xref: /linux/drivers/mtd/spi-nor/sfdp.c (revision d7b4e3287ca3a7baf66efd9158498e551a9550da)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/mtd/spi-nor.h>
9 #include <linux/slab.h>
10 #include <linux/sort.h>
11 
12 #include "core.h"
13 
14 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
15 #define SFDP_PARAM_HEADER_PTP(p) \
16 	(((p)->parameter_table_pointer[2] << 16) | \
17 	 ((p)->parameter_table_pointer[1] <<  8) | \
18 	 ((p)->parameter_table_pointer[0] <<  0))
19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
20 
21 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
22 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
23 #define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
24 #define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 table. */
25 #define SFDP_SCCR_MAP_ID	0xff87	/*
26 					 * Status, Control and Configuration
27 					 * Register Map.
28 					 */
29 #define SFDP_SCCR_MAP_MC_ID	0xff88	/*
30 					 * Status, Control and Configuration
31 					 * Register Map Offsets for Multi-Chip
32 					 * SPI Memory Devices.
33 					 */
34 
35 #define SFDP_SIGNATURE		0x50444653U
36 
37 struct sfdp_header {
38 	u32		signature; /* Ox50444653U <=> "SFDP" */
39 	u8		minor;
40 	u8		major;
41 	u8		nph; /* 0-base number of parameter headers */
42 	u8		unused;
43 
44 	/* Basic Flash Parameter Table. */
45 	struct sfdp_parameter_header	bfpt_header;
46 };
47 
48 /* Fast Read settings. */
49 struct sfdp_bfpt_read {
50 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
51 	u32			hwcaps;
52 
53 	/*
54 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
55 	 * whether the Fast Read x-y-z command is supported.
56 	 */
57 	u32			supported_dword;
58 	u32			supported_bit;
59 
60 	/*
61 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
62 	 * encodes the op code, the number of mode clocks and the number of wait
63 	 * states to be used by Fast Read x-y-z command.
64 	 */
65 	u32			settings_dword;
66 	u32			settings_shift;
67 
68 	/* The SPI protocol for this Fast Read x-y-z command. */
69 	enum spi_nor_protocol	proto;
70 };
71 
72 struct sfdp_bfpt_erase {
73 	/*
74 	 * The half-word at offset <shift> in DWORD <dword> encodes the
75 	 * op code and erase sector size to be used by Sector Erase commands.
76 	 */
77 	u32			dword;
78 	u32			shift;
79 };
80 
81 #define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
82 #define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
83 #define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
84 #define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
85 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
86 
87 #define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
88 #define SMPT_CMD_READ_DUMMY_SHIFT		16
89 #define SMPT_CMD_READ_DUMMY(_cmd) \
90 	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
91 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
92 
93 #define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
94 #define SMPT_CMD_READ_DATA_SHIFT		24
95 #define SMPT_CMD_READ_DATA(_cmd) \
96 	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
97 
98 #define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
99 #define SMPT_CMD_OPCODE_SHIFT			8
100 #define SMPT_CMD_OPCODE(_cmd) \
101 	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
102 
103 #define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
104 #define SMPT_MAP_REGION_COUNT_SHIFT		16
105 #define SMPT_MAP_REGION_COUNT(_header) \
106 	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
107 	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
108 
109 #define SMPT_MAP_ID_MASK			GENMASK(15, 8)
110 #define SMPT_MAP_ID_SHIFT			8
111 #define SMPT_MAP_ID(_header) \
112 	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
113 
114 #define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
115 #define SMPT_MAP_REGION_SIZE_SHIFT		8
116 #define SMPT_MAP_REGION_SIZE(_region) \
117 	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
118 	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
119 
120 #define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
121 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
122 	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
123 
124 #define SMPT_DESC_TYPE_MAP			BIT(1)
125 #define SMPT_DESC_END				BIT(0)
126 
127 #define SFDP_4BAIT_DWORD_MAX	2
128 
129 struct sfdp_4bait {
130 	/* The hardware capability. */
131 	u32		hwcaps;
132 
133 	/*
134 	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
135 	 * the associated 4-byte address op code is supported.
136 	 */
137 	u32		supported_bit;
138 };
139 
140 /**
141  * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
142  *			addr_nbytes and read_dummy members of the struct spi_nor
143  *			should be previously set.
144  * @nor:	pointer to a 'struct spi_nor'
145  * @addr:	offset in the serial flash memory
146  * @len:	number of bytes to read
147  * @buf:	buffer where the data is copied into (dma-safe memory)
148  *
149  * Return: 0 on success, -errno otherwise.
150  */
151 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
152 {
153 	ssize_t ret;
154 
155 	while (len) {
156 		ret = spi_nor_read_data(nor, addr, len, buf);
157 		if (ret < 0)
158 			return ret;
159 		if (!ret || ret > len)
160 			return -EIO;
161 
162 		buf += ret;
163 		addr += ret;
164 		len -= ret;
165 	}
166 	return 0;
167 }
168 
169 /**
170  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
171  * @nor:	pointer to a 'struct spi_nor'
172  * @addr:	offset in the SFDP area to start reading data from
173  * @len:	number of bytes to read
174  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
175  *
176  * Whatever the actual numbers of bytes for address and dummy cycles are
177  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
178  * followed by a 3-byte address and 8 dummy clock cycles.
179  *
180  * Return: 0 on success, -errno otherwise.
181  */
182 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
183 			     size_t len, void *buf)
184 {
185 	u8 addr_nbytes, read_opcode, read_dummy;
186 	int ret;
187 
188 	read_opcode = nor->read_opcode;
189 	addr_nbytes = nor->addr_nbytes;
190 	read_dummy = nor->read_dummy;
191 
192 	nor->read_opcode = SPINOR_OP_RDSFDP;
193 	nor->addr_nbytes = 3;
194 	nor->read_dummy = 8;
195 
196 	ret = spi_nor_read_raw(nor, addr, len, buf);
197 
198 	nor->read_opcode = read_opcode;
199 	nor->addr_nbytes = addr_nbytes;
200 	nor->read_dummy = read_dummy;
201 
202 	return ret;
203 }
204 
205 /**
206  * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
207  * @nor:	pointer to a 'struct spi_nor'
208  * @addr:	offset in the SFDP area to start reading data from
209  * @len:	number of bytes to read
210  * @buf:	buffer where the SFDP data are copied into
211  *
212  * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
213  * guaranteed to be dma-safe.
214  *
215  * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
216  *          otherwise.
