1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2005, Intec Automation Inc. 4 * Copyright (C) 2014, Freescale Semiconductor, Inc. 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/device.h> 9 #include <linux/errno.h> 10 #include <linux/mtd/spi-nor.h> 11 12 #include "core.h" 13 14 /* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */ 15 #define USE_CLSR BIT(0) 16 #define USE_CLPEF BIT(1) 17 18 #define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */ 19 #define SPINOR_OP_CLPEF 0x82 /* Clear program/erase failure flags */ 20 #define SPINOR_OP_CYPRESS_DIE_ERASE 0x61 /* Chip (die) erase */ 21 #define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */ 22 #define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */ 23 #define SPINOR_REG_CYPRESS_VREG 0x00800000 24 #define SPINOR_REG_CYPRESS_STR1 0x0 25 #define SPINOR_REG_CYPRESS_STR1V \ 26 (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1) 27 #define SPINOR_REG_CYPRESS_CFR1 0x2 28 #define SPINOR_REG_CYPRESS_CFR1_QUAD_EN BIT(1) /* Quad Enable */ 29 #define SPINOR_REG_CYPRESS_CFR2 0x3 30 #define SPINOR_REG_CYPRESS_CFR2V \ 31 (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2) 32 #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK GENMASK(3, 0) 33 #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24 0xb 34 #define SPINOR_REG_CYPRESS_CFR2_ADRBYT BIT(7) 35 #define SPINOR_REG_CYPRESS_CFR3 0x4 36 #define SPINOR_REG_CYPRESS_CFR3_PGSZ BIT(4) /* Page size. */ 37 #define SPINOR_REG_CYPRESS_CFR5 0x6 38 #define SPINOR_REG_CYPRESS_CFR5_BIT6 BIT(6) 39 #define SPINOR_REG_CYPRESS_CFR5_DDR BIT(1) 40 #define SPINOR_REG_CYPRESS_CFR5_OPI BIT(0) 41 #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN \ 42 (SPINOR_REG_CYPRESS_CFR5_BIT6 | SPINOR_REG_CYPRESS_CFR5_DDR | \ 43 SPINOR_REG_CYPRESS_CFR5_OPI) 44 #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS SPINOR_REG_CYPRESS_CFR5_BIT6 45 #define SPINOR_OP_CYPRESS_RD_FAST 0xee 46 #define SPINOR_REG_CYPRESS_ARCFN 0x00000006 47 48 /* Cypress SPI NOR flash operations. */ 49 #define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \ 50 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0), \ 51 SPI_MEM_OP_ADDR(naddr, addr, 0), \ 52 SPI_MEM_OP_NO_DUMMY, \ 53 SPI_MEM_OP_DATA_OUT(ndata, buf, 0)) 54 55 #define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf) \ 56 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0), \ 57 SPI_MEM_OP_ADDR(naddr, addr, 0), \ 58 SPI_MEM_OP_DUMMY(ndummy, 0), \ 59 SPI_MEM_OP_DATA_IN(1, buf, 0)) 60 61 #define SPANSION_OP(opcode) \ 62 SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \ 63 SPI_MEM_OP_NO_ADDR, \ 64 SPI_MEM_OP_NO_DUMMY, \ 65 SPI_MEM_OP_NO_DATA) 66 67 /** 68 * struct spansion_nor_params - Spansion private parameters. 69 * @clsr: Clear Status Register or Clear Program and Erase Failure Flag 70 * opcode. 71 */ 72 struct spansion_nor_params { 73 u8 clsr; 74 }; 75 76 /** 77 * spansion_nor_clear_sr() - Clear the Status Register. 78 * @nor: pointer to 'struct spi_nor'. 79 */ 80 static void spansion_nor_clear_sr(struct spi_nor *nor) 81 { 82 const struct spansion_nor_params *priv_params = nor->params->priv; 83 int ret; 84 85 if (nor->spimem) { 86 struct spi_mem_op op = SPANSION_OP(priv_params->clsr); 87 88 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 89 90 ret = spi_mem_exec_op(nor->spimem, &op); 91 } else { 92 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR, 93 NULL, 0); 94 } 95 96 if (ret) 97 dev_dbg(nor->dev, "error %d clearing SR\n", ret); 98 } 99 100 static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr) 101 { 102 struct spi_nor_flash_parameter *params = nor->params; 103 struct spi_mem_op op = 104 CYPRESS_NOR_RD_ANY_REG_OP(params->addr_mode_nbytes, addr, 105 0, nor->bouncebuf); 106 int ret; 107 108 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { 109 op.dummy.nbytes = params->rdsr_dummy; 110 op.data.nbytes = 2; 111 } 112 113 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); 114 if (ret) 115 return ret; 116 117 if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { 118 if (nor->bouncebuf[0] & SR_E_ERR) 119 dev_err(nor->dev, "Erase Error occurred\n"); 120 else 121 dev_err(nor->dev, "Programming Error occurred\n"); 122 123 spansion_nor_clear_sr(nor); 124 125 ret = spi_nor_write_disable(nor); 126 if (ret) 127 return ret; 128 129 return -EIO; 130 } 131 132 return !