1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2005, Intec Automation Inc. 4 * Copyright (C) 2014, Freescale Semiconductor, Inc. 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/mtd/spi-nor.h> 9 #include <linux/slab.h> 10 #include <linux/sort.h> 11 12 #include "core.h" 13 14 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) 15 #define SFDP_PARAM_HEADER_PTP(p) \ 16 (((p)->parameter_table_pointer[2] << 16) | \ 17 ((p)->parameter_table_pointer[1] << 8) | \ 18 ((p)->parameter_table_pointer[0] << 0)) 19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4) 20 21 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ 22 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ 23 #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ 24 #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */ 25 #define SFDP_SCCR_MAP_ID 0xff87 /* 26 * Status, Control and Configuration 27 * Register Map. 28 */ 29 #define SFDP_SCCR_MAP_MC_ID 0xff88 /* 30 * Status, Control and Configuration 31 * Register Map Offsets for Multi-Chip 32 * SPI Memory Devices. 33 */ 34 35 #define SFDP_SIGNATURE 0x50444653U 36 37 struct sfdp_header { 38 u32 signature; /* Ox50444653U <=> "SFDP" */ 39 u8 minor; 40 u8 major; 41 u8 nph; /* 0-base number of parameter headers */ 42 u8 unused; 43 44 /* Basic Flash Parameter Table. */ 45 struct sfdp_parameter_header bfpt_header; 46 }; 47 48 /* Fast Read settings. */ 49 struct sfdp_bfpt_read { 50 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ 51 u32 hwcaps; 52 53 /* 54 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us 55 * whether the Fast Read x-y-z command is supported. 56 */ 57 u32 supported_dword; 58 u32 supported_bit; 59 60 /* 61 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD 62 * encodes the op code, the number of mode clocks and the number of wait 63 * states to be used by Fast Read x-y-z command. 64 */ 65 u32 settings_dword; 66 u32 settings_shift; 67 68 /* The SPI protocol for this Fast Read x-y-z command. */ 69 enum spi_nor_protocol proto; 70 }; 71 72 struct sfdp_bfpt_erase { 73 /* 74 * The half-word at offset <shift> in DWORD <dword> encodes the 75 * op code and erase sector size to be used by Sector Erase commands. 76 */ 77 u32 dword; 78 u32 shift; 79 }; 80 81 #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) 82 #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) 83 #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) 84 #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) 85 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) 86 87 #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) 88 #define SMPT_CMD_READ_DUMMY_SHIFT 16 89 #define SMPT_CMD_READ_DUMMY(_cmd) \ 90 (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) 91 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL 92 93 #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) 94 #define SMPT_CMD_READ_DATA_SHIFT 24 95 #define SMPT_CMD_READ_DATA(_cmd) \ 96 (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) 97 98 #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) 99 #define SMPT_CMD_OPCODE_SHIFT 8 100 #define SMPT_CMD_OPCODE(_cmd) \ 101 (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) 102 103 #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) 104 #define SMPT_MAP_REGION_COUNT_SHIFT 16 105 #define SMPT_MAP_REGION_COUNT(_header) \ 106 ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ 107 SMPT_MAP_REGION_COUNT_SHIFT) + 1) 108 109 #define SMPT_MAP_ID_MASK GENMASK(15, 8) 110 #define SMPT_MAP_ID_SHIFT 8 111 #define SMPT_MAP_ID(_header) \ 112 (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) 113 114 #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) 115 #define SMPT_MAP_REGION_SIZE_SHIFT 8 116 #define SMPT_MAP_REGION_SIZE(_region) \ 117 (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ 118 SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) 119 120 #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) 121 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \ 122 ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) 123 124 #define SMPT_DESC_TYPE_MAP BIT(1) 125 #define SMPT_DESC_END BIT(0) 126 127 #define SFDP_4BAIT_DWORD_MAX 2 128 129 struct sfdp_4bait { 130 /* The hardware capability. */ 131 u32 hwcaps; 132 133 /* 134 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether 135 * the associated 4-byte address op code is supported. 