1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2005, Intec Automation Inc. 4 * Copyright (C) 2014, Freescale Semiconductor, Inc. 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/mtd/spi-nor.h> 9 #include <linux/slab.h> 10 #include <linux/sort.h> 11 12 #include "core.h" 13 14 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) 15 #define SFDP_PARAM_HEADER_PTP(p) \ 16 (((p)->parameter_table_pointer[2] << 16) | \ 17 ((p)->parameter_table_pointer[1] << 8) | \ 18 ((p)->parameter_table_pointer[0] << 0)) 19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4) 20 21 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ 22 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ 23 #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ 24 #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */ 25 #define SFDP_SCCR_MAP_ID 0xff87 /* 26 * Status, Control and Configuration 27 * Register Map. 28 */ 29 #define SFDP_SCCR_MAP_MC_ID 0xff88 /* 30 * Status, Control and Configuration 31 * Register Map Offsets for Multi-Chip 32 * SPI Memory Devices. 33 */ 34 35 #define SFDP_SIGNATURE 0x50444653U 36 37 struct sfdp_header { 38 u32 signature; /* Ox50444653U <=> "SFDP" */ 39 u8 minor; 40 u8 major; 41 u8 nph; /* 0-base number of parameter headers */ 42 u8 unused; 43 44 /* Basic Flash Parameter Table. */ 45 struct sfdp_parameter_header bfpt_header; 46 }; 47 48 /* Fast Read settings. */ 49 struct sfdp_bfpt_read { 50 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ 51 u32 hwcaps; 52 53 /* 54 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us 55 * whether the Fast Read x-y-z command is supported. 56 */ 57 u32 supported_dword; 58 u32 supported_bit; 59 60 /* 61 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD 62 * encodes the op code, the number of mode clocks and the number of wait 63 * states to be used by Fast Read x-y-z command. 64 */ 65 u32 settings_dword; 66 u32 settings_shift; 67 68 /* The SPI protocol for this Fast Read x-y-z command. */ 69 enum spi_nor_protocol proto; 70 }; 71 72 struct sfdp_bfpt_erase { 73 /* 74 * The half-word at offset <shift> in DWORD <dword> encodes the 75 * op code and erase sector size to be used by Sector Erase commands. 76 */ 77 u32 dword; 78 u32 shift; 79 }; 80 81 #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) 82 #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) 83 #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) 84 #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) 85 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) 86 87 #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) 88 #define SMPT_CMD_READ_DUMMY_SHIFT 16 89 #define SMPT_CMD_READ_DUMMY(_cmd) \ 90 (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) 91 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL 92 93 #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) 94 #define SMPT_CMD_READ_DATA_SHIFT 24 95 #define SMPT_CMD_READ_DATA(_cmd) \ 96 (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) 97 98 #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) 99 #define SMPT_CMD_OPCODE_SHIFT 8 100 #define SMPT_CMD_OPCODE(_cmd) \ 101 (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) 102 103 #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) 104 #define SMPT_MAP_REGION_COUNT_SHIFT 16 105 #define SMPT_MAP_REGION_COUNT(_header) \ 106 ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ 107 SMPT_MAP_REGION_COUNT_SHIFT) + 1) 108 109 #define SMPT_MAP_ID_MASK GENMASK(15, 8) 110 #define SMPT_MAP_ID_SHIFT 8 111 #define SMPT_MAP_ID(_header) \ 112 (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) 113 114 #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) 115 #define SMPT_MAP_REGION_SIZE_SHIFT 8 116 #define SMPT_MAP_REGION_SIZE(_region) \ 117 (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ 118 SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) 119 120 #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) 121 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \ 122 ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) 123 124 #define SMPT_DESC_TYPE_MAP BIT(1) 125 #define SMPT_DESC_END BIT(0) 126 127 #define SFDP_4BAIT_DWORD_MAX 2 128 129 struct sfdp_4bait { 130 /* The hardware capability. */ 131 u32 hwcaps; 132 133 /* 134 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether 135 * the associated 4-byte address op code is supported. 136 */ 137 u32 supported_bit; 138 }; 139 140 /** 141 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, 142 * addr_nbytes and read_dummy members of the struct spi_nor 143 * should be previously set. 144 * @nor: pointer to a 'struct spi_nor' 145 * @addr: offset in the serial flash memory 146 * @len: number of bytes to read 147 * @buf: buffer where the data is copied into (dma-safe memory) 148 * 149 * Return: 0 on success, -errno otherwise. 150 */ 151 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) 152 { 153 ssize_t ret; 154 155 while (len) { 156 ret = spi_nor_read_data(nor, addr, len, buf); 157 if (ret < 0) 158 return ret; 159 if (!ret || ret > len) 160 return -EIO; 161 162 buf += ret; 163 addr += ret; 164 len -= ret; 165 } 166 return 0; 167 } 168 169 /** 170 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. 171 * @nor: pointer to a 'struct spi_nor' 172 * @addr: offset in the SFDP area to start reading data from 173 * @len: number of bytes to read 174 * @buf: buffer where the SFDP data are copied into (dma-safe memory) 175 * 176 * Whatever the actual numbers of bytes for address and dummy cycles are 177 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always 178 * followed by a 3-byte address and 8 dummy clock cycles. 179 * 180 * Return: 0 on success, -errno otherwise. 181 */ 182 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, 183 size_t len, void *buf) 184 { 185 u8 addr_nbytes, read_opcode, read_dummy; 186 int ret; 187 188 read_opcode = nor->read_opcode; 189 addr_nbytes = nor->addr_nbytes; 190 read_dummy = nor->read_dummy; 191 192 nor->read_opcode = SPINOR_OP_RDSFDP; 193 nor->addr_nbytes = 3; 194 nor->read_dummy = 8; 195 196 ret = spi_nor_read_raw(nor, addr, len, buf); 197 198 nor->read_opcode = read_opcode; 199 nor->addr_nbytes = addr_nbytes; 200 nor->read_dummy = read_dummy; 201 202 return ret; 203 } 204 205 /** 206 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. 