(nor->bouncebuf[0] & SR_WIP); 133 } 134 /** 135 * cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by 136 * using Read Any Register command to see if the whole flash is ready for new 137 * commands and clear it if there are any errors. 138 * @nor: pointer to 'struct spi_nor'. 139 * 140 * Return: 1 if ready, 0 if not ready, -errno on errors. 141 */ 142 static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor) 143 { 144 struct spi_nor_flash_parameter *params = nor->params; 145 u64 addr; 146 int ret; 147 u8 i; 148 149 for (i = 0; i < params->n_dice; i++) { 150 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1; 151 ret = cypress_nor_sr_ready_and_clear_reg(nor, addr); 152 if (ret < 0) 153 return ret; 154 else if (ret == 0) 155 return 0; 156 } 157 158 return 1; 159 } 160 161 static int cypress_nor_set_memlat(struct spi_nor *nor, u64 addr) 162 { 163 struct spi_mem_op op; 164 u8 *buf = nor->bouncebuf; 165 int ret; 166 u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; 167 168 op = (struct spi_mem_op) 169 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, buf); 170 171 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); 172 if (ret) 173 return ret; 174 175 /* Use 24 dummy cycles for memory array reads. */ 176 *buf &= ~SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK; 177 *buf |= FIELD_PREP(SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK, 178 SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24); 179 op = (struct spi_mem_op) 180 CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, buf); 181 182 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); 183 if (ret) 184 return ret; 185 186 nor->read_dummy = 24; 187 188 return 0; 189 } 190 191 static int cypress_nor_set_octal_dtr_bits(struct spi_nor *nor, u64 addr) 192 { 193 struct spi_mem_op op; 194 u8 *buf = nor->bouncebuf; 195 196 /* Set the octal and DTR enable bits. */ 197 buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN; 198 op = (struct spi_mem_op) 199 CYPRESS_NOR_WR_ANY_REG_OP(nor->params->addr_mode_nbytes, 200 addr, 1, buf); 201 202 return spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); 203 } 204 205 static int cypress_nor_octal_dtr_en(struct spi_nor *nor) 206 { 207 const struct spi_nor_flash_parameter *params = nor->params; 208 u8 *buf = nor->bouncebuf; 209 u64 addr; 210 int i, ret; 211 212 for (i = 0; i < params->n_dice; i++) { 213 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR2; 214 ret = cypress_nor_set_memlat(nor, addr); 215 if (ret) 216 return ret; 217 218 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5; 219 ret = cypress_nor_set_octal_dtr_bits(nor, addr); 220 if (ret) 221 return ret; 222 } 223 224 /* Read flash ID to make sure the switch was successful. */ 225 ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf, 226 SNOR_PROTO_8_8_8_DTR); 227 if (ret) { 228 dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret); 229 return ret; 230 } 231 232 if (memcmp(buf, nor->info->id->bytes, nor->info->id->len)) 233 return -EINVAL; 234 235 return 0; 236 } 237 238 static int cypress_nor_set_single_spi_bits(struct spi_nor *nor, u64 addr) 239 { 240 struct spi_mem_op op; 241 u8 *buf = nor->bouncebuf; 242 243 /* 244 * The register is 1-byte wide, but 1-byte transactions are not allowed 245 * in 8D-8D-8D mode. Since there is no register at the next location, 246 * just initialize the value to 0 and let the transaction go on. 247 */ 248 buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS; 249 buf[1] = 0; 250 op = (struct spi_mem_op) 251 CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes, addr, 2, buf); 252 return spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR); 253 } 254 255 static int cypress_nor_octal_dtr_dis(struct spi_nor *nor) 256 { 257 const