1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём), 20 * Frank Haverkamp 21 */ 22 23 /* 24 * This file includes UBI initialization and building of UBI devices. 25 * 26 * When UBI is initialized, it attaches all the MTD devices specified as the 27 * module load parameters or the kernel boot parameters. If MTD devices were 28 * specified, UBI does not attach any MTD device, but it is possible to do 29 * later using the "UBI control device". 30 */ 31 32 #include <linux/err.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/stringify.h> 36 #include <linux/namei.h> 37 #include <linux/stat.h> 38 #include <linux/miscdevice.h> 39 #include <linux/mtd/partitions.h> 40 #include <linux/log2.h> 41 #include <linux/kthread.h> 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include "ubi.h" 45 46 /* Maximum length of the 'mtd=' parameter */ 47 #define MTD_PARAM_LEN_MAX 64 48 49 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 50 #define MTD_PARAM_MAX_COUNT 3 51 52 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 53 #define MAX_MTD_UBI_BEB_LIMIT 768 54 55 #ifdef CONFIG_MTD_UBI_MODULE 56 #define ubi_is_module() 1 57 #else 58 #define ubi_is_module() 0 59 #endif 60 61 /** 62 * struct mtd_dev_param - MTD device parameter description data structure. 63 * @name: MTD character device node path, MTD device name, or MTD device number 64 * string 65 * @vid_hdr_offs: VID header offset 66 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 67 */ 68 struct mtd_dev_param { 69 char name[MTD_PARAM_LEN_MAX]; 70 int vid_hdr_offs; 71 int max_beb_per1024; 72 }; 73 74 /* Numbers of elements set in the @mtd_dev_param array */ 75 static int __initdata mtd_devs; 76 77 /* MTD devices specification parameters */ 78 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES]; 79 #ifdef CONFIG_MTD_UBI_FASTMAP 80 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 81 static bool fm_autoconvert; 82 #endif 83 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 84 struct class *ubi_class; 85 86 /* Slab cache for wear-leveling entries */ 87 struct kmem_cache *ubi_wl_entry_slab; 88 89 /* UBI control character device */ 90 static struct miscdevice ubi_ctrl_cdev = { 91 .minor = MISC_DYNAMIC_MINOR, 92 .name = "ubi_ctrl", 93 .fops = &ubi_ctrl_cdev_operations, 94 }; 95 96 /* All UBI devices in system */ 97 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 98 99 /* Serializes UBI devices creations and removals */ 100 DEFINE_MUTEX(ubi_devices_mutex); 101 102 /* Protects @ubi_devices and @ubi->ref_count */ 103 static DEFINE_SPINLOCK(ubi_devices_lock); 104 105 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 106 static ssize_t ubi_version_show(struct class *class, 107 struct class_attribute *attr, char *buf) 108 { 109 return sprintf(buf, "%d\n", UBI_VERSION); 110 } 111 112 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 113 static struct class_attribute ubi_version = 114 __ATTR(version, S_IRUGO, ubi_version_show, NULL); 115 116 static ssize_t dev_attribute_show(struct device *dev, 117 struct device_attribute *attr, char *buf); 118 119 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 120 static struct device_attribute dev_eraseblock_size = 121 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 122 static struct device_attribute dev_avail_eraseblocks = 123 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 124 static struct device_attribute dev_total_eraseblocks = 125 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 126 static struct device_attribute dev_volumes_count = 127 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 128 static struct device_attribute dev_max_ec = 129 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 130 static struct device_attribute dev_reserved_for_bad = 131 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 132 static struct device_attribute dev_bad_peb_count = 133 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 134 static struct device_attribute dev_max_vol_count = 135 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 136 static struct device_attribute dev_min_io_size = 137 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_bgt_enabled = 139 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_mtd_num = 141 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 142 143 /** 144 * ubi_volume_notify - send a volume change notification. 145 * @ubi: UBI device description object 146 * @vol: volume description object of the changed volume 147 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 148 * 149 * This is a helper function which notifies all subscribers about a volume 150 * change event (creation, removal, re-sizing, re-naming, updating). Returns 151 * zero in case of success and a negative error code in case of failure. 152 */ 153 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 154 { 155 struct ubi_notification nt; 156 157 ubi_do_get_device_info(ubi, &nt.di); 158 ubi_do_get_volume_info(ubi, vol, &nt.vi); 159 160 #ifdef CONFIG_MTD_UBI_FASTMAP 161 switch (ntype) { 162 case UBI_VOLUME_ADDED: 163 case UBI_VOLUME_REMOVED: 164 case UBI_VOLUME_RESIZED: 165 case UBI_VOLUME_RENAMED: 166 if (ubi_update_fastmap(ubi)) { 167 ubi_err("Unable to update fastmap!"); 168 ubi_ro_mode(ubi); 169 } 170 } 171 #endif 172 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 173 } 174 175 /** 176 * ubi_notify_all - send a notification to all volumes. 177 * @ubi: UBI device description object 178 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 179 * @nb: the notifier to call 180 * 181 * This function walks all volumes of UBI device @ubi and sends the @ntype 182 * notification for each volume. If @nb is %NULL, then all registered notifiers 183 * are called, otherwise only the @nb notifier is called. Returns the number of 184 * sent notifications. 