1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём), 20 * Frank Haverkamp 21 */ 22 23 /* 24 * This file includes UBI initialization and building of UBI devices. 25 * 26 * When UBI is initialized, it attaches all the MTD devices specified as the 27 * module load parameters or the kernel boot parameters. If MTD devices were 28 * specified, UBI does not attach any MTD device, but it is possible to do 29 * later using the "UBI control device". 30 */ 31 32 #include <linux/err.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/stringify.h> 36 #include <linux/namei.h> 37 #include <linux/stat.h> 38 #include <linux/miscdevice.h> 39 #include <linux/mtd/partitions.h> 40 #include <linux/log2.h> 41 #include <linux/kthread.h> 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/major.h> 45 #include "ubi.h" 46 47 /* Maximum length of the 'mtd=' parameter */ 48 #define MTD_PARAM_LEN_MAX 64 49 50 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 51 #define MTD_PARAM_MAX_COUNT 4 52 53 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 54 #define MAX_MTD_UBI_BEB_LIMIT 768 55 56 #ifdef CONFIG_MTD_UBI_MODULE 57 #define ubi_is_module() 1 58 #else 59 #define ubi_is_module() 0 60 #endif 61 62 /** 63 * struct mtd_dev_param - MTD device parameter description data structure. 64 * @name: MTD character device node path, MTD device name, or MTD device number 65 * string 66 * @vid_hdr_offs: VID header offset 67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 68 */ 69 struct mtd_dev_param { 70 char name[MTD_PARAM_LEN_MAX]; 71 int ubi_num; 72 int vid_hdr_offs; 73 int max_beb_per1024; 74 }; 75 76 /* Numbers of elements set in the @mtd_dev_param array */ 77 static int __initdata mtd_devs; 78 79 /* MTD devices specification parameters */ 80 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES]; 81 #ifdef CONFIG_MTD_UBI_FASTMAP 82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 83 static bool fm_autoconvert; 84 #endif 85 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 86 struct class *ubi_class; 87 88 /* Slab cache for wear-leveling entries */ 89 struct kmem_cache *ubi_wl_entry_slab; 90 91 /* UBI control character device */ 92 static struct miscdevice ubi_ctrl_cdev = { 93 .minor = MISC_DYNAMIC_MINOR, 94 .name = "ubi_ctrl", 95 .fops = &ubi_ctrl_cdev_operations, 96 }; 97 98 /* All UBI devices in system */ 99 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 100 101 /* Serializes UBI devices creations and removals */ 102 DEFINE_MUTEX(ubi_devices_mutex); 103 104 /* Protects @ubi_devices and @ubi->ref_count */ 105 static DEFINE_SPINLOCK(ubi_devices_lock); 106 107 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 108 static ssize_t ubi_version_show(struct class *class, 109 struct class_attribute *attr, char *buf) 110 { 111 return sprintf(buf, "%d\n", UBI_VERSION); 112 } 113 114 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 115 static struct class_attribute ubi_version = 116 __ATTR(version, S_IRUGO, ubi_version_show, NULL); 117 118 static ssize_t dev_attribute_show(struct device *dev, 119 struct device_attribute *attr, char *buf); 120 121 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 122 static struct device_attribute dev_eraseblock_size = 123 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 124 static struct device_attribute dev_avail_eraseblocks = 125 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 126 static struct device_attribute dev_total_eraseblocks = 127 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 128 static struct device_attribute dev_volumes_count = 129 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 130 static struct device_attribute dev_max_ec = 131 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 132 static struct device_attribute dev_reserved_for_bad = 133 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 134 static struct device_attribute dev_bad_peb_count = 135 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 136 static struct device_attribute dev_max_vol_count = 137 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_min_io_size = 139 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_bgt_enabled = 141 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 142 static struct device_attribute dev_mtd_num = 143 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 144 145 /** 146 * ubi_volume_notify - send a volume change notification. 147 * @ubi: UBI device description object 148 * @vol: volume description object of the changed volume 149 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 150 * 151 * This is a helper function which notifies all subscribers about a volume 152 * change event (creation, removal, re-sizing, re-naming, updating). Returns 153 * zero in case of success and a negative error code in case of failure. 154 */ 155 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 156 { 157 struct ubi_notification nt; 158 159 ubi_do_get_device_info(ubi, &nt.di); 160 ubi_do_get_volume_info(ubi, vol, &nt.vi); 161 162 #ifdef CONFIG_MTD_UBI_FASTMAP 163 switch (ntype) { 164 case UBI_VOLUME_ADDED: 165 case UBI_VOLUME_REMOVED: 166 case UBI_VOLUME_RESIZED: 167 case UBI_VOLUME_RENAMED: 168 if (ubi_update_fastmap(ubi)) { 169 ubi_err(ubi, "Unable to update fastmap!"); 170 ubi_ro_mode(ubi); 171 } 172 } 173 #endif 174 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 175 } 176 177 /** 178 * ubi_notify_all - send a notification to all volumes. 179 * @ubi: UBI device description object 180 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 181 * @nb: the notifier to call 182 * 183 * This function walks all volumes of UBI device @ubi and sends the @ntype 184 * notification for each volume. If @nb is %NULL, then all registered notifiers 185 * are called, otherwise only the @nb notifier is called. Returns the number of 186 * sent notifications. 