struct spi_nor_flash_parameter *params = nor->params; 258 u8 *buf = nor->bouncebuf; 259 u64 addr; 260 int i, ret; 261 262 for (i = 0; i < params->n_dice; i++) { 263 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5; 264 ret = cypress_nor_set_single_spi_bits(nor, addr); 265 if (ret) 266 return ret; 267 } 268 269 /* Read flash ID to make sure the switch was successful. */ 270 ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1); 271 if (ret) { 272 dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret); 273 return ret; 274 } 275 276 if (memcmp(buf, nor->info->id->bytes, nor->info->id->len)) 277 return -EINVAL; 278 279 return 0; 280 } 281 282 static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr) 283 { 284 struct spi_mem_op op; 285 u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; 286 u8 cfr1v_written; 287 int ret; 288 289 op = (struct spi_mem_op) 290 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, 291 nor->bouncebuf); 292 293 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); 294 if (ret) 295 return ret; 296 297 if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN) 298 return 0; 299 300 /* Update the Quad Enable bit. */ 301 nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN; 302 op = (struct spi_mem_op) 303 CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, 304 nor->bouncebuf); 305 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); 306 if (ret) 307 return ret; 308 309 cfr1v_written = nor->bouncebuf[0]; 310 311 /* Read back and check it. */ 312 op = (struct spi_mem_op) 313 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, 314 nor->bouncebuf); 315 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); 316 if (ret) 317 return ret; 318 319 if (nor->bouncebuf[0] != cfr1v_written) { 320 dev_err(nor->dev, "CFR1: Read back test failed\n"); 321 return -EIO; 322 } 323 324 return 0; 325 } 326 327 /** 328 * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile 329 * register. 330 * @nor: pointer to a 'struct spi_nor' 331 * 332 * It is recommended to update volatile registers in the field application due 333 * to a risk of the non-volatile registers corruption by power interrupt. This 334 * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable 335 * bit in the CFR1 non-volatile in advance (typically by a Flash programmer 336 * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is 337 * also set during Flash power-up. 338 * 339 * Return: 0 on success, -errno otherwise. 340 */ 341 static int cypress_nor_quad_enable_volatile(struct spi_nor *nor) 342 { 343 struct spi_nor_flash_parameter *params = nor->params; 344 u64 addr; 345 u8 i; 346 int ret; 347 348 for (i = 0; i < params->n_dice; i++) { 349 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1; 350 ret = cypress_nor_quad_enable_volatile_reg(nor, addr); 351 if (ret) 352 return ret; 353 } 354 355 return 0; 356 } 357 358 /** 359 * cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode 360 * (3 or 4-byte) by querying status 361 * register 1 (SR1). 362 * @nor: pointer to a 'struct spi_nor' 363 * @addr_mode: ponter to a buffer where we return the determined 364 * address mode. 365 * 366 * This function tries to determine current address mode by comparing SR1 value 367 * from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address). 368 * 369 * Return: 0 on success, -errno otherwise. 370 */ 371 static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor, 372 u8 *addr_mode) 373 { 374 struct spi_mem_op op = 375 CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0, 376 nor->bouncebuf); 377 bool is3byte, is4byte; 378 int ret; 379 380 ret = spi_nor_read_sr(nor, &nor->bouncebuf[1]); 381 if (ret) 382 return ret; 383 384 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); 385 if (ret) 386 return ret; 387 388 is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]); 389 390 op = (struct spi_mem_op) 391 CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0, 392 nor->bouncebuf); 393 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); 394 if (ret) 395 return ret; 396 397 is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]); 398 399 if (is3byte == is4byte) 400 return -EIO; 401 if (is3byte) 402 *addr_mode = 3; 403 else 404 *addr_mode = 4; 405 406 return 0; 407 } 408 409 /** 410 * cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of 411 * current address mode. 412 * @nor: pointer to a 'struct spi_nor' 413 * 414 * Determine current address mode by reading SR1 with different methods, then 415 * query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte 416 * address mode. 417 * 418 * Return: 0 on success, -errno otherwise. 