185 */ 186 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 187 { 188 struct ubi_notification nt; 189 int i, count = 0; 190 191 ubi_do_get_device_info(ubi, &nt.di); 192 193 mutex_lock(&ubi->device_mutex); 194 for (i = 0; i < ubi->vtbl_slots; i++) { 195 /* 196 * Since the @ubi->device is locked, and we are not going to 197 * change @ubi->volumes, we do not have to lock 198 * @ubi->volumes_lock. 199 */ 200 if (!ubi->volumes[i]) 201 continue; 202 203 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 204 if (nb) 205 nb->notifier_call(nb, ntype, &nt); 206 else 207 blocking_notifier_call_chain(&ubi_notifiers, ntype, 208 &nt); 209 count += 1; 210 } 211 mutex_unlock(&ubi->device_mutex); 212 213 return count; 214 } 215 216 /** 217 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 218 * @nb: the notifier to call 219 * 220 * This function walks all UBI devices and volumes and sends the 221 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 222 * registered notifiers are called, otherwise only the @nb notifier is called. 223 * Returns the number of sent notifications. 224 */ 225 int ubi_enumerate_volumes(struct notifier_block *nb) 226 { 227 int i, count = 0; 228 229 /* 230 * Since the @ubi_devices_mutex is locked, and we are not going to 231 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 232 */ 233 for (i = 0; i < UBI_MAX_DEVICES; i++) { 234 struct ubi_device *ubi = ubi_devices[i]; 235 236 if (!ubi) 237 continue; 238 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 239 } 240 241 return count; 242 } 243 244 /** 245 * ubi_get_device - get UBI device. 246 * @ubi_num: UBI device number 247 * 248 * This function returns UBI device description object for UBI device number 249 * @ubi_num, or %NULL if the device does not exist. This function increases the 250 * device reference count to prevent removal of the device. In other words, the 251 * device cannot be removed if its reference count is not zero. 252 */ 253 struct ubi_device *ubi_get_device(int ubi_num) 254 { 255 struct ubi_device *ubi; 256 257 spin_lock(&ubi_devices_lock); 258 ubi = ubi_devices[ubi_num]; 259 if (ubi) { 260 ubi_assert(ubi->ref_count >= 0); 261 ubi->ref_count += 1; 262 get_device(&ubi->dev); 263 } 264 spin_unlock(&ubi_devices_lock); 265 266 return ubi; 267 } 268 269 /** 270 * ubi_put_device - drop an UBI device reference. 271 * @ubi: UBI device description object 272 */ 273 void ubi_put_device(struct ubi_device *ubi) 274 { 275 spin_lock(&ubi_devices_lock); 276 ubi->ref_count -= 1; 277 put_device(&ubi->dev); 278 spin_unlock(&ubi_devices_lock); 279 } 280 281 /** 282 * ubi_get_by_major - get UBI device by character device major number. 283 * @major: major number 284 * 285 * This function is similar to 'ubi_get_device()', but it searches the device 286 * by its major number. 287 */ 288 struct ubi_device *ubi_get_by_major(int major) 289 { 290 int i; 291 struct ubi_device *ubi; 292 293 spin_lock(&ubi_devices_lock); 294 for (i = 0; i < UBI_MAX_DEVICES; i++) { 295 ubi = ubi_devices[i]; 296 if (ubi && MAJOR(ubi->cdev.dev) == major) { 297 ubi_assert(ubi->ref_count >= 0); 298 ubi->ref_count += 1; 299 get_device(&ubi->dev); 300 spin_unlock(&ubi_devices_lock); 301 return ubi; 302 } 303 } 304 spin_unlock(&ubi_devices_lock); 305 306 return NULL; 307 } 308 309 /** 310 * ubi_major2num - get UBI device number by character device major number. 311 * @major: major number 312 * 313 * This function searches UBI device number object by its major number. If UBI 314 * device was not found, this function returns -ENODEV, otherwise the UBI device 315 * number is returned. 316 */ 317 int ubi_major2num(int major) 318 { 319 int i, ubi_num = -ENODEV; 320 321 spin_lock(&ubi_devices_lock); 322 for (i = 0; i < UBI_MAX_DEVICES; i++) { 323 struct ubi_device *ubi = ubi_devices[i]; 324 325 if (ubi && MAJOR(ubi->cdev.dev) == major) { 326 ubi_num = ubi->ubi_num; 327 break; 328 } 329 } 330 spin_unlock(&ubi_devices_lock); 331 332 return ubi_num; 333 } 334 335 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 336 static ssize_t dev_attribute_show(struct device *dev, 337 struct device_attribute *attr, char *buf) 338 { 339 ssize_t ret; 340 struct ubi_device *ubi; 341 342 /* 343 * The below code looks weird, but it actually makes sense. We get the 344 * UBI device reference from the contained 'struct ubi_device'. But it 345 * is unclear if the device was removed or not yet. Indeed, if the 346 * device was removed before we increased its reference count, 347 * 'ubi_get_device()' will return -ENODEV and we fail. 348 * 349 * Remember, 'struct ubi_device' is freed in the release function, so 350 * we still can use 'ubi->ubi_num'. 351 */ 352 ubi = container_of(dev, struct ubi_device, dev); 353 ubi = ubi_get_device(ubi->ubi_num); 354 if (!ubi) 355 return -ENODEV; 356 357 if (attr == &dev_eraseblock_size) 358 ret = sprintf(buf, "%d\n", ubi->leb_size); 359 else if (attr == &dev_avail_eraseblocks) 360 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 361 else if (attr == &dev_total_eraseblocks) 362 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 363 else if (attr == &dev_volumes_count) 364 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 365 else if (attr == &dev_max_ec) 366 ret = sprintf(buf, "%d\n", ubi->max_ec); 367 else if (attr == &dev_reserved_for_bad) 368 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 369 else if (attr == &dev_bad_peb_count) 370 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 371 else if (attr == &dev_max_vol_count) 372 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 373 else if (attr == &dev_min_io_size) 374 ret = sprintf(buf, "%d\n", ubi->min_io_size); 375 else if (attr == &dev_bgt_enabled) 376 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 377 else if (attr == &dev_mtd_num) 378 ret = sprintf(buf, "%d\n", ubi->mtd->index); 379 else 380 ret = -EINVAL; 381 382 ubi_put_device(ubi); 383 return ret; 384 } 385 386 static void dev_release(struct device *dev) 387 { 388 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 389 390 kfree(ubi); 391 } 392 393 /** 394 * ubi_sysfs_init - initialize sysfs for an UBI device. 