xref: /linux/drivers/mtd/ubi/attach.c (revision 18f90d372cf35b387663f1567de701e5393f6eb5)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * UBI attaching sub-system.
23  *
24  * This sub-system is responsible for attaching MTD devices and it also
25  * implements flash media scanning.
26  *
27  * The attaching information is represented by a &struct ubi_attach_info'
28  * object. Information about volumes is represented by &struct ubi_ainf_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33  * objects are kept in per-volume RB-trees with the root at the corresponding
34  * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35  * per-volume objects and each of these objects is the root of RB-tree of
36  * per-LEB objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  *
42  * About corruptions
43  * ~~~~~~~~~~~~~~~~~
44  *
45  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46  * whether the headers are corrupted or not. Sometimes UBI also protects the
47  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48  * when it moves the contents of a PEB for wear-leveling purposes.
49  *
50  * UBI tries to distinguish between 2 types of corruptions.
51  *
52  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53  * tries to handle them gracefully, without printing too many warnings and
54  * error messages. The idea is that we do not lose important data in these
55  * cases - we may lose only the data which were being written to the media just
56  * before the power cut happened, and the upper layers (e.g., UBIFS) are
57  * supposed to handle such data losses (e.g., by using the FS journal).
58  *
59  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60  * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61  * PEBs in the @erase list are scheduled for erasure later.
62  *
63  * 2. Unexpected corruptions which are not caused by power cuts. During
64  * attaching, such PEBs are put to the @corr list and UBI preserves them.
65  * Obviously, this lessens the amount of available PEBs, and if at some  point
66  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67  * about such PEBs every time the MTD device is attached.
68  *
69  * However, it is difficult to reliably distinguish between these types of
70  * corruptions and UBI's strategy is as follows (in case of attaching by
71  * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72  * the data area does not contain all 0xFFs, and there were no bit-flips or
73  * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74  * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
75  * are as follows.
76  *   o If the data area contains only 0xFFs, there are no data, and it is safe
77  *     to just erase this PEB - this is corruption type 1.
78  *   o If the data area has bit-flips or data integrity errors (ECC errors on
79  *     NAND), it is probably a PEB which was being erased when power cut
80  *     happened, so this is corruption type 1. However, this is just a guess,
81  *     which might be wrong.
82  *   o Otherwise this is corruption type 2.
83  */
84 
85 #include <linux/err.h>
86 #include <linux/slab.h>
87 #include <linux/crc32.h>
88 #include <linux/math64.h>
89 #include <linux/random.h>
90 #include "ubi.h"
91 
92 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
93 
94 #define AV_FIND		BIT(0)
95 #define AV_ADD		BIT(1)
96 #define AV_FIND_OR_ADD	(AV_FIND | AV_ADD)
97 
98 /**
99  * find_or_add_av - internal function to find a volume, add a volume or do
100  *		    both (find and add if missing).
101  * @ai: attaching information
102  * @vol_id: the requested volume ID
103  * @flags: a combination of the %AV_FIND and %AV_ADD flags describing the
104  *	   expected operation. If only %AV_ADD is set, -EEXIST is returned
105  *	   if the volume already exists. If only %AV_FIND is set, NULL is
106  *	   returned if the volume does not exist. And if both flags are
107  *	   set, the helper first tries to find an existing volume, and if
108  *	   it does not exist it creates a new one.
109  * @created: in value used to inform the caller whether it"s a newly created
110  *	     volume or not.
111  *
112  * This function returns a pointer to a volume description or an ERR_PTR if
113  * the operation failed. It can also return NULL if only %AV_FIND is set and
114  * the volume does not exist.
115  */
116 static struct ubi_ainf_volume *find_or_add_av(struct ubi_attach_info *ai,
117 					      int vol_id, unsigned int flags,
118 					      bool *created)
119 {
120 	struct ubi_ainf_volume *av;
121 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
122 
123 	/* Walk the volume RB-tree to look if this volume is already present */
124 	while (*p) {
125 		parent = *p;
126 		av = rb_entry(parent, struct ubi_ainf_volume, rb);
127 
128 		if (vol_id == av->vol_id) {
129 			*created = false;
130 
131 			if (!(flags & AV_FIND))
132 				return ERR_PTR(-EEXIST);
133 
134 			return av;
135 		}
136 
137 		if (vol_id > av->vol_id)
138 			p = &(*p)->rb_left;
139 		else
140 			p = &(*p)->rb_right;
141 	}
142 
143 	if (!(flags & AV_ADD))
144 		return NULL;
145 
146 	/* The volume is absent - add it */
147 	av = kzalloc(sizeof(*av), GFP_KERNEL);
148 	if (!av)
149 		return ERR_PTR(-ENOMEM);
150 
151 	av->vol_id = vol_id;
152 
153 	if (vol_id > ai->highest_vol_id)
154 		ai->highest_vol_id = vol_id;
155 
156 	rb_link_node(&av->rb, parent, p);
157 	rb_insert_color(&av->rb, &ai->volumes);
158 	ai->vols_found += 1;
159 	*created = true;
160 	dbg_bld("added volume %d", vol_id);
161 	return av;
162 }
163 
164 /**
165  * ubi_find_or_add_av - search for a volume in the attaching information and
166  *			add one if it does not exist.
167  * @ai: attaching information
168  * @vol_id: the requested volume ID
169  * @created: whether the volume has been created or not
170  *
171  * This function returns a pointer to the new volume description or an
172  * ERR_PTR if the operation failed.
173  */
174 static struct ubi_ainf_volume *ubi_find_or_add_av(struct ubi_attach_info *ai,
175 						  int vol_id, bool *created)
176 {
177 	return find_or_add_av(ai, vol_id, AV_FIND_OR_ADD, created);
178 }
179 
180 /**
181  * ubi_alloc_aeb - allocate an aeb element
182  * @ai: attaching information
183  * @pnum: physical eraseblock number
184  * @ec: erase counter of the physical eraseblock
185  *
186  * Allocate an aeb object and initialize the pnum and ec information.
187  * vol_id and lnum are set to UBI_UNKNOWN, and the other fields are
188  * initialized to zero.
189  * Note that the element is not added in any list or RB tree.
190  */
191 struct ubi_ainf_peb *ubi_alloc_aeb(struct ubi_attach_info *ai, int pnum,
192 				   int ec)
193 {
194 	struct ubi_ainf_peb *aeb;
195 
196 	aeb = kmem_cache_zalloc(ai->aeb_slab_cache, GFP_KERNEL);
197 	if (!aeb)
198 		return NULL;
199 
200 	aeb->pnum = pnum;
201 	aeb->ec = ec;
202 	aeb->vol_id = UBI_UNKNOWN;
203 	aeb->lnum = UBI_UNKNOWN;
204 
205 	return aeb;
206 }
207 
208 /**
209  * ubi_free_aeb - free an aeb element
210  * @ai: attaching information
211  * @aeb: the element to free
212  *
213  * Free an aeb object. The caller must have removed the element from any list
214  * or RB tree.
215  */
216 void ubi_free_aeb(struct ubi_attach_info *ai, struct ubi_ainf_peb *aeb)
217 {
218 	kmem_cache_free(ai->aeb_slab_cache, aeb);
219 }
220 
221 /**
222  * add_to_list - add physical eraseblock to a list.
223  * @ai: attaching information
224  * @pnum: physical eraseblock number to add
225  * @vol_id: the last used volume id for the PEB
226  * @lnum: the last used LEB number for the PEB
227  * @ec: erase counter of the physical eraseblock
228  * @to_head: if not zero, add to the head of the list
229  * @list: the list to add to
230  *
231  * This function allocates a 'struct ubi_ainf_peb' object for physical
232  * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
233  * It stores the @lnum and @vol_id alongside, which can both be
234  * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
235  * If @to_head is not zero, PEB will be added to the head of the list, which
236  * basically means it will be processed first later. E.g., we add corrupted
237  * PEBs (corrupted due to power cuts) to the head of the erase list to make
238  * sure we erase them first and get rid of corruptions ASAP. This function
239  * returns zero in case of success and a negative error code in case of
240  * failure.
