1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2005, Intec Automation Inc. 4 * Copyright (C) 2014, Freescale Semiconductor, Inc. 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/slab.h> 9 #include <linux/sort.h> 10 #include <linux/mtd/spi-nor.h> 11 12 #include "core.h" 13 14 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) 15 #define SFDP_PARAM_HEADER_PTP(p) \ 16 (((p)->parameter_table_pointer[2] << 16) | \ 17 ((p)->parameter_table_pointer[1] << 8) | \ 18 ((p)->parameter_table_pointer[0] << 0)) 19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4) 20 21 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ 22 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ 23 #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ 24 #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */ 25 #define SFDP_SCCR_MAP_ID 0xff87 /* 26 * Status, Control and Configuration 27 * Register Map. 28 */ 29 30 #define SFDP_SIGNATURE 0x50444653U 31 32 struct sfdp_header { 33 u32 signature; /* Ox50444653U <=> "SFDP" */ 34 u8 minor; 35 u8 major; 36 u8 nph; /* 0-base number of parameter headers */ 37 u8 unused; 38 39 /* Basic Flash Parameter Table. */ 40 struct sfdp_parameter_header bfpt_header; 41 }; 42 43 /* Fast Read settings. */ 44 struct sfdp_bfpt_read { 45 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ 46 u32 hwcaps; 47 48 /* 49 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us 50 * whether the Fast Read x-y-z command is supported. 51 */ 52 u32 supported_dword; 53 u32 supported_bit; 54 55 /* 56 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD 57 * encodes the op code, the number of mode clocks and the number of wait 58 * states to be used by Fast Read x-y-z command. 59 */ 60 u32 settings_dword; 61 u32 settings_shift; 62 63 /* The SPI protocol for this Fast Read x-y-z command. */ 64 enum spi_nor_protocol proto; 65 }; 66 67 struct sfdp_bfpt_erase { 68 /* 69 * The half-word at offset <shift> in DWORD <dword> encodes the 70 * op code and erase sector size to be used by Sector Erase commands. 71 */ 72 u32 dword; 73 u32 shift; 74 }; 75 76 #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) 77 #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) 78 #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) 79 #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) 80 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) 81 82 #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) 83 #define SMPT_CMD_READ_DUMMY_SHIFT 16 84 #define SMPT_CMD_READ_DUMMY(_cmd) \ 85 (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) 86 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL 87 88 #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) 89 #define SMPT_CMD_READ_DATA_SHIFT 24 90 #define SMPT_CMD_READ_DATA(_cmd) \ 91 (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) 92 93 #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) 94 #define SMPT_CMD_OPCODE_SHIFT 8 95 #define SMPT_CMD_OPCODE(_cmd) \ 96 (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) 97 98 #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) 99 #define SMPT_MAP_REGION_COUNT_SHIFT 16 100 #define SMPT_MAP_REGION_COUNT(_header) \ 101 ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ 102 SMPT_MAP_REGION_COUNT_SHIFT) + 1) 103 104 #define SMPT_MAP_ID_MASK GENMASK(15, 8) 105 #define SMPT_MAP_ID_SHIFT 8 106 #define SMPT_MAP_ID(_header) \ 107 (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) 108 109 #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) 110 #define SMPT_MAP_REGION_SIZE_SHIFT 8 111 #define SMPT_MAP_REGION_SIZE(_region) \ 112 (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ 113 SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) 114 115 #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) 116 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \ 117 ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) 118 119 #define SMPT_DESC_TYPE_MAP BIT(1) 120 #define SMPT_DESC_END BIT(0) 121 122 #define SFDP_4BAIT_DWORD_MAX 2 123 124 struct sfdp_4bait { 125 /* The hardware capability. */ 126 u32 hwcaps; 127 128 /* 129 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether 130 * the associated 4-byte address op code is supported. 131 */ 132 u32 supported_bit; 133 }; 134 135 /** 136 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, 137 * addr_nbytes and read_dummy members of the struct spi_nor 138 * should be previously 139 * set. 140 * @nor: pointer to a 'struct spi_nor' 141 * @addr: offset in the serial flash memory 142 * @len: number of bytes to read 143 * @buf: buffer where the data is copied into (dma-safe memory) 144 * 145 * Return: 0 on success, -errno otherwise. 146 */ 147 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) 148 { 149 ssize_t ret; 150 151 while (len) { 152 ret = spi_nor_read_data(nor, addr, len, buf); 153 if (ret < 0) 154 return ret; 155 if (!ret || ret > len) 156 return -EIO; 157 158 buf += ret; 159 addr += ret; 160 len -= ret; 161 } 162 return 0; 163 } 164 165 /** 166 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. 167 * @nor: pointer to a 'struct spi_nor' 168 * @addr: offset in the SFDP area to start reading data from 169 * @len: number of bytes to read 170 * @buf: buffer where the SFDP data are copied into (dma-safe memory) 171 * 172 * Whatever the actual numbers of bytes for address and dummy cycles are 173 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always 174 * followed by a 3-byte address and 8 dummy clock cycles. 175 * 176 * Return: 0 on success, -errno otherwise. 