217  */
218 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
219 					size_t len, void *buf)
220 {
221 	void *dma_safe_buf;
222 	int ret;
223 
224 	dma_safe_buf = kmalloc(len, GFP_KERNEL);
225 	if (!dma_safe_buf)
226 		return -ENOMEM;
227 
228 	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
229 	memcpy(buf, dma_safe_buf, len);
230 	kfree(dma_safe_buf);
231 
232 	return ret;
233 }
234 
235 static void
236 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
237 				    u16 half,
238 				    enum spi_nor_protocol proto)
239 {
240 	read->num_mode_clocks = (half >> 5) & 0x07;
241 	read->num_wait_states = (half >> 0) & 0x1f;
242 	read->opcode = (half >> 8) & 0xff;
243 	read->proto = proto;
244 }
245 
246 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
247 	/* Fast Read 1-1-2 */
248 	{
249 		SNOR_HWCAPS_READ_1_1_2,
250 		SFDP_DWORD(1), BIT(16),	/* Supported bit */
251 		SFDP_DWORD(4), 0,	/* Settings */
252 		SNOR_PROTO_1_1_2,
253 	},
254 
255 	/* Fast Read 1-2-2 */
256 	{
257 		SNOR_HWCAPS_READ_1_2_2,
258 		SFDP_DWORD(1), BIT(20),	/* Supported bit */
259 		SFDP_DWORD(4), 16,	/* Settings */
260 		SNOR_PROTO_1_2_2,
261 	},
262 
263 	/* Fast Read 2-2-2 */
264 	{
265 		SNOR_HWCAPS_READ_2_2_2,
266 		SFDP_DWORD(5),  BIT(0),	/* Supported bit */
267 		SFDP_DWORD(6), 16,	/* Settings */
268 		SNOR_PROTO_2_2_2,
269 	},
270 
271 	/* Fast Read 1-1-4 */
272 	{
273 		SNOR_HWCAPS_READ_1_1_4,
274 		SFDP_DWORD(1), BIT(22),	/* Supported bit */
275 		SFDP_DWORD(3), 16,	/* Settings */
276 		SNOR_PROTO_1_1_4,
277 	},
278 
279 	/* Fast Read 1-4-4 */
280 	{
281 		SNOR_HWCAPS_READ_1_4_4,
282 		SFDP_DWORD(1), BIT(21),	/* Supported bit */
283 		SFDP_DWORD(3), 0,	/* Settings */
284 		SNOR_PROTO_1_4_4,
285 	},
286 
287 	/* Fast Read 4-4-4 */
288 	{
289 		SNOR_HWCAPS_READ_4_4_4,
290 		SFDP_DWORD(5), BIT(4),	/* Supported bit */
291 		SFDP_DWORD(7), 16,	/* Settings */
292 		SNOR_PROTO_4_4_4,
293 	},
294 };
295 
296 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
297 	/* Erase Type 1 in DWORD8 bits[15:0] */
298 	{SFDP_DWORD(8), 0},
299 
300 	/* Erase Type 2 in DWORD8 bits[31:16] */
301 	{SFDP_DWORD(8), 16},
302 
303 	/* Erase Type 3 in DWORD9 bits[15:0] */
304 	{SFDP_DWORD(9), 0},
305 
306 	/* Erase Type 4 in DWORD9 bits[31:16] */
307 	{SFDP_DWORD(9), 16},
308 };
309 
310 /**
311  * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
312  * @erase:	pointer to a structure that describes a SPI NOR erase type
313  * @size:	the size of the sector/block erased by the erase type
314  * @opcode:	the SPI command op code to erase the sector/block
315  * @i:		erase type index as sorted in the Basic Flash Parameter Table
316  *
317  * The supported Erase Types will be sorted at init in ascending order, with
318  * the smallest Erase Type size being the first member in the erase_type array
319  * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
320  * the Basic Flash Parameter Table since it will be used later on to
321  * synchronize with the supported Erase Types defined in SFDP optional tables.
322  */
323 static void
324 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
325 				     u32 size, u8 opcode, u8 i)
326 {
327 	erase->idx = i;
328 	spi_nor_set_erase_type(erase, size, opcode);
329 }
330 
331 /**
332  * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
333  * @l:	member in the left half of the map's erase_type array
334  * @r:	member in the right half of the map's erase_type array
335  *
336  * Comparison function used in the sort() call to sort in ascending order the
337  * map's erase types, the smallest erase type size being the first member in the
338  * sorted erase_type array.
339  *
340  * Return: the result of @l->size - @r->size
341  */
342 static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
343 {
344 	const struct spi_nor_erase_type *left = l, *right = r;
345 
346 	return left->size - right->size;
347 }
348 
349 /**
350  * spi_nor_sort_erase_mask() - sort erase mask
351  * @map:	the erase map of the SPI NOR
352  * @erase_mask:	the erase type mask to be sorted
353  *
354  * Replicate the sort done for the map's erase types in BFPT: sort the erase
355  * mask in ascending order with the smallest erase type size starting from
356  * BIT(0) in the sorted erase mask.
357  *
358  * Return: sorted erase mask.
359  */
360 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
361 {
362 	struct spi_nor_erase_type *erase_type = map->erase_type;
363 	int i;
364 	u8 sorted_erase_mask = 0;
365 
366 	if (!erase_mask)
367 		return 0;
368 
369 	/* Replicate the sort done for the map's erase types. */
370 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
371 		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
372 			sorted_erase_mask |= BIT(i);
373 
374 	return sorted_erase_mask;
375 }
376 
377 /**
378  * spi_nor_regions_sort_erase_types() - sort erase types in each region
379  * @map:	the erase map of the SPI NOR
380  *
381  * Function assumes that the erase types defined in the erase map are already
382  * sorted in ascending order, with the smallest erase type size being the first
383  * member in the erase_type array. It replicates the sort done for the map's
384  * erase types. Each region's erase bitmask will indicate which erase types are
385  * supported from the sorted erase types defined in the erase map.
386  * Sort the all region's erase type at init in order to speed up the process of
387  * finding the best erase command at runtime.
388  */
389 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
390 {
391 	struct spi_nor_erase_region *region = map->regions;
392 	u8 region_erase_mask, sorted_erase_mask;
393 
394 	while (region) {
395 		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
396 
397 		sorted_erase_mask = spi_nor_sort_erase_mask(map,
398 							    region_erase_mask);
399 
400 		/* Overwrite erase mask. */
401 		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
402 				 sorted_erase_mask;
403 
404 		region = spi_nor_region_next(region);
405 	}
406 }
407 
408 /**
409  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
410  * @nor:		pointer to a 'struct spi_nor'
411  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
412  *			the Basic Flash Parameter Table length and version
413  *
414  * The Basic Flash Parameter Table is the main and only mandatory table as
415  * defined by the SFDP (JESD216) specification.