207 * @nor: pointer to a 'struct spi_nor' 208 * @addr: offset in the SFDP area to start reading data from 209 * @len: number of bytes to read 210 * @buf: buffer where the SFDP data are copied into 211 * 212 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not 213 * guaranteed to be dma-safe. 214 * 215 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() 216 * otherwise. 217 */ 218 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, 219 size_t len, void *buf) 220 { 221 void *dma_safe_buf; 222 int ret; 223 224 dma_safe_buf = kmalloc(len, GFP_KERNEL); 225 if (!dma_safe_buf) 226 return -ENOMEM; 227 228 ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); 229 memcpy(buf, dma_safe_buf, len); 230 kfree(dma_safe_buf); 231 232 return ret; 233 } 234 235 static void 236 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, 237 u16 half, 238 enum spi_nor_protocol proto) 239 { 240 read->num_mode_clocks = (half >> 5) & 0x07; 241 read->num_wait_states = (half >> 0) & 0x1f; 242 read->opcode = (half >> 8) & 0xff; 243 read->proto = proto; 244 } 245 246 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { 247 /* Fast Read 1-1-2 */ 248 { 249 SNOR_HWCAPS_READ_1_1_2, 250 SFDP_DWORD(1), BIT(16), /* Supported bit */ 251 SFDP_DWORD(4), 0, /* Settings */ 252 SNOR_PROTO_1_1_2, 253 }, 254 255 /* Fast Read 1-2-2 */ 256 { 257 SNOR_HWCAPS_READ_1_2_2, 258 SFDP_DWORD(1), BIT(20), /* Supported bit */ 259 SFDP_DWORD(4), 16, /* Settings */ 260 SNOR_PROTO_1_2_2, 261 }, 262 263 /* Fast Read 2-2-2 */ 264 { 265 SNOR_HWCAPS_READ_2_2_2, 266 SFDP_DWORD(5), BIT(0), /* Supported bit */ 267 SFDP_DWORD(6), 16, /* Settings */ 268 SNOR_PROTO_2_2_2, 269 }, 270 271 /* Fast Read 1-1-4 */ 272 { 273 SNOR_HWCAPS_READ_1_1_4, 274 SFDP_DWORD(1), BIT(22), /* Supported bit */ 275 SFDP_DWORD(3), 16, /* Settings */ 276 SNOR_PROTO_1_1_4, 277 }, 278 279 /* Fast Read 1-4-4 */ 280 { 281 SNOR_HWCAPS_READ_1_4_4, 282 SFDP_DWORD(1), BIT(21), /* Supported bit */ 283 SFDP_DWORD(3), 0, /* Settings */ 284 SNOR_PROTO_1_4_4, 285 }, 286 287 /* Fast Read 4-4-4 */ 288 { 289 SNOR_HWCAPS_READ_4_4_4, 290 SFDP_DWORD(5), BIT(4), /* Supported bit */ 291 SFDP_DWORD(7), 16, /* Settings */ 292 SNOR_PROTO_4_4_4, 293 }, 294 }; 295 296 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { 297 /* Erase Type 1 in DWORD8 bits[15:0] */ 298 {SFDP_DWORD(8), 0}, 299 300 /* Erase Type 2 in DWORD8 bits[31:16] */ 301 {SFDP_DWORD(8), 16}, 302 303 /* Erase Type 3 in DWORD9 bits[15:0] */ 304 {SFDP_DWORD(9), 0}, 305 306 /* Erase Type 4 in DWORD9 bits[31:16] */ 307 {SFDP_DWORD(9), 16}, 308 }; 309 310 /** 311 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT 312 * @erase: pointer to a structure that describes a SPI NOR erase type 313 * @size: the size of the sector/block erased by the erase type 314 * @opcode: the SPI command op code to erase the sector/block 315 * @i: erase type index as sorted in the Basic Flash Parameter Table 316 * 317 * The supported Erase Types will be sorted at init in ascending order, with 318 * the smallest Erase Type size being the first member in the erase_type array 319 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in 320 * the Basic Flash Parameter Table since it will be used later on to 321 * synchronize with the supported Erase Types defined in SFDP optional tables. 322 */ 323 static void 324 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, 325 u32 size, u8 opcode, u8 i) 326 { 327 erase->idx = i; 328 spi_nor_set_erase_type(erase, size, opcode); 329 } 330 331 /** 332 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size 333 * @l: member in the left half of the map's erase_type array 334 * @r: member in the right half of the map's erase_type array 335 * 336 * Comparison function used in the sort() call to sort in ascending order the 337 * map's erase types, the smallest erase type size being the first member in the 338 * sorted erase_type array. 339 * 340 * Return: the result of @l->size - @r->size 341 */ 342 static int spi_nor_map_cmp_erase_type(const void *l, const void *r) 343 { 344 const struct spi_nor_erase_type *left = l, *right = r; 345 346 return left->size - right->size; 347 } 348 349 /** 350 * spi_nor_sort_erase_mask() - sort erase mask 351 * @map: the erase map of the SPI NOR 352 * @erase_mask: the erase type mask to be sorted 353 * 354 * Replicate the sort done for the map's erase types in BFPT: sort the erase 355 * mask in ascending order with the smallest erase type size starting from 356 * BIT(0) in the sorted erase mask. 357 * 358 * Return: sorted erase mask. 359 */ 360 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) 361 { 362 struct spi_nor_erase_type *erase_type = map->erase_type; 363 int i; 364 u8 sorted_erase_mask = 0; 365 366 if (!erase_mask) 367 return 0; 368 369 /* Replicate the sort done for the map's erase types. */ 370 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 371 if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) 372 sorted_erase_mask |= BIT(i); 373 374 return sorted_erase_mask; 375 } 376 377 /** 378 * spi_nor_regions_sort_erase_types() - sort erase types in each region 379 * @map: the erase map of the SPI NOR 380 * 381 * Function assumes that the erase types defined in the erase map are already 382 * sorted in ascending order, with the smallest erase type size being the first 383 * member in the erase_type array. It replicates the sort done for the map's 384 * erase types. Each region's erase bitmask will indicate which erase types are 385 * supported from the sorted erase types defined in the erase map. 386 * Sort the all region's erase type at init in order to speed up the process of 387 * finding the best erase command at runtime. 388 */ 389 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) 390 { 391 struct spi_nor_erase_region *region = map->regions; 392 u8 region_erase_mask, sorted_erase_mask; 393 394 while (region) { 395 region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; 396 397 sorted_erase_mask = spi_nor_sort_erase_mask(map, 398 region_erase_mask); 399 400 /* Overwrite erase mask. */ 401 region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) | 402 sorted_erase_mask; 403 404 region = spi_nor_region_next(region); 405 } 406 } 407 408 /** 409 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. 