395 * @ubi: UBI device description object 396 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 397 * taken 398 * 399 * This function returns zero in case of success and a negative error code in 400 * case of failure. 401 */ 402 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref) 403 { 404 int err; 405 406 ubi->dev.release = dev_release; 407 ubi->dev.devt = ubi->cdev.dev; 408 ubi->dev.class = ubi_class; 409 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num); 410 err = device_register(&ubi->dev); 411 if (err) 412 return err; 413 414 *ref = 1; 415 err = device_create_file(&ubi->dev, &dev_eraseblock_size); 416 if (err) 417 return err; 418 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks); 419 if (err) 420 return err; 421 err = device_create_file(&ubi->dev, &dev_total_eraseblocks); 422 if (err) 423 return err; 424 err = device_create_file(&ubi->dev, &dev_volumes_count); 425 if (err) 426 return err; 427 err = device_create_file(&ubi->dev, &dev_max_ec); 428 if (err) 429 return err; 430 err = device_create_file(&ubi->dev, &dev_reserved_for_bad); 431 if (err) 432 return err; 433 err = device_create_file(&ubi->dev, &dev_bad_peb_count); 434 if (err) 435 return err; 436 err = device_create_file(&ubi->dev, &dev_max_vol_count); 437 if (err) 438 return err; 439 err = device_create_file(&ubi->dev, &dev_min_io_size); 440 if (err) 441 return err; 442 err = device_create_file(&ubi->dev, &dev_bgt_enabled); 443 if (err) 444 return err; 445 err = device_create_file(&ubi->dev, &dev_mtd_num); 446 return err; 447 } 448 449 /** 450 * ubi_sysfs_close - close sysfs for an UBI device. 451 * @ubi: UBI device description object 452 */ 453 static void ubi_sysfs_close(struct ubi_device *ubi) 454 { 455 device_remove_file(&ubi->dev, &dev_mtd_num); 456 device_remove_file(&ubi->dev, &dev_bgt_enabled); 457 device_remove_file(&ubi->dev, &dev_min_io_size); 458 device_remove_file(&ubi->dev, &dev_max_vol_count); 459 device_remove_file(&ubi->dev, &dev_bad_peb_count); 460 device_remove_file(&ubi->dev, &dev_reserved_for_bad); 461 device_remove_file(&ubi->dev, &dev_max_ec); 462 device_remove_file(&ubi->dev, &dev_volumes_count); 463 device_remove_file(&ubi->dev, &dev_total_eraseblocks); 464 device_remove_file(&ubi->dev, &dev_avail_eraseblocks); 465 device_remove_file(&ubi->dev, &dev_eraseblock_size); 466 device_unregister(&ubi->dev); 467 } 468 469 /** 470 * kill_volumes - destroy all user volumes. 471 * @ubi: UBI device description object 472 */ 473 static void kill_volumes(struct ubi_device *ubi) 474 { 475 int i; 476 477 for (i = 0; i < ubi->vtbl_slots; i++) 478 if (ubi->volumes[i]) 479 ubi_free_volume(ubi, ubi->volumes[i]); 480 } 481 482 /** 483 * uif_init - initialize user interfaces for an UBI device. 484 * @ubi: UBI device description object 485 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 486 * taken, otherwise set to %0 487 * 488 * This function initializes various user interfaces for an UBI device. If the 489 * initialization fails at an early stage, this function frees all the 490 * resources it allocated, returns an error, and @ref is set to %0. However, 491 * if the initialization fails after the UBI device was registered in the 492 * driver core subsystem, this function takes a reference to @ubi->dev, because 493 * otherwise the release function ('dev_release()') would free whole @ubi 494 * object. The @ref argument is set to %1 in this case. The caller has to put 495 * this reference. 496 * 497 * This function returns zero in case of success and a negative error code in 498 * case of failure. 499 */ 500 static int uif_init(struct ubi_device *ubi, int *ref) 501 { 502 int i, err; 503 dev_t dev; 504 505 *ref = 0; 506 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 507 508 /* 509 * Major numbers for the UBI character devices are allocated 510 * dynamically. Major numbers of volume character devices are 511 * equivalent to ones of the corresponding UBI character device. Minor 512 * numbers of UBI character devices are 0, while minor numbers of 513 * volume character devices start from 1. Thus, we allocate one major 514 * number and ubi->vtbl_slots + 1 minor numbers. 515 */ 516 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 517 if (err) { 518 ubi_err("cannot register UBI character devices"); 519 return err; 520 } 521 522 ubi_assert(MINOR(dev) == 0); 523 cdev_init(&ubi->cdev, &ubi_cdev_operations); 524 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 525 ubi->cdev.owner = THIS_MODULE; 526 527 err = cdev_add(&ubi->cdev, dev, 1); 528 if (err) { 529 ubi_err("cannot add character device"); 530 goto out_unreg; 531 } 532 533 err = ubi_sysfs_init(ubi, ref); 534 if (err) 535 goto out_sysfs; 536 537 for (i = 0; i < ubi->vtbl_slots; i++) 538 if (ubi->volumes[i]) { 539 err = ubi_add_volume(ubi, ubi->volumes[i]); 540 if (err) { 541 ubi_err("cannot add volume %d", i); 542 goto out_volumes; 543 } 544 } 545 546 return 0; 547 548 out_volumes: 549 kill_volumes(ubi); 550 out_sysfs: 551 if (*ref) 552 get_device(&ubi->dev); 553 ubi_sysfs_close(ubi); 554 cdev_del(&ubi->cdev); 555 out_unreg: 556 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 557 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err); 558 return err; 559 } 560 561 /** 562 * uif_close - close user interfaces for an UBI device. 