416  * It provides us with the total size (memory density) of the data array and
417  * the number of address bytes for Fast Read, Page Program and Sector Erase
418  * commands.
419  * For Fast READ commands, it also gives the number of mode clock cycles and
420  * wait states (regrouped in the number of dummy clock cycles) for each
421  * supported instruction op code.
422  * For Page Program, the page size is now available since JESD216 rev A, however
423  * the supported instruction op codes are still not provided.
424  * For Sector Erase commands, this table stores the supported instruction op
425  * codes and the associated sector sizes.
426  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
427  * rev A. The QER bits encode the manufacturer dependent procedure to be
428  * executed to set the Quad Enable (QE) bit in some internal register of the
429  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
430  * sending any Quad SPI command to the memory. Actually, setting the QE bit
431  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
432  * and IO3 hence enabling 4 (Quad) I/O lines.
433  *
434  * Return: 0 on success, -errno otherwise.
435  */
436 static int spi_nor_parse_bfpt(struct spi_nor *nor,
437 			      const struct sfdp_parameter_header *bfpt_header)
438 {
439 	struct spi_nor_flash_parameter *params = nor->params;
440 	struct spi_nor_erase_map *map = &params->erase_map;
441 	struct spi_nor_erase_type *erase_type = map->erase_type;
442 	struct sfdp_bfpt bfpt;
443 	size_t len;
444 	int i, cmd, err;
445 	u32 addr, val;
446 	u32 dword;
447 	u16 half;
448 	u8 erase_mask;
449 	u8 wait_states, mode_clocks, opcode;
450 
451 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
452 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
453 		return -EINVAL;
454 
455 	/* Read the Basic Flash Parameter Table. */
456 	len = min_t(size_t, sizeof(bfpt),
457 		    bfpt_header->length * sizeof(u32));
458 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
459 	memset(&bfpt, 0, sizeof(bfpt));
460 	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
461 	if (err < 0)
462 		return err;
463 
464 	/* Fix endianness of the BFPT DWORDs. */
465 	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
466 
467 	/* Number of address bytes. */
468 	switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
469 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
470 	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
471 		params->addr_nbytes = 3;
472 		params->addr_mode_nbytes = 3;
473 		break;
474 
475 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
476 		params->addr_nbytes = 4;
477 		params->addr_mode_nbytes = 4;
478 		break;
479 
480 	default:
481 		break;
482 	}
483 
484 	/* Flash Memory Density (in bits). */
485 	val = bfpt.dwords[SFDP_DWORD(2)];
486 	if (val & BIT(31)) {
487 		val &= ~BIT(31);
488 
489 		/*
490 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
491 		 * bits is unlikely to exist so this error probably means
492 		 * the BFPT we are reading is corrupted/wrong.
493 		 */
494 		if (val > 63)
495 			return -EINVAL;
496 
497 		params->size = 1ULL << val;
498 	} else {
499 		params->size = val + 1;
500 	}
501 	params->size >>= 3; /* Convert to bytes. */
502 
503 	/* Fast Read settings. */
504 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
505 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
506 		struct spi_nor_read_command *read;
507 
508 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
509 			params->hwcaps.mask &= ~rd->hwcaps;
510 			continue;
511 		}
512 
513 		params->hwcaps.mask |= rd->hwcaps;
514 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
515 		read = &params->reads[cmd];
516 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
517 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
518 	}
519 
520 	/*
521 	 * Sector Erase settings. Reinitialize the uniform erase map using the
522 	 * Erase Types defined in the bfpt table.
523 	 */
524 	erase_mask = 0;
525 	memset(&params->erase_map, 0, sizeof(params->erase_map));
526 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
527 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
528 		u32 erasesize;
529 		u8 opcode;
530 
531 		half = bfpt.dwords[er->dword] >> er->shift;
532 		erasesize = half & 0xff;
533 
534 		/* erasesize == 0 means this Erase Type is not supported. */
535 		if (!erasesize)
536 			continue;
537 
538 		erasesize = 1U << erasesize;
539 		opcode = (half >> 8) & 0xff;
540 		erase_mask |= BIT(i);
541 		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
542 						     opcode, i);
543 	}
544 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
545 	/*
546 	 * Sort all the map's Erase Types in ascending order with the smallest
547 	 * erase size being the first member in the erase_type array.
548 	 */
549 	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
550 	     spi_nor_map_cmp_erase_type, NULL);
551 	/*
552 	 * Sort the erase types in the uniform region in order to update the
553 	 * uniform_erase_type bitmask. The bitmask will be used later on when
554 	 * selecting the uniform erase.
555 	 */
556 	spi_nor_regions_sort_erase_types(map);
557 	map->uniform_erase_type = map->uniform_region.offset &
558 				  SNOR_ERASE_TYPE_MASK;
559 
560 	/* Stop here if not JESD216 rev A or later. */
561 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
562 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
563 
564 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
565 	val = bfpt.dwords[SFDP_DWORD(11)];
566 	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
567 	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
568 	params->page_size = 1U << val;
569 
570 	/* Quad Enable Requirements. */
571 	switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
572 	case BFPT_DWORD15_QER_NONE:
573 		params->quad_enable = NULL;
574 		break;
575 
576 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
577 		/*
578 		 * Writing only one byte to the Status Register has the
579 		 * side-effect of clearing Status Register 2.
580 		 */
581 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
582 		/*
583 		 * Read Configuration Register (35h) instruction is not
584 		 * supported.
585 		 */
586 		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
587 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
588 		break;
589 
590 	case BFPT_DWORD15_QER_SR1_BIT6:
591 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
592 		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
593 		break;
594 
595 	case BFPT_DWORD15_QER_SR2_BIT7:
596 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
597 		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
598 		break;
599 
600 	case BFPT_DWORD15_QER_SR2_BIT1:
601 		/*
602 		 * JESD216 rev B or later does not specify if writing only one
603 		 * byte to the Status Register clears or not the Status
604 		 * Register 2, so let's be cautious and keep the default
605 		 * assumption of a 16-bit Write Status (01h) command.