187 */ 188 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 189 { 190 struct ubi_notification nt; 191 int i, count = 0; 192 193 ubi_do_get_device_info(ubi, &nt.di); 194 195 mutex_lock(&ubi->device_mutex); 196 for (i = 0; i < ubi->vtbl_slots; i++) { 197 /* 198 * Since the @ubi->device is locked, and we are not going to 199 * change @ubi->volumes, we do not have to lock 200 * @ubi->volumes_lock. 201 */ 202 if (!ubi->volumes[i]) 203 continue; 204 205 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 206 if (nb) 207 nb->notifier_call(nb, ntype, &nt); 208 else 209 blocking_notifier_call_chain(&ubi_notifiers, ntype, 210 &nt); 211 count += 1; 212 } 213 mutex_unlock(&ubi->device_mutex); 214 215 return count; 216 } 217 218 /** 219 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 220 * @nb: the notifier to call 221 * 222 * This function walks all UBI devices and volumes and sends the 223 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 224 * registered notifiers are called, otherwise only the @nb notifier is called. 225 * Returns the number of sent notifications. 226 */ 227 int ubi_enumerate_volumes(struct notifier_block *nb) 228 { 229 int i, count = 0; 230 231 /* 232 * Since the @ubi_devices_mutex is locked, and we are not going to 233 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 234 */ 235 for (i = 0; i < UBI_MAX_DEVICES; i++) { 236 struct ubi_device *ubi = ubi_devices[i]; 237 238 if (!ubi) 239 continue; 240 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 241 } 242 243 return count; 244 } 245 246 /** 247 * ubi_get_device - get UBI device. 248 * @ubi_num: UBI device number 249 * 250 * This function returns UBI device description object for UBI device number 251 * @ubi_num, or %NULL if the device does not exist. This function increases the 252 * device reference count to prevent removal of the device. In other words, the 253 * device cannot be removed if its reference count is not zero. 254 */ 255 struct ubi_device *ubi_get_device(int ubi_num) 256 { 257 struct ubi_device *ubi; 258 259 spin_lock(&ubi_devices_lock); 260 ubi = ubi_devices[ubi_num]; 261 if (ubi) { 262 ubi_assert(ubi->ref_count >= 0); 263 ubi->ref_count += 1; 264 get_device(&ubi->dev); 265 } 266 spin_unlock(&ubi_devices_lock); 267 268 return ubi; 269 } 270 271 /** 272 * ubi_put_device - drop an UBI device reference. 273 * @ubi: UBI device description object 274 */ 275 void ubi_put_device(struct ubi_device *ubi) 276 { 277 spin_lock(&ubi_devices_lock); 278 ubi->ref_count -= 1; 279 put_device(&ubi->dev); 280 spin_unlock(&ubi_devices_lock); 281 } 282 283 /** 284 * ubi_get_by_major - get UBI device by character device major number. 285 * @major: major number 286 * 287 * This function is similar to 'ubi_get_device()', but it searches the device 288 * by its major number. 289 */ 290 struct ubi_device *ubi_get_by_major(int major) 291 { 292 int i; 293 struct ubi_device *ubi; 294 295 spin_lock(&ubi_devices_lock); 296 for (i = 0; i < UBI_MAX_DEVICES; i++) { 297 ubi = ubi_devices[i]; 298 if (ubi && MAJOR(ubi->cdev.dev) == major) { 299 ubi_assert(ubi->ref_count >= 0); 300 ubi->ref_count += 1; 301 get_device(&ubi->dev); 302 spin_unlock(&ubi_devices_lock); 303 return ubi; 304 } 305 } 306 spin_unlock(&ubi_devices_lock); 307 308 return NULL; 309 } 310 311 /** 312 * ubi_major2num - get UBI device number by character device major number. 313 * @major: major number 314 * 315 * This function searches UBI device number object by its major number. If UBI 316 * device was not found, this function returns -ENODEV, otherwise the UBI device 317 * number is returned. 318 */ 319 int ubi_major2num(int major) 320 { 321 int i, ubi_num = -ENODEV; 322 323 spin_lock(&ubi_devices_lock); 324 for (i = 0; i < UBI_MAX_DEVICES; i++) { 325 struct ubi_device *ubi = ubi_devices[i]; 326 327 if (ubi && MAJOR(ubi->cdev.dev) == major) { 328 ubi_num = ubi->ubi_num; 329 break; 330 } 331 } 332 spin_unlock(&ubi_devices_lock); 333 334 return ubi_num; 335 } 336 337 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 338 static ssize_t dev_attribute_show(struct device *dev, 339 struct device_attribute *attr, char *buf) 340 { 341 ssize_t ret; 342 struct ubi_device *ubi; 343 344 /* 345 * The below code looks weird, but it actually makes sense. We get the 346 * UBI device reference from the contained 'struct ubi_device'. But it 347 * is unclear if the device was removed or not yet. Indeed, if the 348 * device was removed before we increased its reference count, 349 * 'ubi_get_device()' will return -ENODEV and we fail. 350 * 351 * Remember, 'struct ubi_device' is freed in the release function, so 352 * we still can use 'ubi->ubi_num'. 353 */ 354 ubi = container_of(dev, struct ubi_device, dev); 355 ubi = ubi_get_device(ubi->ubi_num); 356 if (!ubi) 357 return -ENODEV; 358 359 if (attr == &dev_eraseblock_size) 360 ret = sprintf(buf, "%d\n", ubi->leb_size); 361 else if (attr == &dev_avail_eraseblocks) 362 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 363 else if (attr == &dev_total_eraseblocks) 364 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 365 else if (attr == &dev_volumes_count) 366 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 367 else if (attr == &dev_max_ec) 368 ret = sprintf(buf, "%d\n", ubi->max_ec); 369 else if (attr == &dev_reserved_for_bad) 370 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 371 else if (attr == &dev_bad_peb_count) 372 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 373 else if (attr == &dev_max_vol_count) 374 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 375 else if (attr == &dev_min_io_size) 376 ret = sprintf(buf, "%d\n", ubi->min_io_size); 377 else if (attr == &dev_bgt_enabled) 378 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 379 else if (attr == &dev_mtd_num) 380 ret = sprintf(buf, "%d\n", ubi->mtd->index); 381 else 382 ret = -EINVAL; 383 384 ubi_put_device(ubi); 385 return ret; 386 } 387 388 static void dev_release(struct device *dev) 389 { 390 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 391 392 kfree(ubi); 393 } 394 395 /** 396 * ubi_sysfs_init - initialize sysfs for an UBI device. 