419 */ 420 static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor) 421 { 422 struct spi_mem_op op; 423 u8 addr_mode; 424 int ret; 425 426 /* 427 * Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable 428 * that sets bit-1 in SR1. 429 */ 430 ret = spi_nor_write_enable(nor); 431 if (ret) 432 return ret; 433 ret = cypress_nor_determine_addr_mode_by_sr1(nor, &addr_mode); 434 if (ret) { 435 ret = spi_nor_set_4byte_addr_mode(nor, true); 436 if (ret) 437 return ret; 438 return spi_nor_write_disable(nor); 439 } 440 ret = spi_nor_write_disable(nor); 441 if (ret) 442 return ret; 443 444 /* 445 * Query CFR2V and make sure no contradiction between determined address 446 * mode and CFR2V[7]. 447 */ 448 op = (struct spi_mem_op) 449 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V, 450 0, nor->bouncebuf); 451 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); 452 if (ret) 453 return ret; 454 455 if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) { 456 if (addr_mode != 4) 457 return spi_nor_set_4byte_addr_mode(nor, true); 458 } else { 459 if (addr_mode != 3) 460 return spi_nor_set_4byte_addr_mode(nor, true); 461 } 462 463 nor->params->addr_nbytes = addr_mode; 464 nor->params->addr_mode_nbytes = addr_mode; 465 466 return 0; 467 } 468 469 /** 470 * cypress_nor_get_page_size() - Get flash page size configuration. 471 * @nor: pointer to a 'struct spi_nor' 472 * 473 * The BFPT table advertises a 512B or 256B page size depending on part but the 474 * page size is actually configurable (with the default being 256B). Read from 475 * CFR3V[4] and set the correct size. 476 * 477 * Return: 0 on success, -errno otherwise. 478 */ 479 static int cypress_nor_get_page_size(struct spi_nor *nor) 480 { 481 struct spi_mem_op op = 482 CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, 483 0, 0, nor->bouncebuf); 484 struct spi_nor_flash_parameter *params = nor->params; 485 int ret; 486 u8 i; 487 488 /* 489 * Use the minimum common page size configuration. Programming 256-byte 490 * under 512-byte page size configuration is safe. 491 */ 492 params->page_size = 256; 493 for (i = 0; i < params->n_dice; i++) { 494 op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3; 495 496 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); 497 if (ret) 498 return ret; 499 500 if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ)) 501 return 0; 502 } 503 504 params->page_size = 512; 505 506 return 0; 507 } 508 509 static void cypress_nor_ecc_init(struct spi_nor *nor) 510 { 511 /* 512 * Programming is supported only in 16-byte ECC data unit granularity. 513 * Byte-programming, bit-walking, or multiple program operations to the 514 * same ECC data unit without an erase are not allowed. 515 */ 516 nor->params->writesize = 16; 517 nor->flags |= SNOR_F_ECC; 518 } 519 520 static int 521 s25fs256t_post_bfpt_fixup(struct spi_nor *nor, 522 const struct sfdp_parameter_header *bfpt_header, 523 const struct sfdp_bfpt *bfpt) 524 { 525 struct spi_mem_op op; 526 int ret; 527 528 ret = cypress_nor_set_addr_mode_nbytes(nor); 529 if (ret) 530 return ret; 531 532 /* Read Architecture Configuration Register (ARCFN) */ 533 op = (struct spi_mem_op) 534 CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, 535 SPINOR_REG_CYPRESS_ARCFN, 1, 536 nor->bouncebuf); 537 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); 538 if (ret) 539 return ret; 540 541 /* ARCFN value must be 0 if uniform sector is selected */ 542 if (nor->bouncebuf[0]) 543 