410 * @nor: pointer to a 'struct spi_nor' 411 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing 412 * the Basic Flash Parameter Table length and version 413 * 414 * The Basic Flash Parameter Table is the main and only mandatory table as 415 * defined by the SFDP (JESD216) specification. 416 * It provides us with the total size (memory density) of the data array and 417 * the number of address bytes for Fast Read, Page Program and Sector Erase 418 * commands. 419 * For Fast READ commands, it also gives the number of mode clock cycles and 420 * wait states (regrouped in the number of dummy clock cycles) for each 421 * supported instruction op code. 422 * For Page Program, the page size is now available since JESD216 rev A, however 423 * the supported instruction op codes are still not provided. 424 * For Sector Erase commands, this table stores the supported instruction op 425 * codes and the associated sector sizes. 426 * Finally, the Quad Enable Requirements (QER) are also available since JESD216 427 * rev A. The QER bits encode the manufacturer dependent procedure to be 428 * executed to set the Quad Enable (QE) bit in some internal register of the 429 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before 430 * sending any Quad SPI command to the memory. Actually, setting the QE bit 431 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 432 * and IO3 hence enabling 4 (Quad) I/O lines. 433 * 434 * Return: 0 on success, -errno otherwise. 435 */ 436 static int spi_nor_parse_bfpt(struct spi_nor *nor, 437 const struct sfdp_parameter_header *bfpt_header) 438 { 439 struct spi_nor_flash_parameter *params = nor->params; 440 struct spi_nor_erase_map *map = ¶ms->erase_map; 441 struct spi_nor_erase_type *erase_type = map->erase_type; 442 struct sfdp_bfpt bfpt; 443 size_t len; 444 int i, cmd, err; 445 u32 addr, val; 446 u32 dword; 447 u16 half; 448 u8 erase_mask; 449 450 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ 451 if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) 452 return -EINVAL; 453 454 /* Read the Basic Flash Parameter Table. */ 455 len = min_t(size_t, sizeof(bfpt), 456 bfpt_header->length * sizeof(u32)); 457 addr = SFDP_PARAM_HEADER_PTP(bfpt_header); 458 memset(&bfpt, 0, sizeof(bfpt)); 459 err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); 460 if (err < 0) 461 return err; 462 463 /* Fix endianness of the BFPT DWORDs. */ 464 le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX); 465 466 /* Number of address bytes. */ 467 switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { 468 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: 469 case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4: 470 params->addr_nbytes = 3; 471 params->addr_mode_nbytes = 3; 472 break; 473 474 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: 475 params->addr_nbytes = 4; 476 params->addr_mode_nbytes = 4; 477 break; 478 479 default: 480 break; 481 } 482 483 /* Flash Memory Density (in bits). */ 484 val = bfpt.dwords[SFDP_DWORD(2)]; 485 if (val & BIT(31)) { 486 val &= ~BIT(31); 487 488 /* 489 * Prevent overflows on params->size. Anyway, a NOR of 2^64 490 * bits is unlikely to exist so this error probably means 491 * the BFPT we are reading is corrupted/wrong. 492 */ 493 if (val > 63) 494 return -EINVAL; 495 496 params->size = 1ULL << val; 497 } else { 498 params->size = val + 1; 499 } 500 params->size >>= 3; /* Convert to bytes. */ 501 502 /* Fast Read settings. */ 503 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { 504 const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; 505 struct spi_nor_read_command *read; 506 507 if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { 508 params->hwcaps.mask &= ~rd->hwcaps; 509 continue; 510 } 511 512 params->hwcaps.mask |= rd->hwcaps; 513 cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); 514 read = ¶ms->reads[cmd]; 515 half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; 516 spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); 517 } 518 519 /* 520 * Sector Erase settings. Reinitialize the uniform erase map using the 521 * Erase Types defined in the bfpt table. 522 */ 523 erase_mask = 0; 524 memset(¶ms->erase_map, 0, sizeof(params->erase_map)); 525 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { 526 const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; 527 u32 erasesize; 528 u8 opcode; 529 530 half = bfpt.dwords[er->dword] >> er->shift; 531 erasesize = half & 0xff; 532 533 /* erasesize == 0 means this Erase Type is not supported. */ 534 if (!erasesize) 535 continue; 536 537 erasesize = 1U << erasesize; 538 opcode = (half >> 8) & 0xff; 539 erase_mask |= BIT(i); 540 spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, 541 opcode, i); 542 } 543 spi_nor_init_uniform_erase_map(map, erase_mask, params->size); 544 /* 545 * Sort all the map's Erase Types in ascending order with the smallest 546 * erase size being the first member in the erase_type array. 547 */ 548 sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), 549 spi_nor_map_cmp_erase_type, NULL); 550 /* 551 * Sort the erase types in the uniform region in order to update the 552 * uniform_erase_type bitmask. The bitmask will be used later on when 553 * selecting the uniform erase. 554 */ 555 spi_nor_regions_sort_erase_types(map); 556 map->uniform_erase_type = map->uniform_region.offset & 557 SNOR_ERASE_TYPE_MASK; 558 559 /* Stop here if not JESD216 rev A or later. */ 560 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216) 561 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 562 563 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ 564 val = bfpt.dwords[SFDP_DWORD(11)]; 565 val &= BFPT_DWORD11_PAGE_SIZE_MASK; 566 val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; 567 params->page_size = 1U << val; 568 569 /* Quad Enable Requirements. */ 570 switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) { 571 case BFPT_DWORD15_QER_NONE: 572 params->quad_enable = NULL; 573 break; 574 575 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: 576 /* 577 * Writing only one byte to the Status Register has the 578 * side-effect of clearing Status Register 2. 