241  */
242 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
243 		       int lnum, int ec, int to_head, struct list_head *list)
244 {
245 	struct ubi_ainf_peb *aeb;
246 
247 	if (list == &ai->free) {
248 		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
249 	} else if (list == &ai->erase) {
250 		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
251 	} else if (list == &ai->alien) {
252 		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
253 		ai->alien_peb_count += 1;
254 	} else
255 		BUG();
256 
257 	aeb = ubi_alloc_aeb(ai, pnum, ec);
258 	if (!aeb)
259 		return -ENOMEM;
260 
261 	aeb->vol_id = vol_id;
262 	aeb->lnum = lnum;
263 	if (to_head)
264 		list_add(&aeb->u.list, list);
265 	else
266 		list_add_tail(&aeb->u.list, list);
267 	return 0;
268 }
269 
270 /**
271  * add_corrupted - add a corrupted physical eraseblock.
272  * @ai: attaching information
273  * @pnum: physical eraseblock number to add
274  * @ec: erase counter of the physical eraseblock
275  *
276  * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
277  * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
278  * was presumably not caused by a power cut. Returns zero in case of success
279  * and a negative error code in case of failure.
280  */
281 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
282 {
283 	struct ubi_ainf_peb *aeb;
284 
285 	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
286 
287 	aeb = ubi_alloc_aeb(ai, pnum, ec);
288 	if (!aeb)
289 		return -ENOMEM;
290 
291 	ai->corr_peb_count += 1;
292 	list_add(&aeb->u.list, &ai->corr);
293 	return 0;
294 }
295 
296 /**
297  * add_fastmap - add a Fastmap related physical eraseblock.
298  * @ai: attaching information
299  * @pnum: physical eraseblock number the VID header came from
300  * @vid_hdr: the volume identifier header
301  * @ec: erase counter of the physical eraseblock
302  *
303  * This function allocates a 'struct ubi_ainf_peb' object for a Fastamp
304  * physical eraseblock @pnum and adds it to the 'fastmap' list.
305  * Such blocks can be Fastmap super and data blocks from both the most
306  * recent Fastmap we're attaching from or from old Fastmaps which will
307  * be erased.
308  */
309 static int add_fastmap(struct ubi_attach_info *ai, int pnum,
310 		       struct ubi_vid_hdr *vid_hdr, int ec)
311 {
312 	struct ubi_ainf_peb *aeb;
313 
314 	aeb = ubi_alloc_aeb(ai, pnum, ec);
315 	if (!aeb)
316 		return -ENOMEM;
317 
318 	aeb->vol_id = be32_to_cpu(vid_hdr->vol_id);
319 	aeb->sqnum = be64_to_cpu(vid_hdr->sqnum);
320 	list_add(&aeb->u.list, &ai->fastmap);
321 
322 	dbg_bld("add to fastmap list: PEB %d, vol_id %d, sqnum: %llu", pnum,
323 		aeb->vol_id, aeb->sqnum);
324 
325 	return 0;
326 }
327 
328 /**
329  * validate_vid_hdr - check volume identifier header.
330  * @ubi: UBI device description object
331  * @vid_hdr: the volume identifier header to check
332  * @av: information about the volume this logical eraseblock belongs to
333  * @pnum: physical eraseblock number the VID header came from
334  *
335  * This function checks that data stored in @vid_hdr is consistent. Returns
336  * non-zero if an inconsistency was found and zero if not.
337  *
338  * Note, UBI does sanity check of everything it reads from the flash media.
339  * Most of the checks are done in the I/O sub-system. Here we check that the
340  * information in the VID header is consistent to the information in other VID
341  * headers of the same volume.
342  */
343 static int validate_vid_hdr(const struct ubi_device *ubi,
344 			    const struct ubi_vid_hdr *vid_hdr,
345 			    const struct ubi_ainf_volume *av, int pnum)
346 {
347 	int vol_type = vid_hdr->vol_type;
348 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
349 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
350 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
351 
352 	if (av->leb_count != 0) {
353 		int av_vol_type;
354 
355 		/*
356 		 * This is not the first logical eraseblock belonging to this
357 		 * volume. Ensure that the data in its VID header is consistent
358 		 * to the data in previous logical eraseblock headers.
359 		 */
360 
361 		if (vol_id != av->vol_id) {
362 			ubi_err(ubi, "inconsistent vol_id");
363 			goto bad;
364 		}
365 
366 		if (av->vol_type == UBI_STATIC_VOLUME)
367 			av_vol_type = UBI_VID_STATIC;
368 		else
369 			av_vol_type = UBI_VID_DYNAMIC;
370 
371 		if (vol_type != av_vol_type) {
372 			ubi_err(ubi, "inconsistent vol_type");
373 			goto bad;
374 		}
375 
376 		if (used_ebs != av->used_ebs) {
377 			ubi_err(ubi, "inconsistent used_ebs");
378 			goto bad;
379 		}
380 
381 		if (data_pad != av->data_pad) {
382 			ubi_err(ubi, "inconsistent data_pad");
383 			goto bad;
384 		}
385 	}
386 
387 	return 0;
388 
389 bad:
390 	ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
391 	ubi_dump_vid_hdr(vid_hdr);
392 	ubi_dump_av(av);
393 	return -EINVAL;
394 }
395 
396 /**
397  * add_volume - add volume to the attaching information.
398  * @ai: attaching information
399  * @vol_id: ID of the volume to add
400  * @pnum: physical eraseblock number
401  * @vid_hdr: volume identifier header
402  *
403  * If the volume corresponding to the @vid_hdr logical eraseblock is already
404  * present in the attaching information, this function does nothing. Otherwise
405  * it adds corresponding volume to the attaching information. Returns a pointer
406  * to the allocated "av" object in case of success and a negative error code in
407  * case of failure.
408  */
409 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
410 					  int vol_id, int pnum,
411 					  const struct ubi_vid_hdr *vid_hdr)
412 {
413 	struct ubi_ainf_volume *av;
414 	bool created;
415 
416 	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
417 
418 	av = ubi_find_or_add_av(ai, vol_id, &created);
419 	if (IS_ERR(av) || !created)
420 		return av;
421 
422 	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
423 	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
424 	av->compat = vid_hdr->compat;
425 	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
426 							    : UBI_STATIC_VOLUME;
427 
428 	return av;
429 }
430 
431 /**
432  * ubi_compare_lebs - find out which logical eraseblock is newer.
433  * @ubi: UBI device description object
434  * @aeb: first logical eraseblock to compare
435  * @pnum: physical eraseblock number of the second logical eraseblock to
436  * compare
437  * @vid_hdr: volume identifier header of the second logical eraseblock
438  *
439  * This function compares 2 copies of a LEB and informs which one is newer. In
440  * case of success this function returns a positive value, in case of failure, a
441  * negative error code is returned. The success return codes use the following
442  * bits:
443  *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
444  *       second PEB (described by @pnum and @vid_hdr);
445  *     o bit 0 is set: the second PEB is newer;
446  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
447  *     o bit 1 is set: bit-flips were detected in the newer LEB;
448  *     o bit 2 is cleared: the older LEB is not corrupted;
449  *     o bit 2 is set: the older LEB is corrupted.
450  */
451 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
452 			int pnum, const struct ubi_vid_hdr *vid_hdr)
453 {
454 	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
455 	uint32_t data_crc, crc;
456 	struct ubi_vid_io_buf *vidb = NULL;
457 	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
458 
459 	if (sqnum2 == aeb->sqnum) {
460 		/*
461 		 * This must be a really ancient UBI image which has been
462 		 * created before sequence numbers support has been added. At
463 		 * that times we used 32-bit LEB versions stored in logical
464 		 * eraseblocks. That was before UBI got into mainline. We do not
465 		 * support these images anymore. Well, those images still work,
466 		 * but only if no unclean reboots happened.