return -ENODEV; 544 545 return 0; 546 } 547 548 static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor) 549 { 550 struct spi_nor_flash_parameter *params = nor->params; 551 552 /* 553 * S25FS256T does not define the SCCR map, but we would like to use the 554 * same code base for both single and multi chip package devices, thus 555 * set the vreg_offset and n_dice to be able to do so. 556 */ 557 params->vreg_offset = devm_kmalloc(nor->dev, sizeof(u32), GFP_KERNEL); 558 if (!params->vreg_offset) 559 return -ENOMEM; 560 561 params->vreg_offset[0] = SPINOR_REG_CYPRESS_VREG; 562 params->n_dice = 1; 563 564 /* PP_1_1_4_4B is supported but missing in 4BAIT. */ 565 params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; 566 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4], 567 SPINOR_OP_PP_1_1_4_4B, 568 SNOR_PROTO_1_1_4); 569 570 return cypress_nor_get_page_size(nor); 571 } 572 573 static int s25fs256t_late_init(struct spi_nor *nor) 574 { 575 cypress_nor_ecc_init(nor); 576 577 return 0; 578 } 579 580 static struct spi_nor_fixups s25fs256t_fixups = { 581 .post_bfpt = s25fs256t_post_bfpt_fixup, 582 .post_sfdp = s25fs256t_post_sfdp_fixup, 583 .late_init = s25fs256t_late_init, 584 }; 585 586 static int 587 s25hx_t_post_bfpt_fixup(struct spi_nor *nor, 588 const struct sfdp_parameter_header *bfpt_header, 589 const struct sfdp_bfpt *bfpt) 590 { 591 int ret; 592 593 ret = cypress_nor_set_addr_mode_nbytes(nor); 594 if (ret) 595 return ret; 596 597 /* Replace Quad Enable with volatile version */ 598 nor->params->quad_enable = cypress_nor_quad_enable_volatile; 599 600 return 0; 601 } 602 603 static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor) 604 { 605 struct spi_nor_flash_parameter *params = nor->params; 606 struct spi_nor_erase_type *erase_type = params->erase_map.erase_type; 607 unsigned int i; 608 609 if (!params->n_dice || !params->vreg_offset) { 610 dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n", 611 __func__); 612 return -EOPNOTSUPP; 613 } 614 615 /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */ 616 if (params->size == SZ_256M) 617 params->n_dice = 2; 618 619 /* 620 * In some parts, 3byte erase opcodes are advertised by 4BAIT. 621 * Convert them to 4byte erase opcodes. 622 */ 623 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 624 switch (erase_type[i].opcode) { 625 case SPINOR_OP_SE: 626 erase_type[i].opcode = SPINOR_OP_SE_4B; 627 break; 628 case SPINOR_OP_BE_4K: 629 erase_type[i].opcode = SPINOR_OP_BE_4K_4B; 630 break; 631 default: 632 break; 633 } 634 } 635 636 return cypress_nor_get_page_size(nor); 637 } 638 639 static int s25hx_t_late_init(struct spi_nor *nor) 640 { 641 struct spi_nor_flash_parameter *params = nor->params; 642 643 /* Fast Read 4B requires mode cycles */ 644 params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8; 645 params->ready = cypress_nor_sr_ready_and_clear; 646 cypress_nor_ecc_init(nor); 647 648 params->die_erase_opcode = SPINOR_OP_CYPRESS_DIE_ERASE; 649 return 0; 650 } 651 652 static struct spi_nor_fixups s25hx_t_fixups = { 653 .post_bfpt = s25hx_t_post_bfpt_fixup, 654 .post_sfdp = s25hx_t_post_sfdp_fixup, 655 .late_init = s25hx_t_late_init, 656 }; 657 658 /** 659 * cypress_nor_set_octal_dtr() - Enable or disable octal DTR on Cypress flashes. 660 * @nor: pointer to a 'struct spi_nor' 661 * @enable: whether to enable or disable Octal DTR 662 * 663 * This also sets the memory access latency cycles to 24 to allow the flash to 664 * run at up to 200MHz. 665 * 666 * Return: 0 on success, -errno otherwise. 