xref: /linux/drivers/mtd/ssfdc.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  * Linux driver for SSFDC Flash Translation Layer (Read only)
3  * (c) 2005 Eptar srl
4  * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
5  *
6  * Based on NTFL and MTDBLOCK_RO drivers
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/config.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/hdreg.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/blktrans.h>
22 
23 struct ssfdcr_record {
24 	struct mtd_blktrans_dev mbd;
25 	int usecount;
26 	unsigned char heads;
27 	unsigned char sectors;
28 	unsigned short cylinders;
29 	int cis_block;			/* block n. containing CIS/IDI */
30 	int erase_size;			/* phys_block_size */
31 	unsigned short *logic_block_map; /* all zones (max 8192 phys blocks on
32 					    the 128MB) */
33 	int map_len;			/* n. phys_blocks on the card */
34 };
35 
36 #define SSFDCR_MAJOR		257
37 #define SSFDCR_PARTN_BITS	3
38 
39 #define SECTOR_SIZE		512
40 #define SECTOR_SHIFT		9
41 #define OOB_SIZE		16
42 
43 #define MAX_LOGIC_BLK_PER_ZONE	1000
44 #define MAX_PHYS_BLK_PER_ZONE	1024
45 
46 #define KB(x)	( (x) * 1024L )
47 #define MB(x)	( KB(x) * 1024L )
48 
49 /** CHS Table
50 		1MB	2MB	4MB	8MB	16MB	32MB	64MB	128MB
51 NCylinder	125	125	250	250	500	500	500	500
52 NHead		4	4	4	4	4	8	8	16
53 NSector		4	8	8	16	16	16	32	32
54 SumSector	2,000	4,000	8,000	16,000	32,000	64,000	128,000	256,000
55 SectorSize	512	512	512	512	512	512	512	512
56 **/
57 
58 typedef struct {
59 	unsigned long size;
60 	unsigned short cyl;
61 	unsigned char head;
62 	unsigned char sec;
63 } chs_entry_t;
64 
65 /* Must be ordered by size */
66 static const chs_entry_t chs_table[] = {
67 	{ MB(  1), 125,  4,  4 },
68 	{ MB(  2), 125,  4,  8 },
69 	{ MB(  4), 250,  4,  8 },
70 	{ MB(  8), 250,  4, 16 },
71 	{ MB( 16), 500,  4, 16 },
72 	{ MB( 32), 500,  8, 16 },
73 	{ MB( 64), 500,  8, 32 },
74 	{ MB(128), 500, 16, 32 },
75 	{ 0 },
76 };
77 
78 static int get_chs(unsigned long size, unsigned short *cyl, unsigned char *head,
79 			unsigned char *sec)
80 {
81 	int k;
82 	int found = 0;
83 
84 	k = 0;
85 	while (chs_table[k].size > 0 && size > chs_table[k].size)
86 		k++;
87 
88 	if (chs_table[k].size > 0) {
89 		if (cyl)
90 			*cyl = chs_table[k].cyl;
91 		if (head)
92 			*head = chs_table[k].head;
93 		if (sec)
94 			*sec = chs_table[k].sec;
95 		found = 1;
96 	}
97 
98 	return found;
99 }
100 
101 /* These bytes are the signature for the CIS/IDI sector */
102 static const uint8_t cis_numbers[] = {
103 	0x01, 0x03, 0xD9, 0x01, 0xFF, 0x18, 0x02, 0xDF, 0x01, 0x20
104 };
105 
106 /* Read and check for a valid CIS sector */
107 static int get_valid_cis_sector(struct mtd_info *mtd)
108 {
109 	int ret, k, cis_sector;
110 	size_t retlen;
111 	loff_t offset;
112 	uint8_t sect_buf[SECTOR_SIZE];
113 
114 	/*
115 	 * Look for CIS/IDI sector on the first GOOD block (give up after 4 bad
116 	 * blocks). If the first good block doesn't contain CIS number the flash
117 	 * is not SSFDC formatted
118 	 */
119 	cis_sector = -1;
120 	for (k = 0, offset = 0; k < 4; k++, offset += mtd->erasesize) {
121 		if (!mtd->block_isbad(mtd, offset)) {
122 			ret = mtd->read(mtd, offset, SECTOR_SIZE, &retlen,
123 				sect_buf);
124 
125 			/* CIS pattern match on the sector buffer */
126 			if ( ret < 0 || retlen != SECTOR_SIZE ) {
127 				printk(KERN_WARNING
