xref: /linux/drivers/mtd/ssfdc.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Linux driver for SSFDC Flash Translation Layer (Read only)
3  * (c) 2005 Eptar srl
4  * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
5  *
6  * Based on NTFL and MTDBLOCK_RO drivers
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/hdreg.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/nand.h>
20 #include <linux/mtd/blktrans.h>
21 
22 struct ssfdcr_record {
23 	struct mtd_blktrans_dev mbd;
24 	int usecount;
25 	unsigned char heads;
26 	unsigned char sectors;
27 	unsigned short cylinders;
28 	int cis_block;			/* block n. containing CIS/IDI */
29 	int erase_size;			/* phys_block_size */
30 	unsigned short *logic_block_map; /* all zones (max 8192 phys blocks on
31 					    the 128MiB) */
32 	int map_len;			/* n. phys_blocks on the card */
33 };
34 
35 #define SSFDCR_MAJOR		257
36 #define SSFDCR_PARTN_BITS	3
37 
38 #define SECTOR_SIZE		512
39 #define SECTOR_SHIFT		9
40 #define OOB_SIZE		16
41 
42 #define MAX_LOGIC_BLK_PER_ZONE	1000
43 #define MAX_PHYS_BLK_PER_ZONE	1024
44 
45 #define KiB(x)	( (x) * 1024L )
46 #define MiB(x)	( KiB(x) * 1024L )
47 
48 /** CHS Table
49 		1MiB	2MiB	4MiB	8MiB	16MiB	32MiB	64MiB	128MiB
50 NCylinder	125	125	250	250	500	500	500	500
51 NHead		4	4	4	4	4	8	8	16
52 NSector		4	8	8	16	16	16	32	32
53 SumSector	2,000	4,000	8,000	16,000	32,000	64,000	128,000	256,000
54 SectorSize	512	512	512	512	512	512	512	512
55 **/
56 
57 typedef struct {
58 	unsigned long size;
59 	unsigned short cyl;
60 	unsigned char head;
61 	unsigned char sec;
62 } chs_entry_t;
63 
64 /* Must be ordered by size */
65 static const chs_entry_t chs_table[] = {
66 	{ MiB(  1), 125,  4,  4 },
67 	{ MiB(  2), 125,  4,  8 },
68 	{ MiB(  4), 250,  4,  8 },
69 	{ MiB(  8), 250,  4, 16 },
70 	{ MiB( 16), 500,  4, 16 },
71 	{ MiB( 32), 500,  8, 16 },
72 	{ MiB( 64), 500,  8, 32 },
73 	{ MiB(128), 500, 16, 32 },
74 	{ 0 },
75 };
76 
77 static int get_chs(unsigned long size, unsigned short *cyl, unsigned char *head,
78 			unsigned char *sec)
79 {
80 	int k;
81 	int found = 0;
82 
83 	k = 0;
84 	while (chs_table[k].size > 0 && size > chs_table[k].size)
85 		k++;
86 
87 	if (chs_table[k].size > 0) {
88 		if (cyl)
89 			*cyl = chs_table[k].cyl;
90 		if (head)
91 			*head = chs_table[k].head;
92 		if (sec)
93 			*sec = chs_table[k].sec;
94 		found = 1;
95 	}
96 
97 	return found;
98 }
99 
100 /* These bytes are the signature for the CIS/IDI sector */
101 static const uint8_t cis_numbers[] = {
102 	0x01, 0x03, 0xD9, 0x01, 0xFF, 0x18, 0x02, 0xDF, 0x01, 0x20
103 };
104 
105 /* Read and check for a valid CIS sector */
106 static int get_valid_cis_sector(struct mtd_info *mtd)
107 {
108 	int ret, k, cis_sector;
109 	size_t retlen;
110 	loff_t offset;
111 	uint8_t *sect_buf;
112 
113 	cis_sector = -1;
114 
115 	sect_buf = kmalloc(SECTOR_SIZE, GFP_KERNEL);
116 	if (!sect_buf)
117 		goto out;
118 
119 	/*
120 	 * Look for CIS/IDI sector on the first GOOD block (give up after 4 bad
121 	 * blocks). If the first good block doesn't contain CIS number the flash
122 	 * is not SSFDC formatted
123 	 */
124 	for (k = 0, offset = 0; k < 4; k++, offset += mtd->erasesize) {
125 		if (!mtd->block_isbad(mtd, offset)) {
126 			ret = mtd->read(mtd, offset, SECTOR_SIZE, &retlen,
127 				sect_buf);
128 
129 			/* CIS pattern match on the sector buffer */
130 			if (ret < 0 || retlen != SECTOR_SIZE) {