177 */ 178 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, 179 size_t len, void *buf) 180 { 181 u8 addr_nbytes, read_opcode, read_dummy; 182 int ret; 183 184 read_opcode = nor->read_opcode; 185 addr_nbytes = nor->addr_nbytes; 186 read_dummy = nor->read_dummy; 187 188 nor->read_opcode = SPINOR_OP_RDSFDP; 189 nor->addr_nbytes = 3; 190 nor->read_dummy = 8; 191 192 ret = spi_nor_read_raw(nor, addr, len, buf); 193 194 nor->read_opcode = read_opcode; 195 nor->addr_nbytes = addr_nbytes; 196 nor->read_dummy = read_dummy; 197 198 return ret; 199 } 200 201 /** 202 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. 203 * @nor: pointer to a 'struct spi_nor' 204 * @addr: offset in the SFDP area to start reading data from 205 * @len: number of bytes to read 206 * @buf: buffer where the SFDP data are copied into 207 * 208 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not 209 * guaranteed to be dma-safe. 210 * 211 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() 212 * otherwise. 213 */ 214 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, 215 size_t len, void *buf) 216 { 217 void *dma_safe_buf; 218 int ret; 219 220 dma_safe_buf = kmalloc(len, GFP_KERNEL); 221 if (!dma_safe_buf) 222 return -ENOMEM; 223 224 ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); 225 memcpy(buf, dma_safe_buf, len); 226 kfree(dma_safe_buf); 227 228 return ret; 229 } 230 231 static void 232 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, 233 u16 half, 234 enum spi_nor_protocol proto) 235 { 236 read->num_mode_clocks = (half >> 5) & 0x07; 237 read->num_wait_states = (half >> 0) & 0x1f; 238 read->opcode = (half >> 8) & 0xff; 239 read->proto = proto; 240 } 241 242 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { 243 /* Fast Read 1-1-2 */ 244 { 245 SNOR_HWCAPS_READ_1_1_2, 246 BFPT_DWORD(1), BIT(16), /* Supported bit */ 247 BFPT_DWORD(4), 0, /* Settings */ 248 SNOR_PROTO_1_1_2, 249 }, 250 251 /* Fast Read 1-2-2 */ 252 { 253 SNOR_HWCAPS_READ_1_2_2, 254 BFPT_DWORD(1), BIT(20), /* Supported bit */ 255 BFPT_DWORD(4), 16, /* Settings */ 256 SNOR_PROTO_1_2_2, 257 }, 258 259 /* Fast Read 2-2-2 */ 260 { 261 SNOR_HWCAPS_READ_2_2_2, 262 BFPT_DWORD(5), BIT(0), /* Supported bit */ 263 BFPT_DWORD(6), 16, /* Settings */ 264 SNOR_PROTO_2_2_2, 265 }, 266 267 /* Fast Read 1-1-4 */ 268 { 269 SNOR_HWCAPS_READ_1_1_4, 270 BFPT_DWORD(1), BIT(22), /* Supported bit */ 271 BFPT_DWORD(3), 16, /* Settings */ 272 SNOR_PROTO_1_1_4, 273 }, 274 275 /* Fast Read 1-4-4 */ 276 { 277 SNOR_HWCAPS_READ_1_4_4, 278 BFPT_DWORD(1), BIT(21), /* Supported bit */ 279 BFPT_DWORD(3), 0, /* Settings */ 280 SNOR_PROTO_1_4_4, 281 }, 282 283 /* Fast Read 4-4-4 */ 284 { 285 SNOR_HWCAPS_READ_4_4_4, 286 BFPT_DWORD(5), BIT(4), /* Supported bit */ 287 BFPT_DWORD(7), 16, /* Settings */ 288 SNOR_PROTO_4_4_4, 289 }, 290 }; 291 292 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { 293 /* Erase Type 1 in DWORD8 bits[15:0] */ 294 {BFPT_DWORD(8), 0}, 295 296 /* Erase Type 2 in DWORD8 bits[31:16] */ 297 {BFPT_DWORD(8), 16}, 298 299 /* Erase Type 3 in DWORD9 bits[15:0] */ 300 {BFPT_DWORD(9), 0}, 301 302 /* Erase Type 4 in DWORD9 bits[31:16] */ 303 {BFPT_DWORD(9), 16}, 304 }; 305 306 /** 307 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT 308 * @erase: pointer to a structure that describes a SPI NOR erase type 309 * @size: the size of the sector/block erased by the erase type 310 * @opcode: the SPI command op code to erase the sector/block 311 * @i: erase type index as sorted in the Basic Flash Parameter Table 312 * 313 * The supported Erase Types will be sorted at init in ascending order, with 314 * the smallest Erase Type size being the first member in the erase_type array 315 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in 316 * the Basic Flash Parameter Table since it will be used later on to 317 * synchronize with the supported Erase Types defined in SFDP optional tables. 318 */ 319 static void 320 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, 321 u32 size, u8 opcode, u8 i) 322 { 323 erase->idx = i; 324 spi_nor_set_erase_type(erase, size, opcode); 325 } 326 327 /** 328 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size 329 * @l: member in the left half of the map's erase_type array 330 * @r: member in the right half of the map's erase_type array 331 * 332 * Comparison function used in the sort() call to sort in ascending order the 333 * map's erase types, the smallest erase type size being the first member in the 334 * sorted erase_type array. 335 * 336 * Return: the result of @l->size - @r->size 337 */ 338 static int spi_nor_map_cmp_erase_type(const void *l, const void *r) 339 { 340 const struct spi_nor_erase_type *left = l, *right = r; 341 342 return left->size - right->size; 343 } 344 345 /** 346 * spi_nor_sort_erase_mask() - sort erase mask 347 * @map: the erase map of the SPI NOR 348 * @erase_mask: the erase type mask to be sorted 349 * 350 * Replicate the sort done for the map's erase types in BFPT: sort the erase 351 * mask in ascending order with the smallest erase type size starting from 352 * BIT(0) in the sorted erase mask. 353 * 354 * Return: sorted erase mask. 355 */ 356 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) 357 { 358 struct spi_nor_erase_type *erase_type = map->erase_type; 359 int i; 360 u8 sorted_erase_mask = 0; 361 362 if (!erase_mask) 363 return 0; 364 365 /* Replicate the sort done for the map's erase types. */ 366 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 367 if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) 368 sorted_erase_mask |= BIT(i); 369 370 return sorted_erase_mask; 371 } 372 373 /** 374 * spi_nor_regions_sort_erase_types() - sort erase types in each region 375 * @map: the erase map of the SPI NOR 376 * 377 * Function assumes that the erase types defined in the erase map are already 378 * sorted in ascending order, with the smallest erase type size being the first 379 * member in the erase_type array. It replicates the sort done for the map's 380 * erase types. Each region's erase bitmask will indicate which erase types are 381 * supported from the sorted erase types defined in the erase map. 382 * Sort the all region's erase type at init in order to speed up the process of 383 * finding the best erase command at runtime. 