xref: /linux/drivers/mtd/ssfdc.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Linux driver for SSFDC Flash Translation Layer (Read only)
3  * © 2005 Eptar srl
4  * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
5  *
6  * Based on NTFL and MTDBLOCK_RO drivers
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/hdreg.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/nand.h>
20 #include <linux/mtd/blktrans.h>
21 
22 struct ssfdcr_record {
23 	struct mtd_blktrans_dev mbd;
24 	int usecount;
25 	unsigned char heads;
26 	unsigned char sectors;
27 	unsigned short cylinders;
28 	int cis_block;			/* block n. containing CIS/IDI */
29 	int erase_size;			/* phys_block_size */
30 	unsigned short *logic_block_map; /* all zones (max 8192 phys blocks on
31 					    the 128MiB) */
32 	int map_len;			/* n. phys_blocks on the card */
33 };
34 
35 #define SSFDCR_MAJOR		257
36 #define SSFDCR_PARTN_BITS	3
37 
38 #define SECTOR_SIZE		512
39 #define SECTOR_SHIFT		9
40 #define OOB_SIZE		16
41 
42 #define MAX_LOGIC_BLK_PER_ZONE	1000
43 #define MAX_PHYS_BLK_PER_ZONE	1024
44 
45 #define KiB(x)	( (x) * 1024L )
46 #define MiB(x)	( KiB(x) * 1024L )
47 
48 /** CHS Table
49 		1MiB	2MiB	4MiB	8MiB	16MiB	32MiB	64MiB	128MiB
50 NCylinder	125	125	250	250	500	500	500	500
51 NHead		4	4	4	4	4	8	8	16
52 NSector		4	8	8	16	16	16	32	32
53 SumSector	2,000	4,000	8,000	16,000	32,000	64,000	128,000	256,000
54 SectorSize	512	512	512	512	512	512	512	512
55 **/
56 
57 typedef struct {
58 	unsigned long size;
59 	unsigned short cyl;
60 	unsigned char head;
61 	unsigned char sec;
62 } chs_entry_t;
63 
64 /* Must be ordered by size */
65 static const chs_entry_t chs_table[] = {
66 	{ MiB(  1), 125,  4,  4 },
67 	{ MiB(  2), 125,  4,  8 },
68 	{ MiB(  4), 250,  4,  8 },
69 	{ MiB(  8), 250,  4, 16 },
70 	{ MiB( 16), 500,  4, 16 },
71 	{ MiB( 32), 500,  8, 16 },
72 	{ MiB( 64), 500,  8, 32 },
73 	{ MiB(128), 500, 16, 32 },
74 	{ 0 },
75 };
76 
77 static int get_chs(unsigned long size, unsigned short *cyl, unsigned char *head,
78 			unsigned char *sec)
79 {
80 	int k;
81 	int found = 0;
82 
83 	k = 0;
84 	while (chs_table[k].size > 0 && size > chs_table[k].size)
85 		k++;
86 
87 	if (chs_table[k].size > 0) {
88 		if (cyl)
89 			*cyl = chs_table[k].cyl;
90 		if (head)
91 			*head = chs_table[k].head;
92 		if (sec)
93 			*sec = chs_table[k].sec;
94 		found = 1;
95 	}
96 
97 	return found;
98 }
99 
100 /* These bytes are the signature for the CIS/IDI sector */
101 static const uint8_t cis_numbers[] = {
102 	0x01, 0x03, 0xD9, 0x01, 0xFF, 0x18, 0x02, 0xDF, 0x01, 0x20
103 };
104 
105 /* Read and check for a valid CIS sector */
106 static int get_valid_cis_sector(struct mtd_info *mtd)
107 {
108 	int ret, k, cis_sector;
109 	size_t retlen;
110 	loff_t offset;
111 	uint8_t *sect_buf;
112 
113 	cis_sector = -1;
114 
115 	sect_buf = kmalloc(SECTOR_SIZE, GFP_KERNEL);
116 	if (!sect_buf)
117 		goto out;
118 
119 	/*
120 	 * Look for CIS/IDI sector on the first GOOD block (give up after 4 bad
121 	 * blocks). If the first good block doesn't contain CIS number the flash
122 	 * is not SSFDC formatted
123 	 */
124 	for (k = 0, offset = 0; k < 4; k++, offset += mtd->erasesize) {
125 		if (mtd_block_isbad(mtd, offset)) {
126 			ret = mtd_read(mtd, offset, SECTOR_SIZE, &retlen,