128 					"SSFDC_RO:can't read CIS/IDI sector\n");
129 			} else if ( !memcmp(sect_buf, cis_numbers,
130 					sizeof(cis_numbers)) ) {
131 				/* Found */
132 				cis_sector = (int)(offset >> SECTOR_SHIFT);
133 			} else {
134 				DEBUG(MTD_DEBUG_LEVEL1,
135 					"SSFDC_RO: CIS/IDI sector not found"
136 					" on %s (mtd%d)\n", mtd->name,
137 					mtd->index);
138 			}
139 			break;
140 		}
141 	}
142 
143 	return cis_sector;
144 }
145 
146 /* Read physical sector (wrapper to MTD_READ) */
147 static int read_physical_sector(struct mtd_info *mtd, uint8_t *sect_buf,
148 				int sect_no)
149 {
150 	int ret;
151 	size_t retlen;
152 	loff_t offset = (loff_t)sect_no << SECTOR_SHIFT;
153 
154 	ret = mtd->read(mtd, offset, SECTOR_SIZE, &retlen, sect_buf);
155 	if (ret < 0 || retlen != SECTOR_SIZE)
156 		return -1;
157 
158 	return 0;
159 }
160 
161 /* Read redundancy area (wrapper to MTD_READ_OOB */
162 static int read_raw_oob(struct mtd_info *mtd, loff_t offs, uint8_t *buf)
163 {
164 	struct mtd_oob_ops ops;
165 	int ret;
166 
167 	ops.mode = MTD_OOB_RAW;
168 	ops.ooboffs = 0;
169 	ops.ooblen = mtd->oobsize;
170 	ops.len = OOB_SIZE;
171 	ops.oobbuf = buf;
172 	ops.datbuf = NULL;
173 
174 	ret = mtd->read_oob(mtd, offs, &ops);
175 	if (ret < 0 || ops.retlen != OOB_SIZE)
176 		return -1;
177 
178 	return 0;
179 }
180 
181 /* Parity calculator on a word of n bit size */
182 static int get_parity(int number, int size)
183 {
184  	int k;
185 	int parity;
186 
187 	parity = 1;
188 	for (k = 0; k < size; k++) {
189 		parity += (number >> k);
190 		parity &= 1;
191 	}
192 	return parity;
193 }
194 
195 /* Read and validate the logical block address field stored in the OOB */
196 static int get_logical_address(uint8_t *oob_buf)
197 {
198 	int block_address, parity;
199 	int offset[2] = {6, 11}; /* offset of the 2 address fields within OOB */
200 	int j;
201 	int ok = 0;
202 
203 	/*
204 	 * Look for the first valid logical address
205 	 * Valid address has fixed pattern on most significant bits and
206 	 * parity check
207 	 */
208 	for (j = 0; j < ARRAY_SIZE(offset); j++) {
209 		block_address = ((int)oob_buf[offset[j]] << 8) |
210 			oob_buf[offset[j]+1];
211 
212 		/* Check for the signature bits in the address field (MSBits) */
213 		if ((block_address & ~0x7FF) == 0x1000) {
214 			parity = block_address & 0x01;
215 			block_address &= 0x7FF;
216 			block_address >>= 1;
217 
218 			if (get_parity(block_address, 10) != parity) {
219 				DEBUG(MTD_DEBUG_LEVEL0,
220 					"SSFDC_RO: logical address field%d"
221 					"parity error(0x%04X)\n", j+1,
222 					block_address);
223 			} else {
224 				ok = 1;
225 				break;
226 			}
227 		}
228 	}
229 
230 	if ( !ok )
231 		block_address = -2;
232 
233 	DEBUG(MTD_DEBUG_LEVEL3, "SSFDC_RO: get_logical_address() %d\n",
234 		block_address);
235 
236 	return block_address;
237 }
238 
239 /* Build the logic block map */
240 static int build_logical_block_map(struct ssfdcr_record *ssfdc)
241 {
242 	unsigned long offset;
243 	uint8_t oob_buf[OOB_SIZE];
244 	int ret, block_address, phys_block;
245 	struct mtd_info *mtd = ssfdc->mbd.mtd;
246 
247 	DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: build_block_map() nblks=%d (%luK)\n",
248 		ssfdc->map_len, (unsigned long)ssfdc->map_len *
249 		ssfdc->erase_size / 1024 );
250 
251 	/* Scan every physical block, skip CIS block */