384 */ 385 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) 386 { 387 struct spi_nor_erase_region *region = map->regions; 388 u8 region_erase_mask, sorted_erase_mask; 389 390 while (region) { 391 region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; 392 393 sorted_erase_mask = spi_nor_sort_erase_mask(map, 394 region_erase_mask); 395 396 /* Overwrite erase mask. */ 397 region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) | 398 sorted_erase_mask; 399 400 region = spi_nor_region_next(region); 401 } 402 } 403 404 /** 405 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. 406 * @nor: pointer to a 'struct spi_nor' 407 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing 408 * the Basic Flash Parameter Table length and version 409 * 410 * The Basic Flash Parameter Table is the main and only mandatory table as 411 * defined by the SFDP (JESD216) specification. 412 * It provides us with the total size (memory density) of the data array and 413 * the number of address bytes for Fast Read, Page Program and Sector Erase 414 * commands. 415 * For Fast READ commands, it also gives the number of mode clock cycles and 416 * wait states (regrouped in the number of dummy clock cycles) for each 417 * supported instruction op code. 418 * For Page Program, the page size is now available since JESD216 rev A, however 419 * the supported instruction op codes are still not provided. 420 * For Sector Erase commands, this table stores the supported instruction op 421 * codes and the associated sector sizes. 422 * Finally, the Quad Enable Requirements (QER) are also available since JESD216 423 * rev A. The QER bits encode the manufacturer dependent procedure to be 424 * executed to set the Quad Enable (QE) bit in some internal register of the 425 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before 426 * sending any Quad SPI command to the memory. Actually, setting the QE bit 427 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 428 * and IO3 hence enabling 4 (Quad) I/O lines. 429 * 430 * Return: 0 on success, -errno otherwise. 431 */ 432 static int spi_nor_parse_bfpt(struct spi_nor *nor, 433 const struct sfdp_parameter_header *bfpt_header) 434 { 435 struct spi_nor_flash_parameter *params = nor->params; 436 struct spi_nor_erase_map *map = ¶ms->erase_map; 437 struct spi_nor_erase_type *erase_type = map->erase_type; 438 struct sfdp_bfpt bfpt; 439 size_t len; 440 int i, cmd, err; 441 u32 addr, val; 442 u16 half; 443 u8 erase_mask; 444 445 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ 446 if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) 447 return -EINVAL; 448 449 /* Read the Basic Flash Parameter Table. */ 450 len = min_t(size_t, sizeof(bfpt), 451 bfpt_header->length * sizeof(u32)); 452 addr = SFDP_PARAM_HEADER_PTP(bfpt_header); 453 memset(&bfpt, 0, sizeof(bfpt)); 454 err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); 455 if (err < 0) 456 return err; 457 458 /* Fix endianness of the BFPT DWORDs. */ 459 le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX); 460 461 /* Number of address bytes. */ 462 switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { 463 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: 464 case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4: 465 params->addr_nbytes = 3; 466 params->addr_mode_nbytes = 3; 467 break; 468 469 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: 470 params->addr_nbytes = 4; 471 params->addr_mode_nbytes = 4; 472 break; 473 474 default: 475 break; 476 } 477 478 /* Flash Memory Density (in bits). */ 479 val = bfpt.dwords[BFPT_DWORD(2)]; 480 if (val & BIT(31)) { 481 val &= ~BIT(31); 482 483 /* 484 * Prevent overflows on params->size. Anyway, a NOR of 2^64 485 * bits is unlikely to exist so this error probably means 486 * the BFPT we are reading is corrupted/wrong. 487 */ 488 if (val > 63) 489 return -EINVAL; 490 491 params->size = 1ULL << val; 492 } else { 493 params->size = val + 1; 494 } 495 params->size >>= 3; /* Convert to bytes. */ 496 497 /* Fast Read settings. */ 498 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { 499 const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; 500 struct spi_nor_read_command *read; 501 502 if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { 503 params->hwcaps.mask &= ~rd->hwcaps; 504 continue; 505 } 506 507 params->hwcaps.mask |= rd->hwcaps; 508 cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); 509 read = ¶ms->reads[cmd]; 510 half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; 511 spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); 512 } 513 514 /* 515 * Sector Erase settings. Reinitialize the uniform erase map using the 516 * Erase Types defined in the bfpt table. 517 */ 518 erase_mask = 0; 519 memset(¶ms->erase_map, 0, sizeof(params->erase_map)); 520 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { 521 const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; 522 u32 erasesize; 523 u8 opcode; 524 525 half = bfpt.dwords[er->dword] >> er->shift; 526 erasesize = half & 0xff; 527 528 /* erasesize == 0 means this Erase Type is not supported. */ 529 if (!erasesize) 530 continue; 531 532 erasesize = 1U << erasesize; 533 opcode = (half >> 8) & 0xff; 534 erase_mask |= BIT(i); 535 spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, 536 opcode, i); 537 } 538 spi_nor_init_uniform_erase_map(map, erase_mask, params->size); 539 /* 540 * Sort all the map's Erase Types in ascending order with the smallest 541 * erase size being the first member in the erase_type array. 