467 		 */
468 		ubi_err(ubi, "unsupported on-flash UBI format");
469 		return -EINVAL;
470 	}
471 
472 	/* Obviously the LEB with lower sequence counter is older */
473 	second_is_newer = (sqnum2 > aeb->sqnum);
474 
475 	/*
476 	 * Now we know which copy is newer. If the copy flag of the PEB with
477 	 * newer version is not set, then we just return, otherwise we have to
478 	 * check data CRC. For the second PEB we already have the VID header,
479 	 * for the first one - we'll need to re-read it from flash.
480 	 *
481 	 * Note: this may be optimized so that we wouldn't read twice.
482 	 */
483 
484 	if (second_is_newer) {
485 		if (!vid_hdr->copy_flag) {
486 			/* It is not a copy, so it is newer */
487 			dbg_bld("second PEB %d is newer, copy_flag is unset",
488 				pnum);
489 			return 1;
490 		}
491 	} else {
492 		if (!aeb->copy_flag) {
493 			/* It is not a copy, so it is newer */
494 			dbg_bld("first PEB %d is newer, copy_flag is unset",
495 				pnum);
496 			return bitflips << 1;
497 		}
498 
499 		vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
500 		if (!vidb)
501 			return -ENOMEM;
502 
503 		pnum = aeb->pnum;
504 		err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0);
505 		if (err) {
506 			if (err == UBI_IO_BITFLIPS)
507 				bitflips = 1;
508 			else {
509 				ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
510 					pnum, err);
511 				if (err > 0)
512 					err = -EIO;
513 
514 				goto out_free_vidh;
515 			}
516 		}
517 
518 		vid_hdr = ubi_get_vid_hdr(vidb);
519 	}
520 
521 	/* Read the data of the copy and check the CRC */
522 
523 	len = be32_to_cpu(vid_hdr->data_size);
524 
525 	mutex_lock(&ubi->buf_mutex);
526 	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
527 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
528 		goto out_unlock;
529 
530 	data_crc = be32_to_cpu(vid_hdr->data_crc);
531 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
532 	if (crc != data_crc) {
533 		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
534 			pnum, crc, data_crc);
535 		corrupted = 1;
536 		bitflips = 0;
537 		second_is_newer = !second_is_newer;
538 	} else {
539 		dbg_bld("PEB %d CRC is OK", pnum);
540 		bitflips |= !!err;
541 	}
542 	mutex_unlock(&ubi->buf_mutex);
543 
544 	ubi_free_vid_buf(vidb);
545 
546 	if (second_is_newer)
547 		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
548 	else
549 		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
550 
551 	return second_is_newer | (bitflips << 1) | (corrupted << 2);
552 
553 out_unlock:
554 	mutex_unlock(&ubi->buf_mutex);
555 out_free_vidh:
556 	ubi_free_vid_buf(vidb);
557 	return err;
558 }
559 
560 /**
561  * ubi_add_to_av - add used physical eraseblock to the attaching information.
562  * @ubi: UBI device description object
563  * @ai: attaching information
564  * @pnum: the physical eraseblock number
565  * @ec: erase counter
566  * @vid_hdr: the volume identifier header
567  * @bitflips: if bit-flips were detected when this physical eraseblock was read
568  *
569  * This function adds information about a used physical eraseblock to the
570  * 'used' tree of the corresponding volume. The function is rather complex
571  * because it has to handle cases when this is not the first physical
572  * eraseblock belonging to the same logical eraseblock, and the newer one has
573  * to be picked, while the older one has to be dropped. This function returns
574  * zero in case of success and a negative error code in case of failure.
575  */
576 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
577 		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
578 {
579 	int err, vol_id, lnum;
580 	unsigned long long sqnum;
581 	struct ubi_ainf_volume *av;
582 	struct ubi_ainf_peb *aeb;
583 	struct rb_node **p, *parent = NULL;
584 
585 	vol_id = be32_to_cpu(vid_hdr->vol_id);
586 	lnum = be32_to_cpu(vid_hdr->lnum);
587 	sqnum = be64_to_cpu(vid_hdr->sqnum);
588 
589 	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
590 		pnum, vol_id, lnum, ec, sqnum, bitflips);
591 
592 	av = add_volume(ai, vol_id, pnum, vid_hdr);
593 	if (IS_ERR(av))
594 		return PTR_ERR(av);
595 
596 	if (ai->max_sqnum < sqnum)
597 		ai->max_sqnum = sqnum;
598 
599 	/*
600 	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
601 	 * if this is the first instance of this logical eraseblock or not.
602 	 */
603 	p = &av->root.rb_node;
604 	while (*p) {
605 		int cmp_res;
606 
607 		parent = *p;
608 		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
609 		if (lnum != aeb->lnum) {
610 			if (lnum < aeb->lnum)
611 				p = &(*p)->rb_left;
612 			else
613 				p = &(*p)->rb_right;
614 			continue;
615 		}
616 
617 		/*
618 		 * There is already a physical eraseblock describing the same
619 		 * logical eraseblock present.
620 		 */
621 
622 		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
623 			aeb->pnum, aeb->sqnum, aeb->ec);
624 
625 		/*
626 		 * Make sure that the logical eraseblocks have different
627 		 * sequence numbers. Otherwise the image is bad.
628 		 *
629 		 * However, if the sequence number is zero, we assume it must
630 		 * be an ancient UBI image from the era when UBI did not have
631 		 * sequence numbers. We still can attach these images, unless
632 		 * there is a need to distinguish between old and new
633 		 * eraseblocks, in which case we'll refuse the image in
634 		 * 'ubi_compare_lebs()'. In other words, we attach old clean
635 		 * images, but refuse attaching old images with duplicated
636 		 * logical eraseblocks because there was an unclean reboot.
637 		 */
638 		if (aeb->sqnum == sqnum && sqnum != 0) {
639 			ubi_err(ubi, "two LEBs with same sequence number %llu",
640 				sqnum);
641 			ubi_dump_aeb(aeb, 0);
642 			ubi_dump_vid_hdr(vid_hdr);
643 			return -EINVAL;
644 		}
645 
646 		/*
647 		 * Now we have to drop the older one and preserve the newer
648 		 * one.
649 		 */
650 		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
651 		if (cmp_res < 0)
652 			return cmp_res;
653 
654 		if (cmp_res & 1) {
655 			/*
656 			 * This logical eraseblock is newer than the one
657 			 * found earlier.
658 			 */
659 			err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
660 			if (err)
661 				return err;
662 
663 			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
664 					  aeb->lnum, aeb->ec, cmp_res & 4,
665 					  &ai->erase);
666 			if (err)
667 				return err;
668 
669 			aeb->ec = ec;
670 			aeb->pnum = pnum;
671 			aeb->vol_id = vol_id;
672 			aeb->lnum = lnum;
673 			aeb->scrub = ((cmp_res & 2) || bitflips);
674 			aeb->copy_flag = vid_hdr->copy_flag;
675 			aeb->sqnum = sqnum;
676 
677 			if (av->highest_lnum == lnum)
678 				av->last_data_size =
679 					be32_to_cpu(vid_hdr->data_size);
680 
681 			return 0;
682 		} else {
683 			/*
684 			 * This logical eraseblock is older than the one found
685 			 * previously.
686 			 */
687 			return add_to_list(ai, pnum, vol_id, lnum, ec,
688 					   cmp_res & 4, &ai->erase);
689 		}
690 	}
691 
692 	/*
693 	 * We've met this logical eraseblock for the first time, add it to the
694 	 * attaching information.