579 */ 580 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: 581 /* 582 * Read Configuration Register (35h) instruction is not 583 * supported. 584 */ 585 nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR; 586 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 587 break; 588 589 case BFPT_DWORD15_QER_SR1_BIT6: 590 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 591 params->quad_enable = spi_nor_sr1_bit6_quad_enable; 592 break; 593 594 case BFPT_DWORD15_QER_SR2_BIT7: 595 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 596 params->quad_enable = spi_nor_sr2_bit7_quad_enable; 597 break; 598 599 case BFPT_DWORD15_QER_SR2_BIT1: 600 /* 601 * JESD216 rev B or later does not specify if writing only one 602 * byte to the Status Register clears or not the Status 603 * Register 2, so let's be cautious and keep the default 604 * assumption of a 16-bit Write Status (01h) command. 605 */ 606 nor->flags |= SNOR_F_HAS_16BIT_SR; 607 608 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 609 break; 610 611 default: 612 dev_dbg(nor->dev, "BFPT QER reserved value used\n"); 613 break; 614 } 615 616 dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK; 617 if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR)) 618 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr; 619 else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B)) 620 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b; 621 else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B)) 622 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b; 623 else 624 dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n"); 625 626 /* Soft Reset support. */ 627 if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST) 628 nor->flags |= SNOR_F_SOFT_RESET; 629 630 /* Stop here if not JESD216 rev C or later. */ 631 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B) 632 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 633 634 /* 8D-8D-8D command extension. */ 635 switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) { 636 case BFPT_DWORD18_CMD_EXT_REP: 637 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; 638 break; 639 640 case BFPT_DWORD18_CMD_EXT_INV: 641 nor->cmd_ext_type = SPI_NOR_EXT_INVERT; 642 break; 643 644 case BFPT_DWORD18_CMD_EXT_RES: 645 dev_dbg(nor->dev, "Reserved command extension used\n"); 646 break; 647 648 case BFPT_DWORD18_CMD_EXT_16B: 649 dev_dbg(nor->dev, "16-bit opcodes not supported\n"); 650 return -EOPNOTSUPP; 651 } 652 653 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 654 } 655 656 /** 657 * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the 658 * configuration detection command. 659 * @nor: pointer to a 'struct spi_nor' 660 * @settings: configuration detection command descriptor, dword1 661 */ 662 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings) 663 { 664 switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { 665 case SMPT_CMD_ADDRESS_LEN_0: 666 return 0; 667 case SMPT_CMD_ADDRESS_LEN_3: 668 return 3; 669 case SMPT_CMD_ADDRESS_LEN_4: 670 return 4; 671 case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: 672 default: 673 return nor->params->addr_mode_nbytes; 674 } 675 } 676 677 /** 678 * spi_nor_smpt_read_dummy() - return the configuration detection command read 679 * latency, in clock cycles. 680 * @nor: pointer to a 'struct spi_nor' 681 * @settings: configuration detection command descriptor, dword1 682 * 683 * Return: the number of dummy cycles for an SMPT read 684 */ 685 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) 686 { 687 u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); 688 689 if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) 690 return nor->read_dummy; 691 return read_dummy; 692 } 693 694 /** 695 * spi_nor_get_map_in_use() - get the configuration map in use 696 * @nor: pointer to a 'struct spi_nor' 697 * @smpt: pointer to the sector map parameter table 698 * @smpt_len: sector map parameter table length 699 * 700 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. 701 */ 702 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, 703 u8 smpt_len) 704 { 705 const u32 *ret; 706 u8 *buf; 707 u32 addr; 708 int err; 709 u8 i; 710 u8 addr_nbytes, read_opcode, read_dummy; 711 u8 read_data_mask, map_id; 712 713 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 714 buf = kmalloc(sizeof(*buf), GFP_KERNEL); 715 if (!buf) 716 return ERR_PTR(-ENOMEM); 717 718 addr_nbytes = nor->addr_nbytes; 719 read_dummy = nor->read_dummy; 720 read_opcode = nor->read_opcode; 721 722 map_id = 0; 723 /* Determine if there are any optional Detection Command Descriptors */ 724 for (i = 0; i < smpt_len; i += 2) { 725 if (smpt[i] & SMPT_DESC_TYPE_MAP) 726 break; 727 728 read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); 729 nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]); 730 nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); 731 nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); 732 addr = smpt[i + 1]; 733 734 err = spi_nor_read_raw(nor, addr, 1, buf); 735 if (err) { 736 ret = ERR_PTR(err); 737 goto out; 738 } 739 740 /* 741 * Build an index value that is used to select the Sector Map 742 * Configuration that is currently in use. 743 */ 744 map_id = map_id << 1 | !!(*buf & read_data_mask); 745 } 746 747 /* 748 * If command descriptors are provided, they always precede map 749 * descriptors in the table. There is no need to start the iteration 750 * over smpt array all over again. 751 * 752 * Find the matching configuration map. 753 */ 754 ret = ERR_PTR(-EINVAL); 755 while (i < smpt_len) { 756 if (SMPT_MAP_ID(smpt[i]) == map_id) { 757 ret = smpt + i; 758 break; 759 } 760 761 /* 762 * If there are no more configuration map descriptors and no 763 * configuration ID matched the configuration identifier, the 764 * sector address map is unknown. 