542 */ 543 sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), 544 spi_nor_map_cmp_erase_type, NULL); 545 /* 546 * Sort the erase types in the uniform region in order to update the 547 * uniform_erase_type bitmask. The bitmask will be used later on when 548 * selecting the uniform erase. 549 */ 550 spi_nor_regions_sort_erase_types(map); 551 map->uniform_erase_type = map->uniform_region.offset & 552 SNOR_ERASE_TYPE_MASK; 553 554 /* Stop here if not JESD216 rev A or later. */ 555 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216) 556 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 557 558 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ 559 val = bfpt.dwords[BFPT_DWORD(11)]; 560 val &= BFPT_DWORD11_PAGE_SIZE_MASK; 561 val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; 562 params->page_size = 1U << val; 563 564 /* Quad Enable Requirements. */ 565 switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) { 566 case BFPT_DWORD15_QER_NONE: 567 params->quad_enable = NULL; 568 break; 569 570 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: 571 /* 572 * Writing only one byte to the Status Register has the 573 * side-effect of clearing Status Register 2. 574 */ 575 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: 576 /* 577 * Read Configuration Register (35h) instruction is not 578 * supported. 579 */ 580 nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR; 581 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 582 break; 583 584 case BFPT_DWORD15_QER_SR1_BIT6: 585 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 586 params->quad_enable = spi_nor_sr1_bit6_quad_enable; 587 break; 588 589 case BFPT_DWORD15_QER_SR2_BIT7: 590 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 591 params->quad_enable = spi_nor_sr2_bit7_quad_enable; 592 break; 593 594 case BFPT_DWORD15_QER_SR2_BIT1: 595 /* 596 * JESD216 rev B or later does not specify if writing only one 597 * byte to the Status Register clears or not the Status 598 * Register 2, so let's be cautious and keep the default 599 * assumption of a 16-bit Write Status (01h) command. 600 */ 601 nor->flags |= SNOR_F_HAS_16BIT_SR; 602 603 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 604 break; 605 606 default: 607 dev_dbg(nor->dev, "BFPT QER reserved value used\n"); 608 break; 609 } 610 611 /* Soft Reset support. */ 612 if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST) 613 nor->flags |= SNOR_F_SOFT_RESET; 614 615 /* Stop here if not JESD216 rev C or later. */ 616 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B) 617 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 618 619 /* 8D-8D-8D command extension. */ 620 switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) { 621 case BFPT_DWORD18_CMD_EXT_REP: 622 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; 623 break; 624 625 case BFPT_DWORD18_CMD_EXT_INV: 626 nor->cmd_ext_type = SPI_NOR_EXT_INVERT; 627 break; 628 629 case BFPT_DWORD18_CMD_EXT_RES: 630 dev_dbg(nor->dev, "Reserved command extension used\n"); 631 break; 632 633 case BFPT_DWORD18_CMD_EXT_16B: 634 dev_dbg(nor->dev, "16-bit opcodes not supported\n"); 635 return -EOPNOTSUPP; 636 } 637 638 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 639 } 640 641 /** 642 * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the 643 * configuration detection command. 644 * @nor: pointer to a 'struct spi_nor' 645 * @settings: configuration detection command descriptor, dword1 646 */ 647 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings) 648 { 649 switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { 650 case SMPT_CMD_ADDRESS_LEN_0: 651 return 0; 652 case SMPT_CMD_ADDRESS_LEN_3: 653 return 3; 654 case SMPT_CMD_ADDRESS_LEN_4: 655 return 4; 656 case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: 657 default: 658 return nor->params->addr_mode_nbytes; 659 } 660 } 661 662 /** 663 * spi_nor_smpt_read_dummy() - return the configuration detection command read 664 * latency, in clock cycles. 665 * @nor: pointer to a 'struct spi_nor' 666 * @settings: configuration detection command descriptor, dword1 667 * 668 * Return: the number of dummy cycles for an SMPT read 669 */ 670 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) 671 { 672 u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); 673 674 if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) 675 return nor->read_dummy; 676 return read_dummy; 677 } 678 679 /** 680 * spi_nor_get_map_in_use() - get the configuration map in use 681 * @nor: pointer to a 'struct spi_nor' 682 * @smpt: pointer to the sector map parameter table 683 * @smpt_len: sector map parameter table length 684 * 685 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. 686 */ 687 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, 688 u8 smpt_len) 689 { 690 const u32 *ret; 691 u8 *buf; 692 u32 addr; 693 int err; 694 u8 i; 695 u8 addr_nbytes, read_opcode, read_dummy; 696 u8 read_data_mask, map_id; 697 698 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 699 buf = kmalloc(sizeof(*buf), GFP_KERNEL); 700 if (!buf) 701 return ERR_PTR(-ENOMEM); 702 703 addr_nbytes = nor->addr_nbytes; 704 read_dummy = nor->read_dummy; 705 read_opcode = nor->read_opcode; 706 707 map_id = 0; 708 /* Determine if there are any optional Detection Command Descriptors */ 709 for (i = 0; i < smpt_len; i += 2) { 710 if (smpt[i] & SMPT_DESC_TYPE_MAP) 711 break; 712 713 read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); 714 nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]); 715 nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); 716 nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); 717 addr = smpt[i + 1]; 718 719 err = spi_nor_read_raw(nor, addr, 1, buf); 720 if (err) { 721 ret = ERR_PTR(err); 722 goto out; 723 } 724 725 /* 726 * Build an index value that is used to select the Sector Map 727 * Configuration that is currently in use. 728 */ 729 map_id = map_id << 1 | !!