667 */ 668 static int cypress_nor_set_octal_dtr(struct spi_nor *nor, bool enable) 669 { 670 return enable ? cypress_nor_octal_dtr_en(nor) : 671 cypress_nor_octal_dtr_dis(nor); 672 } 673 674 static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor) 675 { 676 struct spi_nor_flash_parameter *params = nor->params; 677 678 if (!params->n_dice || !params->vreg_offset) { 679 dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n", 680 __func__); 681 return -EOPNOTSUPP; 682 } 683 684 /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */ 685 if (params->size == SZ_256M) 686 params->n_dice = 2; 687 688 /* 689 * On older versions of the flash the xSPI Profile 1.0 table has the 690 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE. 691 */ 692 if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0) 693 params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode = 694 SPINOR_OP_CYPRESS_RD_FAST; 695 696 /* This flash is also missing the 4-byte Page Program opcode bit. */ 697 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], 698 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); 699 /* 700 * Since xSPI Page Program opcode is backward compatible with 701 * Legacy SPI, use Legacy SPI opcode there as well. 702 */ 703 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR], 704 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); 705 706 /* 707 * The xSPI Profile 1.0 table advertises the number of additional 708 * address bytes needed for Read Status Register command as 0 but the 709 * actual value for that is 4. 710 */ 711 params->rdsr_addr_nbytes = 4; 712 713 return cypress_nor_get_page_size(nor); 714 } 715 716 static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor, 717 const struct sfdp_parameter_header *bfpt_header, 718 const struct sfdp_bfpt *bfpt) 719 { 720 return cypress_nor_set_addr_mode_nbytes(nor); 721 } 722 723 static int s28hx_t_late_init(struct spi_nor *nor) 724 { 725 struct spi_nor_flash_parameter *params = nor->params; 726 727 params->set_octal_dtr = cypress_nor_set_octal_dtr; 728 params->ready = cypress_nor_sr_ready_and_clear; 729 cypress_nor_ecc_init(nor); 730 731 return 0; 732 } 733 734 static const struct spi_nor_fixups s28hx_t_fixups = { 735 .post_sfdp = s28hx_t_post_sfdp_fixup, 736 .post_bfpt = s28hx_t_post_bfpt_fixup, 737 .late_init = s28hx_t_late_init, 738 }; 739 740 static int 741 s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor, 742 const struct sfdp_parameter_header *bfpt_header, 743 const struct sfdp_bfpt *bfpt) 744 { 745 /* 746 * The S25FS-S chip family reports 512-byte pages in BFPT but 747 * in reality the write buffer still wraps at the safe default 748 * of 256 bytes. Overwrite the page size advertised by BFPT 749 * to get the writes working. 750 */ 751 nor->params->page_size = 256; 752 753 return 0; 754 } 755 756 static const struct spi_nor_fixups s25fs_s_nor_fixups = { 757 .post_bfpt = s25fs_s_nor_post_bfpt_fixups, 758 }; 759 760 static const struct flash_info spansion_nor_parts[] = { 761 { 762 .id = SNOR_ID(0x01, 0x02, 0x12), 763 .name = "s25sl004a", 764 .size = SZ_512K, 765 }, { 766 .id = SNOR_ID(0x01, 0x02, 0x13), 767 .name = "s25sl008a", 768 .size = SZ_1M, 769 }, { 770 .id = SNOR_ID(0x01, 0x02, 0x14), 771 .name = "s25sl016a", 772 .size = SZ_2M, 773 }, { 774 .id = SNOR_ID(0x01, 0x02, 0x15, 0x4d, 0x00), 775 .name = "s25sl032p", 776 .size = SZ_4M, 777 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 778 }, { 779 .id = SNOR_ID(0x01, 0x02, 0x15), 780 .name = "s25sl032a", 781 .size = SZ_4M, 782 }, { 783 .id = SNOR_ID(0x01, 0x02, 0x16, 0x4d, 0x00), 784 .name = "s25sl064p", 785 .size = SZ_8M, 786 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 787 }, { 788 .id = SNOR_ID(0x01, 0x02, 0x16), 789 .name = "s25sl064a", 790 .size = SZ_8M, 791 }, { 792 .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x00, 0x80), 793 .name = "s25fl256s0", 794 .size = SZ_32M, 795 .sector_size = SZ_256K, 796 .no_sfdp_flags = SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 797 .mfr_flags = USE_CLSR, 798 }, { 799 .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x00, 0x81), 800 .name = "s25fs256s0", 801 .size = SZ_32M, 802 .sector_size = SZ_256K, 803 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 804 .mfr_flags = USE_CLSR, 805 }, { 806 .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x01, 0x80), 807 .name = "s25fl256s1", 808 .size = SZ_32M, 809 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 810 .mfr_flags = USE_CLSR, 811 }, { 812 .