563 * @ubi: UBI device description object 564 * 565 * Note, since this function un-registers UBI volume device objects (@vol->dev), 566 * the memory allocated voe the volumes is freed as well (in the release 567 * function). 568 */ 569 static void uif_close(struct ubi_device *ubi) 570 { 571 kill_volumes(ubi); 572 ubi_sysfs_close(ubi); 573 cdev_del(&ubi->cdev); 574 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 575 } 576 577 /** 578 * ubi_free_internal_volumes - free internal volumes. 579 * @ubi: UBI device description object 580 */ 581 void ubi_free_internal_volumes(struct ubi_device *ubi) 582 { 583 int i; 584 585 for (i = ubi->vtbl_slots; 586 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 587 kfree(ubi->volumes[i]->eba_tbl); 588 kfree(ubi->volumes[i]); 589 } 590 } 591 592 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 593 { 594 int limit, device_pebs; 595 uint64_t device_size; 596 597 if (!max_beb_per1024) 598 return 0; 599 600 /* 601 * Here we are using size of the entire flash chip and 602 * not just the MTD partition size because the maximum 603 * number of bad eraseblocks is a percentage of the 604 * whole device and bad eraseblocks are not fairly 605 * distributed over the flash chip. So the worst case 606 * is that all the bad eraseblocks of the chip are in 607 * the MTD partition we are attaching (ubi->mtd). 608 */ 609 device_size = mtd_get_device_size(ubi->mtd); 610 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 611 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 612 613 /* Round it up */ 614 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 615 limit += 1; 616 617 return limit; 618 } 619 620 /** 621 * io_init - initialize I/O sub-system for a given UBI device. 622 * @ubi: UBI device description object 623 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 624 * 625 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 626 * assumed: 627 * o EC header is always at offset zero - this cannot be changed; 628 * o VID header starts just after the EC header at the closest address 629 * aligned to @io->hdrs_min_io_size; 630 * o data starts just after the VID header at the closest address aligned to 631 * @io->min_io_size 632 * 633 * This function returns zero in case of success and a negative error code in 634 * case of failure. 635 */ 636 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 637 { 638 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 639 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 640 641 if (ubi->mtd->numeraseregions != 0) { 642 /* 643 * Some flashes have several erase regions. Different regions 644 * may have different eraseblock size and other 645 * characteristics. It looks like mostly multi-region flashes 646 * have one "main" region and one or more small regions to 647 * store boot loader code or boot parameters or whatever. I 648 * guess we should just pick the largest region. But this is 649 * not implemented. 650 */ 651 ubi_err("multiple regions, not implemented"); 652 return -EINVAL; 653 } 654 655 if (ubi->vid_hdr_offset < 0) 656 return -EINVAL; 657 658 /* 659 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 660 * physical eraseblocks maximum. 661 */ 662 663 ubi->peb_size = ubi->mtd->erasesize; 664 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 665 ubi->flash_size = ubi->mtd->size; 666 667 if (mtd_can_have_bb(ubi->mtd)) { 668 ubi->bad_allowed = 1; 669 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 670 } 671 672 if (ubi->mtd->type == MTD_NORFLASH) { 673 ubi_assert(ubi->mtd->writesize == 1); 674 ubi->nor_flash = 1; 675 } 676 677 ubi->min_io_size = ubi->mtd->writesize; 678 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 679 680 /* 681 * Make sure minimal I/O unit is power of 2. Note, there is no 682 * fundamental reason for this assumption. It is just an optimization 683 * which allows us to avoid costly division operations. 684 */ 685 if (!is_power_of_2(ubi->min_io_size)) { 686 ubi_err("min. I/O unit (%d) is not power of 2", 687 ubi->min_io_size); 688 return -EINVAL; 689 } 690 691 ubi_assert(ubi->hdrs_min_io_size > 0); 692 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 693 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 694 695 ubi->max_write_size = ubi->mtd->writebufsize; 696 /* 697 * Maximum write size has to be greater or equivalent to min. I/O 698 * size, and be multiple of min. I/O size. 699 */ 700 if (ubi->max_write_size < ubi->min_io_size || 701 ubi->max_write_size % ubi->min_io_size || 702 !is_power_of_2(ubi->max_write_size)) { 703 ubi_err("bad write buffer size %d for %d min. I/O unit", 704 ubi->max_write_size, ubi->min_io_size); 705 return -EINVAL; 706 } 707 708 /* Calculate default aligned sizes of EC and VID headers */ 709 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 710 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 711 712 dbg_gen("min_io_size %d", ubi->min_io_size); 713 dbg_gen("max_write_size %d", ubi->max_write_size); 714 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 715 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 716 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 717 718 if (ubi->vid_hdr_offset == 0) 719 /* Default offset */ 720 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 721 ubi->ec_hdr_alsize; 722 else { 723 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 724 ~(ubi->hdrs_min_io_size - 1); 725 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 726 ubi->vid_hdr_aloffset; 727 } 728 729 /* Similar for the data offset */ 730 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 731 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 