127 				       sect_buf);
128 
129 			/* CIS pattern match on the sector buffer */
130 			if (ret < 0 || retlen != SECTOR_SIZE) {
131 				printk(KERN_WARNING
132 					"SSFDC_RO:can't read CIS/IDI sector\n");
133 			} else if (!memcmp(sect_buf, cis_numbers,
134 					sizeof(cis_numbers))) {
135 				/* Found */
136 				cis_sector = (int)(offset >> SECTOR_SHIFT);
137 			} else {
138 				pr_debug("SSFDC_RO: CIS/IDI sector not found"
139 					" on %s (mtd%d)\n", mtd->name,
140 					mtd->index);
141 			}
142 			break;
143 		}
144 	}
145 
146 	kfree(sect_buf);
147  out:
148 	return cis_sector;
149 }
150 
151 /* Read physical sector (wrapper to MTD_READ) */
152 static int read_physical_sector(struct mtd_info *mtd, uint8_t *sect_buf,
153 				int sect_no)
154 {
155 	int ret;
156 	size_t retlen;
157 	loff_t offset = (loff_t)sect_no << SECTOR_SHIFT;
158 
159 	ret = mtd_read(mtd, offset, SECTOR_SIZE, &retlen, sect_buf);
160 	if (ret < 0 || retlen != SECTOR_SIZE)
161 		return -1;
162 
163 	return 0;
164 }
165 
166 /* Read redundancy area (wrapper to MTD_READ_OOB */
167 static int read_raw_oob(struct mtd_info *mtd, loff_t offs, uint8_t *buf)
168 {
169 	struct mtd_oob_ops ops;
170 	int ret;
171 
172 	ops.mode = MTD_OPS_RAW;
173 	ops.ooboffs = 0;
174 	ops.ooblen = OOB_SIZE;
175 	ops.oobbuf = buf;
176 	ops.datbuf = NULL;
177 
178 	ret = mtd_read_oob(mtd, offs, &ops);
179 	if (ret < 0 || ops.oobretlen != OOB_SIZE)
180 		return -1;
181 
182 	return 0;
183 }
184 
185 /* Parity calculator on a word of n bit size */
186 static int get_parity(int number, int size)
187 {
188  	int k;
189 	int parity;
190 
191 	parity = 1;
192 	for (k = 0; k < size; k++) {
193 		parity += (number >> k);
194 		parity &= 1;
195 	}
196 	return parity;
197 }
198 
199 /* Read and validate the logical block address field stored in the OOB */
200 static int get_logical_address(uint8_t *oob_buf)
201 {
202 	int block_address, parity;
203 	int offset[2] = {6, 11}; /* offset of the 2 address fields within OOB */
204 	int j;
205 	int ok = 0;
206 
207 	/*
208 	 * Look for the first valid logical address
209 	 * Valid address has fixed pattern on most significant bits and
210 	 * parity check
211 	 */
212 	for (j = 0; j < ARRAY_SIZE(offset); j++) {
213 		block_address = ((int)oob_buf[offset[j]] << 8) |
214 			oob_buf[offset[j]+1];
215 
216 		/* Check for the signature bits in the address field (MSBits) */
217 		if ((block_address & ~0x7FF) == 0x1000) {
218 			parity = block_address & 0x01;
219 			block_address &= 0x7FF;
220 			block_address >>= 1;
221 
222 			if (get_parity(block_address, 10) != parity) {
223 				pr_debug("SSFDC_RO: logical address field%d"
224 					"parity error(0x%04X)\n", j+1,
225 					block_address);
226 			} else {
227 				ok = 1;
228 				break;
229 			}
230 		}
231 	}
232 
233 	if (!ok)
234 		block_address = -2;
235 
236 	pr_debug("SSFDC_RO: get_logical_address() %d\n",
237 		block_address);
238 
239 	return block_address;
240 }
241 
242 /* Build the logic block map */
243 static int build_logical_block_map(struct ssfdcr_record *ssfdc)
244 {
245 	unsigned long offset;
246 	uint8_t oob_buf[OOB_SIZE];
247 	int ret, block_address, phys_block;
248 	struct mtd_info *mtd = ssfdc->mbd.mtd;
249 
250 	pr_debug("SSFDC_RO: build_block_map() nblks=%d (%luK)\n",