695 	 */
696 
697 	err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
698 	if (err)
699 		return err;
700 
701 	aeb = ubi_alloc_aeb(ai, pnum, ec);
702 	if (!aeb)
703 		return -ENOMEM;
704 
705 	aeb->vol_id = vol_id;
706 	aeb->lnum = lnum;
707 	aeb->scrub = bitflips;
708 	aeb->copy_flag = vid_hdr->copy_flag;
709 	aeb->sqnum = sqnum;
710 
711 	if (av->highest_lnum <= lnum) {
712 		av->highest_lnum = lnum;
713 		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
714 	}
715 
716 	av->leb_count += 1;
717 	rb_link_node(&aeb->u.rb, parent, p);
718 	rb_insert_color(&aeb->u.rb, &av->root);
719 	return 0;
720 }
721 
722 /**
723  * ubi_add_av - add volume to the attaching information.
724  * @ai: attaching information
725  * @vol_id: the requested volume ID
726  *
727  * This function returns a pointer to the new volume description or an
728  * ERR_PTR if the operation failed.
729  */
730 struct ubi_ainf_volume *ubi_add_av(struct ubi_attach_info *ai, int vol_id)
731 {
732 	bool created;
733 
734 	return find_or_add_av(ai, vol_id, AV_ADD, &created);
735 }
736 
737 /**
738  * ubi_find_av - find volume in the attaching information.
739  * @ai: attaching information
740  * @vol_id: the requested volume ID
741  *
742  * This function returns a pointer to the volume description or %NULL if there
743  * are no data about this volume in the attaching information.
744  */
745 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
746 				    int vol_id)
747 {
748 	bool created;
749 
750 	return find_or_add_av((struct ubi_attach_info *)ai, vol_id, AV_FIND,
751 			      &created);
752 }
753 
754 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av,
755 		       struct list_head *list);
756 
757 /**
758  * ubi_remove_av - delete attaching information about a volume.
759  * @ai: attaching information
760  * @av: the volume attaching information to delete
761  */
762 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
763 {
764 	dbg_bld("remove attaching information about volume %d", av->vol_id);
765 
766 	rb_erase(&av->rb, &ai->volumes);
767 	destroy_av(ai, av, &ai->erase);
768 	ai->vols_found -= 1;
769 }
770 
771 /**
772  * early_erase_peb - erase a physical eraseblock.
773  * @ubi: UBI device description object
774  * @ai: attaching information
775  * @pnum: physical eraseblock number to erase;
776  * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
777  *
778  * This function erases physical eraseblock 'pnum', and writes the erase
779  * counter header to it. This function should only be used on UBI device
780  * initialization stages, when the EBA sub-system had not been yet initialized.
781  * This function returns zero in case of success and a negative error code in
782  * case of failure.
783  */
784 static int early_erase_peb(struct ubi_device *ubi,
785 			   const struct ubi_attach_info *ai, int pnum, int ec)
786 {
787 	int err;
788 	struct ubi_ec_hdr *ec_hdr;
789 
790 	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
791 		/*
792 		 * Erase counter overflow. Upgrade UBI and use 64-bit
793 		 * erase counters internally.
794 		 */
795 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
796 			pnum, ec);
797 		return -EINVAL;
798 	}
799 
800 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
801 	if (!ec_hdr)
802 		return -ENOMEM;
803 
804 	ec_hdr->ec = cpu_to_be64(ec);
805 
806 	err = ubi_io_sync_erase(ubi, pnum, 0);
807 	if (err < 0)
808 		goto out_free;
809 
810 	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
811 
812 out_free:
813 	kfree(ec_hdr);
814 	return err;
815 }
816 
817 /**
818  * ubi_early_get_peb - get a free physical eraseblock.
819  * @ubi: UBI device description object
820  * @ai: attaching information
821  *
822  * This function returns a free physical eraseblock. It is supposed to be
823  * called on the UBI initialization stages when the wear-leveling sub-system is
824  * not initialized yet. This function picks a physical eraseblocks from one of
825  * the lists, writes the EC header if it is needed, and removes it from the
826  * list.
827  *
828  * This function returns a pointer to the "aeb" of the found free PEB in case
829  * of success and an error code in case of failure.
830  */
831 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
832 				       struct ubi_attach_info *ai)
833 {
834 	int err = 0;
835 	struct ubi_ainf_peb *aeb, *tmp_aeb;
836 
837 	if (!list_empty(&ai->free)) {
838 		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
839 		list_del(&aeb->u.list);
840 		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
841 		return aeb;
842 	}
843 
844 	/*
845 	 * We try to erase the first physical eraseblock from the erase list
846 	 * and pick it if we succeed, or try to erase the next one if not. And
847 	 * so forth. We don't want to take care about bad eraseblocks here -
848 	 * they'll be handled later.
849 	 */
850 	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
851 		if (aeb->ec == UBI_UNKNOWN)
852 			aeb->ec = ai->mean_ec;
853 
854 		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
855 		if (err)
856 			continue;
857 
858 		aeb->ec += 1;
859 		list_del(&aeb->u.list);
860 		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
861 		return aeb;
862 	}
863 
864 	ubi_err(ubi, "no free eraseblocks");
865 	return ERR_PTR(-ENOSPC);
866 }
867 
868 /**
869  * check_corruption - check the data area of PEB.
870  * @ubi: UBI device description object
871  * @vid_hdr: the (corrupted) VID header of this PEB
872  * @pnum: the physical eraseblock number to check
873  *
874  * This is a helper function which is used to distinguish between VID header
875  * corruptions caused by power cuts and other reasons. If the PEB contains only
876  * 0xFF bytes in the data area, the VID header is most probably corrupted
877  * because of a power cut (%0 is returned in this case). Otherwise, it was
878  * probably corrupted for some other reasons (%1 is returned in this case). A
879  * negative error code is returned if a read error occurred.
880  *
881  * If the corruption reason was a power cut, UBI can safely erase this PEB.
882  * Otherwise, it should preserve it to avoid possibly destroying important
883  * information.
884  */
885 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
886 			    int pnum)
887 {
888 	int err;
889 
890 	mutex_lock(&ubi->buf_mutex);
891 	memset(ubi->peb_buf, 0x00, ubi->leb_size);
892 
893 	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
894 			  ubi->leb_size);
895 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
896 		/*
897 		 * Bit-flips or integrity errors while reading the data area.
898 		 * It is difficult to say for sure what type of corruption is
899 		 * this, but presumably a power cut happened while this PEB was
900 		 * erased, so it became unstable and corrupted, and should be
901 		 * erased.
902 		 */
903 		err = 0;
904 		goto out_unlock;
905 	}
906 
907 	if (err)
908 		goto out_unlock;
909 
910 	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
911 		goto out_unlock;
912 
913 	ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
914 		pnum);
915 	ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
916 	ubi_dump_vid_hdr(vid_hdr);
917 	pr_err("hexdump of PEB %d offset %d, length %d",
918 	       pnum, ubi->leb_start, ubi->leb_size);
919 	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
920 			       ubi->peb_buf, ubi->leb_size, 1);
921 	err = 1;
922 
923 out_unlock:
924 	mutex_unlock(&ubi->buf_mutex);
925 	return err;
926 }
927 
928 static bool vol_ignored(int vol_id)
929 {
930 	switch (vol_id) {
931 		case UBI_LAYOUT_VOLUME_ID:
932 		return true;
933 	}
934 
935 #ifdef CONFIG_MTD_UBI_FASTMAP
936 	return ubi_is_fm_vol(vol_id);
937 #else
938 	return false;
939 #endif
940 }
941 
942 /**
943  * scan_peb - scan and process UBI headers of a PEB.
944  * @ubi: UBI device description object
945  * @ai: attaching information
946  * @pnum: the physical eraseblock number
947  * @fast: true if we're scanning for a Fastmap
948  *
949  * This function reads UBI headers of PEB @pnum, checks them, and adds
950  * information about this PEB to the corresponding list or RB-tree in the
951  * "attaching info" structure. Returns zero if the physical eraseblock was
952  * successfully handled and a negative error code in case of failure.