732 733 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 734 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 735 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 736 dbg_gen("leb_start %d", ubi->leb_start); 737 738 /* The shift must be aligned to 32-bit boundary */ 739 if (ubi->vid_hdr_shift % 4) { 740 ubi_err("unaligned VID header shift %d", 741 ubi->vid_hdr_shift); 742 return -EINVAL; 743 } 744 745 /* Check sanity */ 746 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 747 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 748 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 749 ubi->leb_start & (ubi->min_io_size - 1)) { 750 ubi_err("bad VID header (%d) or data offsets (%d)", 751 ubi->vid_hdr_offset, ubi->leb_start); 752 return -EINVAL; 753 } 754 755 /* 756 * Set maximum amount of physical erroneous eraseblocks to be 10%. 757 * Erroneous PEB are those which have read errors. 758 */ 759 ubi->max_erroneous = ubi->peb_count / 10; 760 if (ubi->max_erroneous < 16) 761 ubi->max_erroneous = 16; 762 dbg_gen("max_erroneous %d", ubi->max_erroneous); 763 764 /* 765 * It may happen that EC and VID headers are situated in one minimal 766 * I/O unit. In this case we can only accept this UBI image in 767 * read-only mode. 768 */ 769 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 770 ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 771 ubi->ro_mode = 1; 772 } 773 774 ubi->leb_size = ubi->peb_size - ubi->leb_start; 775 776 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 777 ubi_msg("MTD device %d is write-protected, attach in read-only mode", 778 ubi->mtd->index); 779 ubi->ro_mode = 1; 780 } 781 782 /* 783 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 784 * unfortunately, MTD does not provide this information. We should loop 785 * over all physical eraseblocks and invoke mtd->block_is_bad() for 786 * each physical eraseblock. So, we leave @ubi->bad_peb_count 787 * uninitialized so far. 788 */ 789 790 return 0; 791 } 792 793 /** 794 * autoresize - re-size the volume which has the "auto-resize" flag set. 795 * @ubi: UBI device description object 796 * @vol_id: ID of the volume to re-size 797 * 798 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 799 * the volume table to the largest possible size. See comments in ubi-header.h 800 * for more description of the flag. Returns zero in case of success and a 801 * negative error code in case of failure. 802 */ 803 static int autoresize(struct ubi_device *ubi, int vol_id) 804 { 805 struct ubi_volume_desc desc; 806 struct ubi_volume *vol = ubi->volumes[vol_id]; 807 int err, old_reserved_pebs = vol->reserved_pebs; 808 809 if (ubi->ro_mode) { 810 ubi_warn("skip auto-resize because of R/O mode"); 811 return 0; 812 } 813 814 /* 815 * Clear the auto-resize flag in the volume in-memory copy of the 816 * volume table, and 'ubi_resize_volume()' will propagate this change 817 * to the flash. 818 */ 819 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 820 821 if (ubi->avail_pebs == 0) { 822 struct ubi_vtbl_record vtbl_rec; 823 824 /* 825 * No available PEBs to re-size the volume, clear the flag on 826 * flash and exit. 827 */ 828 memcpy(&vtbl_rec, &ubi->vtbl[vol_id], 829 sizeof(struct ubi_vtbl_record)); 830 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 831 if (err) 832 ubi_err("cannot clean auto-resize flag for volume %d", 833 vol_id); 834 } else { 835 desc.vol = vol; 836 err = ubi_resize_volume(&desc, 837 old_reserved_pebs + ubi->avail_pebs); 838 if (err) 839 ubi_err("cannot auto-resize volume %d", vol_id); 840 } 841 842 if (err) 843 return err; 844 845 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id, 846 vol->name, old_reserved_pebs, vol->reserved_pebs); 847 return 0; 848 } 849 850 /** 851 * ubi_attach_mtd_dev - attach an MTD device. 852 * @mtd: MTD device description object 853 * @ubi_num: number to assign to the new UBI device 854 * @vid_hdr_offset: VID header offset 855 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 856 * 857 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 858 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 859 * which case this function finds a vacant device number and assigns it 860 * automatically. Returns the new UBI device number in case of success and a 861 * negative error code in case of failure. 862 * 863 * Note, the invocations of this function has to be serialized by the 864 * @ubi_devices_mutex. 865 */ 866 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 867 int vid_hdr_offset, int max_beb_per1024) 868 { 869 struct ubi_device *ubi; 870 int i, err, ref = 0; 871 872 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 873 return -EINVAL; 874 875 if (!max_beb_per1024) 876 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 877 878 /* 879 * Check if we already have the same MTD device attached. 