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x01, 0x81), 813 .name = "s25fs256s1", 814 .size = SZ_32M, 815 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 816 .mfr_flags = USE_CLSR, 817 }, { 818 .id = SNOR_ID(0x01, 0x02, 0x20, 0x4d, 0x00, 0x80), 819 .name = "s25fl512s", 820 .size = SZ_64M, 821 .sector_size = SZ_256K, 822 .flags = SPI_NOR_HAS_LOCK, 823 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 824 .mfr_flags = USE_CLSR, 825 }, { 826 .id = SNOR_ID(0x01, 0x02, 0x20, 0x4d, 0x00, 0x81), 827 .name = "s25fs512s", 828 .size = SZ_64M, 829 .sector_size = SZ_256K, 830 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 831 .mfr_flags = USE_CLSR, 832 .fixups = &s25fs_s_nor_fixups, 833 }, { 834 .id = SNOR_ID(0x01, 0x20, 0x18, 0x03, 0x00), 835 .name = "s25sl12800", 836 .size = SZ_16M, 837 .sector_size = SZ_256K, 838 }, { 839 .id = SNOR_ID(0x01, 0x20, 0x18, 0x03, 0x01), 840 .name = "s25sl12801", 841 .size = SZ_16M, 842 }, { 843 .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x00, 0x80), 844 .name = "s25fl128s0", 845 .size = SZ_16M, 846 .sector_size = SZ_256K, 847 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 848 .mfr_flags = USE_CLSR, 849 }, { 850 .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x00), 851 .name = "s25fl129p0", 852 .size = SZ_16M, 853 .sector_size = SZ_256K, 854 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 855 .mfr_flags = USE_CLSR, 856 }, { 857 .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01, 0x80), 858 .name = "s25fl128s1", 859 .size = SZ_16M, 860 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 861 .mfr_flags = USE_CLSR, 862 }, { 863 .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01, 0x81), 864 .name = "s25fs128s1", 865 .size = SZ_16M, 866 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 867 .mfr_flags = USE_CLSR, 868 .fixups = &s25fs_s_nor_fixups, 869 }, { 870 .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01), 871 .name = "s25fl129p1", 872 .size = SZ_16M, 873 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 874 .mfr_flags = USE_CLSR, 875 }, { 876 .id = SNOR_ID(0x01, 0x40, 0x13), 877 .name = "s25fl204k", 878 .size = SZ_512K, 879 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ, 880 }, { 881 .id = SNOR_ID(0x01, 0x40, 0x14), 882 .name = "s25fl208k", 883 .size = SZ_1M, 884 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ, 885 }, { 886 .id = SNOR_ID(0x01, 0x40, 0x15), 887 .name = "s25fl116k", 888 .size = SZ_2M, 889 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 890 }, { 891 .id = SNOR_ID(0x01, 0x40, 0x16), 892 .name = "s25fl132k", 893 .size = SZ_4M, 894 .no_sfdp_flags = SECT_4K, 895 }, { 896 .id = SNOR_ID(0x01, 0x40, 0x17), 897 .name = "s25fl164k", 898 .size = SZ_8M, 899 .no_sfdp_flags = SECT_4K, 900 }, { 901 .id = SNOR_ID(0x01, 0x60, 0x17), 902 .name = "s25fl064l", 903 .size = SZ_8M, 904 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 905 .fixup_flags = SPI_NOR_4B_OPCODES, 906 }, { 907 .id = SNOR_ID(0x01, 0x60, 0x18), 908 .name = "s25fl128l", 909 .size = SZ_16M, 910 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 911 .fixup_flags = SPI_NOR_4B_OPCODES, 912 }, { 913 .id = SNOR_ID(0x01, 0x60, 0x19), 914 .name = "s25fl256l", 915 .size = SZ_32M, 916 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 917 .fixup_flags = SPI_NOR_4B_OPCODES, 918 }, { 919 .id = SNOR_ID(0x04, 0x2c, 0xc2, 0x7f, 0x7f, 0x7f), 920 .name = "cy15x104q", 921 .size = SZ_512K, 922 .sector_size = SZ_512K, 923 .flags = SPI_NOR_NO_ERASE, 924 }, { 925 .id = SNOR_ID(0x34, 0x2a, 0x1a, 0x0f, 0x03, 0x90), 926 .name = "s25hl512t", 927 .mfr_flags = USE_CLPEF, 928 .fixups = &s25hx_t_fixups 929 }, { 930 .id = SNOR_ID(0x34, 0x2a, 0x1b, 0x0f, 0x03, 0x90), 931 .name = "s25hl01gt", 932 .mfr_flags = USE_CLPEF, 933 .fixups = &s25hx_t_fixups 934 }, { 935 .id = SNOR_ID(0x34, 0x2a, 0x1c, 0x0f, 0x00, 0x90), 936 .name = "s25hl02gt", 937 .mfr_flags = USE_CLPEF, 938 .fixups = &s25hx_t_fixups 939 }, { 940 .id = SNOR_ID(0x34, 0x2b, 0x19, 0x0f, 0x08, 0x90), 941 .name = "s25fs256t", 942 .mfr_flags = USE_CLPEF, 943 .fixups = &s25fs256t_fixups 944 }, { 945 .id = SNOR_ID(0x34, 0x2b, 