606 		 */
607 		nor->flags |= SNOR_F_HAS_16BIT_SR;
608 
609 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
610 		break;
611 
612 	default:
613 		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
614 		break;
615 	}
616 
617 	dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK;
618 	if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR))
619 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
620 	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B))
621 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
622 	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B))
623 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b;
624 	else
625 		dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n");
626 
627 	/* Soft Reset support. */
628 	if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
629 		nor->flags |= SNOR_F_SOFT_RESET;
630 
631 	/* Stop here if not JESD216 rev C or later. */
632 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
633 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
634 
635 	/* Parse 1-1-8 read instruction */
636 	opcode = FIELD_GET(BFPT_DWORD17_RD_1_1_8_CMD, bfpt.dwords[SFDP_DWORD(17)]);
637 	if (opcode) {
638 		mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_1_8_MODE_CLOCKS,
639 					bfpt.dwords[SFDP_DWORD(17)]);
640 		wait_states = FIELD_GET(BFPT_DWORD17_RD_1_1_8_WAIT_STATES,
641 					bfpt.dwords[SFDP_DWORD(17)]);
642 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
643 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
644 					  mode_clocks, wait_states, opcode,
645 					  SNOR_PROTO_1_1_8);
646 	}
647 
648 	/* Parse 1-8-8 read instruction */
649 	opcode = FIELD_GET(BFPT_DWORD17_RD_1_8_8_CMD, bfpt.dwords[SFDP_DWORD(17)]);
650 	if (opcode) {
651 		mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_8_8_MODE_CLOCKS,
652 					bfpt.dwords[SFDP_DWORD(17)]);
653 		wait_states = FIELD_GET(BFPT_DWORD17_RD_1_8_8_WAIT_STATES,
654 					bfpt.dwords[SFDP_DWORD(17)]);
655 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_8_8;
656 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_8_8],
657 					  mode_clocks, wait_states, opcode,
658 					  SNOR_PROTO_1_8_8);
659 	}
660 
661 	/* 8D-8D-8D command extension. */
662 	switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
663 	case BFPT_DWORD18_CMD_EXT_REP:
664 		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
665 		break;
666 
667 	case BFPT_DWORD18_CMD_EXT_INV:
668 		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
669 		break;
670 
671 	case BFPT_DWORD18_CMD_EXT_RES:
672 		dev_dbg(nor->dev, "Reserved command extension used\n");
673 		break;
674 
675 	case BFPT_DWORD18_CMD_EXT_16B:
676 		dev_dbg(nor->dev, "16-bit opcodes not supported\n");
677 		return -EOPNOTSUPP;
678 	}
679 
680 	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
681 }
682 
683 /**
684  * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the
685  *			       configuration detection command.
686  * @nor:	pointer to a 'struct spi_nor'
687  * @settings:	configuration detection command descriptor, dword1
688  */
689 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings)
690 {
691 	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
692 	case SMPT_CMD_ADDRESS_LEN_0:
693 		return 0;
694 	case SMPT_CMD_ADDRESS_LEN_3:
695 		return 3;
696 	case SMPT_CMD_ADDRESS_LEN_4:
697 		return 4;
698 	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
699 	default:
700 		return nor->params->addr_mode_nbytes;
701 	}
702 }
703 
704 /**
705  * spi_nor_smpt_read_dummy() - return the configuration detection command read
706  *			       latency, in clock cycles.
707  * @nor:	pointer to a 'struct spi_nor'
708  * @settings:	configuration detection command descriptor, dword1
709  *
710  * Return: the number of dummy cycles for an SMPT read
711  */
712 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
713 {
714 	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
715 
716 	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
717 		return nor->read_dummy;
718 	return read_dummy;
719 }
720 
721 /**
722  * spi_nor_get_map_in_use() - get the configuration map in use
723  * @nor:	pointer to a 'struct spi_nor'
724  * @smpt:	pointer to the sector map parameter table
725  * @smpt_len:	sector map parameter table length
726  *
727  * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
728  */
729 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
730 					 u8 smpt_len)
731 {
732 	const u32 *ret;
733 	u8 *buf;
734 	u32 addr;
735 	int err;
736 	u8 i;
737 	u8 addr_nbytes, read_opcode, read_dummy;
738 	u8 read_data_mask, map_id;
739 
740 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
741 	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
742 	if (!buf)
743 		return ERR_PTR(-ENOMEM);
744 
745 	addr_nbytes = nor->addr_nbytes;
746 	read_dummy = nor->read_dummy;
747 	read_opcode = nor->read_opcode;
748 
749 	map_id = 0;
750 	/* Determine if there are any optional Detection Command Descriptors */
751 	for (i = 0; i < smpt_len; i += 2) {
752 		if (smpt[i] & SMPT_DESC_TYPE_MAP)
753 			break;
754 
755 		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
756 		nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]);
757 		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
758 		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
759 		addr = smpt[i + 1];
760 
761 		err = spi_nor_read_raw(nor, addr, 1, buf);
762 		if (err) {
763 			ret = ERR_PTR(err);
764 			goto out;
765 		}
766 
767 		/*
768 		 * Build an index value that is used to select the Sector Map
769 		 * Configuration that is currently in use.
770 		 */
771 		map_id = map_id << 1 | !!(*buf & read_data_mask);
772 	}
773 
774 	/*
775 	 * If command descriptors are provided, they always precede map
776 	 * descriptors in the table. There is no need to start the iteration
777 	 * over smpt array all over again.
778 	 *
779 	 * Find the matching configuration map.
780 	 */
781 	ret = ERR_PTR(-EINVAL);
782 	while (i < smpt_len) {
783 		if (SMPT_MAP_ID(smpt[i]) == map_id) {
784 			ret = smpt + i;
785 			break;
786 		}
787 
788 		/*
789 		 * If there are no more configuration map descriptors and no
790 		 * configuration ID matched the configuration identifier, the
791 		 * sector address map is unknown.
792 		 */
793 		if (smpt[i] & SMPT_DESC_END)
794 			break;
795 
796 		/* increment the table index to the next map */
797 		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
798 	}
799 
800 	/* fall through */
801 out:
802 	kfree(buf);
803 	nor->addr_nbytes = addr_nbytes;
804 	nor->read_dummy = read_dummy;
805 	nor->read_opcode = read_opcode;
806 	return ret;
807 }
808 
809 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
810 {
811 	region->offset |= SNOR_LAST_REGION;
812 }
813 
814 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
815 {
816 	region->offset |= SNOR_OVERLAID_REGION;
817 }
818 
819 /**
820  * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
821  * @region:	pointer to a structure that describes a SPI NOR erase region
822  * @erase:	pointer to a structure that describes a SPI NOR erase type
823  * @erase_type:	erase type bitmask
824  */
825 static void
826 spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
827 			     const struct spi_nor_erase_type *erase,
828 			     const u8 erase_type)
829 {
830 	int i;
831 
832 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
833 		if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
834 			continue;
835 		if (region->size & erase[i].size_mask) {
836 			spi_nor_region_mark_overlay(region);
837 			return;
838 		}
839 	}
840 }
841 
842 /**
843  * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
844  * @nor:	pointer to a 'struct spi_nor'
845  * @smpt:	pointer to the sector map parameter table
846  *
847  * Return: 0 on success, -errno otherwise.