252 	for (phys_block = ssfdc->cis_block + 1; phys_block < ssfdc->map_len;
253 			phys_block++) {
254 		offset = (unsigned long)phys_block * ssfdc->erase_size;
255 		if (mtd->block_isbad(mtd, offset))
256 			continue;	/* skip bad blocks */
257 
258 		ret = read_raw_oob(mtd, offset, oob_buf);
259 		if (ret < 0) {
260 			DEBUG(MTD_DEBUG_LEVEL0,
261 				"SSFDC_RO: mtd read_oob() failed at %lu\n",
262 				offset);
263 			return -1;
264 		}
265 		block_address = get_logical_address(oob_buf);
266 
267 		/* Skip invalid addresses */
268 		if (block_address >= 0 &&
269 				block_address < MAX_LOGIC_BLK_PER_ZONE) {
270 			int zone_index;
271 
272 			zone_index = phys_block / MAX_PHYS_BLK_PER_ZONE;
273 			block_address += zone_index * MAX_LOGIC_BLK_PER_ZONE;
274 			ssfdc->logic_block_map[block_address] =
275 				(unsigned short)phys_block;
276 
277 			DEBUG(MTD_DEBUG_LEVEL2,
278 				"SSFDC_RO: build_block_map() phys_block=%d,"
279 				"logic_block_addr=%d, zone=%d\n",
280 				phys_block, block_address, zone_index);
281 		}
282 	}
283 	return 0;
284 }
285 
286 static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
287 {
288 	struct ssfdcr_record *ssfdc;
289 	int cis_sector;
290 
291 	/* Check for small page NAND flash */
292 	if (mtd->type != MTD_NANDFLASH || mtd->oobsize != OOB_SIZE)
293 		return;
294 
295 	/* Check for SSDFC format by reading CIS/IDI sector */
296 	cis_sector = get_valid_cis_sector(mtd);
297 	if (cis_sector == -1)
298 		return;
299 
300 	ssfdc = kzalloc(sizeof(struct ssfdcr_record), GFP_KERNEL);
301 	if (!ssfdc) {
302 		printk(KERN_WARNING
303 			"SSFDC_RO: out of memory for data structures\n");
304 		return;
305 	}
306 
307 	ssfdc->mbd.mtd = mtd;
308 	ssfdc->mbd.devnum = -1;
309 	ssfdc->mbd.blksize = SECTOR_SIZE;
310 	ssfdc->mbd.tr = tr;
311 	ssfdc->mbd.readonly = 1;
312 
313 	ssfdc->cis_block = cis_sector / (mtd->erasesize >> SECTOR_SHIFT);
314 	ssfdc->erase_size = mtd->erasesize;
315 	ssfdc->map_len = mtd->size / mtd->erasesize;
316 
317 	DEBUG(MTD_DEBUG_LEVEL1,
318 		"SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n",
319 		ssfdc->cis_block, ssfdc->erase_size, ssfdc->map_len,
320 		(ssfdc->map_len + MAX_PHYS_BLK_PER_ZONE - 1) /
321 		MAX_PHYS_BLK_PER_ZONE);
322 
323 	/* Set geometry */
324 	ssfdc->heads = 16;
325 	ssfdc->sectors = 32;
326 	get_chs( mtd->size, NULL, &ssfdc->heads, &ssfdc->sectors);
327 	ssfdc->cylinders = (unsigned short)((mtd->size >> SECTOR_SHIFT) /
328 			((long)ssfdc->sectors * (long)ssfdc->heads));
329 
330 	DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: using C:%d H:%d S:%d == %ld sects\n",
331 		ssfdc->cylinders, ssfdc->heads , ssfdc->sectors,
332 		(long)ssfdc->cylinders * (long)ssfdc->heads *
333 		(long)ssfdc->sectors );
334 
335 	ssfdc->mbd.size = (long)ssfdc->heads * (long)ssfdc->cylinders *
336 				(long)ssfdc->sectors;
337 
338 	/* Allocate logical block map */
339 	ssfdc->logic_block_map = kmalloc( sizeof(ssfdc->logic_block_map[0]) *
340 						ssfdc->map_len, GFP_KERNEL);
341 	if (!ssfdc->logic_block_map) {
342 		printk(KERN_WARNING
343 			"SSFDC_RO: out of memory for data structures\n");
344 		goto out_err;
345 	}
346 	memset(ssfdc->logic_block_map, 0xff, sizeof(ssfdc->logic_block_map[0]) *
347 		ssfdc->map_len);
348 
349 	/* Build logical block map */
350 	if (build_logical_block_map(ssfdc) < 0)
351 		goto out_err;
352 
353 	/* Register device + partitions */
354 	if (add_mtd_blktrans_dev(&ssfdc->mbd))