131 				printk(KERN_WARNING
132 					"SSFDC_RO:can't read CIS/IDI sector\n");
133 			} else if (!memcmp(sect_buf, cis_numbers,
134 					sizeof(cis_numbers))) {
135 				/* Found */
136 				cis_sector = (int)(offset >> SECTOR_SHIFT);
137 			} else {
138 				DEBUG(MTD_DEBUG_LEVEL1,
139 					"SSFDC_RO: CIS/IDI sector not found"
140 					" on %s (mtd%d)\n", mtd->name,
141 					mtd->index);
142 			}
143 			break;
144 		}
145 	}
146 
147 	kfree(sect_buf);
148  out:
149 	return cis_sector;
150 }
151 
152 /* Read physical sector (wrapper to MTD_READ) */
153 static int read_physical_sector(struct mtd_info *mtd, uint8_t *sect_buf,
154 				int sect_no)
155 {
156 	int ret;
157 	size_t retlen;
158 	loff_t offset = (loff_t)sect_no << SECTOR_SHIFT;
159 
160 	ret = mtd->read(mtd, offset, SECTOR_SIZE, &retlen, sect_buf);
161 	if (ret < 0 || retlen != SECTOR_SIZE)
162 		return -1;
163 
164 	return 0;
165 }
166 
167 /* Read redundancy area (wrapper to MTD_READ_OOB */
168 static int read_raw_oob(struct mtd_info *mtd, loff_t offs, uint8_t *buf)
169 {
170 	struct mtd_oob_ops ops;
171 	int ret;
172 
173 	ops.mode = MTD_OOB_RAW;
174 	ops.ooboffs = 0;
175 	ops.ooblen = OOB_SIZE;
176 	ops.oobbuf = buf;
177 	ops.datbuf = NULL;
178 
179 	ret = mtd->read_oob(mtd, offs, &ops);
180 	if (ret < 0 || ops.oobretlen != OOB_SIZE)
181 		return -1;
182 
183 	return 0;
184 }
185 
186 /* Parity calculator on a word of n bit size */
187 static int get_parity(int number, int size)
188 {
189  	int k;
190 	int parity;
191 
192 	parity = 1;
193 	for (k = 0; k < size; k++) {
194 		parity += (number >> k);
195 		parity &= 1;
196 	}
197 	return parity;
198 }
199 
200 /* Read and validate the logical block address field stored in the OOB */
201 static int get_logical_address(uint8_t *oob_buf)
202 {
203 	int block_address, parity;
204 	int offset[2] = {6, 11}; /* offset of the 2 address fields within OOB */
205 	int j;
206 	int ok = 0;
207 
208 	/*
209 	 * Look for the first valid logical address
210 	 * Valid address has fixed pattern on most significant bits and
211 	 * parity check
212 	 */
213 	for (j = 0; j < ARRAY_SIZE(offset); j++) {
214 		block_address = ((int)oob_buf[offset[j]] << 8) |
215 			oob_buf[offset[j]+1];
216 
217 		/* Check for the signature bits in the address field (MSBits) */
218 		if ((block_address & ~0x7FF) == 0x1000) {
219 			parity = block_address & 0x01;
220 			block_address &= 0x7FF;
221 			block_address >>= 1;
222 
223 			if (get_parity(block_address, 10) != parity) {
224 				DEBUG(MTD_DEBUG_LEVEL0,
225 					"SSFDC_RO: logical address field%d"
226 					"parity error(0x%04X)\n", j+1,
227 					block_address);
228 			} else {
229 				ok = 1;
230 				break;
231 			}
232 		}
233 	}
234 
235 	if (!ok)
236 		block_address = -2;
237 
238 	DEBUG(MTD_DEBUG_LEVEL3, "SSFDC_RO: get_logical_address() %d\n",
239 		block_address);
240 
241 	return block_address;
242 }
243 
244 /* Build the logic block map */
245 static int build_logical_block_map(struct ssfdcr_record *ssfdc)
246 {
247 	unsigned long offset;
248 	uint8_t oob_buf[OOB_SIZE];
249 	int ret, block_address, phys_block;
250 	struct mtd_info *mtd = ssfdc->mbd.mtd;
251 
252 	DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: build_block_map() nblks=%d (%luK)\n",
253 	      ssfdc->map_len,
254 	      (unsigned long)ssfdc->map_len * ssfdc->erase_size / 1024);
255 
256 	/* Scan every physical block, skip CIS block */