848  */
849 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
850 					      const u32 *smpt)
851 {
852 	struct spi_nor_erase_map *map = &nor->params->erase_map;
853 	struct spi_nor_erase_type *erase = map->erase_type;
854 	struct spi_nor_erase_region *region;
855 	u64 offset;
856 	u32 region_count;
857 	int i, j;
858 	u8 uniform_erase_type, save_uniform_erase_type;
859 	u8 erase_type, regions_erase_type;
860 
861 	region_count = SMPT_MAP_REGION_COUNT(*smpt);
862 	/*
863 	 * The regions will be freed when the driver detaches from the
864 	 * device.
865 	 */
866 	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
867 			      GFP_KERNEL);
868 	if (!region)
869 		return -ENOMEM;
870 	map->regions = region;
871 
872 	uniform_erase_type = 0xff;
873 	regions_erase_type = 0;
874 	offset = 0;
875 	/* Populate regions. */
876 	for (i = 0; i < region_count; i++) {
877 		j = i + 1; /* index for the region dword */
878 		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
879 		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
880 		region[i].offset = offset | erase_type;
881 
882 		spi_nor_region_check_overlay(&region[i], erase, erase_type);
883 
884 		/*
885 		 * Save the erase types that are supported in all regions and
886 		 * can erase the entire flash memory.
887 		 */
888 		uniform_erase_type &= erase_type;
889 
890 		/*
891 		 * regions_erase_type mask will indicate all the erase types
892 		 * supported in this configuration map.
893 		 */
894 		regions_erase_type |= erase_type;
895 
896 		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
897 			 region[i].size;
898 	}
899 	spi_nor_region_mark_end(&region[i - 1]);
900 
901 	save_uniform_erase_type = map->uniform_erase_type;
902 	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
903 							  uniform_erase_type);
904 
905 	if (!regions_erase_type) {
906 		/*
907 		 * Roll back to the previous uniform_erase_type mask, SMPT is
908 		 * broken.
909 		 */
910 		map->uniform_erase_type = save_uniform_erase_type;
911 		return -EINVAL;
912 	}
913 
914 	/*
915 	 * BFPT advertises all the erase types supported by all the possible
916 	 * map configurations. Mask out the erase types that are not supported
917 	 * by the current map configuration.
918 	 */
919 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
920 		if (!(regions_erase_type & BIT(erase[i].idx)))
921 			spi_nor_mask_erase_type(&erase[i]);
922 
923 	return 0;
924 }
925 
926 /**
927  * spi_nor_parse_smpt() - parse Sector Map Parameter Table
928  * @nor:		pointer to a 'struct spi_nor'
929  * @smpt_header:	sector map parameter table header
930  *
931  * This table is optional, but when available, we parse it to identify the
932  * location and size of sectors within the main data array of the flash memory
933  * device and to identify which Erase Types are supported by each sector.
934  *
935  * Return: 0 on success, -errno otherwise.
936  */
937 static int spi_nor_parse_smpt(struct spi_nor *nor,
938 			      const struct sfdp_parameter_header *smpt_header)
939 {
940 	const u32 *sector_map;
941 	u32 *smpt;
942 	size_t len;
943 	u32 addr;
944 	int ret;
945 
946 	/* Read the Sector Map Parameter Table. */
947 	len = smpt_header->length * sizeof(*smpt);
948 	smpt = kmalloc(len, GFP_KERNEL);
949 	if (!smpt)
950 		return -ENOMEM;
951 
952 	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
953 	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
954 	if (ret)
955 		goto out;
956 
957 	/* Fix endianness of the SMPT DWORDs. */
958 	le32_to_cpu_array(smpt, smpt_header->length);
959 
960 	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
961 	if (IS_ERR(sector_map)) {
962 		ret = PTR_ERR(sector_map);
963 		goto out;
964 	}
965 
966 	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
967 	if (ret)
968 		goto out;
969 
970 	spi_nor_regions_sort_erase_types(&nor->params->erase_map);
971 	/* fall through */
972 out:
973 	kfree(smpt);
974 	return ret;
975 }
976 
977 /**
978  * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
979  * @nor:		pointer to a 'struct spi_nor'.
980  * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
981  *			the 4-Byte Address Instruction Table length and version.
982  *
983  * Return: 0 on success, -errno otherwise.
984  */
985 static int spi_nor_parse_4bait(struct spi_nor *nor,
986 			       const struct sfdp_parameter_header *param_header)
987 {
988 	static const struct sfdp_4bait reads[] = {
989 		{ SNOR_HWCAPS_READ,		BIT(0) },
990 		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
991 		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
992 		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
993 		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
994 		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
995 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
996 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
997 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
998 		{ SNOR_HWCAPS_READ_1_1_8,	BIT(20) },
999 		{ SNOR_HWCAPS_READ_1_8_8,	BIT(21) },
1000 	};
1001 	static const struct sfdp_4bait programs[] = {
1002 		{ SNOR_HWCAPS_PP,		BIT(6) },
1003 		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
1004 		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
1005 	};
1006 	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
1007 		{ 0u /* not used */,		BIT(9) },
1008 		{ 0u /* not used */,		BIT(10) },
1009 		{ 0u /* not used */,		BIT(11) },
1010 		{ 0u /* not used */,		BIT(12) },
1011 	};
1012 	struct spi_nor_flash_parameter *params = nor->params;
1013 	struct spi_nor_pp_command *params_pp = params->page_programs;
1014 	struct spi_nor_erase_map *map = &params->erase_map;
1015 	struct spi_nor_erase_type *erase_type = map->erase_type;
1016 	u32 *dwords;
1017 	size_t len;
1018 	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
1019 	int i, ret;
1020 
1021 	if (param_header->major != SFDP_JESD216_MAJOR ||
1022 	    param_header->length < SFDP_4BAIT_DWORD_MAX)
1023 		return -EINVAL;
1024 
1025 	/* Read the 4-byte Address Instruction Table. */
1026 	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
1027 
1028 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
1029 	dwords = kmalloc(len, GFP_KERNEL);
1030 	if (!dwords)
1031 		return -ENOMEM;
1032 
1033 	addr = SFDP_PARAM_HEADER_PTP(param_header);
1034 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1035 	if (ret)
1036 		goto out;
1037 
1038 	/* Fix endianness of the 4BAIT DWORDs. */
1039 	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
1040 
1041 	/*
1042 	 * Compute the subset of (Fast) Read commands for which the 4-byte
1043 	 * version is supported.