880 * 881 * Note, this function assumes that UBI devices creations and deletions 882 * are serialized, so it does not take the &ubi_devices_lock. 883 */ 884 for (i = 0; i < UBI_MAX_DEVICES; i++) { 885 ubi = ubi_devices[i]; 886 if (ubi && mtd->index == ubi->mtd->index) { 887 ubi_err("mtd%d is already attached to ubi%d", 888 mtd->index, i); 889 return -EEXIST; 890 } 891 } 892 893 /* 894 * Make sure this MTD device is not emulated on top of an UBI volume 895 * already. Well, generally this recursion works fine, but there are 896 * different problems like the UBI module takes a reference to itself 897 * by attaching (and thus, opening) the emulated MTD device. This 898 * results in inability to unload the module. And in general it makes 899 * no sense to attach emulated MTD devices, so we prohibit this. 900 */ 901 if (mtd->type == MTD_UBIVOLUME) { 902 ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI", 903 mtd->index); 904 return -EINVAL; 905 } 906 907 if (ubi_num == UBI_DEV_NUM_AUTO) { 908 /* Search for an empty slot in the @ubi_devices array */ 909 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 910 if (!ubi_devices[ubi_num]) 911 break; 912 if (ubi_num == UBI_MAX_DEVICES) { 913 ubi_err("only %d UBI devices may be created", 914 UBI_MAX_DEVICES); 915 return -ENFILE; 916 } 917 } else { 918 if (ubi_num >= UBI_MAX_DEVICES) 919 return -EINVAL; 920 921 /* Make sure ubi_num is not busy */ 922 if (ubi_devices[ubi_num]) { 923 ubi_err("ubi%d already exists", ubi_num); 924 return -EEXIST; 925 } 926 } 927 928 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 929 if (!ubi) 930 return -ENOMEM; 931 932 ubi->mtd = mtd; 933 ubi->ubi_num = ubi_num; 934 ubi->vid_hdr_offset = vid_hdr_offset; 935 ubi->autoresize_vol_id = -1; 936 937 #ifdef CONFIG_MTD_UBI_FASTMAP 938 ubi->fm_pool.used = ubi->fm_pool.size = 0; 939 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 940 941 /* 942 * fm_pool.max_size is 5% of the total number of PEBs but it's also 943 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 944 */ 945 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 946 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 947 if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE) 948 ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE; 949 950 ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE; 951 ubi->fm_disabled = !fm_autoconvert; 952 953 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 954 <= UBI_FM_MAX_START) { 955 ubi_err("More than %i PEBs are needed for fastmap, sorry.", 956 UBI_FM_MAX_START); 957 ubi->fm_disabled = 1; 958 } 959 960 ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size); 961 ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size); 962 #else 963 ubi->fm_disabled = 1; 964 #endif 965 mutex_init(&ubi->buf_mutex); 966 mutex_init(&ubi->ckvol_mutex); 967 mutex_init(&ubi->device_mutex); 968 spin_lock_init(&ubi->volumes_lock); 969 mutex_init(&ubi->fm_mutex); 970 init_rwsem(&ubi->fm_sem); 971 972 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num); 973 974 err = io_init(ubi, max_beb_per1024); 975 if (err) 976 goto out_free; 977 978 err = -ENOMEM; 979 ubi->peb_buf = vmalloc(ubi->peb_size); 980 if (!ubi->peb_buf) 981 goto out_free; 982 983 #ifdef CONFIG_MTD_UBI_FASTMAP 984 ubi->fm_size = ubi_calc_fm_size(ubi); 985 ubi->fm_buf = vzalloc(ubi->fm_size); 986 if (!ubi->fm_buf) 987 goto out_free; 988 #endif 989 err = ubi_debugging_init_dev(ubi); 990 if (err) 991 goto out_free; 992 993 err = ubi_attach(ubi, 0); 994 if (err) { 995 ubi_err("failed to attach mtd%d, error %d", mtd->index, err); 996 goto out_debugging; 997 } 998 999 if (ubi->autoresize_vol_id != -1) { 1000 err = autoresize(ubi, ubi->autoresize_vol_id); 1001 if (err) 1002 goto out_detach; 1003 } 1004 1005 err = uif_init(ubi, &ref); 1006 if (err) 1007 goto out_detach; 1008 1009 err = ubi_debugfs_init_dev(ubi); 1010 if (err) 1011 goto out_uif; 1012 1013 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name); 1014 if (IS_ERR(ubi->bgt_thread)) { 1015 err = PTR_ERR(ubi->bgt_thread); 1016 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name, 1017 err); 1018 goto out_debugfs; 1019 } 1020 1021 ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d", 1022 mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num); 1023 ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1024 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1025 ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d", 1026 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1027 ubi_msg("VID header offset: %d (aligned %d), data offset: %d", 1028 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1029 ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1030 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1031 ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d", 1032 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1033 ubi->vtbl_slots); 1034 ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1035 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1036 ubi->image_seq); 1037 ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1038 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1039 1040 /* 1041 * The below lock makes sure we do not race with 'ubi_thread()' which 1042 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1043 */ 1044 spin_lock(&ubi->wl_lock); 1045 ubi->thread_enabled = 1; 1046 wake_up_process(ubi->bgt_thread); 1047 spin_unlock(&ubi->wl_lock); 1048 1049 ubi_devices[ubi_num] = ubi; 1050 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1051 return ubi_num; 1052 1053 out_debugfs: 1054 ubi_debugfs_exit_dev(ubi); 1055 out_uif: 1056 get_device(&ubi->dev); 1057 ubi_assert(ref); 1058 uif_close(ubi); 1059 out_detach: 1060 ubi_wl_close(ubi); 1061 ubi_free_internal_volumes(ubi); 1062 vfree(ubi->vtbl); 1063 out_debugging: 1064 ubi_debugging_exit_dev(ubi); 1065 out_free: 1066 vfree(ubi->peb_buf); 1067 vfree(ubi->fm_buf); 1068 if (ref) 1069 put_device(&ubi->dev); 1070 else 1071 kfree(ubi); 1072 return err; 1073 } 1074 1075 /** 1076 * ubi_detach_mtd_dev - detach an MTD device. 1077 * @ubi_num: UBI device number to detach from 1078 * @anyway: detach MTD even if device reference count is not zero 1079 * 1080 * This function destroys an UBI device number @ubi_num and detaches the 1081 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1082 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1083 * exist. 1084 * 1085 * Note, the invocations of this function has to be serialized by the 1086 * @ubi_devices_mutex. 