953  */
954 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
955 		    int pnum, bool fast)
956 {
957 	struct ubi_ec_hdr *ech = ai->ech;
958 	struct ubi_vid_io_buf *vidb = ai->vidb;
959 	struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb);
960 	long long ec;
961 	int err, bitflips = 0, vol_id = -1, ec_err = 0;
962 
963 	dbg_bld("scan PEB %d", pnum);
964 
965 	/* Skip bad physical eraseblocks */
966 	err = ubi_io_is_bad(ubi, pnum);
967 	if (err < 0)
968 		return err;
969 	else if (err) {
970 		ai->bad_peb_count += 1;
971 		return 0;
972 	}
973 
974 	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
975 	if (err < 0)
976 		return err;
977 	switch (err) {
978 	case 0:
979 		break;
980 	case UBI_IO_BITFLIPS:
981 		bitflips = 1;
982 		break;
983 	case UBI_IO_FF:
984 		ai->empty_peb_count += 1;
985 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
986 				   UBI_UNKNOWN, 0, &ai->erase);
987 	case UBI_IO_FF_BITFLIPS:
988 		ai->empty_peb_count += 1;
989 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
990 				   UBI_UNKNOWN, 1, &ai->erase);
991 	case UBI_IO_BAD_HDR_EBADMSG:
992 	case UBI_IO_BAD_HDR:
993 		/*
994 		 * We have to also look at the VID header, possibly it is not
995 		 * corrupted. Set %bitflips flag in order to make this PEB be
996 		 * moved and EC be re-created.
997 		 */
998 		ec_err = err;
999 		ec = UBI_UNKNOWN;
1000 		bitflips = 1;
1001 		break;
1002 	default:
1003 		ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
1004 			err);
1005 		return -EINVAL;
1006 	}
1007 
1008 	if (!ec_err) {
1009 		int image_seq;
1010 
1011 		/* Make sure UBI version is OK */
1012 		if (ech->version != UBI_VERSION) {
1013 			ubi_err(ubi, "this UBI version is %d, image version is %d",
1014 				UBI_VERSION, (int)ech->version);
1015 			return -EINVAL;
1016 		}
1017 
1018 		ec = be64_to_cpu(ech->ec);
1019 		if (ec > UBI_MAX_ERASECOUNTER) {
1020 			/*
1021 			 * Erase counter overflow. The EC headers have 64 bits
1022 			 * reserved, but we anyway make use of only 31 bit
1023 			 * values, as this seems to be enough for any existing
1024 			 * flash. Upgrade UBI and use 64-bit erase counters
1025 			 * internally.
1026 			 */
1027 			ubi_err(ubi, "erase counter overflow, max is %d",
1028 				UBI_MAX_ERASECOUNTER);
1029 			ubi_dump_ec_hdr(ech);
1030 			return -EINVAL;
1031 		}
1032 
1033 		/*
1034 		 * Make sure that all PEBs have the same image sequence number.
1035 		 * This allows us to detect situations when users flash UBI
1036 		 * images incorrectly, so that the flash has the new UBI image
1037 		 * and leftovers from the old one. This feature was added
1038 		 * relatively recently, and the sequence number was always
1039 		 * zero, because old UBI implementations always set it to zero.
1040 		 * For this reasons, we do not panic if some PEBs have zero
1041 		 * sequence number, while other PEBs have non-zero sequence
1042 		 * number.
1043 		 */
1044 		image_seq = be32_to_cpu(ech->image_seq);
1045 		if (!ubi->image_seq)
1046 			ubi->image_seq = image_seq;
1047 		if (image_seq && ubi->image_seq != image_seq) {
1048 			ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
1049 				image_seq, pnum, ubi->image_seq);
1050 			ubi_dump_ec_hdr(ech);
1051 			return -EINVAL;
1052 		}
1053 	}
1054 
1055 	/* OK, we've done with the EC header, let's look at the VID header */
1056 
1057 	err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0);
1058 	if (err < 0)
1059 		return err;
1060 	switch (err) {
1061 	case 0:
1062 		break;
1063 	case UBI_IO_BITFLIPS:
1064 		bitflips = 1;
1065 		break;
1066 	case UBI_IO_BAD_HDR_EBADMSG:
1067 		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
1068 			/*
1069 			 * Both EC and VID headers are corrupted and were read
1070 			 * with data integrity error, probably this is a bad
1071 			 * PEB, bit it is not marked as bad yet. This may also
1072 			 * be a result of power cut during erasure.
1073 			 */
1074 			ai->maybe_bad_peb_count += 1;
1075 		/* fall through */
1076 	case UBI_IO_BAD_HDR:
1077 			/*
1078 			 * If we're facing a bad VID header we have to drop *all*
1079 			 * Fastmap data structures we find. The most recent Fastmap
1080 			 * could be bad and therefore there is a chance that we attach
1081 			 * from an old one. On a fine MTD stack a PEB must not render
1082 			 * bad all of a sudden, but the reality is different.
1083 			 * So, let's be paranoid and help finding the root cause by
1084 			 * falling back to scanning mode instead of attaching with a
1085 			 * bad EBA table and cause data corruption which is hard to
1086 			 * analyze.
1087 			 */
1088 			if (fast)
1089 				ai->force_full_scan = 1;
1090 
1091 		if (ec_err)
1092 			/*
1093 			 * Both headers are corrupted. There is a possibility
1094 			 * that this a valid UBI PEB which has corresponding
1095 			 * LEB, but the headers are corrupted. However, it is
1096 			 * impossible to distinguish it from a PEB which just
1097 			 * contains garbage because of a power cut during erase
1098 			 * operation. So we just schedule this PEB for erasure.
1099 			 *
1100 			 * Besides, in case of NOR flash, we deliberately
1101 			 * corrupt both headers because NOR flash erasure is
1102 			 * slow and can start from the end.
1103 			 */
1104 			err = 0;
1105 		else
1106 			/*
1107 			 * The EC was OK, but the VID header is corrupted. We
1108 			 * have to check what is in the data area.
1109 			 */
1110 			err = check_corruption(ubi, vidh, pnum);
1111 
1112 		if (err < 0)
1113 			return err;
1114 		else if (!err)
1115 			/* This corruption is caused by a power cut */
1116 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
1117 					  UBI_UNKNOWN, ec, 1, &ai->erase);
1118 		else
1119 			/* This is an unexpected corruption */
1120 			err = add_corrupted(ai, pnum, ec);
1121 		if (err)
1122 			return err;
1123 		goto adjust_mean_ec;
1124 	case UBI_IO_FF_BITFLIPS:
1125 		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
1126 				  ec, 1, &ai->erase);
1127 		if (err)
1128 			return err;
1129 		goto adjust_mean_ec;
1130 	case UBI_IO_FF:
1131 		if (ec_err || bitflips)
1132 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
1133 					  UBI_UNKNOWN, ec, 1, &ai->erase);
1134 		else
1135 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
1136 					  UBI_UNKNOWN, ec, 0, &ai->free);
1137 		if (err)
1138 			return err;
1139 		goto adjust_mean_ec;
1140 	default:
1141 		ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
1142 			err);
1143 		return -EINVAL;
1144 	}
1145 
1146 	vol_id = be32_to_cpu(vidh->vol_id);
1147 	if (vol_id > UBI_MAX_VOLUMES && !vol_ignored(vol_id)) {
1148 		int lnum = be32_to_cpu(vidh->lnum);
1149 
1150 		/* Unsupported internal volume */
1151 		switch (vidh->compat) {
1152 		case UBI_COMPAT_DELETE:
1153 			ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1154 				vol_id, lnum);
1155 
1156 			err = add_to_list(ai, pnum, vol_id, lnum,
1157 					  ec, 1, &ai->erase);
1158 			if (err)
1159 				return err;
1160 			return 0;
1161 
1162 		case UBI_COMPAT_RO:
1163 			ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1164 				vol_id, lnum);
1165 			ubi->ro_mode = 1;
1166 			break;
1167 
1168 		case UBI_COMPAT_PRESERVE:
1169 			ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1170 				vol_id, lnum);
1171 			err = add_to_list(ai, pnum, vol_id, lnum,
1172 					  ec, 0, &ai->alien);
1173 			if (err)
1174 				return err;
1175 			return 0;
1176 
1177 		case UBI_COMPAT_REJECT:
1178 			ubi_err(ubi, "incompatible internal volume %d:%d found",
1179 				vol_id, lnum);
1180 			return -EINVAL;
1181 		}
1182 	}
1183 
1184 	if (ec_err)
1185 		ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1186 			 pnum);
1187 
1188 	if (ubi_is_fm_vol(vol_id))
1189 		err = add_fastmap(ai, pnum, vidh, ec);
1190 	else
1191 		err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1192 
1193 	if (err)
1194 		return err;
1195 
1196 adjust_mean_ec:
1197 	if (!ec_err) {
1198 		ai->ec_sum += ec;
1199 		ai->ec_count += 1;
1200 		if (ec > ai->max_ec)
1201 			ai->max_ec = ec;
1202 		if (ec < ai->min_ec)
1203 			ai->min_ec = ec;
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 /**
1210  * late_analysis - analyze the overall situation with PEB.