397 * @ubi: UBI device description object 398 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 399 * taken 400 * 401 * This function returns zero in case of success and a negative error code in 402 * case of failure. 403 */ 404 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref) 405 { 406 int err; 407 408 ubi->dev.release = dev_release; 409 ubi->dev.devt = ubi->cdev.dev; 410 ubi->dev.class = ubi_class; 411 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num); 412 err = device_register(&ubi->dev); 413 if (err) 414 return err; 415 416 *ref = 1; 417 err = device_create_file(&ubi->dev, &dev_eraseblock_size); 418 if (err) 419 return err; 420 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks); 421 if (err) 422 return err; 423 err = device_create_file(&ubi->dev, &dev_total_eraseblocks); 424 if (err) 425 return err; 426 err = device_create_file(&ubi->dev, &dev_volumes_count); 427 if (err) 428 return err; 429 err = device_create_file(&ubi->dev, &dev_max_ec); 430 if (err) 431 return err; 432 err = device_create_file(&ubi->dev, &dev_reserved_for_bad); 433 if (err) 434 return err; 435 err = device_create_file(&ubi->dev, &dev_bad_peb_count); 436 if (err) 437 return err; 438 err = device_create_file(&ubi->dev, &dev_max_vol_count); 439 if (err) 440 return err; 441 err = device_create_file(&ubi->dev, &dev_min_io_size); 442 if (err) 443 return err; 444 err = device_create_file(&ubi->dev, &dev_bgt_enabled); 445 if (err) 446 return err; 447 err = device_create_file(&ubi->dev, &dev_mtd_num); 448 return err; 449 } 450 451 /** 452 * ubi_sysfs_close - close sysfs for an UBI device. 453 * @ubi: UBI device description object 454 */ 455 static void ubi_sysfs_close(struct ubi_device *ubi) 456 { 457 device_remove_file(&ubi->dev, &dev_mtd_num); 458 device_remove_file(&ubi->dev, &dev_bgt_enabled); 459 device_remove_file(&ubi->dev, &dev_min_io_size); 460 device_remove_file(&ubi->dev, &dev_max_vol_count); 461 device_remove_file(&ubi->dev, &dev_bad_peb_count); 462 device_remove_file(&ubi->dev, &dev_reserved_for_bad); 463 device_remove_file(&ubi->dev, &dev_max_ec); 464 device_remove_file(&ubi->dev, &dev_volumes_count); 465 device_remove_file(&ubi->dev, &dev_total_eraseblocks); 466 device_remove_file(&ubi->dev, &dev_avail_eraseblocks); 467 device_remove_file(&ubi->dev, &dev_eraseblock_size); 468 device_unregister(&ubi->dev); 469 } 470 471 /** 472 * kill_volumes - destroy all user volumes. 473 * @ubi: UBI device description object 474 */ 475 static void kill_volumes(struct ubi_device *ubi) 476 { 477 int i; 478 479 for (i = 0; i < ubi->vtbl_slots; i++) 480 if (ubi->volumes[i]) 481 ubi_free_volume(ubi, ubi->volumes[i]); 482 } 483 484 /** 485 * uif_init - initialize user interfaces for an UBI device. 486 * @ubi: UBI device description object 487 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 488 * taken, otherwise set to %0 489 * 490 * This function initializes various user interfaces for an UBI device. If the 491 * initialization fails at an early stage, this function frees all the 492 * resources it allocated, returns an error, and @ref is set to %0. However, 493 * if the initialization fails after the UBI device was registered in the 494 * driver core subsystem, this function takes a reference to @ubi->dev, because 495 * otherwise the release function ('dev_release()') would free whole @ubi 496 * object. The @ref argument is set to %1 in this case. The caller has to put 497 * this reference. 498 * 499 * This function returns zero in case of success and a negative error code in 500 * case of failure. 501 */ 502 static int uif_init(struct ubi_device *ubi, int *ref) 503 { 504 int i, err; 505 dev_t dev; 506 507 *ref = 0; 508 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 509 510 /* 511 * Major numbers for the UBI character devices are allocated 512 * dynamically. Major numbers of volume character devices are 513 * equivalent to ones of the corresponding UBI character device. Minor 514 * numbers of UBI character devices are 0, while minor numbers of 515 * volume character devices start from 1. Thus, we allocate one major 516 * number and ubi->vtbl_slots + 1 minor numbers. 517 */ 518 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 519 if (err) { 520 ubi_err(ubi, "cannot register UBI character devices"); 521 return err; 522 } 523 524 ubi_assert(MINOR(dev) == 0); 525 cdev_init(&ubi->cdev, &ubi_cdev_operations); 526 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 527 ubi->cdev.owner = THIS_MODULE; 528 529 err = cdev_add(&ubi->cdev, dev, 1); 530 if (err) { 531 ubi_err(ubi, "cannot add character device"); 532 goto out_unreg; 533 } 534 535 err = ubi_sysfs_init(ubi, ref); 536 if (err) 537 goto out_sysfs; 538 539 for (i = 0; i < ubi->vtbl_slots; i++) 540 if (ubi->volumes[i]) { 541 err = ubi_add_volume(ubi, ubi->volumes[i]); 542 if (err) { 543 ubi_err(ubi, "cannot add volume %d", i); 544 goto out_volumes; 545 } 546 } 547 548 return 0; 549 550 out_volumes: 551 kill_volumes(ubi); 552 out_sysfs: 553 if (*ref) 554 get_device(&ubi->dev); 555 ubi_sysfs_close(ubi); 556 cdev_del(&ubi->cdev); 557 out_unreg: 558 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 559 ubi_err(ubi, "cannot initialize UBI %s, error %d", 560 ubi->ubi_name, err); 561 return err; 562 } 563 564 /** 565 * uif_close - close user interfaces for an UBI device. 566 * @ubi: UBI device description object 567 * 568 * Note, since this function un-registers UBI volume device objects (@vol->dev), 569 * the memory allocated voe the volumes is freed as well (in the release 570 * function). 