1044 	 */
1045 	discard_hwcaps = 0;
1046 	read_hwcaps = 0;
1047 	for (i = 0; i < ARRAY_SIZE(reads); i++) {
1048 		const struct sfdp_4bait *read = &reads[i];
1049 
1050 		discard_hwcaps |= read->hwcaps;
1051 		if ((params->hwcaps.mask & read->hwcaps) &&
1052 		    (dwords[SFDP_DWORD(1)] & read->supported_bit))
1053 			read_hwcaps |= read->hwcaps;
1054 	}
1055 
1056 	/*
1057 	 * Compute the subset of Page Program commands for which the 4-byte
1058 	 * version is supported.
1059 	 */
1060 	pp_hwcaps = 0;
1061 	for (i = 0; i < ARRAY_SIZE(programs); i++) {
1062 		const struct sfdp_4bait *program = &programs[i];
1063 
1064 		/*
1065 		 * The 4 Byte Address Instruction (Optional) Table is the only
1066 		 * SFDP table that indicates support for Page Program Commands.
1067 		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1068 		 * authority for specifying Page Program support.
1069 		 */
1070 		discard_hwcaps |= program->hwcaps;
1071 		if (dwords[SFDP_DWORD(1)] & program->supported_bit)
1072 			pp_hwcaps |= program->hwcaps;
1073 	}
1074 
1075 	/*
1076 	 * Compute the subset of Sector Erase commands for which the 4-byte
1077 	 * version is supported.
1078 	 */
1079 	erase_mask = 0;
1080 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1081 		const struct sfdp_4bait *erase = &erases[i];
1082 
1083 		if (dwords[SFDP_DWORD(1)] & erase->supported_bit)
1084 			erase_mask |= BIT(i);
1085 	}
1086 
1087 	/* Replicate the sort done for the map's erase types in BFPT. */
1088 	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1089 
1090 	/*
1091 	 * We need at least one 4-byte op code per read, program and erase
1092 	 * operation; the .read(), .write() and .erase() hooks share the
1093 	 * nor->addr_nbytes value.
1094 	 */
1095 	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1096 		goto out;
1097 
1098 	/*
1099 	 * Discard all operations from the 4-byte instruction set which are
1100 	 * not supported by this memory.
1101 	 */
1102 	params->hwcaps.mask &= ~discard_hwcaps;
1103 	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1104 
1105 	/* Use the 4-byte address instruction set. */
1106 	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1107 		struct spi_nor_read_command *read_cmd = &params->reads[i];
1108 
1109 		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1110 	}
1111 
1112 	/* 4BAIT is the only SFDP table that indicates page program support. */
1113 	if (pp_hwcaps & SNOR_HWCAPS_PP) {
1114 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1115 					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1116 		/*
1117 		 * Since xSPI Page Program opcode is backward compatible with
1118 		 * Legacy SPI, use Legacy SPI opcode there as well.
1119 		 */
1120 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1121 					SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1122 	}
1123 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1124 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1125 					SPINOR_OP_PP_1_1_4_4B,
1126 					SNOR_PROTO_1_1_4);
1127 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1128 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1129 					SPINOR_OP_PP_1_4_4_4B,
1130 					SNOR_PROTO_1_4_4);
1131 
1132 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1133 		if (erase_mask & BIT(i))
1134 			erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >>
1135 						erase_type[i].idx * 8) & 0xFF;
1136 		else
1137 			spi_nor_mask_erase_type(&erase_type[i]);
1138 	}
1139 
1140 	/*
1141 	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1142 	 * later because we already did the conversion to 4byte opcodes. Also,
1143 	 * this latest function implements a legacy quirk for the erase size of
1144 	 * Spansion memory. However this quirk is no longer needed with new
1145 	 * SFDP compliant memories.
1146 	 */
1147 	params->addr_nbytes = 4;
1148 	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1149 
1150 	/* fall through */
1151 out:
1152 	kfree(dwords);
1153 	return ret;
1154 }
1155 
1156 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
1157 #define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
1158 #define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
1159 #define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
1160 #define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
1161 #define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
1162 #define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
1163 
1164 /**
1165  * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1166  * @nor:		pointer to a 'struct spi_nor'
1167  * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
1168  *			the Profile 1.0 Table length and version.
1169  *
1170  * Return: 0 on success, -errno otherwise.
1171  */
1172 static int spi_nor_parse_profile1(struct spi_nor *nor,
1173 				  const struct sfdp_parameter_header *profile1_header)
1174 {
1175 	u32 *dwords, addr;
1176 	size_t len;
1177 	int ret;
1178 	u8 dummy, opcode;
1179 
1180 	len = profile1_header->length * sizeof(*dwords);
1181 	dwords = kmalloc(len, GFP_KERNEL);
1182 	if (!dwords)
1183 		return -ENOMEM;
1184 
1185 	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1186 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1187 	if (ret)
1188 		goto out;
1189 
1190 	le32_to_cpu_array(dwords, profile1_header->length);
1191 
1192 	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
1193 	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]);
1194 
1195 	 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1196 	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY)
1197 		nor->params->rdsr_dummy = 8;
1198 	else
1199 		nor->params->rdsr_dummy = 4;
1200 
1201 	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1202 		nor->params->rdsr_addr_nbytes = 4;
1203 	else
1204 		nor->params->rdsr_addr_nbytes = 0;
1205 
1206 	/*
1207 	 * We don't know what speed the controller is running at. Find the
1208 	 * dummy cycles for the fastest frequency the flash can run at to be
1209 	 * sure we are never short of dummy cycles. A value of 0 means the
1210 	 * frequency is not supported.
1211 	 *
1212 	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1213 	 * flashes set the correct value if needed in their fixup hooks.