1211  * @ubi: UBI device description object
1212  * @ai: attaching information
1213  *
1214  * This is a helper function which takes a look what PEBs we have after we
1215  * gather information about all of them ("ai" is compete). It decides whether
1216  * the flash is empty and should be formatted of whether there are too many
1217  * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1218  * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1219  */
1220 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1221 {
1222 	struct ubi_ainf_peb *aeb;
1223 	int max_corr, peb_count;
1224 
1225 	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1226 	max_corr = peb_count / 20 ?: 8;
1227 
1228 	/*
1229 	 * Few corrupted PEBs is not a problem and may be just a result of
1230 	 * unclean reboots. However, many of them may indicate some problems
1231 	 * with the flash HW or driver.
1232 	 */
1233 	if (ai->corr_peb_count) {
1234 		ubi_err(ubi, "%d PEBs are corrupted and preserved",
1235 			ai->corr_peb_count);
1236 		pr_err("Corrupted PEBs are:");
1237 		list_for_each_entry(aeb, &ai->corr, u.list)
1238 			pr_cont(" %d", aeb->pnum);
1239 		pr_cont("\n");
1240 
1241 		/*
1242 		 * If too many PEBs are corrupted, we refuse attaching,
1243 		 * otherwise, only print a warning.
1244 		 */
1245 		if (ai->corr_peb_count >= max_corr) {
1246 			ubi_err(ubi, "too many corrupted PEBs, refusing");
1247 			return -EINVAL;
1248 		}
1249 	}
1250 
1251 	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1252 		/*
1253 		 * All PEBs are empty, or almost all - a couple PEBs look like
1254 		 * they may be bad PEBs which were not marked as bad yet.
1255 		 *
1256 		 * This piece of code basically tries to distinguish between
1257 		 * the following situations:
1258 		 *
1259 		 * 1. Flash is empty, but there are few bad PEBs, which are not
1260 		 *    marked as bad so far, and which were read with error. We
1261 		 *    want to go ahead and format this flash. While formatting,
1262 		 *    the faulty PEBs will probably be marked as bad.
1263 		 *
1264 		 * 2. Flash contains non-UBI data and we do not want to format
1265 		 *    it and destroy possibly important information.
1266 		 */
1267 		if (ai->maybe_bad_peb_count <= 2) {
1268 			ai->is_empty = 1;
1269 			ubi_msg(ubi, "empty MTD device detected");
1270 			get_random_bytes(&ubi->image_seq,
1271 					 sizeof(ubi->image_seq));
1272 		} else {
1273 			ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1274 			return -EINVAL;
1275 		}
1276 
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 /**
1283  * destroy_av - free volume attaching information.
1284  * @av: volume attaching information
1285  * @ai: attaching information
1286  * @list: put the aeb elements in there if !NULL, otherwise free them
1287  *
1288  * This function destroys the volume attaching information.
1289  */
1290 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av,
1291 		       struct list_head *list)
1292 {
1293 	struct ubi_ainf_peb *aeb;
1294 	struct rb_node *this = av->root.rb_node;
1295 
1296 	while (this) {
1297 		if (this->rb_left)
1298 			this = this->rb_left;
1299 		else if (this->rb_right)
1300 			this = this->rb_right;
1301 		else {
1302 			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1303 			this = rb_parent(this);
1304 			if (this) {
1305 				if (this->rb_left == &aeb->u.rb)
1306 					this->rb_left = NULL;
1307 				else
1308 					this->rb_right = NULL;
1309 			}
1310 
1311 			if (list)
1312 				list_add_tail(&aeb->u.list, list);
1313 			else
1314 				ubi_free_aeb(ai, aeb);
1315 		}
1316 	}
1317 	kfree(av);
1318 }
1319 
1320 /**
1321  * destroy_ai - destroy attaching information.
1322  * @ai: attaching information
1323  */
1324 static void destroy_ai(struct ubi_attach_info *ai)
1325 {
1326 	struct ubi_ainf_peb *aeb, *aeb_tmp;
1327 	struct ubi_ainf_volume *av;
1328 	struct rb_node *rb;
1329 
1330 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1331 		list_del(&aeb->u.list);
1332 		ubi_free_aeb(ai, aeb);
1333 	}
1334 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1335 		list_del(&aeb->u.list);
1336 		ubi_free_aeb(ai, aeb);
1337 	}
1338 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1339 		list_del(&aeb->u.list);
1340 		ubi_free_aeb(ai, aeb);
1341 	}
1342 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1343 		list_del(&aeb->u.list);
1344 		ubi_free_aeb(ai, aeb);
1345 	}
1346 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->fastmap, u.list) {
1347 		list_del(&aeb->u.list);
1348 		ubi_free_aeb(ai, aeb);
1349 	}
1350 
1351 	/* Destroy the volume RB-tree */
1352 	rb = ai->volumes.rb_node;
1353 	while (rb) {
1354 		if (rb->rb_left)
1355 			rb = rb->rb_left;
1356 		else if (rb->rb_right)
1357 			rb = rb->rb_right;
1358 		else {
1359 			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1360 
1361 			rb = rb_parent(rb);
1362 			if (rb) {
1363 				if (rb->rb_left == &av->rb)
1364 					rb->rb_left = NULL;
1365 				else
1366 					rb->rb_right = NULL;
1367 			}
1368 
1369 			destroy_av(ai, av, NULL);
1370 		}
1371 	}
1372 
1373 	kmem_cache_destroy(ai->aeb_slab_cache);
1374 	kfree(ai);
1375 }
1376 
1377 /**
1378  * scan_all - scan entire MTD device.
1379  * @ubi: UBI device description object
1380  * @ai: attach info object
1381  * @start: start scanning at this PEB
1382  *
1383  * This function does full scanning of an MTD device and returns complete
1384  * information about it in form of a "struct ubi_attach_info" object. In case
1385  * of failure, an error code is returned.
1386  */
1387 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1388 		    int start)
1389 {
1390 	int err, pnum;
1391 	struct rb_node *rb1, *rb2;
1392 	struct ubi_ainf_volume *av;
1393 	struct ubi_ainf_peb *aeb;
1394 
1395 	err = -ENOMEM;
1396 
1397 	ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1398 	if (!ai->ech)
1399 		return err;
1400 
1401 	ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
1402 	if (!ai->vidb)
1403 		goto out_ech;
1404 
1405 	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1406 		cond_resched();
1407 
1408 		dbg_gen("process PEB %d", pnum);
1409 		err = scan_peb(ubi, ai, pnum, false);
1410 		if (err < 0)
1411 			goto out_vidh;
1412 	}
1413 
1414 	ubi_msg(ubi, "scanning is finished");
1415 
1416 	/* Calculate mean erase counter */
1417 	if (ai->ec_count)
1418 		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1419 
1420 	err = late_analysis(ubi, ai);
1421 	if (err)
1422 		goto out_vidh;
1423 
1424 	/*
1425 	 * In case of unknown erase counter we use the mean erase counter
1426 	 * value.
