_fm);
1551 
1552 		if (err) {
1553 			pr_err("UBI error: bad value for enable_fm parameter: %s\n",
1554 				token);
1555 			return -EINVAL;
1556 		}
1557 	} else
1558 		p->enable_fm = 0;
1559 
1560 	token = tokens[5];
1561 	if (token) {
1562 		int err = kstrtoint(token, 10, &p->need_resv_pool);
1563 
1564 		if (err) {
1565 			pr_err("UBI error: bad value for need_resv_pool parameter: %s\n",
1566 				token);
1567 			return -EINVAL;
1568 		}
1569 	} else
1570 		p->need_resv_pool = 0;
1571 
1572 	mtd_devs += 1;
1573 	return 0;
1574 }
1575 
1576 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1577 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1578 		      "Multiple \"mtd\" parameters may be specified.\n"
1579 		      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1580 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1581 		      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1582 		      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1583 		      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1584 		      "Optional \"enable_fm\" parameter determines whether to enable fastmap during attach. If the value is non-zero, fastmap is enabled. Default value is 0.\n"
1585 		      "Optional \"need_resv_pool\" parameter determines whether to reserve pool->max_size pebs during attach. If the value is non-zero, peb reservation is enabled. Default value is 0.\n"
1586 		      "\n"
1587 		      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1588 		      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1589 		      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1590 		      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1591 		      "example 5: mtd=1,0,0,5 mtd=2,0,0,6,1 - attach MTD device /dev/mtd1 to UBI 5 and disable fastmap; attach MTD device /dev/mtd2 to UBI 6 and enable fastmap.(only works when fastmap is enabled and fm_autoconvert=Y).\n"
1592 		      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1593 #ifdef CONFIG_MTD_UBI_FASTMAP
1594 module_param(fm_autoconvert, bool, 0644);
1595 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1596 module_param(fm_debug, bool, 0);
1597 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1598 #endif
1599 MODULE_VERSION(__stringify(UBI_VERSION));
1600 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1601 MODULE_AUTHOR("Artem Bityutskiy");
1602 MODULE_LICENSE("GPL");
1603