136 */ 137 u32 supported_bit; 138 }; 139 140 /** 141 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, 142 * addr_nbytes and read_dummy members of the struct spi_nor 143 * should be previously set. 144 * @nor: pointer to a 'struct spi_nor' 145 * @addr: offset in the serial flash memory 146 * @len: number of bytes to read 147 * @buf: buffer where the data is copied into (dma-safe memory) 148 * 149 * Return: 0 on success, -errno otherwise. 150 */ 151 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) 152 { 153 ssize_t ret; 154 155 while (len) { 156 ret = spi_nor_read_data(nor, addr, len, buf); 157 if (ret < 0) 158 return ret; 159 if (!ret || ret > len) 160 return -EIO; 161 162 buf += ret; 163 addr += ret; 164 len -= ret; 165 } 166 return 0; 167 } 168 169 /** 170 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. 171 * @nor: pointer to a 'struct spi_nor' 172 * @addr: offset in the SFDP area to start reading data from 173 * @len: number of bytes to read 174 * @buf: buffer where the SFDP data are copied into (dma-safe memory) 175 * 176 * Whatever the actual numbers of bytes for address and dummy cycles are 177 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always 178 * followed by a 3-byte address and 8 dummy clock cycles. 179 * 180 * Return: 0 on success, -errno otherwise. 181 */ 182 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, 183 size_t len, void *buf) 184 { 185 u8 addr_nbytes, read_opcode, read_dummy; 186 int ret; 187 188 read_opcode = nor->read_opcode; 189 addr_nbytes = nor->addr_nbytes; 190 read_dummy = nor->read_dummy; 191 192 nor->read_opcode = SPINOR_OP_RDSFDP; 193 nor->addr_nbytes = 3; 194 nor->read_dummy = 8; 195 196 ret = spi_nor_read_raw(nor, addr, len, buf); 197 198 nor->read_opcode = read_opcode; 199 nor->addr_nbytes = addr_nbytes; 200 nor->read_dummy = read_dummy; 201 202 return ret; 203 } 204 205 /** 206 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. 207 * @nor: pointer to a 'struct spi_nor' 208 * @addr: offset in the SFDP area to start reading data from 209 * @len: number of bytes to read 210 * @buf: buffer where the SFDP data are copied into 211 * 212 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not 213 * guaranteed to be dma-safe. 214 * 215 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() 216 * otherwise. 217 */ 218 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, 219 size_t len, void *buf) 220 { 221 void *dma_safe_buf; 222 int ret; 223 224 dma_safe_buf = kmalloc(len, GFP_KERNEL); 225 if (!dma_safe_buf) 226 return -ENOMEM; 227 228 ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); 229 memcpy(buf, dma_safe_buf, len); 230 kfree(dma_safe_buf); 231 232 return ret; 233 } 234 235 static void 236 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, 237 u16 half, 238 enum spi_nor_protocol proto) 239 { 240 read->num_mode_clocks = (half >> 5) & 0x07; 241 read->num_wait_states = (half >> 0) & 0x1f; 242 read->opcode = (half >> 8) & 0xff; 243 read->proto = proto; 244 } 245 246 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { 247 /* Fast Read 1-1-2 */ 248 { 249 SNOR_HWCAPS_READ_1_1_2, 250 SFDP_DWORD(1), BIT(16), /* Supported bit */ 251 SFDP_DWORD(4), 0, /* Settings */ 252 SNOR_PROTO_1_1_2, 253 }, 254 255 /* Fast Read 1-2-2 */ 256 { 257 SNOR_HWCAPS_READ_1_2_2, 258 SFDP_DWORD(1), BIT(20), /* Supported bit */ 259 SFDP_DWORD(4), 16, /* Settings */ 260 SNOR_PROTO_1_2_2, 261 }, 262 263 /* Fast Read 2-2-2 */ 264 { 265 SNOR_HWCAPS_READ_2_2_2, 266 SFDP_DWORD(5), BIT(0), /* Supported bit */ 267 SFDP_DWORD(6), 16, /* Settings */ 268 SNOR_PROTO_2_2_2, 269 }, 270 271 /* Fast Read 1-1-4 */ 272 { 273 SNOR_HWCAPS_READ_1_1_4, 274 SFDP_DWORD(1), BIT(22), /* Supported bit */ 275 SFDP_DWORD(3), 16, /* Settings */ 276 SNOR_PROTO_1_1_4, 277 }, 278 279 /* Fast Read 1-4-4 */ 280 { 281 SNOR_HWCAPS_READ_1_4_4, 282 