1087 */ 1088 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1089 { 1090 struct ubi_device *ubi; 1091 1092 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1093 return -EINVAL; 1094 1095 ubi = ubi_get_device(ubi_num); 1096 if (!ubi) 1097 return -EINVAL; 1098 1099 spin_lock(&ubi_devices_lock); 1100 put_device(&ubi->dev); 1101 ubi->ref_count -= 1; 1102 if (ubi->ref_count) { 1103 if (!anyway) { 1104 spin_unlock(&ubi_devices_lock); 1105 return -EBUSY; 1106 } 1107 /* This may only happen if there is a bug */ 1108 ubi_err("%s reference count %d, destroy anyway", 1109 ubi->ubi_name, ubi->ref_count); 1110 } 1111 ubi_devices[ubi_num] = NULL; 1112 spin_unlock(&ubi_devices_lock); 1113 1114 ubi_assert(ubi_num == ubi->ubi_num); 1115 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1116 ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num); 1117 #ifdef CONFIG_MTD_UBI_FASTMAP 1118 /* If we don't write a new fastmap at detach time we lose all 1119 * EC updates that have been made since the last written fastmap. */ 1120 ubi_update_fastmap(ubi); 1121 #endif 1122 /* 1123 * Before freeing anything, we have to stop the background thread to 1124 * prevent it from doing anything on this device while we are freeing. 1125 */ 1126 if (ubi->bgt_thread) 1127 kthread_stop(ubi->bgt_thread); 1128 1129 /* 1130 * Get a reference to the device in order to prevent 'dev_release()' 1131 * from freeing the @ubi object. 1132 */ 1133 get_device(&ubi->dev); 1134 1135 ubi_debugfs_exit_dev(ubi); 1136 uif_close(ubi); 1137 1138 ubi_wl_close(ubi); 1139 ubi_free_internal_volumes(ubi); 1140 vfree(ubi->vtbl); 1141 put_mtd_device(ubi->mtd); 1142 ubi_debugging_exit_dev(ubi); 1143 vfree(ubi->peb_buf); 1144 vfree(ubi->fm_buf); 1145 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num); 1146 put_device(&ubi->dev); 1147 return 0; 1148 } 1149 1150 /** 1151 * open_mtd_by_chdev - open an MTD device by its character device node path. 1152 * @mtd_dev: MTD character device node path 1153 * 1154 * This helper function opens an MTD device by its character node device path. 1155 * Returns MTD device description object in case of success and a negative 1156 * error code in case of failure. 1157 */ 1158 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1159 { 1160 int err, major, minor, mode; 1161 struct path path; 1162 1163 /* Probably this is an MTD character device node path */ 1164 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1165 if (err) 1166 return ERR_PTR(err); 1167 1168 /* MTD device number is defined by the major / minor numbers */ 1169 major = imajor(path.dentry->d_inode); 1170 minor = iminor(path.dentry->d_inode); 1171 mode = path.dentry->d_inode->i_mode; 1172 path_put(&path); 1173 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode)) 1174 return ERR_PTR(-EINVAL); 1175 1176 if (minor & 1) 1177 /* 1178 * Just do not think the "/dev/mtdrX" devices support is need, 1179 * so do not support them to avoid doing extra work. 1180 */ 1181 return ERR_PTR(-EINVAL); 1182 1183 return get_mtd_device(NULL, minor / 2); 1184 } 1185 1186 /** 1187 * open_mtd_device - open MTD device by name, character device path, or number. 1188 * @mtd_dev: name, character device node path, or MTD device device number 1189 * 1190 * This function tries to open and MTD device described by @mtd_dev string, 1191 * which is first treated as ASCII MTD device number, and if it is not true, it 1192 * is treated as MTD device name, and if that is also not true, it is treated 1193 * as MTD character device node path. Returns MTD device description object in 1194 * case of success and a negative error code in case of failure. 1195 */ 1196 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1197 { 1198 struct mtd_info *mtd; 1199 int mtd_num; 1200 char *endp; 1201 1202 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1203 if (*endp != '\0' || mtd_dev == endp) { 1204 /* 1205 * This does not look like an ASCII integer, probably this is 1206 * MTD device name. 1207 */ 1208 mtd = get_mtd_device_nm(mtd_dev); 1209 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1210 /* Probably this is an MTD character device node path */ 1211 mtd = open_mtd_by_chdev(mtd_dev); 1212 } else 1213 mtd = get_mtd_device(NULL, mtd_num); 1214 1215 return mtd; 1216 } 1217 1218 static int __init ubi_init(void) 1219 { 1220 int err, i, k; 1221 1222 /* Ensure that EC and VID headers have correct size */ 1223 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1224 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1225 1226 if (mtd_devs > UBI_MAX_DEVICES) { 1227 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES); 1228 return -EINVAL; 1229 } 1230 1231 /* Create base sysfs directory and sysfs files */ 1232 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR); 1233 if (IS_ERR(ubi_class)) { 1234 err = PTR_ERR(ubi_class); 1235 ubi_err("cannot create UBI class"); 1236 goto out; 1237 } 1238 1239 err = class_create_file(ubi_class, &ubi_version); 1240 if (err) { 1241 ubi_err("cannot create sysfs file"); 1242 goto out_class; 1243 } 1244 1245 err = misc_register(&ubi_ctrl_cdev); 1246 if (err) { 1247 ubi_err("cannot register device"); 1248 goto out_version; 1249 } 1250 1251 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1252 sizeof(struct ubi_wl_entry), 1253 0, 0, NULL); 1254 if (!ubi_wl_entry_slab) 1255 goto out_dev_unreg; 1256 1257 err = ubi_debugfs_init(); 1258 if (err) 1259 goto out_slab; 1260 1261 1262 /* Attach MTD devices */ 1263 for (i = 0; i < mtd_devs; i++) { 1264 struct mtd_dev_param *p = &mtd_dev_param[i]; 1265 struct mtd_info *mtd; 1266 1267 cond_resched(); 1268 1269 mtd = open_mtd_device(p->name); 1270 if (IS_ERR(mtd)) { 1271 err = PTR_ERR(mtd); 1272 goto out_detach; 1273 } 1274 1275 mutex_lock(&ubi_devices_mutex); 1276 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO, 1277 p->vid_hdr_offs, p->max_beb_per1024); 1278 mutex_unlock(&ubi_devices_mutex); 1279 if (err < 0) { 1280 ubi_err("cannot attach mtd%d", mtd->index); 1281 put_mtd_device(mtd); 1282 1283 /* 1284 * Originally UBI stopped initializing on any error. 