251 	      ssfdc->map_len,
252 	      (unsigned long)ssfdc->map_len * ssfdc->erase_size / 1024);
253 
254 	/* Scan every physical block, skip CIS block */
255 	for (phys_block = ssfdc->cis_block + 1; phys_block < ssfdc->map_len;
256 			phys_block++) {
257 		offset = (unsigned long)phys_block * ssfdc->erase_size;
258 		if (mtd_block_isbad(mtd, offset))
259 			continue;	/* skip bad blocks */
260 
261 		ret = read_raw_oob(mtd, offset, oob_buf);
262 		if (ret < 0) {
263 			pr_debug("SSFDC_RO: mtd read_oob() failed at %lu\n",
264 				offset);
265 			return -1;
266 		}
267 		block_address = get_logical_address(oob_buf);
268 
269 		/* Skip invalid addresses */
270 		if (block_address >= 0 &&
271 				block_address < MAX_LOGIC_BLK_PER_ZONE) {
272 			int zone_index;
273 
274 			zone_index = phys_block / MAX_PHYS_BLK_PER_ZONE;
275 			block_address += zone_index * MAX_LOGIC_BLK_PER_ZONE;
276 			ssfdc->logic_block_map[block_address] =
277 				(unsigned short)phys_block;
278 
279 			pr_debug("SSFDC_RO: build_block_map() phys_block=%d,"
280 				"logic_block_addr=%d, zone=%d\n",
281 				phys_block, block_address, zone_index);
282 		}
283 	}
284 	return 0;
285 }
286 
287 static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
288 {
289 	struct ssfdcr_record *ssfdc;
290 	int cis_sector;
291 
292 	/* Check for small page NAND flash */
293 	if (!mtd_type_is_nand(mtd) || mtd->oobsize != OOB_SIZE ||
294 	    mtd->size > UINT_MAX)
295 		return;
296 
297 	/* Check for SSDFC format by reading CIS/IDI sector */
298 	cis_sector = get_valid_cis_sector(mtd);
299 	if (cis_sector == -1)
300 		return;
301 
302 	ssfdc = kzalloc(sizeof(struct ssfdcr_record), GFP_KERNEL);
303 	if (!ssfdc)
304 		return;
305 
306 	ssfdc->mbd.mtd = mtd;
307 	ssfdc->mbd.devnum = -1;
308 	ssfdc->mbd.tr = tr;
309 	ssfdc->mbd.readonly = 1;
310 
311 	ssfdc->cis_block = cis_sector / (mtd->erasesize >> SECTOR_SHIFT);
312 	ssfdc->erase_size = mtd->erasesize;
313 	ssfdc->map_len = (u32)mtd->size / mtd->erasesize;
314 
315 	pr_debug("SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n",
316 		ssfdc->cis_block, ssfdc->erase_size, ssfdc->map_len,
317 		DIV_ROUND_UP(ssfdc->map_len, MAX_PHYS_BLK_PER_ZONE));
318 
319 	/* Set geometry */
320 	ssfdc->heads = 16;
321 	ssfdc->sectors = 32;
322 	get_chs(mtd->size, NULL, &ssfdc->heads, &ssfdc->sectors);
323 	ssfdc->cylinders = (unsigned short)(((u32)mtd->size >> SECTOR_SHIFT) /
324 			((long)ssfdc->sectors * (long)ssfdc->heads));
325 
326 	pr_debug("SSFDC_RO: using C:%d H:%d S:%d == %ld sects\n",
327 		ssfdc->cylinders, ssfdc->heads , ssfdc->sectors,
328 		(long)ssfdc->cylinders * (long)ssfdc->heads *
329 		(long)ssfdc->sectors);
330 
331 	ssfdc->mbd.size = (long)ssfdc->heads * (long)ssfdc->cylinders *
332 				(long)ssfdc->sectors;
333 
334 	/* Allocate logical block map */
335 	ssfdc->logic_block_map = kmalloc(sizeof(ssfdc->logic_block_map[0]) *
336 					 ssfdc->map_len, GFP_KERNEL);
337 	if (!ssfdc->logic_block_map)
338 		goto out_err;
339 	memset(ssfdc->logic_block_map, 0xff, sizeof(ssfdc->logic_block_map[0]) *
340 		ssfdc->map_len);
341 
342 	/* Build logical block map */
343 	if (build_logical_block_map(ssfdc) < 0)
344 		goto out_err;
345 
346 	/* Register device + partitions */