(*buf & read_data_mask); 730 } 731 732 /* 733 * If command descriptors are provided, they always precede map 734 * descriptors in the table. There is no need to start the iteration 735 * over smpt array all over again. 736 * 737 * Find the matching configuration map. 738 */ 739 ret = ERR_PTR(-EINVAL); 740 while (i < smpt_len) { 741 if (SMPT_MAP_ID(smpt[i]) == map_id) { 742 ret = smpt + i; 743 break; 744 } 745 746 /* 747 * If there are no more configuration map descriptors and no 748 * configuration ID matched the configuration identifier, the 749 * sector address map is unknown. 750 */ 751 if (smpt[i] & SMPT_DESC_END) 752 break; 753 754 /* increment the table index to the next map */ 755 i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; 756 } 757 758 /* fall through */ 759 out: 760 kfree(buf); 761 nor->addr_nbytes = addr_nbytes; 762 nor->read_dummy = read_dummy; 763 nor->read_opcode = read_opcode; 764 return ret; 765 } 766 767 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region) 768 { 769 region->offset |= SNOR_LAST_REGION; 770 } 771 772 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region) 773 { 774 region->offset |= SNOR_OVERLAID_REGION; 775 } 776 777 /** 778 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid 779 * @region: pointer to a structure that describes a SPI NOR erase region 780 * @erase: pointer to a structure that describes a SPI NOR erase type 781 * @erase_type: erase type bitmask 782 */ 783 static void 784 spi_nor_region_check_overlay(struct spi_nor_erase_region *region, 785 const struct spi_nor_erase_type *erase, 786 const u8 erase_type) 787 { 788 int i; 789 790 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 791 if (!(erase[i].size && erase_type & BIT(erase[i].idx))) 792 continue; 793 if (region->size & erase[i].size_mask) { 794 spi_nor_region_mark_overlay(region); 795 return; 796 } 797 } 798 } 799 800 /** 801 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map 802 * @nor: pointer to a 'struct spi_nor' 803 * @smpt: pointer to the sector map parameter table 804 * 805 * Return: 0 on success, -errno otherwise. 806 */ 807 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, 808 const u32 *smpt) 809 { 810 struct spi_nor_erase_map *map = &nor->params->erase_map; 811 struct spi_nor_erase_type *erase = map->erase_type; 812 struct spi_nor_erase_region *region; 813 u64 offset; 814 u32 region_count; 815 int i, j; 816 u8 uniform_erase_type, save_uniform_erase_type; 817 u8 erase_type, regions_erase_type; 818 819 region_count = SMPT_MAP_REGION_COUNT(*smpt); 820 /* 821 * The regions will be freed when the driver detaches from the 822 * device. 823 */ 824 region = devm_kcalloc(nor->dev, region_count, sizeof(*region), 825 GFP_KERNEL); 826 if (!region) 827 return -ENOMEM; 828 map->regions = region; 829 830 uniform_erase_type = 0xff; 831 regions_erase_type = 0; 832 offset = 0; 833 /* Populate regions. */ 834 for (i = 0; i < region_count; i++) { 835 j = i + 1; /* index for the region dword */ 836 region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); 837 erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); 838 region[i].offset = offset | erase_type; 839 840 spi_nor_region_check_overlay(®ion[i], erase, erase_type); 841 842 /* 843 * Save the erase types that are supported in all regions and 844 * can erase the entire flash memory. 845 */ 846 uniform_erase_type &= erase_type; 847 848 /* 849 * regions_erase_type mask will indicate all the erase types 850 * supported in this configuration map. 851 */ 852 regions_erase_type |= erase_type; 853 854 offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) + 855 region[i].size; 856 } 857 spi_nor_region_mark_end(®ion[i - 1]); 858 859 save_uniform_erase_type = map->uniform_erase_type; 860 map->uniform_erase_type = spi_nor_sort_erase_mask(map, 861 uniform_erase_type); 862 863 if (!regions_erase_type) { 864 /* 865 * Roll back to the previous uniform_erase_type mask, SMPT is 866 * broken. 867 */ 868 map->uniform_erase_type = save_uniform_erase_type; 869 return -EINVAL; 870 } 871 872 /* 873 * BFPT advertises all the erase types supported by all the possible 874 * map configurations. Mask out the erase types that are not supported 875 * by the current map configuration. 876 */ 877 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 878 if (!(regions_erase_type & BIT(erase[i].idx))) 879 spi_nor_set_erase_type(&erase[i], 0, 0xFF); 880 881 return 0; 882 } 883 884 /** 885 * spi_nor_parse_smpt() - parse Sector Map Parameter Table 886 * @nor: pointer to a 'struct spi_nor' 887 * @smpt_header: sector map parameter table header 888 * 889 * This table is optional, but when available, we parse it to identify the 890 * location and size of sectors within the main data array of the flash memory 891 * device and to identify which Erase Types are supported by each sector. 892 * 893 * Return: 0 on success, -errno otherwise. 894 */ 895 static int spi_nor_parse_smpt(struct spi_nor *nor, 896 const struct sfdp_parameter_header *smpt_header) 897 { 898 const u32 *sector_map; 899 u32 *smpt; 900 size_t len; 901 u32 addr; 902 int ret; 903 904 /* Read the Sector Map Parameter Table. */ 905 len = smpt_header->length * sizeof(*smpt); 906 smpt = kmalloc(len, GFP_KERNEL); 907 if (!smpt) 908 return -ENOMEM; 909 910 addr = SFDP_PARAM_HEADER_PTP(smpt_header); 911 ret = spi_nor_read_sfdp(nor, addr, len, smpt); 912 if (ret) 913 goto out; 914 915 /* Fix endianness of the SMPT DWORDs. */ 916 le32_to_cpu_array(smpt, smpt_header->length); 917 918 sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); 919 if (IS_ERR(sector_map)) { 920 ret = PTR_ERR(sector_map); 921 goto out; 922 } 923 924 ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); 925 if (ret) 926 goto out; 927 928 spi_nor_regions_sort_erase_types(&nor->params->erase_map); 929 /* fall through */ 930 out: 931 kfree(smpt); 932 return ret; 933 } 934 935 /** 936 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table 937 * @nor: pointer to a 'struct spi_nor'. 