1285 * However, later on it was found out that this 1286 * behavior is not very good when UBI is compiled into 1287 * the kernel and the MTD devices to attach are passed 1288 * through the command line. Indeed, UBI failure 1289 * stopped whole boot sequence. 1290 * 1291 * To fix this, we changed the behavior for the 1292 * non-module case, but preserved the old behavior for 1293 * the module case, just for compatibility. This is a 1294 * little inconsistent, though. 1295 */ 1296 if (ubi_is_module()) 1297 goto out_detach; 1298 } 1299 } 1300 1301 return 0; 1302 1303 out_detach: 1304 for (k = 0; k < i; k++) 1305 if (ubi_devices[k]) { 1306 mutex_lock(&ubi_devices_mutex); 1307 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1308 mutex_unlock(&ubi_devices_mutex); 1309 } 1310 ubi_debugfs_exit(); 1311 out_slab: 1312 kmem_cache_destroy(ubi_wl_entry_slab); 1313 out_dev_unreg: 1314 misc_deregister(&ubi_ctrl_cdev); 1315 out_version: 1316 class_remove_file(ubi_class, &ubi_version); 1317 out_class: 1318 class_destroy(ubi_class); 1319 out: 1320 ubi_err("UBI error: cannot initialize UBI, error %d", err); 1321 return err; 1322 } 1323 late_initcall(ubi_init); 1324 1325 static void __exit ubi_exit(void) 1326 { 1327 int i; 1328 1329 for (i = 0; i < UBI_MAX_DEVICES; i++) 1330 if (ubi_devices[i]) { 1331 mutex_lock(&ubi_devices_mutex); 1332 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1333 mutex_unlock(&ubi_devices_mutex); 1334 } 1335 ubi_debugfs_exit(); 1336 kmem_cache_destroy(ubi_wl_entry_slab); 1337 misc_deregister(&ubi_ctrl_cdev); 1338 class_remove_file(ubi_class, &ubi_version); 1339 class_destroy(ubi_class); 1340 } 1341 module_exit(ubi_exit); 1342 1343 /** 1344 * bytes_str_to_int - convert a number of bytes string into an integer. 1345 * @str: the string to convert 1346 * 1347 * This function returns positive resulting integer in case of success and a 1348 * negative error code in case of failure. 1349 */ 1350 static int __init bytes_str_to_int(const char *str) 1351 { 1352 char *endp; 1353 unsigned long result; 1354 1355 result = simple_strtoul(str, &endp, 0); 1356 if (str == endp || result >= INT_MAX) { 1357 ubi_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1358 return -EINVAL; 1359 } 1360 1361 switch (*endp) { 1362 case 'G': 1363 result *= 1024; 1364 case 'M': 1365 result *= 1024; 1366 case 'K': 1367 result *= 1024; 1368 if (endp[1] == 'i' && endp[2] == 'B') 1369 endp += 2; 1370 case '\0': 1371 break; 1372 default: 1373 ubi_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1374 return -EINVAL; 1375 } 1376 1377 return result; 1378 } 1379 1380 /** 1381 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1382 * @val: the parameter value to parse 1383 * @kp: not used 1384 * 1385 * This function returns zero in case of success and a negative error code in 1386 * case of error. 1387 */ 1388 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1389 { 1390 int i, len; 1391 struct mtd_dev_param *p; 1392 char buf[MTD_PARAM_LEN_MAX]; 1393 char *pbuf = &buf[0]; 1394 char *tokens[MTD_PARAM_MAX_COUNT]; 1395 1396 if (!val) 1397 return -EINVAL; 1398 1399 if (mtd_devs == UBI_MAX_DEVICES) { 1400 ubi_err("UBI error: too many parameters, max. is %d\n", 1401 UBI_MAX_DEVICES); 1402 return -EINVAL; 1403 } 1404 1405 len = strnlen(val, MTD_PARAM_LEN_MAX); 1406 if (len == MTD_PARAM_LEN_MAX) { 1407 ubi_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1408 val, MTD_PARAM_LEN_MAX); 1409 return -EINVAL; 1410 } 1411 1412 if (len == 0) { 1413 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1414 return 0; 1415 } 1416 1417 strcpy(buf, val); 1418 1419 /* Get rid of the final newline */ 1420 if (buf[len - 1] == '\n') 1421 buf[len - 1] = '\0'; 1422 1423 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1424 tokens[i] = strsep(&pbuf, ","); 1425 1426 if (pbuf) { 1427 ubi_err("UBI error: too many arguments at \"%s\"\n", val); 1428 return -EINVAL; 1429 } 1430 1431 p = &mtd_dev_param[mtd_devs]; 1432 strcpy(&p->name[0], tokens[0]); 1433 1434 if (tokens[1]) 1435 p->vid_hdr_offs = bytes_str_to_int(tokens[1]); 1436 1437 if (p->vid_hdr_offs < 0) 1438 return p->vid_hdr_offs; 1439 1440 if (tokens[2]) { 1441 int err = kstrtoint(tokens[2], 10, &p->max_beb_per1024); 1442 1443 if (err) { 1444 ubi_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1445 tokens[2]); 1446 return -EINVAL; 1447 } 1448 } 1449 1450 mtd_devs += 1; 1451 return 0; 1452 } 1453 1454 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); 1455 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024]].\n" 1456 "Multiple \"mtd\" parameters may be specified.\n" 1457 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1458 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1459 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1460 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1461 "\n" 1462 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1463 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1464 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1465 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1466 #ifdef CONFIG_MTD_UBI_FASTMAP 1467 module_param(fm_autoconvert, bool, 0644); 1468 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1469 #endif 1470 MODULE_VERSION(__stringify(UBI_VERSION)); 1471 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1472 MODULE_AUTHOR("Artem Bityutskiy"); 1473 MODULE_LICENSE("GPL"); 1474