355 		goto out_err;
356 
357 	printk(KERN_INFO "SSFDC_RO: Found ssfdc%c on mtd%d (%s)\n",
358 		ssfdc->mbd.devnum + 'a', mtd->index, mtd->name);
359 	return;
360 
361 out_err:
362 	kfree(ssfdc->logic_block_map);
363         kfree(ssfdc);
364 }
365 
366 static void ssfdcr_remove_dev(struct mtd_blktrans_dev *dev)
367 {
368 	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
369 
370 	DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: remove_dev (i=%d)\n", dev->devnum);
371 
372 	del_mtd_blktrans_dev(dev);
373 	kfree(ssfdc->logic_block_map);
374 	kfree(ssfdc);
375 }
376 
377 static int ssfdcr_readsect(struct mtd_blktrans_dev *dev,
378 				unsigned long logic_sect_no, char *buf)
379 {
380 	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
381 	int sectors_per_block, offset, block_address;
382 
383 	sectors_per_block = ssfdc->erase_size >> SECTOR_SHIFT;
384 	offset = (int)(logic_sect_no % sectors_per_block);
385 	block_address = (int)(logic_sect_no / sectors_per_block);
386 
387 	DEBUG(MTD_DEBUG_LEVEL3,
388 		"SSFDC_RO: ssfdcr_readsect(%lu) sec_per_blk=%d, ofst=%d,"
389 		" block_addr=%d\n", logic_sect_no, sectors_per_block, offset,
390 		block_address);
391 
392 	if (block_address >= ssfdc->map_len)
393 		BUG();
394 
395 	block_address = ssfdc->logic_block_map[block_address];
396 
397 	DEBUG(MTD_DEBUG_LEVEL3,
398 		"SSFDC_RO: ssfdcr_readsect() phys_block_addr=%d\n",
399 		block_address);
400 
401 	if (block_address < 0xffff) {
402 		unsigned long sect_no;
403 
404 		sect_no = (unsigned long)block_address * sectors_per_block +
405 				offset;
406 
407 		DEBUG(MTD_DEBUG_LEVEL3,
408 			"SSFDC_RO: ssfdcr_readsect() phys_sect_no=%lu\n",
409 			sect_no);
410 
411 		if (read_physical_sector( ssfdc->mbd.mtd, buf, sect_no ) < 0)
412 			return -EIO;
413 	} else {
414 		memset(buf, 0xff, SECTOR_SIZE);
415 	}
416 
417 	return 0;
418 }
419 
420 static int ssfdcr_getgeo(struct mtd_blktrans_dev *dev,  struct hd_geometry *geo)
421 {
422 	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
423 
424 	DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: ssfdcr_getgeo() C=%d, H=%d, S=%d\n",
425 			ssfdc->cylinders, ssfdc->heads, ssfdc->sectors);
426 
427 	geo->heads = ssfdc->heads;
428 	geo->sectors = ssfdc->sectors;
429 	geo->cylinders = ssfdc->cylinders;
430 
431 	return 0;
432 }
433 
434 /****************************************************************************
435  *
436  * Module stuff
437  *
438  ****************************************************************************/
439 
440 static struct mtd_blktrans_ops ssfdcr_tr = {
441 	.name		= "ssfdc",
442 	.major		= SSFDCR_MAJOR,
443 	.part_bits	= SSFDCR_PARTN_BITS,
444 	.getgeo		= ssfdcr_getgeo,
445 	.readsect	= ssfdcr_readsect,
446 	.add_mtd	= ssfdcr_add_mtd,
447 	.remove_dev	= ssfdcr_remove_dev,
448 	.owner		= THIS_MODULE,
449 };
450 
451 static int __init init_ssfdcr(void)
452 {
453 	printk(KERN_INFO "SSFDC read-only Flash Translation layer\n");
454 
455 	return register_mtd_blktrans(&ssfdcr_tr);
456 }
457 
458 static void __exit cleanup_ssfdcr(void)
459 {
460 	deregister_mtd_blktrans(&ssfdcr_tr);
461 }
462 
463 module_init(init_ssfdcr);
464 module_exit(cleanup_ssfdcr);
465 
466 MODULE_LICENSE("GPL");
467 MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
468 MODULE_DESCRIPTION("Flash Translation Layer for read-only SSFDC SmartMedia card");
469