938 * @param_header: pointer to the 'struct sfdp_parameter_header' describing 939 * the 4-Byte Address Instruction Table length and version. 940 * 941 * Return: 0 on success, -errno otherwise. 942 */ 943 static int spi_nor_parse_4bait(struct spi_nor *nor, 944 const struct sfdp_parameter_header *param_header) 945 { 946 static const struct sfdp_4bait reads[] = { 947 { SNOR_HWCAPS_READ, BIT(0) }, 948 { SNOR_HWCAPS_READ_FAST, BIT(1) }, 949 { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, 950 { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, 951 { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, 952 { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, 953 { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, 954 { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, 955 { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, 956 }; 957 static const struct sfdp_4bait programs[] = { 958 { SNOR_HWCAPS_PP, BIT(6) }, 959 { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, 960 { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, 961 }; 962 static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { 963 { 0u /* not used */, BIT(9) }, 964 { 0u /* not used */, BIT(10) }, 965 { 0u /* not used */, BIT(11) }, 966 { 0u /* not used */, BIT(12) }, 967 }; 968 struct spi_nor_flash_parameter *params = nor->params; 969 struct spi_nor_pp_command *params_pp = params->page_programs; 970 struct spi_nor_erase_map *map = ¶ms->erase_map; 971 struct spi_nor_erase_type *erase_type = map->erase_type; 972 u32 *dwords; 973 size_t len; 974 u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; 975 int i, ret; 976 977 if (param_header->major != SFDP_JESD216_MAJOR || 978 param_header->length < SFDP_4BAIT_DWORD_MAX) 979 return -EINVAL; 980 981 /* Read the 4-byte Address Instruction Table. */ 982 len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; 983 984 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 985 dwords = kmalloc(len, GFP_KERNEL); 986 if (!dwords) 987 return -ENOMEM; 988 989 addr = SFDP_PARAM_HEADER_PTP(param_header); 990 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 991 if (ret) 992 goto out; 993 994 /* Fix endianness of the 4BAIT DWORDs. */ 995 le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX); 996 997 /* 998 * Compute the subset of (Fast) Read commands for which the 4-byte 999 * version is supported. 1000 */ 1001 discard_hwcaps = 0; 1002 read_hwcaps = 0; 1003 for (i = 0; i < ARRAY_SIZE(reads); i++) { 1004 const struct sfdp_4bait *read = &reads[i]; 1005 1006 discard_hwcaps |= read->hwcaps; 1007 if ((params->hwcaps.mask & read->hwcaps) && 1008 (dwords[0] & read->supported_bit)) 1009 read_hwcaps |= read->hwcaps; 1010 } 1011 1012 /* 1013 * Compute the subset of Page Program commands for which the 4-byte 1014 * version is supported. 1015 */ 1016 pp_hwcaps = 0; 1017 for (i = 0; i < ARRAY_SIZE(programs); i++) { 1018 const struct sfdp_4bait *program = &programs[i]; 1019 1020 /* 1021 * The 4 Byte Address Instruction (Optional) Table is the only 1022 * SFDP table that indicates support for Page Program Commands. 1023 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest 1024 * authority for specifying Page Program support. 1025 */ 1026 discard_hwcaps |= program->hwcaps; 1027 if (dwords[0] & program->supported_bit) 1028 pp_hwcaps |= program->hwcaps; 1029 } 1030 1031 /* 1032 * Compute the subset of Sector Erase commands for which the 4-byte 1033 * version is supported. 1034 */ 1035 erase_mask = 0; 1036 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1037 const struct sfdp_4bait *erase = &erases[i]; 1038 1039 if (dwords[0] & erase->supported_bit) 1040 erase_mask |= BIT(i); 1041 } 1042 1043 /* Replicate the sort done for the map's erase types in BFPT. */ 1044 erase_mask = spi_nor_sort_erase_mask(map, erase_mask); 1045 1046 /* 1047 * We need at least one 4-byte op code per read, program and erase 1048 * operation; the .read(), .write() and .erase() hooks share the 1049 * nor->addr_nbytes value. 1050 */ 1051 if (!read_hwcaps || !pp_hwcaps || !erase_mask) 1052 goto out; 1053 1054 /* 1055 * Discard all operations from the 4-byte instruction set which are 1056 * not supported by this memory. 1057 */ 1058 params->hwcaps.mask &= ~discard_hwcaps; 1059 params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); 1060 1061 /* Use the 4-byte address instruction set. */ 1062 for (i = 0; i < SNOR_CMD_READ_MAX; i++) { 1063 struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; 1064 1065 read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); 1066 } 1067 1068 /* 4BAIT is the only SFDP table that indicates page program support. */ 1069 if (pp_hwcaps & SNOR_HWCAPS_PP) { 1070 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], 1071 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); 1072 /* 1073 * Since xSPI Page Program opcode is backward compatible with 1074 * Legacy SPI, use Legacy SPI opcode there as well. 1075 */ 1076 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR], 1077 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); 1078 } 1079 if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) 1080 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], 1081 SPINOR_OP_PP_1_1_4_4B, 1082 SNOR_PROTO_1_1_4); 1083 if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) 1084 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], 1085 SPINOR_OP_PP_1_4_4_4B, 1086 SNOR_PROTO_1_4_4); 1087 1088 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1089 if (erase_mask & BIT(i)) 1090 erase_type[i].opcode = (dwords[1] >> 1091 erase_type[i].idx * 8) & 0xFF; 1092 else 1093 spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF); 1094 } 1095 1096 /* 1097 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() 1098 * later because we already did the conversion to 4byte opcodes. Also, 1099 * this latest function implements a legacy quirk for the erase size of 1100 * Spansion memory. However this quirk is no longer needed with new 1101 * SFDP compliant memories. 