765 */ 766 if (smpt[i] & SMPT_DESC_END) 767 break; 768 769 /* increment the table index to the next map */ 770 i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; 771 } 772 773 /* fall through */ 774 out: 775 kfree(buf); 776 nor->addr_nbytes = addr_nbytes; 777 nor->read_dummy = read_dummy; 778 nor->read_opcode = read_opcode; 779 return ret; 780 } 781 782 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region) 783 { 784 region->offset |= SNOR_LAST_REGION; 785 } 786 787 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region) 788 { 789 region->offset |= SNOR_OVERLAID_REGION; 790 } 791 792 /** 793 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid 794 * @region: pointer to a structure that describes a SPI NOR erase region 795 * @erase: pointer to a structure that describes a SPI NOR erase type 796 * @erase_type: erase type bitmask 797 */ 798 static void 799 spi_nor_region_check_overlay(struct spi_nor_erase_region *region, 800 const struct spi_nor_erase_type *erase, 801 const u8 erase_type) 802 { 803 int i; 804 805 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 806 if (!(erase[i].size && erase_type & BIT(erase[i].idx))) 807 continue; 808 if (region->size & erase[i].size_mask) { 809 spi_nor_region_mark_overlay(region); 810 return; 811 } 812 } 813 } 814 815 /** 816 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map 817 * @nor: pointer to a 'struct spi_nor' 818 * @smpt: pointer to the sector map parameter table 819 * 820 * Return: 0 on success, -errno otherwise. 821 */ 822 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, 823 const u32 *smpt) 824 { 825 struct spi_nor_erase_map *map = &nor->params->erase_map; 826 struct spi_nor_erase_type *erase = map->erase_type; 827 struct spi_nor_erase_region *region; 828 u64 offset; 829 u32 region_count; 830 int i, j; 831 u8 uniform_erase_type, save_uniform_erase_type; 832 u8 erase_type, regions_erase_type; 833 834 region_count = SMPT_MAP_REGION_COUNT(*smpt); 835 /* 836 * The regions will be freed when the driver detaches from the 837 * device. 838 */ 839 region = devm_kcalloc(nor->dev, region_count, sizeof(*region), 840 GFP_KERNEL); 841 if (!region) 842 return -ENOMEM; 843 map->regions = region; 844 845 uniform_erase_type = 0xff; 846 regions_erase_type = 0; 847 offset = 0; 848 /* Populate regions. */ 849 for (i = 0; i < region_count; i++) { 850 j = i + 1; /* index for the region dword */ 851 region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); 852 erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); 853 region[i].offset = offset | erase_type; 854 855 spi_nor_region_check_overlay(®ion[i], erase, erase_type); 856 857 /* 858 * Save the erase types that are supported in all regions and 859 * can erase the entire flash memory. 860 */ 861 uniform_erase_type &= erase_type; 862 863 /* 864 * regions_erase_type mask will indicate all the erase types 865 * supported in this configuration map. 866 */ 867 regions_erase_type |= erase_type; 868 869 offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) + 870 region[i].size; 871 } 872 spi_nor_region_mark_end(®ion[i - 1]); 873 874 save_uniform_erase_type = map->uniform_erase_type; 875 map->uniform_erase_type = spi_nor_sort_erase_mask(map, 876 uniform_erase_type); 877 878 if (!regions_erase_type) { 879 /* 880 * Roll back to the previous uniform_erase_type mask, SMPT is 881 * broken. 882 */ 883 map->uniform_erase_type = save_uniform_erase_type; 884 return -EINVAL; 885 } 886 887 /* 888 * BFPT advertises all the erase types supported by all the possible 889 * map configurations. Mask out the erase types that are not supported 890 * by the current map configuration. 891 */ 892 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 893 if (!(regions_erase_type & BIT(erase[i].idx))) 894 spi_nor_mask_erase_type(&erase[i]); 895 896 return 0; 897 } 898 899 /** 900 * spi_nor_parse_smpt() - parse Sector Map Parameter Table 901 * @nor: pointer to a 'struct spi_nor' 902 * @smpt_header: sector map parameter table header 903 * 904 * This table is optional, but when available, we parse it to identify the 905 * location and size of sectors within the main data array of the flash memory 906 * device and to identify which Erase Types are supported by each sector. 907 * 908 * Return: 0 on success, -errno otherwise. 909 */ 910 static int spi_nor_parse_smpt(struct spi_nor *nor, 911 const struct sfdp_parameter_header *smpt_header) 912 { 913 const u32 *sector_map; 914 u32 *smpt; 915 size_t len; 916 u32 addr; 917 int ret; 918 919 /* Read the Sector Map Parameter Table. */ 920 len = smpt_header->length * sizeof(*smpt); 921 smpt = kmalloc(len, GFP_KERNEL); 922 if (!smpt) 923 return -ENOMEM; 924 925 addr = SFDP_PARAM_HEADER_PTP(smpt_header); 926 ret = spi_nor_read_sfdp(nor, addr, len, smpt); 927 if (ret) 928 goto out; 929 930 /* Fix endianness of the SMPT DWORDs. */ 931 le32_to_cpu_array(smpt, smpt_header->length); 932 933 sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); 934 if (IS_ERR(sector_map)) { 935 ret = PTR_ERR(sector_map); 936 goto out; 937 } 938 939 ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); 940 if (ret) 941 goto out; 942 943 spi_nor_regions_sort_erase_types(&nor->params->erase_map); 944 /* fall through */ 945 out: 946 kfree(smpt); 947 return ret; 948 } 949 950 /** 951 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table 952 * @nor: pointer to a 'struct spi_nor'. 953 * @param_header: pointer to the 'struct sfdp_parameter_header' describing 954 * the 4-Byte Address Instruction Table length and version. 955 * 956 * Return: 0 on success, -errno otherwise. 957 */ 958 static int spi_nor_parse_4bait(struct spi_nor *nor, 959 const struct sfdp_parameter_header *param_header) 960 { 961 static const struct sfdp_4bait reads[] = { 962 { SNOR_HWCAPS_READ, BIT(0) }, 963 { SNOR_HWCAPS_READ_FAST, BIT(1) }, 964 { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, 965 { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, 966 { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, 967 { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, 968 { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, 969 { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, 970 { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, 971 }; 972 static const struct sfdp_4bait programs[] = { 973 { SNOR_HWCAPS_PP, BIT(6) }, 974 { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, 975 { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, 976 }; 977 static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { 978 { 0u /* not used */, BIT(9) }, 979 { 0u /* not used */, BIT(10) }, 980 { 0u /* not used */, BIT(11) }, 981 { 0u /* not used */, BIT(12) }, 982 }; 983 struct spi_nor_flash_parameter *params = nor->params; 984 struct spi_nor_pp_command *params_pp = params->page_programs; 985 struct spi_nor_erase_map *map = ¶ms->erase_map; 986 struct spi_nor_erase_type *erase_type = map->erase_type; 987 u32 *dwords; 988 size_t len; 989 u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; 990 int i, ret; 991 992 if (param_header->major != SFDP_JESD216_MAJOR || 993 param_header->length < SFDP_4BAIT_DWORD_MAX) 994 return -EINVAL; 995 996 /* Read the 4-byte Address Instruction Table. */ 997 len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; 998 999 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 1000 dwords = kmalloc(len, GFP_KERNEL); 1001 if (!dwords) 1002 return -ENOMEM; 1003 1004 addr = SFDP_PARAM_HEADER_PTP(param_header); 1005 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1006 if (ret) 1007 goto out; 1008 1009 /* Fix endianness of the 4BAIT DWORDs. */ 1010 le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX); 1011 1012 /* 1013 * Compute the subset of (Fast) Read commands for which the 4-byte 1014 * version is supported. 1015 */ 1016 discard_hwcaps = 0; 1017 read_hwcaps = 0; 1018 for (i = 0; i < ARRAY_SIZE(reads); i++) { 1019 const struct sfdp_4bait *read = &reads[i]; 1020 1021 discard_hwcaps |= read->hwcaps; 1022 if ((params->hwcaps.mask & read->hwcaps) && 1023 (dwords[SFDP_DWORD(1)] & read->supported_bit)) 1024 read_hwcaps |= read->hwcaps; 1025 } 1026 1027 /* 1028 * Compute the subset of Page Program commands for which the 4-byte 1029 * version is supported. 1030 */ 1031 pp_hwcaps = 0; 1032 for (i = 0; i < ARRAY_SIZE(programs); i++) { 1033 const struct sfdp_4bait *program = &programs[i]; 1034 1035 /* 1036 * The 4 Byte Address Instruction (Optional) Table is the only 1037 * SFDP table that indicates support for Page Program Commands. 1038 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest 1039 * authority for specifying Page Program support. 1040 */ 1041 discard_hwcaps |= program->hwcaps; 1042 if (dwords[SFDP_DWORD(1)] & program->supported_bit) 1043 pp_hwcaps |= program->hwcaps; 1044 } 1045 1046 /* 1047 * Compute the subset of Sector Erase commands for which the 4-byte 1048 * version is supported. 1049 */ 1050 erase_mask = 0; 1051 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1052 const struct sfdp_4bait *erase = &erases[i]; 1053 1054 if (dwords[SFDP_DWORD(1)] & erase->supported_bit) 1055 erase_mask |= BIT(i); 1056 } 1057 1058 /* Replicate the sort done for the map's erase types in BFPT. */ 1059 erase_mask = spi_nor_sort_erase_mask(map, erase_mask); 1060 1061 /* 1062 * We need at least one 4-byte op code per read, program and erase 1063 * operation; the .read(), .write() and .erase() hooks share the 1064 * nor->addr_nbytes value. 1065 */ 1066 if (!read_hwcaps || !pp_hwcaps || !erase_mask) 1067 goto out; 1068 1069 /* 1070 * Discard all operations from the 4-byte instruction set which are 1071 * not supported by this memory. 1072 */ 1073 params->hwcaps.mask &= ~discard_hwcaps; 1074 params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); 1075 1076 /* Use the 4-byte address instruction set. */ 1077 for (i = 0; i < SNOR_CMD_READ_MAX; i++) { 1078 struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; 1079 1080 read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); 1081 } 1082 1083 /* 4BAIT is the only SFDP table that indicates page program support. */ 1084 if (pp_hwcaps & SNOR_HWCAPS_PP) { 1085 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], 1086 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); 1087 /* 1088 * Since xSPI Page Program opcode is backward compatible with 1089 * Legacy SPI, use Legacy SPI opcode there as well. 1090 */ 1091 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR], 1092 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); 1093 } 1094 if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) 1095 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], 1096 SPINOR_OP_PP_1_1_4_4B, 1097 SNOR_PROTO_1_1_4); 1098 if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) 1099 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], 1100 SPINOR_OP_PP_1_4_4_4B, 1101 SNOR_PROTO_1_4_4); 1102 1103 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1104 if (erase_mask & BIT(i)) 1105 erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >> 1106 erase_type[i].idx * 8) & 0xFF; 1107 else 1108 spi_nor_mask_erase_type(&erase_type[i]); 1109 } 1110 1111 /* 1112 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() 1113 * later because we already did the conversion to 4byte opcodes. Also, 1114 * this latest function implements a legacy quirk for the erase size of 1115 * Spansion memory. However this quirk is no longer needed with new 1116 * SFDP compliant memories. 1117 */ 1118 params->addr_nbytes = 4; 1119 nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; 1120 1121 /* fall through */ 1122 out: 1123 kfree(dwords); 1124 return ret; 1125 } 1126 1127 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29) 1128 #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28) 1129 #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8) 1130 #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7) 1131 #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27) 1132 #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17) 1133 #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7) 1134 1135 /** 1136 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table 1137 * @nor: pointer to a 'struct spi_nor' 1138 * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing 1139 * the Profile 1.0 Table length and version. 1140 * 1141 * Return: 0 on success, -errno otherwise. 1142 */ 1143 static int spi_nor_parse_profile1(struct spi_nor *nor, 1144 const struct sfdp_parameter_header *profile1_header) 1145 { 1146 u32 *dwords, addr; 1147 size_t len; 1148 int ret; 1149 u8 dummy, opcode; 1150 1151 len = profile1_header->length * sizeof(*dwords); 1152 dwords = kmalloc(len, GFP_KERNEL); 1153 if (!dwords) 1154 return -ENOMEM; 1155 1156 addr = SFDP_PARAM_HEADER_PTP(profile1_header); 1157 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1158 if (ret) 1159 goto out; 1160 1161 le32_to_cpu_array(dwords, profile1_header->length); 1162 1163 /* Get 8D-8D-8D fast read opcode and dummy cycles. */ 1164 opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]); 1165 1166 /* Set the Read Status Register dummy cycles and dummy address bytes. */ 1167 if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY) 1168 nor->params->rdsr_dummy = 8; 1169 else 1170 nor->params->rdsr_dummy = 4; 1171 1172 if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES) 1173 nor->params->rdsr_addr_nbytes = 4; 1174 else 1175 nor->params->rdsr_addr_nbytes = 0; 1176 1177 /* 1178 * We don't know what speed the controller is running at. Find the 1179 * dummy cycles for the fastest frequency the flash can run at to be 1180 * sure we are never short of dummy cycles. A value of 0 means the 1181 * frequency is not supported. 