SFDP_DWORD(1), BIT(21), /* Supported bit */ 283 SFDP_DWORD(3), 0, /* Settings */ 284 SNOR_PROTO_1_4_4, 285 }, 286 287 /* Fast Read 4-4-4 */ 288 { 289 SNOR_HWCAPS_READ_4_4_4, 290 SFDP_DWORD(5), BIT(4), /* Supported bit */ 291 SFDP_DWORD(7), 16, /* Settings */ 292 SNOR_PROTO_4_4_4, 293 }, 294 }; 295 296 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { 297 /* Erase Type 1 in DWORD8 bits[15:0] */ 298 {SFDP_DWORD(8), 0}, 299 300 /* Erase Type 2 in DWORD8 bits[31:16] */ 301 {SFDP_DWORD(8), 16}, 302 303 /* Erase Type 3 in DWORD9 bits[15:0] */ 304 {SFDP_DWORD(9), 0}, 305 306 /* Erase Type 4 in DWORD9 bits[31:16] */ 307 {SFDP_DWORD(9), 16}, 308 }; 309 310 /** 311 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT 312 * @erase: pointer to a structure that describes a SPI NOR erase type 313 * @size: the size of the sector/block erased by the erase type 314 * @opcode: the SPI command op code to erase the sector/block 315 * @i: erase type index as sorted in the Basic Flash Parameter Table 316 * 317 * The supported Erase Types will be sorted at init in ascending order, with 318 * the smallest Erase Type size being the first member in the erase_type array 319 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in 320 * the Basic Flash Parameter Table since it will be used later on to 321 * synchronize with the supported Erase Types defined in SFDP optional tables. 322 */ 323 static void 324 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, 325 u32 size, u8 opcode, u8 i) 326 { 327 erase->idx = i; 328 spi_nor_set_erase_type(erase, size, opcode); 329 } 330 331 /** 332 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size 333 * @l: member in the left half of the map's erase_type array 334 * @r: member in the right half of the map's erase_type array 335 * 336 * Comparison function used in the sort() call to sort in ascending order the 337 * map's erase types, the smallest erase type size being the first member in the 338 * sorted erase_type array. 339 * 340 * Return: the result of @l->size - @r->size 341 */ 342 static int spi_nor_map_cmp_erase_type(const void *l, const void *r) 343 { 344 const struct spi_nor_erase_type *left = l, *right = r; 345 346 return left->size - right->size; 347 } 348 349 /** 350 * spi_nor_sort_erase_mask() - sort erase mask 351 * @map: the erase map of the SPI NOR 352 * @erase_mask: the erase type mask to be sorted 353 * 354 * Replicate the sort done for the map's erase types in BFPT: sort the erase 355 * mask in ascending order with the smallest erase type size starting from 356 * BIT(0) in the sorted erase mask. 357 * 358 * Return: sorted erase mask. 359 */ 360 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) 361 { 362 struct spi_nor_erase_type *erase_type = map->erase_type; 363 int i; 364 u8 sorted_erase_mask = 0; 365 366 if (!erase_mask) 367 return 0; 368 369 /* Replicate the sort done for the map's erase types. */ 370 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 371 if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) 372 sorted_erase_mask |= BIT(i); 373 374 return sorted_erase_mask; 375 } 376 377 /** 378 * spi_nor_regions_sort_erase_types() - sort erase types in each region 379 * @map: the erase map of the SPI NOR 380 * 381 * Function assumes that the erase types defined in the erase map are already 382 * sorted in ascending order, with the smallest erase type size being the first 383 * member in the erase_type array. It replicates the sort done for the map's 384 * erase types. Each region's erase bitmask will indicate which erase types are 385 * supported from the sorted erase types defined in the erase map. 386 * Sort the all region's erase type at init in order to speed up the process of 387 * finding the best erase command at runtime. 388 */ 389 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) 390 { 391 struct spi_nor_erase_region *region = map->regions; 392 u8 region_erase_mask, sorted_erase_mask; 393 394 while (region) { 395 region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; 396 397 sorted_erase_mask = spi_nor_sort_erase_mask(map, 398 region_erase_mask); 399 400 /* Overwrite erase mask. */ 401 region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) | 402 sorted_erase_mask; 403 404 region = spi_nor_region_next(region); 405 } 406 } 407 408 /** 409 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. 