571 */ 572 static void uif_close(struct ubi_device *ubi) 573 { 574 kill_volumes(ubi); 575 ubi_sysfs_close(ubi); 576 cdev_del(&ubi->cdev); 577 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 578 } 579 580 /** 581 * ubi_free_internal_volumes - free internal volumes. 582 * @ubi: UBI device description object 583 */ 584 void ubi_free_internal_volumes(struct ubi_device *ubi) 585 { 586 int i; 587 588 for (i = ubi->vtbl_slots; 589 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 590 kfree(ubi->volumes[i]->eba_tbl); 591 kfree(ubi->volumes[i]); 592 } 593 } 594 595 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 596 { 597 int limit, device_pebs; 598 uint64_t device_size; 599 600 if (!max_beb_per1024) 601 return 0; 602 603 /* 604 * Here we are using size of the entire flash chip and 605 * not just the MTD partition size because the maximum 606 * number of bad eraseblocks is a percentage of the 607 * whole device and bad eraseblocks are not fairly 608 * distributed over the flash chip. So the worst case 609 * is that all the bad eraseblocks of the chip are in 610 * the MTD partition we are attaching (ubi->mtd). 611 */ 612 device_size = mtd_get_device_size(ubi->mtd); 613 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 614 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 615 616 /* Round it up */ 617 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 618 limit += 1; 619 620 return limit; 621 } 622 623 /** 624 * io_init - initialize I/O sub-system for a given UBI device. 625 * @ubi: UBI device description object 626 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 627 * 628 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 629 * assumed: 630 * o EC header is always at offset zero - this cannot be changed; 631 * o VID header starts just after the EC header at the closest address 632 * aligned to @io->hdrs_min_io_size; 633 * o data starts just after the VID header at the closest address aligned to 634 * @io->min_io_size 635 * 636 * This function returns zero in case of success and a negative error code in 637 * case of failure. 638 */ 639 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 640 { 641 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 642 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 643 644 if (ubi->mtd->numeraseregions != 0) { 645 /* 646 * Some flashes have several erase regions. Different regions 647 * may have different eraseblock size and other 648 * characteristics. It looks like mostly multi-region flashes 649 * have one "main" region and one or more small regions to 650 * store boot loader code or boot parameters or whatever. I 651 * guess we should just pick the largest region. But this is 652 * not implemented. 653 */ 654 ubi_err(ubi, "multiple regions, not implemented"); 655 return -EINVAL; 656 } 657 658 if (ubi->vid_hdr_offset < 0) 659 return -EINVAL; 660 661 /* 662 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 663 * physical eraseblocks maximum. 664 */ 665 666 ubi->peb_size = ubi->mtd->erasesize; 667 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 668 ubi->flash_size = ubi->mtd->size; 669 670 if (mtd_can_have_bb(ubi->mtd)) { 671 ubi->bad_allowed = 1; 672 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 673 } 674 675 if (ubi->mtd->type == MTD_NORFLASH) { 676 ubi_assert(ubi->mtd->writesize == 1); 677 ubi->nor_flash = 1; 678 } 679 680 ubi->min_io_size = ubi->mtd->writesize; 681 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 682 683 /* 684 * Make sure minimal I/O unit is power of 2. Note, there is no 685 * fundamental reason for this assumption. It is just an optimization 686 * which allows us to avoid costly division operations. 687 */ 688 if (!is_power_of_2(ubi->min_io_size)) { 689 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 690 ubi->min_io_size); 691 return -EINVAL; 692 } 693 694 ubi_assert(ubi->hdrs_min_io_size > 0); 695 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 696 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 697 698 ubi->max_write_size = ubi->mtd->writebufsize; 699 /* 700 * Maximum write size has to be greater or equivalent to min. I/O 701 * size, and be multiple of min. I/O size. 702 */ 703 if (ubi->max_write_size < ubi->min_io_size || 704 ubi->max_write_size % ubi->min_io_size || 705 !is_power_of_2(ubi->max_write_size)) { 706 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 707 ubi->max_write_size, ubi->min_io_size); 708 return -EINVAL; 709 } 710 711 /* Calculate default aligned sizes of EC and VID headers */ 712 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 713 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 714 715 dbg_gen("min_io_size %d", ubi->min_io_size); 716 dbg_gen("max_write_size %d", ubi->max_write_size); 717 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 718 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 719 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 720 721 if (ubi->vid_hdr_offset == 0) 722 /* Default offset */ 723 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 724 ubi->ec_hdr_alsize; 725 else { 726 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 727 ~(ubi->hdrs_min_io_size - 1); 728 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 729 ubi->vid_hdr_aloffset; 730 } 731 732 /* Similar for the data offset */ 733 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 734 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 735 736 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 737 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 738 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 739 dbg_gen("leb_start %d", ubi->leb_start); 740 741 /* The shift must be aligned to 32-bit boundary */ 742 if (ubi->vid_hdr_shift % 4) { 743 ubi_err(ubi, "unaligned VID header shift %d", 744 ubi->vid_hdr_shift); 745 return -EINVAL; 746 } 747 748 /* Check sanity */ 749 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 750 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 751 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 752 ubi->leb_start & (ubi->min_io_size - 1)) { 753 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 754 ubi->vid_hdr_offset, ubi->leb_start); 755 return -EINVAL; 756 } 757 758 /* 759 * Set maximum amount of physical erroneous eraseblocks to be 10%. 