1102 */ 1103 params->addr_nbytes = 4; 1104 nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; 1105 1106 /* fall through */ 1107 out: 1108 kfree(dwords); 1109 return ret; 1110 } 1111 1112 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29) 1113 #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28) 1114 #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8) 1115 #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7) 1116 #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27) 1117 #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17) 1118 #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7) 1119 1120 /** 1121 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table 1122 * @nor: pointer to a 'struct spi_nor' 1123 * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing 1124 * the Profile 1.0 Table length and version. 1125 * 1126 * Return: 0 on success, -errno otherwise. 1127 */ 1128 static int spi_nor_parse_profile1(struct spi_nor *nor, 1129 const struct sfdp_parameter_header *profile1_header) 1130 { 1131 u32 *dwords, addr; 1132 size_t len; 1133 int ret; 1134 u8 dummy, opcode; 1135 1136 len = profile1_header->length * sizeof(*dwords); 1137 dwords = kmalloc(len, GFP_KERNEL); 1138 if (!dwords) 1139 return -ENOMEM; 1140 1141 addr = SFDP_PARAM_HEADER_PTP(profile1_header); 1142 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1143 if (ret) 1144 goto out; 1145 1146 le32_to_cpu_array(dwords, profile1_header->length); 1147 1148 /* Get 8D-8D-8D fast read opcode and dummy cycles. */ 1149 opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[0]); 1150 1151 /* Set the Read Status Register dummy cycles and dummy address bytes. */ 1152 if (dwords[0] & PROFILE1_DWORD1_RDSR_DUMMY) 1153 nor->params->rdsr_dummy = 8; 1154 else 1155 nor->params->rdsr_dummy = 4; 1156 1157 if (dwords[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES) 1158 nor->params->rdsr_addr_nbytes = 4; 1159 else 1160 nor->params->rdsr_addr_nbytes = 0; 1161 1162 /* 1163 * We don't know what speed the controller is running at. Find the 1164 * dummy cycles for the fastest frequency the flash can run at to be 1165 * sure we are never short of dummy cycles. A value of 0 means the 1166 * frequency is not supported. 1167 * 1168 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let 1169 * flashes set the correct value if needed in their fixup hooks. 1170 */ 1171 dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[3]); 1172 if (!dummy) 1173 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, dwords[4]); 1174 if (!dummy) 1175 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, dwords[4]); 1176 if (!dummy) 1177 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, dwords[4]); 1178 if (!dummy) 1179 dev_dbg(nor->dev, 1180 "Can't find dummy cycles from Profile 1.0 table\n"); 1181 1182 /* Round up to an even value to avoid tripping controllers up. */ 1183 dummy = round_up(dummy, 2); 1184 1185 /* Update the fast read settings. */ 1186 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], 1187 0, dummy, opcode, 1188 SNOR_PROTO_8_8_8_DTR); 1189 1190 out: 1191 kfree(dwords); 1192 return ret; 1193 } 1194 1195 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31) 1196 1197 /** 1198 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register 1199 * Map. 1200 * @nor: pointer to a 'struct spi_nor' 1201 * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing 1202 * the SCCR Map table length and version. 1203 * 1204 * Return: 0 on success, -errno otherwise. 1205 */ 1206 static int spi_nor_parse_sccr(struct spi_nor *nor, 1207 const struct sfdp_parameter_header *sccr_header) 1208 { 1209 u32 *dwords, addr; 1210 size_t len; 1211 int ret; 1212 1213 len = sccr_header->length * sizeof(*dwords); 1214 dwords = kmalloc(len, GFP_KERNEL); 1215 if (!dwords) 1216 return -ENOMEM; 1217 1218 addr = SFDP_PARAM_HEADER_PTP(sccr_header); 1219 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1220 if (ret) 1221 goto out; 1222 1223 le32_to_cpu_array(dwords, sccr_header->length); 1224 1225 if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, dwords[22])) 1226 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; 1227 1228 out: 1229 kfree(dwords); 1230 return ret; 1231 } 1232 1233 /** 1234 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings 1235 * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP 1236 * tables. 1237 * @nor: pointer to a 'struct spi_nor' 1238 * 1239 * Used to tweak various flash parameters when information provided by the SFDP 1240 * tables are wrong. 1241 */ 1242 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor) 1243 { 1244 if (nor->manufacturer && nor->manufacturer->fixups && 1245 nor->manufacturer->fixups->post_sfdp) 1246 nor->manufacturer->fixups->post_sfdp(nor); 1247 1248 if (nor->info->fixups && nor->info->fixups->post_sfdp) 1249 nor->info->fixups->post_sfdp(nor); 1250 } 1251 1252 /** 1253 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. 