1182 * 1183 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let 1184 * flashes set the correct value if needed in their fixup hooks. 1185 */ 1186 dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]); 1187 if (!dummy) 1188 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, 1189 dwords[SFDP_DWORD(5)]); 1190 if (!dummy) 1191 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, 1192 dwords[SFDP_DWORD(5)]); 1193 if (!dummy) 1194 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, 1195 dwords[SFDP_DWORD(5)]); 1196 if (!dummy) 1197 dev_dbg(nor->dev, 1198 "Can't find dummy cycles from Profile 1.0 table\n"); 1199 1200 /* Round up to an even value to avoid tripping controllers up. */ 1201 dummy = round_up(dummy, 2); 1202 1203 /* Update the fast read settings. */ 1204 nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; 1205 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], 1206 0, dummy, opcode, 1207 SNOR_PROTO_8_8_8_DTR); 1208 1209 /* 1210 * Page Program is "Required Command" in the xSPI Profile 1.0. Update 1211 * the params->hwcaps.mask here. 1212 */ 1213 nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; 1214 1215 out: 1216 kfree(dwords); 1217 return ret; 1218 } 1219 1220 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31) 1221 1222 /** 1223 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register 1224 * Map. 1225 * @nor: pointer to a 'struct spi_nor' 1226 * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing 1227 * the SCCR Map table length and version. 1228 * 1229 * Return: 0 on success, -errno otherwise. 1230 */ 1231 static int spi_nor_parse_sccr(struct spi_nor *nor, 1232 const struct sfdp_parameter_header *sccr_header) 1233 { 1234 struct spi_nor_flash_parameter *params = nor->params; 1235 u32 *dwords, addr; 1236 size_t len; 1237 int ret; 1238 1239 len = sccr_header->length * sizeof(*dwords); 1240 dwords = kmalloc(len, GFP_KERNEL); 1241 if (!dwords) 1242 return -ENOMEM; 1243 1244 addr = SFDP_PARAM_HEADER_PTP(sccr_header); 1245 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1246 if (ret) 1247 goto out; 1248 1249 le32_to_cpu_array(dwords, sccr_header->length); 1250 1251 /* Address offset for volatile registers (die 0) */ 1252 if (!params->vreg_offset) { 1253 params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords), 1254 GFP_KERNEL); 1255 if (!params->vreg_offset) { 1256 ret = -ENOMEM; 1257 goto out; 1258 } 1259 } 1260 params->vreg_offset[0] = dwords[SFDP_DWORD(1)]; 1261 params->n_dice = 1; 1262 1263 if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, 1264 dwords[SFDP_DWORD(22)])) 1265 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; 1266 1267 out: 1268 kfree(dwords); 1269 return ret; 1270 } 1271 1272 /** 1273 * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration 1274 * Register Map Offsets for Multi-Chip SPI Memory 1275 * Devices. 1276 * @nor: pointer to a 'struct spi_nor' 1277 * @sccr_mc_header: pointer to the 'struct sfdp_parameter_header' describing 1278 * the SCCR Map offsets table length and version. 1279 * 1280 * Return: 0 on success, -errno otherwise. 1281 */ 1282 static int spi_nor_parse_sccr_mc(struct spi_nor *nor, 1283 const struct sfdp_parameter_header *sccr_mc_header) 1284 { 1285 struct spi_nor_flash_parameter *params = nor->params; 1286 u32 *dwords, addr; 1287 u8 i, n_dice; 1288 size_t len; 1289 int ret; 1290 1291 len = sccr_mc_header->length * sizeof(*dwords); 1292 dwords = kmalloc(len, GFP_KERNEL); 1293 if (!dwords) 1294 return -ENOMEM; 1295 1296 addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header); 1297 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1298 if (ret) 1299 goto out; 1300 1301 le32_to_cpu_array(dwords, sccr_mc_header->length); 1302 1303 /* 1304 * Pair of DOWRDs (volatile and non-volatile register offsets) per 1305 * additional die. Hence, length = 2 * (number of additional dice). 1306 */ 1307 n_dice = 1 + sccr_mc_header->length / 2; 1308 1309 /* Address offset for volatile registers of additional dice */ 1310 params->vreg_offset = 1311 devm_krealloc(nor->dev, params->vreg_offset, 1312 n_dice * sizeof(*dwords), 1313 GFP_KERNEL); 1314 if (!params->vreg_offset) { 1315 ret = -ENOMEM; 1316 goto out; 1317 } 1318 1319 for (i = 1; i < n_dice; i++) 1320 params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2]; 1321 1322 params->n_dice = n_dice; 1323 1324 out: 1325 kfree(dwords); 1326 return ret; 1327 } 1328 1329 /** 1330 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings 1331 * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP 1332 * tables. 1333 * @nor: pointer to a 'struct spi_nor' 1334 * 1335 * Used to tweak various flash parameters when information provided by the SFDP 1336 * tables are wrong. 1337 */ 1338 static int spi_nor_post_sfdp_fixups(struct spi_nor *nor) 1339 { 1340 int ret; 1341 1342 if (nor->manufacturer && nor->manufacturer->fixups && 1343 nor->manufacturer->fixups->post_sfdp) { 1344 ret = nor->manufacturer->fixups->post_sfdp(nor); 1345 if (ret) 1346 return ret; 1347 } 1348 1349 if (nor->info->fixups && nor->info->fixups->post_sfdp) 1350 return nor->info->fixups->post_sfdp(nor); 1351 1352 return 0; 1353 } 1354 1355 /** 1356 * spi_nor_check_sfdp_signature() - check for a valid SFDP signature 1357 * @nor: pointer to a 'struct spi_nor' 1358 * 1359 * Used to detect if the flash supports the RDSFDP command as well as the 1360 * presence of a valid SFDP table. 1361 * 1362 * Return: 0 on success, -errno otherwise. 