760 * Erroneous PEB are those which have read errors. 761 */ 762 ubi->max_erroneous = ubi->peb_count / 10; 763 if (ubi->max_erroneous < 16) 764 ubi->max_erroneous = 16; 765 dbg_gen("max_erroneous %d", ubi->max_erroneous); 766 767 /* 768 * It may happen that EC and VID headers are situated in one minimal 769 * I/O unit. In this case we can only accept this UBI image in 770 * read-only mode. 771 */ 772 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 773 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 774 ubi->ro_mode = 1; 775 } 776 777 ubi->leb_size = ubi->peb_size - ubi->leb_start; 778 779 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 780 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 781 ubi->mtd->index); 782 ubi->ro_mode = 1; 783 } 784 785 /* 786 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 787 * unfortunately, MTD does not provide this information. We should loop 788 * over all physical eraseblocks and invoke mtd->block_is_bad() for 789 * each physical eraseblock. So, we leave @ubi->bad_peb_count 790 * uninitialized so far. 791 */ 792 793 return 0; 794 } 795 796 /** 797 * autoresize - re-size the volume which has the "auto-resize" flag set. 798 * @ubi: UBI device description object 799 * @vol_id: ID of the volume to re-size 800 * 801 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 802 * the volume table to the largest possible size. See comments in ubi-header.h 803 * for more description of the flag. Returns zero in case of success and a 804 * negative error code in case of failure. 805 */ 806 static int autoresize(struct ubi_device *ubi, int vol_id) 807 { 808 struct ubi_volume_desc desc; 809 struct ubi_volume *vol = ubi->volumes[vol_id]; 810 int err, old_reserved_pebs = vol->reserved_pebs; 811 812 if (ubi->ro_mode) { 813 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 814 return 0; 815 } 816 817 /* 818 * Clear the auto-resize flag in the volume in-memory copy of the 819 * volume table, and 'ubi_resize_volume()' will propagate this change 820 * to the flash. 821 */ 822 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 823 824 if (ubi->avail_pebs == 0) { 825 struct ubi_vtbl_record vtbl_rec; 826 827 /* 828 * No available PEBs to re-size the volume, clear the flag on 829 * flash and exit. 830 */ 831 vtbl_rec = ubi->vtbl[vol_id]; 832 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 833 if (err) 834 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 835 vol_id); 836 } else { 837 desc.vol = vol; 838 err = ubi_resize_volume(&desc, 839 old_reserved_pebs + ubi->avail_pebs); 840 if (err) 841 ubi_err(ubi, "cannot auto-resize volume %d", 842 vol_id); 843 } 844 845 if (err) 846 return err; 847 848 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 849 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 850 return 0; 851 } 852 853 /** 854 * ubi_attach_mtd_dev - attach an MTD device. 855 * @mtd: MTD device description object 856 * @ubi_num: number to assign to the new UBI device 857 * @vid_hdr_offset: VID header offset 858 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 859 * 860 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 861 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 862 * which case this function finds a vacant device number and assigns it 863 * automatically. Returns the new UBI device number in case of success and a 864 * negative error code in case of failure. 865 * 866 * Note, the invocations of this function has to be serialized by the 867 * @ubi_devices_mutex. 868 */ 869 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 870 int vid_hdr_offset, int max_beb_per1024) 871 { 872 struct ubi_device *ubi; 873 int i, err, ref = 0; 874 875 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 876 return -EINVAL; 877 878 if (!max_beb_per1024) 879 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 880 881 /* 882 * Check if we already have the same MTD device attached. 883 * 884 * Note, this function assumes that UBI devices creations and deletions 885 * are serialized, so it does not take the &ubi_devices_lock. 886 */ 887 for (i = 0; i < UBI_MAX_DEVICES; i++) { 888 ubi = ubi_devices[i]; 889 if (ubi && mtd->index == ubi->mtd->index) { 890 ubi_err(ubi, "mtd%d is already attached to ubi%d", 891 mtd->index, i); 892 return -EEXIST; 893 } 894 } 895 896 /* 897 * Make sure this MTD device is not emulated on top of an UBI volume 898 * already. Well, generally this recursion works fine, but there are 899 * different problems like the UBI module takes a reference to itself 900 * by attaching (and thus, opening) the emulated MTD device. This 901 * results in inability to unload the module. And in general it makes 902 * no sense to attach emulated MTD devices, so we prohibit this. 903 */ 904 if (mtd->type == MTD_UBIVOLUME) { 905 ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI", 906 mtd->index); 907 return -EINVAL; 908 } 909 910 if (ubi_num == UBI_DEV_NUM_AUTO) { 911 /* Search for an empty slot in the @ubi_devices array */ 912 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 913 if (!ubi_devices[ubi_num]) 914 break; 915 if (ubi_num == UBI_MAX_DEVICES) { 916 ubi_err(ubi, "only %d UBI devices may be created", 917 UBI_MAX_DEVICES); 918 return -ENFILE; 919 } 920 } else { 921 if (ubi_num >= UBI_MAX_DEVICES) 922 return -EINVAL; 923 924 /* Make sure ubi_num is not busy */ 925 if (ubi_devices[ubi_num]) { 926 ubi_err(ubi, "ubi%d already exists", ubi_num); 927 return -EEXIST; 928 } 929 } 930 931 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 932 if (!ubi) 933 return -ENOMEM; 934 935 ubi->mtd = mtd; 936 ubi->ubi_num = ubi_num; 937 ubi->vid_hdr_offset = vid_hdr_offset; 938 ubi->autoresize_vol_id = -1; 939 940 #ifdef CONFIG_MTD_UBI_FASTMAP 941 ubi->fm_pool.used = ubi->fm_pool.size = 0; 942 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 943 944 /* 945 * fm_pool.max_size is 5% of the total number of PEBs but it's also 946 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 947 */ 948 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 949 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 950 if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE) 951 ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE; 952 953 ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE; 954 ubi->fm_disabled = !fm_autoconvert; 955 956 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 957 <= UBI_FM_MAX_START) { 958 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 959 UBI_FM_MAX_START); 960 ubi->fm_disabled = 1; 961 } 962 963 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 964 ubi_msg(ubi, "default fastmap WL pool size: %d", 965 ubi->fm_wl_pool.max_size); 966 #else 967 ubi->fm_disabled = 1; 968 #endif 969 mutex_init(&ubi->buf_mutex); 970 mutex_init(&ubi->ckvol_mutex); 971 mutex_init(&ubi->device_mutex); 972 spin_lock_init(&ubi->volumes_lock); 973 mutex_init(&ubi->fm_mutex); 974 init_rwsem(&ubi->fm_sem); 975 976 ubi_msg(ubi, "attaching mtd%d to ubi%d", mtd->index, ubi_num); 977 978 err = io_init(ubi, max_beb_per1024); 979 if (err) 980 goto out_free; 981 982 err = -ENOMEM; 983 ubi->peb_buf = vmalloc(ubi->peb_size); 984 if (!ubi->peb_buf) 985 goto out_free; 986 987 #ifdef CONFIG_MTD_UBI_FASTMAP 988 ubi->fm_size = ubi_calc_fm_size(ubi); 989 ubi->fm_buf = vzalloc(ubi->fm_size); 990 if (!ubi->fm_buf) 991 goto out_free; 992 #endif 993 err = ubi_attach(ubi, 0); 994 if (err) { 995 ubi_err(ubi, "failed to attach mtd%d, error %d", 996 mtd->index, err); 997 goto out_free; 998 } 999 1000 if (ubi->autoresize_vol_id != -1) { 1001 err = autoresize(ubi, ubi->autoresize_vol_id); 1002 if (err) 1003 goto out_detach; 1004 } 1005 1006 err = uif_init(ubi, &ref); 1007 if (err) 1008 goto out_detach; 1009 1010 err = ubi_debugfs_init_dev(ubi); 1011 if (err) 1012 goto out_uif; 1013 1014 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 1015 if (IS_ERR(ubi->bgt_thread)) { 1016 err = PTR_ERR(ubi->bgt_thread); 1017 ubi_err(ubi, "cannot spawn \"%s\", error %d", 1018 ubi->bgt_name, err); 1019 goto out_debugfs; 1020 } 1021 1022 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 1023 mtd->index, mtd->name, ubi->flash_size >> 20); 1024 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1025 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1026 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 1027 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1028 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1029 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1030 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1031 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1032 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1033 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1034 ubi->vtbl_slots); 1035 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1036 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1037 ubi->image_seq); 1038 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1039 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1040 1041 /* 1042 * The below lock makes sure we do not race with 'ubi_thread()' which 1043 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1044 */ 1045 spin_lock(&ubi->wl_lock); 1046 ubi->thread_enabled = 1; 1047 wake_up_process(ubi->bgt_thread); 1048 spin_unlock(&ubi->wl_lock); 1049 1050 ubi_devices[ubi_num] = ubi; 1051 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1052 return ubi_num; 1053 1054 out_debugfs: 1055 ubi_debugfs_exit_dev(ubi); 1056 out_uif: 1057 get_device(&ubi->dev); 1058 ubi_assert(ref); 1059 uif_close(ubi); 1060 out_detach: 1061 ubi_wl_close(ubi); 1062 ubi_free_internal_volumes(ubi); 1063 vfree(ubi->vtbl); 1064 out_free: 1065 vfree(ubi->peb_buf); 1066 vfree(ubi->fm_buf); 1067 if (ref) 1068 put_device(&ubi->dev); 1069 else 1070 kfree(ubi); 1071 return err; 1072 } 1073 1074 /** 1075 * ubi_detach_mtd_dev - detach an MTD device. 1076 * @ubi_num: UBI device number to detach from 1077 * @anyway: detach MTD even if device reference count is not zero 1078 * 1079 * This function destroys an UBI device number @ubi_num and detaches the 1080 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1081 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1082 * exist. 1083 * 1084 * Note, the invocations of this function has to be serialized by the 1085 * @ubi_devices_mutex. 1086 */ 1087 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1088 { 1089 struct ubi_device *ubi; 1090 1091 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1092 return -EINVAL; 1093 1094 ubi = ubi_get_device(ubi_num); 1095 if (!ubi) 1096 return -EINVAL; 1097 1098 spin_lock(&ubi_devices_lock); 1099 put_device(&ubi->dev); 1100 ubi->ref_count -= 1; 1101 if (ubi->ref_count) { 1102 if (!anyway) { 1103 spin_unlock(&ubi_devices_lock); 1104 return -EBUSY; 1105 } 1106 /* This may only happen if there is a bug */ 1107 ubi_err(ubi, "%s reference count %d, destroy anyway", 1108 ubi->ubi_name, ubi->ref_count); 1109 } 1110 ubi_devices[ubi_num] = NULL; 1111 spin_unlock(&ubi_devices_lock); 1112 1113 ubi_assert(ubi_num == ubi->ubi_num); 1114 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1115 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1116 #ifdef CONFIG_MTD_UBI_FASTMAP 1117 /* If we don't write a new fastmap at detach time we lose all 1118 * EC updates that have been made since the last written fastmap. */ 1119 ubi_update_fastmap(ubi); 1120 #endif 1121 /* 1122 * Before freeing anything, we have to stop the background thread to 1123 * prevent it from doing anything on this device while we are freeing. 