1214 	 */
1215 	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]);
1216 	if (!dummy)
1217 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ,
1218 				  dwords[SFDP_DWORD(5)]);
1219 	if (!dummy)
1220 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ,
1221 				  dwords[SFDP_DWORD(5)]);
1222 	if (!dummy)
1223 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ,
1224 				  dwords[SFDP_DWORD(5)]);
1225 	if (!dummy)
1226 		dev_dbg(nor->dev,
1227 			"Can't find dummy cycles from Profile 1.0 table\n");
1228 
1229 	/* Round up to an even value to avoid tripping controllers up. */
1230 	dummy = round_up(dummy, 2);
1231 
1232 	/* Update the fast read settings. */
1233 	nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
1234 	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1235 				  0, dummy, opcode,
1236 				  SNOR_PROTO_8_8_8_DTR);
1237 
1238 	/*
1239 	 * Page Program is "Required Command" in the xSPI Profile 1.0. Update
1240 	 * the params->hwcaps.mask here.
1241 	 */
1242 	nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
1243 
1244 out:
1245 	kfree(dwords);
1246 	return ret;
1247 }
1248 
1249 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE		BIT(31)
1250 
1251 /**
1252  * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1253  *                        Map.
1254  * @nor:		pointer to a 'struct spi_nor'
1255  * @sccr_header:	pointer to the 'struct sfdp_parameter_header' describing
1256  *			the SCCR Map table length and version.
1257  *
1258  * Return: 0 on success, -errno otherwise.
1259  */
1260 static int spi_nor_parse_sccr(struct spi_nor *nor,
1261 			      const struct sfdp_parameter_header *sccr_header)
1262 {
1263 	struct spi_nor_flash_parameter *params = nor->params;
1264 	u32 *dwords, addr;
1265 	size_t len;
1266 	int ret;
1267 
1268 	len = sccr_header->length * sizeof(*dwords);
1269 	dwords = kmalloc(len, GFP_KERNEL);
1270 	if (!dwords)
1271 		return -ENOMEM;
1272 
1273 	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1274 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1275 	if (ret)
1276 		goto out;
1277 
1278 	le32_to_cpu_array(dwords, sccr_header->length);
1279 
1280 	/* Address offset for volatile registers (die 0) */
1281 	if (!params->vreg_offset) {
1282 		params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords),
1283 						   GFP_KERNEL);
1284 		if (!params->vreg_offset) {
1285 			ret = -ENOMEM;
1286 			goto out;
1287 		}
1288 	}
1289 	params->vreg_offset[0] = dwords[SFDP_DWORD(1)];
1290 	params->n_dice = 1;
1291 
1292 	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE,
1293 		      dwords[SFDP_DWORD(22)]))
1294 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1295 
1296 out:
1297 	kfree(dwords);
1298 	return ret;
1299 }
1300 
1301 /**
1302  * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration
1303  *                           Register Map Offsets for Multi-Chip SPI Memory
1304  *                           Devices.
1305  * @nor:		pointer to a 'struct spi_nor'
1306  * @sccr_mc_header:	pointer to the 'struct sfdp_parameter_header' describing
1307  *			the SCCR Map offsets table length and version.
1308  *
1309  * Return: 0 on success, -errno otherwise.
1310  */
1311 static int spi_nor_parse_sccr_mc(struct spi_nor *nor,
1312 				 const struct sfdp_parameter_header *sccr_mc_header)
1313 {
1314 	struct spi_nor_flash_parameter *params = nor->params;
1315 	u32 *dwords, addr;
1316 	u8 i, n_dice;
1317 	size_t len;
1318 	int ret;
1319 
1320 	len = sccr_mc_header->length * sizeof(*dwords);
1321 	dwords = kmalloc(len, GFP_KERNEL);
1322 	if (!dwords)
1323 		return -ENOMEM;
1324 
1325 	addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header);
1326 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1327 	if (ret)
1328 		goto out;
1329 
1330 	le32_to_cpu_array(dwords, sccr_mc_header->length);
1331 
1332 	/*
1333 	 * Pair of DOWRDs (volatile and non-volatile register offsets) per
1334 	 * additional die. Hence, length = 2 * (number of additional dice).
1335 	 */
1336 	n_dice = 1 + sccr_mc_header->length / 2;
1337 
1338 	/* Address offset for volatile registers of additional dice */
1339 	params->vreg_offset =
1340 			devm_krealloc(nor->dev, params->vreg_offset,
1341 				      n_dice * sizeof(*dwords),
1342 				      GFP_KERNEL);
1343 	if (!params->vreg_offset) {
1344 		ret = -ENOMEM;
1345 		goto out;
1346 	}
1347 
1348 	for (i = 1; i < n_dice; i++)
1349 		params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2];
1350 
1351 	params->n_dice = n_dice;
1352 
1353 out:
1354 	kfree(dwords);
1355 	return ret;
1356 }
1357 
1358 /**
1359  * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
1360  * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
1361  * tables.
1362  * @nor:	pointer to a 'struct spi_nor'
1363  *
1364  * Used to tweak various flash parameters when information provided by the SFDP
1365  * tables are wrong.
1366  */
1367 static int spi_nor_post_sfdp_fixups(struct spi_nor *nor)
1368 {
1369 	int ret;
1370 
1371 	if (nor->manufacturer && nor->manufacturer->fixups &&
1372 	    nor->manufacturer->fixups->post_sfdp) {
1373 		ret = nor->manufacturer->fixups->post_sfdp(nor);
1374 		if (ret)
1375 			return ret;
1376 	}
1377 
1378 	if (nor->info->fixups && nor->info->fixups->post_sfdp)
1379 		return nor->info->fixups->post_sfdp(nor);
1380 
1381 	return 0;
1382 }
1383 
1384 /**
1385  * spi_nor_check_sfdp_signature() - check for a valid SFDP signature
1386  * @nor:	pointer to a 'struct spi_nor'
1387  *
1388  * Used to detect if the flash supports the RDSFDP command as well as the
1389  * presence of a valid SFDP table.
1390  *
1391  * Return: 0 on success, -errno otherwise.
1392  */
1393 int spi_nor_check_sfdp_signature(struct spi_nor *nor)
1394 {
1395 	u32 signature;
1396 	int err;
1397 
1398 	/* Get the SFDP header. */
1399 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature),
1400 					   &signature);
1401 	if (err < 0)
1402 		return err;
1403 
1404 	/* Check the SFDP signature. */
1405 	if (le32_to_cpu(signature) != SFDP_SIGNATURE)
1406 		return -EINVAL;
1407 
1408 	return 0;
1409 }
1410 
1411 /**
1412  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1413  * @nor:		pointer to a 'struct spi_nor'
1414  *
1415  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1416  * specification. This is a standard which tends to supported by almost all
1417  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1418  * runtime the main parameters needed to perform basic SPI flash operations such
1419  * as Fast Read, Page Program or Sector Erase commands.