347 	if (add_mtd_blktrans_dev(&ssfdc->mbd))
348 		goto out_err;
349 
350 	printk(KERN_INFO "SSFDC_RO: Found ssfdc%c on mtd%d (%s)\n",
351 		ssfdc->mbd.devnum + 'a', mtd->index, mtd->name);
352 	return;
353 
354 out_err:
355 	kfree(ssfdc->logic_block_map);
356         kfree(ssfdc);
357 }
358 
359 static void ssfdcr_remove_dev(struct mtd_blktrans_dev *dev)
360 {
361 	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
362 
363 	pr_debug("SSFDC_RO: remove_dev (i=%d)\n", dev->devnum);
364 
365 	del_mtd_blktrans_dev(dev);
366 	kfree(ssfdc->logic_block_map);
367 }
368 
369 static int ssfdcr_readsect(struct mtd_blktrans_dev *dev,
370 				unsigned long logic_sect_no, char *buf)
371 {
372 	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
373 	int sectors_per_block, offset, block_address;
374 
375 	sectors_per_block = ssfdc->erase_size >> SECTOR_SHIFT;
376 	offset = (int)(logic_sect_no % sectors_per_block);
377 	block_address = (int)(logic_sect_no / sectors_per_block);
378 
379 	pr_debug("SSFDC_RO: ssfdcr_readsect(%lu) sec_per_blk=%d, ofst=%d,"
380 		" block_addr=%d\n", logic_sect_no, sectors_per_block, offset,
381 		block_address);
382 
383 	if (block_address >= ssfdc->map_len)
384 		BUG();
385 
386 	block_address = ssfdc->logic_block_map[block_address];
387 
388 	pr_debug("SSFDC_RO: ssfdcr_readsect() phys_block_addr=%d\n",
389 		block_address);
390 
391 	if (block_address < 0xffff) {
392 		unsigned long sect_no;
393 
394 		sect_no = (unsigned long)block_address * sectors_per_block +
395 				offset;
396 
397 		pr_debug("SSFDC_RO: ssfdcr_readsect() phys_sect_no=%lu\n",
398 			sect_no);
399 
400 		if (read_physical_sector(ssfdc->mbd.mtd, buf, sect_no) < 0)
401 			return -EIO;
402 	} else {
403 		memset(buf, 0xff, SECTOR_SIZE);
404 	}
405 
406 	return 0;
407 }
408 
409 static int ssfdcr_getgeo(struct mtd_blktrans_dev *dev,  struct hd_geometry *geo)
410 {
411 	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
412 
413 	pr_debug("SSFDC_RO: ssfdcr_getgeo() C=%d, H=%d, S=%d\n",
414 			ssfdc->cylinders, ssfdc->heads, ssfdc->sectors);
415 
416 	geo->heads = ssfdc->heads;
417 	geo->sectors = ssfdc->sectors;
418 	geo->cylinders = ssfdc->cylinders;
419 
420 	return 0;
421 }
422 
423 /****************************************************************************
424  *
425  * Module stuff
426  *
427  ****************************************************************************/
428 
429 static struct mtd_blktrans_ops ssfdcr_tr = {
430 	.name		= "ssfdc",
431 	.major		= SSFDCR_MAJOR,
432 	.part_bits	= SSFDCR_PARTN_BITS,
433 	.blksize	= SECTOR_SIZE,
434 	.getgeo		= ssfdcr_getgeo,
435 	.readsect	= ssfdcr_readsect,
436 	.add_mtd	= ssfdcr_add_mtd,
437 	.remove_dev	= ssfdcr_remove_dev,
438 	.owner		= THIS_MODULE,
439 };
440 
441 static int __init init_ssfdcr(void)
442 {
443 	printk(KERN_INFO "SSFDC read-only Flash Translation layer\n");
444 
445 	return register_mtd_blktrans(&ssfdcr_tr);
446 }
447 
448 static void __exit cleanup_ssfdcr(void)
449 {
450 	deregister_mtd_blktrans(&ssfdcr_tr);
451 }
452 
453 module_init(init_ssfdcr);
454 module_exit(cleanup_ssfdcr);
455 
456 MODULE_LICENSE("GPL");
457 MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
458 MODULE_DESCRIPTION("Flash Translation Layer for read-only SSFDC SmartMedia card");
459