1427 	 */
1428 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1429 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1430 			if (aeb->ec == UBI_UNKNOWN)
1431 				aeb->ec = ai->mean_ec;
1432 	}
1433 
1434 	list_for_each_entry(aeb, &ai->free, u.list) {
1435 		if (aeb->ec == UBI_UNKNOWN)
1436 			aeb->ec = ai->mean_ec;
1437 	}
1438 
1439 	list_for_each_entry(aeb, &ai->corr, u.list)
1440 		if (aeb->ec == UBI_UNKNOWN)
1441 			aeb->ec = ai->mean_ec;
1442 
1443 	list_for_each_entry(aeb, &ai->erase, u.list)
1444 		if (aeb->ec == UBI_UNKNOWN)
1445 			aeb->ec = ai->mean_ec;
1446 
1447 	err = self_check_ai(ubi, ai);
1448 	if (err)
1449 		goto out_vidh;
1450 
1451 	ubi_free_vid_buf(ai->vidb);
1452 	kfree(ai->ech);
1453 
1454 	return 0;
1455 
1456 out_vidh:
1457 	ubi_free_vid_buf(ai->vidb);
1458 out_ech:
1459 	kfree(ai->ech);
1460 	return err;
1461 }
1462 
1463 static struct ubi_attach_info *alloc_ai(void)
1464 {
1465 	struct ubi_attach_info *ai;
1466 
1467 	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1468 	if (!ai)
1469 		return ai;
1470 
1471 	INIT_LIST_HEAD(&ai->corr);
1472 	INIT_LIST_HEAD(&ai->free);
1473 	INIT_LIST_HEAD(&ai->erase);
1474 	INIT_LIST_HEAD(&ai->alien);
1475 	INIT_LIST_HEAD(&ai->fastmap);
1476 	ai->volumes = RB_ROOT;
1477 	ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1478 					       sizeof(struct ubi_ainf_peb),
1479 					       0, 0, NULL);
1480 	if (!ai->aeb_slab_cache) {
1481 		kfree(ai);
1482 		ai = NULL;
1483 	}
1484 
1485 	return ai;
1486 }
1487 
1488 #ifdef CONFIG_MTD_UBI_FASTMAP
1489 
1490 /**
1491  * scan_fast - try to find a fastmap and attach from it.
1492  * @ubi: UBI device description object
1493  * @ai: attach info object
1494  *
1495  * Returns 0 on success, negative return values indicate an internal
1496  * error.
1497  * UBI_NO_FASTMAP denotes that no fastmap was found.
1498  * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1499  */
1500 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1501 {
1502 	int err, pnum;
1503 	struct ubi_attach_info *scan_ai;
1504 
1505 	err = -ENOMEM;
1506 
1507 	scan_ai = alloc_ai();
1508 	if (!scan_ai)
1509 		goto out;
1510 
1511 	scan_ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1512 	if (!scan_ai->ech)
1513 		goto out_ai;
1514 
1515 	scan_ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
1516 	if (!scan_ai->vidb)
1517 		goto out_ech;
1518 
1519 	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1520 		cond_resched();
1521 
1522 		dbg_gen("process PEB %d", pnum);
1523 		err = scan_peb(ubi, scan_ai, pnum, true);
1524 		if (err < 0)
1525 			goto out_vidh;
1526 	}
1527 
1528 	ubi_free_vid_buf(scan_ai->vidb);
1529 	kfree(scan_ai->ech);
1530 
1531 	if (scan_ai->force_full_scan)
1532 		err = UBI_NO_FASTMAP;
1533 	else
1534 		err = ubi_scan_fastmap(ubi, *ai, scan_ai);
1535 
1536 	if (err) {
1537 		/*
1538 		 * Didn't attach via fastmap, do a full scan but reuse what
1539 		 * we've aready scanned.
1540 		 */
1541 		destroy_ai(*ai);
1542 		*ai = scan_ai;
1543 	} else
1544 		destroy_ai(scan_ai);
1545 
1546 	return err;
1547 
1548 out_vidh:
1549 	ubi_free_vid_buf(scan_ai->vidb);
1550 out_ech:
1551 	kfree(scan_ai->ech);
1552 out_ai:
1553 	destroy_ai(scan_ai);
1554 out:
1555 	return err;
1556 }
1557 
1558 #endif
1559 
1560 /**
1561  * ubi_attach - attach an MTD device.
1562  * @ubi: UBI device descriptor
1563  * @force_scan: if set to non-zero attach by scanning
1564  *
1565  * This function returns zero in case of success and a negative error code in
1566  * case of failure.
1567  */
1568 int ubi_attach(struct ubi_device *ubi, int force_scan)
1569 {
1570 	int err;
1571 	struct ubi_attach_info *ai;
1572 
1573 	ai = alloc_ai();
1574 	if (!ai)
1575 		return -ENOMEM;
1576 
1577 #ifdef CONFIG_MTD_UBI_FASTMAP
1578 	/* On small flash devices we disable fastmap in any case. */
1579 	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1580 		ubi->fm_disabled = 1;
1581 		force_scan = 1;
1582 	}
1583 
1584 	if (force_scan)
1585 		err = scan_all(ubi, ai, 0);
1586 	else {
1587 		err = scan_fast(ubi, &ai);
1588 		if (err > 0 || mtd_is_eccerr(err)) {
1589 			if (err != UBI_NO_FASTMAP) {
1590 				destroy_ai(ai);
1591 				ai = alloc_ai();
1592 				if (!ai)
1593 					return -ENOMEM;
1594 
1595 				err = scan_all(ubi, ai, 0);
1596 			} else {
1597 				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1598 			}
1599 		}
1600 	}
1601 #else
1602 	err = scan_all(ubi, ai, 0);
1603 #endif
1604 	if (err)
1605 		goto out_ai;
1606 
1607 	ubi->bad_peb_count = ai->bad_peb_count;
1608 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1609 	ubi->corr_peb_count = ai->corr_peb_count;
1610 	ubi->max_ec = ai->max_ec;
1611 	ubi->mean_ec = ai->mean_ec;
1612 	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1613 
1614 	err = ubi_read_volume_table(ubi, ai);
1615 	if (err)
1616 		goto out_ai;
1617 
1618 	err = ubi_wl_init(ubi, ai);
1619 	if (err)
1620 		goto out_vtbl;
1621 
1622 	err = ubi_eba_init(ubi, ai);
1623 	if (err)
1624 		goto out_wl;
1625 
1626 #ifdef CONFIG_MTD_UBI_FASTMAP
1627 	if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1628 		struct ubi_attach_info *scan_ai;
1629 
1630 		scan_ai = alloc_ai();
1631 		if (!scan_ai) {
1632 			err = -ENOMEM;
1633 			goto out_wl;
1634 		}
1635 
1636 		err = scan_all(ubi, scan_ai, 0);
1637 		if (err) {
1638 			destroy_ai(scan_ai);
1639 			goto out_wl;
1640 		}
1641 
1642 		err = self_check_eba(ubi, ai, scan_ai);
1643 		destroy_ai(scan_ai);
1644 
1645 		if (err)
1646 			goto out_wl;
1647 	}
1648 #endif
1649 
1650 	destroy_ai(ai);
1651 	return 0;
1652 
1653 out_wl:
1654 	ubi_wl_close(ubi);
1655 out_vtbl:
1656 	ubi_free_internal_volumes(ubi);
1657 	vfree(ubi->vtbl);
1658 out_ai:
1659 	destroy_ai(ai);
1660 	return err;
1661 }
1662 
1663 /**
1664  * self_check_ai - check the attaching information.
1665  * @ubi: UBI device description object
1666  * @ai: attaching information
1667  *
1668  * This function returns zero if the attaching information is all right, and a
1669  * negative error code if not or if an error occurred.