1254 * @nor: pointer to a 'struct spi_nor' 1255 * 1256 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 1257 * specification. This is a standard which tends to supported by almost all 1258 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at 1259 * runtime the main parameters needed to perform basic SPI flash operations such 1260 * as Fast Read, Page Program or Sector Erase commands. 1261 * 1262 * Return: 0 on success, -errno otherwise. 1263 */ 1264 int spi_nor_parse_sfdp(struct spi_nor *nor) 1265 { 1266 const struct sfdp_parameter_header *param_header, *bfpt_header; 1267 struct sfdp_parameter_header *param_headers = NULL; 1268 struct sfdp_header header; 1269 struct device *dev = nor->dev; 1270 struct sfdp *sfdp; 1271 size_t sfdp_size; 1272 size_t psize; 1273 int i, err; 1274 1275 /* Get the SFDP header. */ 1276 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); 1277 if (err < 0) 1278 return err; 1279 1280 /* Check the SFDP header version. */ 1281 if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || 1282 header.major != SFDP_JESD216_MAJOR) 1283 return -EINVAL; 1284 1285 /* 1286 * Verify that the first and only mandatory parameter header is a 1287 * Basic Flash Parameter Table header as specified in JESD216. 1288 */ 1289 bfpt_header = &header.bfpt_header; 1290 if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || 1291 bfpt_header->major != SFDP_JESD216_MAJOR) 1292 return -EINVAL; 1293 1294 sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) + 1295 SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header); 1296 1297 /* 1298 * Allocate memory then read all parameter headers with a single 1299 * Read SFDP command. These parameter headers will actually be parsed 1300 * twice: a first time to get the latest revision of the basic flash 1301 * parameter table, then a second time to handle the supported optional 1302 * tables. 1303 * Hence we read the parameter headers once for all to reduce the 1304 * processing time. Also we use kmalloc() instead of devm_kmalloc() 1305 * because we don't need to keep these parameter headers: the allocated 1306 * memory is always released with kfree() before exiting this function. 1307 */ 1308 if (header.nph) { 1309 psize = header.nph * sizeof(*param_headers); 1310 1311 param_headers = kmalloc(psize, GFP_KERNEL); 1312 if (!param_headers) 1313 return -ENOMEM; 1314 1315 err = spi_nor_read_sfdp(nor, sizeof(header), 1316 psize, param_headers); 1317 if (err < 0) { 1318 dev_dbg(dev, "failed to read SFDP parameter headers\n"); 1319 goto exit; 1320 } 1321 } 1322 1323 /* 1324 * Cache the complete SFDP data. It is not (easily) possible to fetch 1325 * SFDP after probe time and we need it for the sysfs access. 1326 */ 1327 for (i = 0; i < header.nph; i++) { 1328 param_header = ¶m_headers[i]; 1329 sfdp_size = max_t(size_t, sfdp_size, 1330 SFDP_PARAM_HEADER_PTP(param_header) + 1331 SFDP_PARAM_HEADER_PARAM_LEN(param_header)); 1332 } 1333 1334 /* 1335 * Limit the total size to a reasonable value to avoid allocating too 1336 * much memory just of because the flash returned some insane values. 1337 */ 1338 if (sfdp_size > PAGE_SIZE) { 1339 dev_dbg(dev, "SFDP data (%zu) too big, truncating\n", 1340 sfdp_size); 1341 sfdp_size = PAGE_SIZE; 1342 } 1343 1344 sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL); 1345 if (!sfdp) { 1346 err = -ENOMEM; 1347 goto exit; 1348 } 1349 1350 /* 1351 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the 1352 * sfdp_size should be a multiple of DWORDs. But in case a flash 1353 * is not spec compliant, make sure that we have enough space to store 1354 * the complete SFDP data. 1355 */ 1356 sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords)); 1357 sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords, 1358 sizeof(*sfdp->dwords), GFP_KERNEL); 1359 if (!sfdp->dwords) { 1360 err = -ENOMEM; 1361 devm_kfree(dev, sfdp); 1362 goto exit; 1363 } 1364 1365 err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords); 1366 if (err < 0) { 1367 dev_dbg(dev, "failed to read SFDP data\n"); 1368 devm_kfree(dev, sfdp->dwords); 1369 devm_kfree(dev, sfdp); 1370 goto exit; 1371 } 1372 1373 nor->sfdp = sfdp; 1374 1375 /* 1376 * Check other parameter headers to get the latest revision of 1377 * the basic flash parameter table. 1378 */ 1379 for (i = 0; i < header.nph; i++) { 1380 param_header = ¶m_headers[i]; 1381 1382 if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && 1383 param_header->major == SFDP_JESD216_MAJOR && 1384 (param_header->minor > bfpt_header->minor || 1385 (param_header->minor == bfpt_header->minor && 1386 param_header->length > bfpt_header->length))) 1387 bfpt_header = param_header; 1388 } 1389 1390 err = spi_nor_parse_bfpt(nor, bfpt_header); 1391 if (err) 1392 goto exit; 1393 1394 /* Parse optional parameter tables. */ 1395 for (i = 0; i < header.nph; i++) { 1396 param_header = ¶m_headers[i]; 1397 1398 switch (SFDP_PARAM_HEADER_ID(param_header)) { 1399 case SFDP_SECTOR_MAP_ID: 1400 err = spi_nor_parse_smpt(nor, param_header); 1401 break; 1402 1403 case SFDP_4BAIT_ID: 1404 err = spi_nor_parse_4bait(nor, param_header); 1405 break; 1406 1407 case SFDP_PROFILE1_ID: 1408 err = spi_nor_parse_profile1(nor, param_header); 1409 break; 1410 1411 case SFDP_SCCR_MAP_ID: 1412 err = spi_nor_parse_sccr(nor, param_header); 1413 break; 1414 1415 default: 1416 break; 1417 } 1418 1419 if (err) { 1420 dev_warn(dev, "Failed to parse optional parameter table: %04x\n", 1421 SFDP_PARAM_HEADER_ID(param_header)); 1422 /* 1423 * Let's not drop all information we extracted so far 1424 * if optional table parsers fail. In case of failing, 1425 * each optional parser is responsible to roll back to 1426 * the previously known spi_nor data. 1427 */ 1428 err = 0; 1429 } 1430 } 1431 1432 spi_nor_post_sfdp_fixups(nor); 1433 exit: 1434 kfree(param_headers); 1435 return err; 1436 } 1437