1363 */ 1364 int spi_nor_check_sfdp_signature(struct spi_nor *nor) 1365 { 1366 u32 signature; 1367 int err; 1368 1369 /* Get the SFDP header. */ 1370 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature), 1371 &signature); 1372 if (err < 0) 1373 return err; 1374 1375 /* Check the SFDP signature. */ 1376 if (le32_to_cpu(signature) != SFDP_SIGNATURE) 1377 return -EINVAL; 1378 1379 return 0; 1380 } 1381 1382 /** 1383 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. 1384 * @nor: pointer to a 'struct spi_nor' 1385 * 1386 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 1387 * specification. This is a standard which tends to supported by almost all 1388 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at 1389 * runtime the main parameters needed to perform basic SPI flash operations such 1390 * as Fast Read, Page Program or Sector Erase commands. 1391 * 1392 * Return: 0 on success, -errno otherwise. 1393 */ 1394 int spi_nor_parse_sfdp(struct spi_nor *nor) 1395 { 1396 const struct sfdp_parameter_header *param_header, *bfpt_header; 1397 struct sfdp_parameter_header *param_headers = NULL; 1398 struct sfdp_header header; 1399 struct device *dev = nor->dev; 1400 struct sfdp *sfdp; 1401 size_t sfdp_size; 1402 size_t psize; 1403 int i, err; 1404 1405 /* Get the SFDP header. */ 1406 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); 1407 if (err < 0) 1408 return err; 1409 1410 /* Check the SFDP header version. */ 1411 if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || 1412 header.major != SFDP_JESD216_MAJOR) 1413 return -EINVAL; 1414 1415 /* 1416 * Verify that the first and only mandatory parameter header is a 1417 * Basic Flash Parameter Table header as specified in JESD216. 1418 */ 1419 bfpt_header = &header.bfpt_header; 1420 if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || 1421 bfpt_header->major != SFDP_JESD216_MAJOR) 1422 return -EINVAL; 1423 1424 sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) + 1425 SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header); 1426 1427 /* 1428 * Allocate memory then read all parameter headers with a single 1429 * Read SFDP command. These parameter headers will actually be parsed 1430 * twice: a first time to get the latest revision of the basic flash 1431 * parameter table, then a second time to handle the supported optional 1432 * tables. 1433 * Hence we read the parameter headers once for all to reduce the 1434 * processing time. Also we use kmalloc() instead of devm_kmalloc() 1435 * because we don't need to keep these parameter headers: the allocated 1436 * memory is always released with kfree() before exiting this function. 1437 */ 1438 if (header.nph) { 1439 psize = header.nph * sizeof(*param_headers); 1440 1441 param_headers = kmalloc(psize, GFP_KERNEL); 1442 if (!param_headers) 1443 return -ENOMEM; 1444 1445 err = spi_nor_read_sfdp(nor, sizeof(header), 1446 psize, param_headers); 1447 if (err < 0) { 1448 dev_dbg(dev, "failed to read SFDP parameter headers\n"); 1449 goto exit; 1450 } 1451 } 1452 1453 /* 1454 * Cache the complete SFDP data. It is not (easily) possible to fetch 1455 * SFDP after probe time and we need it for the sysfs access. 1456 */ 1457 for (i = 0; i < header.nph; i++) { 1458 param_header = ¶m_headers[i]; 1459 sfdp_size = max_t(size_t, sfdp_size, 1460 SFDP_PARAM_HEADER_PTP(param_header) + 1461 SFDP_PARAM_HEADER_PARAM_LEN(param_header)); 1462 } 1463 1464 /* 1465 * Limit the total size to a reasonable value to avoid allocating too 1466 * much memory just of because the flash returned some insane values. 1467 */ 1468 if (sfdp_size > PAGE_SIZE) { 1469 dev_dbg(dev, "SFDP data (%zu) too big, truncating\n", 1470 sfdp_size); 1471 sfdp_size = PAGE_SIZE; 1472 } 1473 1474 sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL); 1475 if (!sfdp) { 1476 err = -ENOMEM; 1477 goto exit; 1478 } 1479 1480 /* 1481 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the 1482 * sfdp_size should be a multiple of DWORDs. But in case a flash 1483 * is not spec compliant, make sure that we have enough space to store 1484 * the complete SFDP data. 1485 */ 1486 sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords)); 1487 sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords, 1488 sizeof(*sfdp->dwords), GFP_KERNEL); 1489 if (!sfdp->dwords) { 1490 err = -ENOMEM; 1491 devm_kfree(dev, sfdp); 1492 goto exit; 1493 } 1494 1495 err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords); 1496 if (err < 0) { 1497 dev_dbg(dev, "failed to read SFDP data\n"); 1498 devm_kfree(dev, sfdp->dwords); 1499 devm_kfree(dev, sfdp); 1500 goto exit; 1501 } 1502 1503 nor->sfdp = sfdp; 1504 1505 /* 1506 * Check other parameter headers to get the latest revision of 1507 * the basic flash parameter table. 1508 */ 1509 for (i = 0; i < header.nph; i++) { 1510 param_header = ¶m_headers[i]; 1511 1512 if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && 1513 param_header->major == SFDP_JESD216_MAJOR && 1514 (param_header->minor > bfpt_header->minor || 1515 (param_header->minor == bfpt_header->minor && 1516 param_header->length > bfpt_header->length))) 1517 bfpt_header = param_header; 1518 } 1519 1520 err = spi_nor_parse_bfpt(nor, bfpt_header); 1521 if (err) 1522 goto exit; 1523 1524 /* Parse optional parameter tables. */ 1525 for (i = 0; i < header.nph; i++) { 1526 param_header = ¶m_headers[i]; 1527 1528 switch (SFDP_PARAM_HEADER_ID(param_header)) { 1529 case SFDP_SECTOR_MAP_ID: 1530 err = spi_nor_parse_smpt(nor, param_header); 1531 break; 1532 1533 case SFDP_4BAIT_ID: 1534 err = spi_nor_parse_4bait(nor, param_header); 1535 break; 1536 1537 case SFDP_PROFILE1_ID: 1538 err = spi_nor_parse_profile1(nor, param_header); 1539 break; 1540 1541 case SFDP_SCCR_MAP_ID: 1542 err = spi_nor_parse_sccr(nor, param_header); 1543 break; 1544 1545 case SFDP_SCCR_MAP_MC_ID: 1546 err = spi_nor_parse_sccr_mc(nor, param_header); 1547 break; 1548 1549 default: 1550 break; 1551 } 1552 1553 if (err) { 1554 dev_warn(dev, "Failed to parse optional parameter table: %04x\n", 1555 SFDP_PARAM_HEADER_ID(param_header)); 1556 /* 1557 * Let's not drop all information we extracted so far 1558 * if optional table parsers fail. In case of failing, 1559 * each optional parser is responsible to roll back to 1560 * the previously known spi_nor data. 1561 */ 1562 err = 0; 1563 } 1564 } 1565 1566 err = spi_nor_post_sfdp_fixups(nor); 1567 exit: 1568 kfree(param_headers); 1569 return err; 1570 } 1571