257 	for (phys_block = ssfdc->cis_block + 1; phys_block < ssfdc->map_len;
258 			phys_block++) {
259 		offset = (unsigned long)phys_block * ssfdc->erase_size;
260 		if (mtd->block_isbad(mtd, offset))
261 			continue;	/* skip bad blocks */
262 
263 		ret = read_raw_oob(mtd, offset, oob_buf);
264 		if (ret < 0) {
265 			DEBUG(MTD_DEBUG_LEVEL0,
266 				"SSFDC_RO: mtd read_oob() failed at %lu\n",
267 				offset);
268 			return -1;
269 		}
270 		block_address = get_logical_address(oob_buf);
271 
272 		/* Skip invalid addresses */
273 		if (block_address >= 0 &&
274 				block_address < MAX_LOGIC_BLK_PER_ZONE) {
275 			int zone_index;
276 
277 			zone_index = phys_block / MAX_PHYS_BLK_PER_ZONE;
278 			block_address += zone_index * MAX_LOGIC_BLK_PER_ZONE;
279 			ssfdc->logic_block_map[block_address] =
280 				(unsigned short)phys_block;
281 
282 			DEBUG(MTD_DEBUG_LEVEL2,
283 				"SSFDC_RO: build_block_map() phys_block=%d,"
284 				"logic_block_addr=%d, zone=%d\n",
285 				phys_block, block_address, zone_index);
286 		}
287 	}
288 	return 0;
289 }
290 
291 static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
292 {
293 	struct ssfdcr_record *ssfdc;
294 	int cis_sector;
295 
296 	/* Check for small page NAND flash */
297 	if (mtd->type != MTD_NANDFLASH || mtd->oobsize != OOB_SIZE ||
298 	    mtd->size > UINT_MAX)
299 		return;
300 
301 	/* Check for SSDFC format by reading CIS/IDI sector */
302 	cis_sector = get_valid_cis_sector(mtd);
303 	if (cis_sector == -1)
304 		return;
305 
306 	ssfdc = kzalloc(sizeof(struct ssfdcr_record), GFP_KERNEL);
307 	if (!ssfdc) {
308 		printk(KERN_WARNING
309 			"SSFDC_RO: out of memory for data structures\n");
310 		return;
311 	}
312 
313 	ssfdc->mbd.mtd = mtd;
314 	ssfdc->mbd.devnum = -1;
315 	ssfdc->mbd.tr = tr;
316 	ssfdc->mbd.readonly = 1;
317 
318 	ssfdc->cis_block = cis_sector / (mtd->erasesize >> SECTOR_SHIFT);
319 	ssfdc->erase_size = mtd->erasesize;
320 	ssfdc->map_len = (u32)mtd->size / mtd->erasesize;
321 
322 	DEBUG(MTD_DEBUG_LEVEL1,
323 		"SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n",
324 		ssfdc->cis_block, ssfdc->erase_size, ssfdc->map_len,
325 		DIV_ROUND_UP(ssfdc->map_len, MAX_PHYS_BLK_PER_ZONE));
326 
327 	/* Set geometry */
328 	ssfdc->heads = 16;
329 	ssfdc->sectors = 32;
330 	get_chs(mtd->size, NULL, &ssfdc->heads, &ssfdc->sectors);
331 	ssfdc->cylinders = (unsigned short)(((u32)mtd->size >> SECTOR_SHIFT) /
332 			((long)ssfdc->sectors * (long)ssfdc->heads));
333 
334 	DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: using C:%d H:%d S:%d == %ld sects\n",
335 		ssfdc->cylinders, ssfdc->heads , ssfdc->sectors,
336 		(long)ssfdc->cylinders * (long)ssfdc->heads *
337 		(long)ssfdc->sectors);
338 
339 	ssfdc->mbd.size = (long)ssfdc->heads * (long)ssfdc->cylinders *
340 				(long)ssfdc->sectors;
341 
342 	/* Allocate logical block map */
343 	ssfdc->logic_block_map = kmalloc(sizeof(ssfdc->logic_block_map[0]) *
344 					 ssfdc->map_len, GFP_KERNEL);
345 	if (!ssfdc->logic_block_map) {
346 		printk(KERN_WARNING
347 			"SSFDC_RO: out of memory for data structures\n");
348 		goto out_err;
349 	}
350 	memset(ssfdc->logic_block_map, 0xff, sizeof(ssfdc->logic_block_map[0]) *
351 		ssfdc->map_len);
352 
353 	/* Build logical block map */
354 	if (build_logical_block_map(ssfdc) < 0)
355 		goto out_err;
356 
357 	/* Register device + partitions */
358 	if (add_mtd_blktrans_dev(&ssfdc->mbd))