1124 */ 1125 if (ubi->bgt_thread) 1126 kthread_stop(ubi->bgt_thread); 1127 1128 /* 1129 * Get a reference to the device in order to prevent 'dev_release()' 1130 * from freeing the @ubi object. 1131 */ 1132 get_device(&ubi->dev); 1133 1134 ubi_debugfs_exit_dev(ubi); 1135 uif_close(ubi); 1136 1137 ubi_wl_close(ubi); 1138 ubi_free_internal_volumes(ubi); 1139 vfree(ubi->vtbl); 1140 put_mtd_device(ubi->mtd); 1141 vfree(ubi->peb_buf); 1142 vfree(ubi->fm_buf); 1143 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1144 put_device(&ubi->dev); 1145 return 0; 1146 } 1147 1148 /** 1149 * open_mtd_by_chdev - open an MTD device by its character device node path. 1150 * @mtd_dev: MTD character device node path 1151 * 1152 * This helper function opens an MTD device by its character node device path. 1153 * Returns MTD device description object in case of success and a negative 1154 * error code in case of failure. 1155 */ 1156 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1157 { 1158 int err, major, minor, mode; 1159 struct path path; 1160 1161 /* Probably this is an MTD character device node path */ 1162 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1163 if (err) 1164 return ERR_PTR(err); 1165 1166 /* MTD device number is defined by the major / minor numbers */ 1167 major = imajor(path.dentry->d_inode); 1168 minor = iminor(path.dentry->d_inode); 1169 mode = path.dentry->d_inode->i_mode; 1170 path_put(&path); 1171 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode)) 1172 return ERR_PTR(-EINVAL); 1173 1174 if (minor & 1) 1175 /* 1176 * Just do not think the "/dev/mtdrX" devices support is need, 1177 * so do not support them to avoid doing extra work. 1178 */ 1179 return ERR_PTR(-EINVAL); 1180 1181 return get_mtd_device(NULL, minor / 2); 1182 } 1183 1184 /** 1185 * open_mtd_device - open MTD device by name, character device path, or number. 1186 * @mtd_dev: name, character device node path, or MTD device device number 1187 * 1188 * This function tries to open and MTD device described by @mtd_dev string, 1189 * which is first treated as ASCII MTD device number, and if it is not true, it 1190 * is treated as MTD device name, and if that is also not true, it is treated 1191 * as MTD character device node path. Returns MTD device description object in 1192 * case of success and a negative error code in case of failure. 1193 */ 1194 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1195 { 1196 struct mtd_info *mtd; 1197 int mtd_num; 1198 char *endp; 1199 1200 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1201 if (*endp != '\0' || mtd_dev == endp) { 1202 /* 1203 * This does not look like an ASCII integer, probably this is 1204 * MTD device name. 1205 */ 1206 mtd = get_mtd_device_nm(mtd_dev); 1207 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1208 /* Probably this is an MTD character device node path */ 1209 mtd = open_mtd_by_chdev(mtd_dev); 1210 } else 1211 mtd = get_mtd_device(NULL, mtd_num); 1212 1213 return mtd; 1214 } 1215 1216 static int __init ubi_init(void) 1217 { 1218 int err, i, k; 1219 1220 /* Ensure that EC and VID headers have correct size */ 1221 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1222 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1223 1224 if (mtd_devs > UBI_MAX_DEVICES) { 1225 pr_err("UBI error: too many MTD devices, maximum is %d", 1226 UBI_MAX_DEVICES); 1227 return -EINVAL; 1228 } 1229 1230 /* Create base sysfs directory and sysfs files */ 1231 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR); 1232 if (IS_ERR(ubi_class)) { 1233 err = PTR_ERR(ubi_class); 1234 pr_err("UBI error: cannot create UBI class"); 1235 goto out; 1236 } 1237 1238 err = class_create_file(ubi_class, &ubi_version); 1239 if (err) { 1240 pr_err("UBI error: cannot create sysfs file"); 1241 goto out_class; 1242 } 1243 1244 err = misc_register(&ubi_ctrl_cdev); 1245 if (err) { 1246 pr_err("UBI error: cannot register device"); 1247 goto out_version; 1248 } 1249 1250 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1251 sizeof(struct ubi_wl_entry), 1252 0, 0, NULL); 1253 if (!ubi_wl_entry_slab) { 1254 err = -ENOMEM; 1255 goto out_dev_unreg; 1256 } 1257 1258 err = ubi_debugfs_init(); 1259 if (err) 1260 goto out_slab; 1261 1262 1263 /* Attach MTD devices */ 1264 for (i = 0; i < mtd_devs; i++) { 1265 struct mtd_dev_param *p = &mtd_dev_param[i]; 1266 struct mtd_info *mtd; 1267 1268 cond_resched(); 1269 1270 mtd = open_mtd_device(p->name); 1271 if (IS_ERR(mtd)) { 1272 err = PTR_ERR(mtd); 1273 pr_err("UBI error: cannot open mtd %s, error %d", 1274 p->name, err); 1275 /* See comment below re-ubi_is_module(). */ 1276 if (ubi_is_module()) 1277 goto out_detach; 1278 continue; 1279 } 1280 1281 mutex_lock(&ubi_devices_mutex); 1282 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1283 p->vid_hdr_offs, p->max_beb_per1024); 1284 mutex_unlock(&ubi_devices_mutex); 1285 if (err < 0) { 1286 pr_err("UBI error: cannot attach mtd%d", 1287 mtd->index); 1288 put_mtd_device(mtd); 1289 1290 /* 1291 * Originally UBI stopped initializing on any error. 1292 * However, later on it was found out that this 1293 * behavior is not very good when UBI is compiled into 1294 * the kernel and the MTD devices to attach are passed 1295 * through the command line. Indeed, UBI failure 1296 * stopped whole boot sequence. 