410 * @nor: pointer to a 'struct spi_nor' 411 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing 412 * the Basic Flash Parameter Table length and version 413 * 414 * The Basic Flash Parameter Table is the main and only mandatory table as 415 * defined by the SFDP (JESD216) specification. 416 * It provides us with the total size (memory density) of the data array and 417 * the number of address bytes for Fast Read, Page Program and Sector Erase 418 * commands. 419 * For Fast READ commands, it also gives the number of mode clock cycles and 420 * wait states (regrouped in the number of dummy clock cycles) for each 421 * supported instruction op code. 422 * For Page Program, the page size is now available since JESD216 rev A, however 423 * the supported instruction op codes are still not provided. 424 * For Sector Erase commands, this table stores the supported instruction op 425 * codes and the associated sector sizes. 426 * Finally, the Quad Enable Requirements (QER) are also available since JESD216 427 * rev A. The QER bits encode the manufacturer dependent procedure to be 428 * executed to set the Quad Enable (QE) bit in some internal register of the 429 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before 430 * sending any Quad SPI command to the memory. Actually, setting the QE bit 431 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 432 * and IO3 hence enabling 4 (Quad) I/O lines. 433 * 434 * Return: 0 on success, -errno otherwise. 435 */ 436 static int spi_nor_parse_bfpt(struct spi_nor *nor, 437 const struct sfdp_parameter_header *bfpt_header) 438 { 439 struct spi_nor_flash_parameter *params = nor->params; 440 struct spi_nor_erase_map *map = ¶ms->erase_map; 441 struct spi_nor_erase_type *erase_type = map->erase_type; 442 struct sfdp_bfpt bfpt; 443 size_t len; 444 int i, cmd, err; 445 u32 addr, val; 446 u32 dword; 447 u16 half; 448 u8 erase_mask; 449 u8 wait_states, mode_clocks, opcode; 450 451 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ 452 if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) 453 return -EINVAL; 454 455 /* Read the Basic Flash Parameter Table. */ 456 len = min_t(size_t, sizeof(bfpt), 457 bfpt_header->length * sizeof(u32)); 458 addr = SFDP_PARAM_HEADER_PTP(bfpt_header); 459 memset(&bfpt, 0, sizeof(bfpt)); 460 err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); 461 if (err < 0) 462 return err; 463 464 /* Fix endianness of the BFPT DWORDs. */ 465 le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX); 466 467 /* Number of address bytes. */ 468 switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { 469 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: 470 case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4: 471 params->addr_nbytes = 3; 472 params->addr_mode_nbytes = 3; 473 break; 474 475 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: 476 params->addr_nbytes = 4; 477 params->addr_mode_nbytes = 4; 478 break; 479 480 default: 481 break; 482 } 483 484 /* Flash Memory Density (in bits). */ 485 val = bfpt.dwords[SFDP_DWORD(2)]; 486 if (val & BIT(31)) { 487 val &= ~BIT(31); 488 489 /* 490 * Prevent overflows on params->size. Anyway, a NOR of 2^64 491 * bits is unlikely to exist so this error probably means 492 * the BFPT we are reading is corrupted/wrong. 493 */ 494 if (val > 63) 495 return -EINVAL; 496 497 params->size = 1ULL << val; 498 } else { 499 params->size = val + 1; 500 } 501 params->size >>= 3; /* Convert to bytes. */ 502 503 /* Fast Read settings. */ 504 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { 505 const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; 506 struct spi_nor_read_command *read; 507 508 if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { 509 params->hwcaps.mask &= ~rd->hwcaps; 510 continue; 511 } 512 513 params->hwcaps.mask |= rd->hwcaps; 514 cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); 515 read = ¶ms->reads[cmd]; 516 half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; 517 spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); 518 } 519 520 /* 521 * Sector Erase settings. Reinitialize the uniform erase map using the 522 * Erase Types defined in the bfpt table. 