1420  *
1421  * Return: 0 on success, -errno otherwise.
1422  */
1423 int spi_nor_parse_sfdp(struct spi_nor *nor)
1424 {
1425 	const struct sfdp_parameter_header *param_header, *bfpt_header;
1426 	struct sfdp_parameter_header *param_headers = NULL;
1427 	struct sfdp_header header;
1428 	struct device *dev = nor->dev;
1429 	struct sfdp *sfdp;
1430 	size_t sfdp_size;
1431 	size_t psize;
1432 	int i, err;
1433 
1434 	/* Get the SFDP header. */
1435 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1436 	if (err < 0)
1437 		return err;
1438 
1439 	/* Check the SFDP header version. */
1440 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1441 	    header.major != SFDP_JESD216_MAJOR)
1442 		return -EINVAL;
1443 
1444 	/*
1445 	 * Verify that the first and only mandatory parameter header is a
1446 	 * Basic Flash Parameter Table header as specified in JESD216.
1447 	 */
1448 	bfpt_header = &header.bfpt_header;
1449 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1450 	    bfpt_header->major != SFDP_JESD216_MAJOR)
1451 		return -EINVAL;
1452 
1453 	sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
1454 		    SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
1455 
1456 	/*
1457 	 * Allocate memory then read all parameter headers with a single
1458 	 * Read SFDP command. These parameter headers will actually be parsed
1459 	 * twice: a first time to get the latest revision of the basic flash
1460 	 * parameter table, then a second time to handle the supported optional
1461 	 * tables.
1462 	 * Hence we read the parameter headers once for all to reduce the
1463 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1464 	 * because we don't need to keep these parameter headers: the allocated
1465 	 * memory is always released with kfree() before exiting this function.
1466 	 */
1467 	if (header.nph) {
1468 		psize = header.nph * sizeof(*param_headers);
1469 
1470 		param_headers = kmalloc(psize, GFP_KERNEL);
1471 		if (!param_headers)
1472 			return -ENOMEM;
1473 
1474 		err = spi_nor_read_sfdp(nor, sizeof(header),
1475 					psize, param_headers);
1476 		if (err < 0) {
1477 			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1478 			goto exit;
1479 		}
1480 	}
1481 
1482 	/*
1483 	 * Cache the complete SFDP data. It is not (easily) possible to fetch
1484 	 * SFDP after probe time and we need it for the sysfs access.
1485 	 */
1486 	for (i = 0; i < header.nph; i++) {
1487 		param_header = &param_headers[i];
1488 		sfdp_size = max_t(size_t, sfdp_size,
1489 				  SFDP_PARAM_HEADER_PTP(param_header) +
1490 				  SFDP_PARAM_HEADER_PARAM_LEN(param_header));
1491 	}
1492 
1493 	/*
1494 	 * Limit the total size to a reasonable value to avoid allocating too
1495 	 * much memory just of because the flash returned some insane values.
1496 	 */
1497 	if (sfdp_size > PAGE_SIZE) {
1498 		dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
1499 			sfdp_size);
1500 		sfdp_size = PAGE_SIZE;
1501 	}
1502 
1503 	sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
1504 	if (!sfdp) {
1505 		err = -ENOMEM;
1506 		goto exit;
1507 	}
1508 
1509 	/*
1510 	 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the
1511 	 * sfdp_size should be a multiple of DWORDs. But in case a flash
1512 	 * is not spec compliant, make sure that we have enough space to store
1513 	 * the complete SFDP data.
1514 	 */
1515 	sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
1516 	sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
1517 				    sizeof(*sfdp->dwords), GFP_KERNEL);
1518 	if (!sfdp->dwords) {
1519 		err = -ENOMEM;
1520 		devm_kfree(dev, sfdp);
1521 		goto exit;
1522 	}
1523 
1524 	err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
1525 	if (err < 0) {
1526 		dev_dbg(dev, "failed to read SFDP data\n");
1527 		devm_kfree(dev, sfdp->dwords);
1528 		devm_kfree(dev, sfdp);
1529 		goto exit;
1530 	}
1531 
1532 	nor->sfdp = sfdp;
1533 
1534 	/*
1535 	 * Check other parameter headers to get the latest revision of
1536 	 * the basic flash parameter table.
1537 	 */
1538 	for (i = 0; i < header.nph; i++) {
1539 		param_header = &param_headers[i];
1540 
1541 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1542 		    param_header->major == SFDP_JESD216_MAJOR &&
1543 		    (param_header->minor > bfpt_header->minor ||
1544 		     (param_header->minor == bfpt_header->minor &&
1545 		      param_header->length > bfpt_header->length)))
1546 			bfpt_header = param_header;
1547 	}
1548 
1549 	err = spi_nor_parse_bfpt(nor, bfpt_header);
1550 	if (err)
1551 		goto exit;
1552 
1553 	/* Parse optional parameter tables. */
1554 	for (i = 0; i < header.nph; i++) {
1555 		param_header = &param_headers[i];
1556 
1557 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1558 		case SFDP_SECTOR_MAP_ID:
1559 			err = spi_nor_parse_smpt(nor, param_header);
1560 			break;
1561 
1562 		case SFDP_4BAIT_ID:
1563 			err = spi_nor_parse_4bait(nor, param_header);
1564 			break;
1565 
1566 		case SFDP_PROFILE1_ID:
1567 			err = spi_nor_parse_profile1(nor, param_header);
1568 			break;
1569 
1570 		case SFDP_SCCR_MAP_ID:
1571 			err = spi_nor_parse_sccr(nor, param_header);
1572 			break;
1573 
1574 		case SFDP_SCCR_MAP_MC_ID:
1575 			err = spi_nor_parse_sccr_mc(nor, param_header);
1576 			break;
1577 
1578 		default:
1579 			break;
1580 		}
1581 
1582 		if (err) {
1583 			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1584 				 SFDP_PARAM_HEADER_ID(param_header));
1585 			/*
1586 			 * Let's not drop all information we extracted so far
1587 			 * if optional table parsers fail. In case of failing,
1588 			 * each optional parser is responsible to roll back to
1589 			 * the previously known spi_nor data.
1590 			 */
1591 			err = 0;
1592 		}
1593 	}
1594 
1595 	err = spi_nor_post_sfdp_fixups(nor);
1596 exit:
1597 	kfree(param_headers);
1598 	return err;
1599 }
1600