1670  */
1671 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1672 {
1673 	struct ubi_vid_io_buf *vidb = ai->vidb;
1674 	struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb);
1675 	int pnum, err, vols_found = 0;
1676 	struct rb_node *rb1, *rb2;
1677 	struct ubi_ainf_volume *av;
1678 	struct ubi_ainf_peb *aeb, *last_aeb;
1679 	uint8_t *buf;
1680 
1681 	if (!ubi_dbg_chk_gen(ubi))
1682 		return 0;
1683 
1684 	/*
1685 	 * At first, check that attaching information is OK.
1686 	 */
1687 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1688 		int leb_count = 0;
1689 
1690 		cond_resched();
1691 
1692 		vols_found += 1;
1693 
1694 		if (ai->is_empty) {
1695 			ubi_err(ubi, "bad is_empty flag");
1696 			goto bad_av;
1697 		}
1698 
1699 		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1700 		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1701 		    av->data_pad < 0 || av->last_data_size < 0) {
1702 			ubi_err(ubi, "negative values");
1703 			goto bad_av;
1704 		}
1705 
1706 		if (av->vol_id >= UBI_MAX_VOLUMES &&
1707 		    av->vol_id < UBI_INTERNAL_VOL_START) {
1708 			ubi_err(ubi, "bad vol_id");
1709 			goto bad_av;
1710 		}
1711 
1712 		if (av->vol_id > ai->highest_vol_id) {
1713 			ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1714 				ai->highest_vol_id, av->vol_id);
1715 			goto out;
1716 		}
1717 
1718 		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1719 		    av->vol_type != UBI_STATIC_VOLUME) {
1720 			ubi_err(ubi, "bad vol_type");
1721 			goto bad_av;
1722 		}
1723 
1724 		if (av->data_pad > ubi->leb_size / 2) {
1725 			ubi_err(ubi, "bad data_pad");
1726 			goto bad_av;
1727 		}
1728 
1729 		last_aeb = NULL;
1730 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1731 			cond_resched();
1732 
1733 			last_aeb = aeb;
1734 			leb_count += 1;
1735 
1736 			if (aeb->pnum < 0 || aeb->ec < 0) {
1737 				ubi_err(ubi, "negative values");
1738 				goto bad_aeb;
1739 			}
1740 
1741 			if (aeb->ec < ai->min_ec) {
1742 				ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1743 					ai->min_ec, aeb->ec);
1744 				goto bad_aeb;
1745 			}
1746 
1747 			if (aeb->ec > ai->max_ec) {
1748 				ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1749 					ai->max_ec, aeb->ec);
1750 				goto bad_aeb;
1751 			}
1752 
1753 			if (aeb->pnum >= ubi->peb_count) {
1754 				ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1755 					aeb->pnum, ubi->peb_count);
1756 				goto bad_aeb;
1757 			}
1758 
1759 			if (av->vol_type == UBI_STATIC_VOLUME) {
1760 				if (aeb->lnum >= av->used_ebs) {
1761 					ubi_err(ubi, "bad lnum or used_ebs");
1762 					goto bad_aeb;
1763 				}
1764 			} else {
1765 				if (av->used_ebs != 0) {
1766 					ubi_err(ubi, "non-zero used_ebs");
1767 					goto bad_aeb;
1768 				}
1769 			}
1770 
1771 			if (aeb->lnum > av->highest_lnum) {
1772 				ubi_err(ubi, "incorrect highest_lnum or lnum");
1773 				goto bad_aeb;
1774 			}
1775 		}
1776 
1777 		if (av->leb_count != leb_count) {
1778 			ubi_err(ubi, "bad leb_count, %d objects in the tree",
1779 				leb_count);
1780 			goto bad_av;
1781 		}
1782 
1783 		if (!last_aeb)
1784 			continue;
1785 
1786 		aeb = last_aeb;
1787 
1788 		if (aeb->lnum != av->highest_lnum) {
1789 			ubi_err(ubi, "bad highest_lnum");
1790 			goto bad_aeb;
1791 		}
1792 	}
1793 
1794 	if (vols_found != ai->vols_found) {
1795 		ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1796 			ai->vols_found, vols_found);
1797 		goto out;
1798 	}
1799 
1800 	/* Check that attaching information is correct */
1801 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1802 		last_aeb = NULL;
1803 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1804 			int vol_type;
1805 
1806 			cond_resched();
1807 
1808 			last_aeb = aeb;
1809 
1810 			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidb, 1);
1811 			if (err && err != UBI_IO_BITFLIPS) {
1812 				ubi_err(ubi, "VID header is not OK (%d)",
1813 					err);
1814 				if (err > 0)
1815 					err = -EIO;
1816 				return err;
1817 			}
1818 
1819 			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1820 				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1821 			if (av->vol_type != vol_type) {
1822 				ubi_err(ubi, "bad vol_type");
1823 				goto bad_vid_hdr;
1824 			}
1825 
1826 			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1827 				ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1828 				goto bad_vid_hdr;
1829 			}
1830 
1831 			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1832 				ubi_err(ubi, "bad vol_id %d", av->vol_id);
1833 				goto bad_vid_hdr;
1834 			}
1835 
1836 			if (av->compat != vidh->compat) {
1837 				ubi_err(ubi, "bad compat %d", vidh->compat);
1838 				goto bad_vid_hdr;
1839 			}
1840 
1841 			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1842 				ubi_err(ubi, "bad lnum %d", aeb->lnum);
1843 				goto bad_vid_hdr;
1844 			}
1845 
1846 			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1847 				ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1848 				goto bad_vid_hdr;
1849 			}
1850 
1851 			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1852 				ubi_err(ubi, "bad data_pad %d", av->data_pad);
1853 				goto bad_vid_hdr;
1854 			}
1855 		}
1856 
1857 		if (!last_aeb)
1858 			continue;
1859 
1860 		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1861 			ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1862 			goto bad_vid_hdr;
1863 		}
1864 
1865 		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1866 			ubi_err(ubi, "bad last_data_size %d",
1867 				av->last_data_size);
1868 			goto bad_vid_hdr;
1869 		}
1870 	}
1871 
1872 	/*
1873 	 * Make sure that all the physical eraseblocks are in one of the lists
1874 	 * or trees.
1875 	 */
1876 	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1877 	if (!buf)
1878 		return -ENOMEM;
1879 
1880 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1881 		err = ubi_io_is_bad(ubi, pnum);
1882 		if (err < 0) {
1883 			kfree(buf);
1884 			return err;
1885 		} else if (err)
1886 			buf[pnum] = 1;
1887 	}
1888 
1889 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1890 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1891 			buf[aeb->pnum] = 1;
1892 
1893 	list_for_each_entry(aeb, &ai->free, u.list)
1894 		buf[aeb->pnum] = 1;
1895 
1896 	list_for_each_entry(aeb, &ai->corr, u.list)
1897 		buf[aeb->pnum] = 1;
1898 
1899 	list_for_each_entry(aeb, &ai->erase, u.list)
1900 		buf[aeb->pnum] = 1;
1901 
1902 	list_for_each_entry(aeb, &ai->alien, u.list)
1903 		buf[aeb->pnum] = 1;
1904 
1905 	err = 0;
1906 	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1907 		if (!buf[pnum]) {
1908 			ubi_err(ubi, "PEB %d is not referred", pnum);
1909 			err = 1;
1910 		}
1911 
1912 	kfree(buf);
1913 	if (err)
1914 		goto out;
1915 	return 0;
1916 
1917 bad_aeb:
1918 	ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1919 	ubi_dump_aeb(aeb, 0);
1920 	ubi_dump_av(av);
1921 	goto out;
1922 
1923 bad_av:
1924 	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1925 	ubi_dump_av(av);
1926 	goto out;
1927 
1928 bad_vid_hdr:
1929 	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1930 	ubi_dump_av(av);
1931 	ubi_dump_vid_hdr(vidh);
1932 
1933 out:
1934 	dump_stack();
1935 	return -EINVAL;
1936 }
1937