1297 * 1298 * To fix this, we changed the behavior for the 1299 * non-module case, but preserved the old behavior for 1300 * the module case, just for compatibility. This is a 1301 * little inconsistent, though. 1302 */ 1303 if (ubi_is_module()) 1304 goto out_detach; 1305 } 1306 } 1307 1308 err = ubiblock_init(); 1309 if (err) { 1310 pr_err("UBI error: block: cannot initialize, error %d", err); 1311 1312 /* See comment above re-ubi_is_module(). */ 1313 if (ubi_is_module()) 1314 goto out_detach; 1315 } 1316 1317 return 0; 1318 1319 out_detach: 1320 for (k = 0; k < i; k++) 1321 if (ubi_devices[k]) { 1322 mutex_lock(&ubi_devices_mutex); 1323 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1324 mutex_unlock(&ubi_devices_mutex); 1325 } 1326 ubi_debugfs_exit(); 1327 out_slab: 1328 kmem_cache_destroy(ubi_wl_entry_slab); 1329 out_dev_unreg: 1330 misc_deregister(&ubi_ctrl_cdev); 1331 out_version: 1332 class_remove_file(ubi_class, &ubi_version); 1333 out_class: 1334 class_destroy(ubi_class); 1335 out: 1336 pr_err("UBI error: cannot initialize UBI, error %d", err); 1337 return err; 1338 } 1339 late_initcall(ubi_init); 1340 1341 static void __exit ubi_exit(void) 1342 { 1343 int i; 1344 1345 ubiblock_exit(); 1346 1347 for (i = 0; i < UBI_MAX_DEVICES; i++) 1348 if (ubi_devices[i]) { 1349 mutex_lock(&ubi_devices_mutex); 1350 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1351 mutex_unlock(&ubi_devices_mutex); 1352 } 1353 ubi_debugfs_exit(); 1354 kmem_cache_destroy(ubi_wl_entry_slab); 1355 misc_deregister(&ubi_ctrl_cdev); 1356 class_remove_file(ubi_class, &ubi_version); 1357 class_destroy(ubi_class); 1358 } 1359 module_exit(ubi_exit); 1360 1361 /** 1362 * bytes_str_to_int - convert a number of bytes string into an integer. 1363 * @str: the string to convert 1364 * 1365 * This function returns positive resulting integer in case of success and a 1366 * negative error code in case of failure. 1367 */ 1368 static int __init bytes_str_to_int(const char *str) 1369 { 1370 char *endp; 1371 unsigned long result; 1372 1373 result = simple_strtoul(str, &endp, 0); 1374 if (str == endp || result >= INT_MAX) { 1375 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1376 return -EINVAL; 1377 } 1378 1379 switch (*endp) { 1380 case 'G': 1381 result *= 1024; 1382 case 'M': 1383 result *= 1024; 1384 case 'K': 1385 result *= 1024; 1386 if (endp[1] == 'i' && endp[2] == 'B') 1387 endp += 2; 1388 case '\0': 1389 break; 1390 default: 1391 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1392 return -EINVAL; 1393 } 1394 1395 return result; 1396 } 1397 1398 /** 1399 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1400 * @val: the parameter value to parse 1401 * @kp: not used 1402 * 1403 * This function returns zero in case of success and a negative error code in 1404 * case of error. 1405 */ 1406 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1407 { 1408 int i, len; 1409 struct mtd_dev_param *p; 1410 char buf[MTD_PARAM_LEN_MAX]; 1411 char *pbuf = &buf[0]; 1412 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1413 1414 if (!val) 1415 return -EINVAL; 1416 1417 if (mtd_devs == UBI_MAX_DEVICES) { 1418 pr_err("UBI error: too many parameters, max. is %d\n", 1419 UBI_MAX_DEVICES); 1420 return -EINVAL; 1421 } 1422 1423 len = strnlen(val, MTD_PARAM_LEN_MAX); 1424 if (len == MTD_PARAM_LEN_MAX) { 1425 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1426 val, MTD_PARAM_LEN_MAX); 1427 return -EINVAL; 1428 } 1429 1430 if (len == 0) { 1431 pr_err("UBI warning: empty 'mtd=' parameter - ignored\n"); 1432 return 0; 1433 } 1434 1435 strcpy(buf, val); 1436 1437 /* Get rid of the final newline */ 1438 if (buf[len - 1] == '\n') 1439 buf[len - 1] = '\0'; 1440 1441 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1442 tokens[i] = strsep(&pbuf, ","); 1443 1444 if (pbuf) { 1445 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1446 return -EINVAL; 1447 } 1448 1449 p = &mtd_dev_param[mtd_devs]; 1450 strcpy(&p->name[0], tokens[0]); 1451 1452 token = tokens[1]; 1453 if (token) { 1454 p->vid_hdr_offs = bytes_str_to_int(token); 1455 1456 if (p->vid_hdr_offs < 0) 1457 return p->vid_hdr_offs; 1458 } 1459 1460 token = tokens[2]; 1461 if (token) { 1462 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1463 1464 if (err) { 1465 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1466 token); 1467 return -EINVAL; 1468 } 1469 } 1470 1471 token = tokens[3]; 1472 if (token) { 1473 int err = kstrtoint(token, 10, &p->ubi_num); 1474 1475 if (err) { 1476 pr_err("UBI error: bad value for ubi_num parameter: %s", 1477 token); 1478 return -EINVAL; 1479 } 1480 } else 1481 p->ubi_num = UBI_DEV_NUM_AUTO; 1482 1483 mtd_devs += 1; 1484 return 0; 1485 } 1486 1487 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); 1488 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1489 "Multiple \"mtd\" parameters may be specified.\n" 1490 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1491 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1492 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1493 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1494 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1495 "\n" 1496 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1497 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1498 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1499 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1500 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1501 #ifdef CONFIG_MTD_UBI_FASTMAP 1502 module_param(fm_autoconvert, bool, 0644); 1503 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1504 #endif 1505 MODULE_VERSION(__stringify(UBI_VERSION)); 1506 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1507 MODULE_AUTHOR("Artem Bityutskiy"); 1508 MODULE_LICENSE("GPL"); 1509