0x1a, 0x0f, 0x03, 0x90), 946 .name = "s25hs512t", 947 .mfr_flags = USE_CLPEF, 948 .fixups = &s25hx_t_fixups 949 }, { 950 .id = SNOR_ID(0x34, 0x2b, 0x1b, 0x0f, 0x03, 0x90), 951 .name = "s25hs01gt", 952 .mfr_flags = USE_CLPEF, 953 .fixups = &s25hx_t_fixups 954 }, { 955 .id = SNOR_ID(0x34, 0x2b, 0x1c, 0x0f, 0x00, 0x90), 956 .name = "s25hs02gt", 957 .mfr_flags = USE_CLPEF, 958 .fixups = &s25hx_t_fixups 959 }, { 960 .id = SNOR_ID(0x34, 0x5a, 0x1a), 961 .name = "s28hl512t", 962 .mfr_flags = USE_CLPEF, 963 .fixups = &s28hx_t_fixups, 964 }, { 965 .id = SNOR_ID(0x34, 0x5a, 0x1b), 966 .name = "s28hl01gt", 967 .mfr_flags = USE_CLPEF, 968 .fixups = &s28hx_t_fixups, 969 }, { 970 .id = SNOR_ID(0x34, 0x5b, 0x1a), 971 .name = "s28hs512t", 972 .mfr_flags = USE_CLPEF, 973 .fixups = &s28hx_t_fixups, 974 }, { 975 .id = SNOR_ID(0x34, 0x5b, 0x1b), 976 .name = "s28hs01gt", 977 .mfr_flags = USE_CLPEF, 978 .fixups = &s28hx_t_fixups, 979 }, { 980 .id = SNOR_ID(0x34, 0x5b, 0x1c), 981 .name = "s28hs02gt", 982 .mfr_flags = USE_CLPEF, 983 .fixups = &s28hx_t_fixups, 984 }, { 985 .id = SNOR_ID(0xef, 0x40, 0x13), 986 .name = "s25fl004k", 987 .size = SZ_512K, 988 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 989 }, { 990 .id = SNOR_ID(0xef, 0x40, 0x14), 991 .name = "s25fl008k", 992 .size = SZ_1M, 993 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 994 }, { 995 .id = SNOR_ID(0xef, 0x40, 0x15), 996 .name = "s25fl016k", 997 .size = SZ_2M, 998 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 999 }, { 1000 .id = SNOR_ID(0xef, 0x40, 0x17), 1001 .name = "s25fl064k", 1002 .size = SZ_8M, 1003 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 1004 } 1005 }; 1006 1007 /** 1008 * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the 1009 * flash is ready for new commands and clear it if there are any errors. 1010 * @nor: pointer to 'struct spi_nor'. 1011 * 1012 * Return: 1 if ready, 0 if not ready, -errno on errors. 1013 */ 1014 static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor) 1015 { 1016 int ret; 1017 1018 ret = spi_nor_read_sr(nor, nor->bouncebuf); 1019 if (ret) 1020 return ret; 1021 1022 if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { 1023 if (nor->bouncebuf[0] & SR_E_ERR) 1024 dev_err(nor->dev, "Erase Error occurred\n"); 1025 else 1026 dev_err(nor->dev, "Programming Error occurred\n"); 1027 1028 spansion_nor_clear_sr(nor); 1029 1030 /* 1031 * WEL bit remains set to one when an erase or page program 1032 * error occurs. Issue a Write Disable command to protect 1033 * against inadvertent writes that can possibly corrupt the 1034 * contents of the memory. 1035 */ 1036 ret = spi_nor_write_disable(nor); 1037 if (ret) 1038 return ret; 1039 1040 return -EIO; 1041 } 1042 1043 return !(nor->bouncebuf[0] & SR_WIP); 1044 } 1045 1046 static int spansion_nor_late_init(struct spi_nor *nor) 1047 { 1048 struct spi_nor_flash_parameter *params = nor->params; 1049 struct spansion_nor_params *priv_params; 1050 u8 mfr_flags = nor->info->mfr_flags; 1051 1052 if (params->size > SZ_16M) { 1053 nor->flags |= SNOR_F_4B_OPCODES; 1054 /* No small sector erase for 4-byte command set */ 1055 nor->erase_opcode = SPINOR_OP_SE; 1056 nor->mtd.erasesize = nor->info->sector_size ?: 1057 SPI_NOR_DEFAULT_SECTOR_SIZE; 1058 } 1059 1060 if (mfr_flags & (USE_CLSR | USE_CLPEF)) { 1061 priv_params = devm_kmalloc(nor->dev, sizeof(*priv_params), 1062 GFP_KERNEL); 1063 if (!priv_params) 1064 return -ENOMEM; 1065 1066 if (mfr_flags & USE_CLSR) 1067 priv_params->clsr = SPINOR_OP_CLSR; 1068 else if (mfr_flags & USE_CLPEF) 1069 priv_params->clsr = SPINOR_OP_CLPEF; 1070 1071 params->priv = priv_params; 1072 params->ready = spansion_nor_sr_ready_and_clear; 1073 } 1074 1075 return 0; 1076 } 1077 1078 static const struct spi_nor_fixups spansion_nor_fixups = { 1079 .late_init = spansion_nor_late_init, 1080 }; 1081 1082 const struct spi_nor_manufacturer spi_nor_spansion = { 1083 .name = "spansion", 1084 .parts = spansion_nor_parts, 1085 .nparts = ARRAY_SIZE(spansion_nor_parts), 1086 .fixups = &spansion_nor_fixups, 1087 }; 1088