359 		goto out_err;
360 
361 	printk(KERN_INFO "SSFDC_RO: Found ssfdc%c on mtd%d (%s)\n",
362 		ssfdc->mbd.devnum + 'a', mtd->index, mtd->name);
363 	return;
364 
365 out_err:
366 	kfree(ssfdc->logic_block_map);
367         kfree(ssfdc);
368 }
369 
370 static void ssfdcr_remove_dev(struct mtd_blktrans_dev *dev)
371 {
372 	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
373 
374 	DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: remove_dev (i=%d)\n", dev->devnum);
375 
376 	del_mtd_blktrans_dev(dev);
377 	kfree(ssfdc->logic_block_map);
378 	kfree(ssfdc);
379 }
380 
381 static int ssfdcr_readsect(struct mtd_blktrans_dev *dev,
382 				unsigned long logic_sect_no, char *buf)
383 {
384 	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
385 	int sectors_per_block, offset, block_address;
386 
387 	sectors_per_block = ssfdc->erase_size >> SECTOR_SHIFT;
388 	offset = (int)(logic_sect_no % sectors_per_block);
389 	block_address = (int)(logic_sect_no / sectors_per_block);
390 
391 	DEBUG(MTD_DEBUG_LEVEL3,
392 		"SSFDC_RO: ssfdcr_readsect(%lu) sec_per_blk=%d, ofst=%d,"
393 		" block_addr=%d\n", logic_sect_no, sectors_per_block, offset,
394 		block_address);
395 
396 	if (block_address >= ssfdc->map_len)
397 		BUG();
398 
399 	block_address = ssfdc->logic_block_map[block_address];
400 
401 	DEBUG(MTD_DEBUG_LEVEL3,
402 		"SSFDC_RO: ssfdcr_readsect() phys_block_addr=%d\n",
403 		block_address);
404 
405 	if (block_address < 0xffff) {
406 		unsigned long sect_no;
407 
408 		sect_no = (unsigned long)block_address * sectors_per_block +
409 				offset;
410 
411 		DEBUG(MTD_DEBUG_LEVEL3,
412 			"SSFDC_RO: ssfdcr_readsect() phys_sect_no=%lu\n",
413 			sect_no);
414 
415 		if (read_physical_sector(ssfdc->mbd.mtd, buf, sect_no) < 0)
416 			return -EIO;
417 	} else {
418 		memset(buf, 0xff, SECTOR_SIZE);
419 	}
420 
421 	return 0;
422 }
423 
424 static int ssfdcr_getgeo(struct mtd_blktrans_dev *dev,  struct hd_geometry *geo)
425 {
426 	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
427 
428 	DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: ssfdcr_getgeo() C=%d, H=%d, S=%d\n",
429 			ssfdc->cylinders, ssfdc->heads, ssfdc->sectors);
430 
431 	geo->heads = ssfdc->heads;
432 	geo->sectors = ssfdc->sectors;
433 	geo->cylinders = ssfdc->cylinders;
434 
435 	return 0;
436 }
437 
438 /****************************************************************************
439  *
440  * Module stuff
441  *
442  ****************************************************************************/
443 
444 static struct mtd_blktrans_ops ssfdcr_tr = {
445 	.name		= "ssfdc",
446 	.major		= SSFDCR_MAJOR,
447 	.part_bits	= SSFDCR_PARTN_BITS,
448 	.blksize	= SECTOR_SIZE,
449 	.getgeo		= ssfdcr_getgeo,
450 	.readsect	= ssfdcr_readsect,
451 	.add_mtd	= ssfdcr_add_mtd,
452 	.remove_dev	= ssfdcr_remove_dev,
453 	.owner		= THIS_MODULE,
454 };
455 
456 static int __init init_ssfdcr(void)
457 {
458 	printk(KERN_INFO "SSFDC read-only Flash Translation layer\n");
459 
460 	return register_mtd_blktrans(&ssfdcr_tr);
461 }
462 
463 static void __exit cleanup_ssfdcr(void)
464 {
465 	deregister_mtd_blktrans(&ssfdcr_tr);
466 }
467 
468 module_init(init_ssfdcr);
469 module_exit(cleanup_ssfdcr);
470 
471 MODULE_LICENSE("GPL");
472 MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
473 MODULE_DESCRIPTION("Flash Translation Layer for read-only SSFDC SmartMedia card");
474