523 */ 524 erase_mask = 0; 525 memset(¶ms->erase_map, 0, sizeof(params->erase_map)); 526 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { 527 const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; 528 u32 erasesize; 529 u8 opcode; 530 531 half = bfpt.dwords[er->dword] >> er->shift; 532 erasesize = half & 0xff; 533 534 /* erasesize == 0 means this Erase Type is not supported. */ 535 if (!erasesize) 536 continue; 537 538 erasesize = 1U << erasesize; 539 opcode = (half >> 8) & 0xff; 540 erase_mask |= BIT(i); 541 spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, 542 opcode, i); 543 } 544 spi_nor_init_uniform_erase_map(map, erase_mask, params->size); 545 /* 546 * Sort all the map's Erase Types in ascending order with the smallest 547 * erase size being the first member in the erase_type array. 548 */ 549 sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), 550 spi_nor_map_cmp_erase_type, NULL); 551 /* 552 * Sort the erase types in the uniform region in order to update the 553 * uniform_erase_type bitmask. The bitmask will be used later on when 554 * selecting the uniform erase. 555 */ 556 spi_nor_regions_sort_erase_types(map); 557 map->uniform_erase_type = map->uniform_region.offset & 558 SNOR_ERASE_TYPE_MASK; 559 560 /* Stop here if not JESD216 rev A or later. */ 561 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216) 562 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 563 564 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ 565 val = bfpt.dwords[SFDP_DWORD(11)]; 566 val &= BFPT_DWORD11_PAGE_SIZE_MASK; 567 val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; 568 params->page_size = 1U << val; 569 570 /* Quad Enable Requirements. */ 571 switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) { 572 case BFPT_DWORD15_QER_NONE: 573 params->quad_enable = NULL; 574 break; 575 576 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: 577 /* 578 * Writing only one byte to the Status Register has the 579 * side-effect of clearing Status Register 2. 580 */ 581 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: 582 /* 583 * Read Configuration Register (35h) instruction is not 584 * supported. 585 */ 586 nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR; 587 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 588 break; 589 590 case BFPT_DWORD15_QER_SR1_BIT6: 591 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 592 params->quad_enable = spi_nor_sr1_bit6_quad_enable; 593 break; 594 595 case BFPT_DWORD15_QER_SR2_BIT7: 596 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 597 params->quad_enable = spi_nor_sr2_bit7_quad_enable; 598 break; 599 600 case BFPT_DWORD15_QER_SR2_BIT1: 601 /* 602 * JESD216 rev B or later does not specify if writing only one 603 * byte to the Status Register clears or not the Status 604 * Register 2, so let's be cautious and keep the default 605 * assumption of a 16-bit Write Status (01h) command. 606 */ 607 nor->flags |= SNOR_F_HAS_16BIT_SR; 608 609 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 610 break; 611 612 default: 613 dev_dbg(nor->dev, "BFPT QER reserved value used\n"); 614 break; 615 } 616 617 dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK; 618 if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR)) 619 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr; 620 else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B)) 621 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b; 622 else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B)) 623 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b; 624 else 625 dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n"); 626 627 /* Soft Reset support. */ 628 if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST) 629 nor->flags |= SNOR_F_SOFT_RESET; 630 631 /* Stop here if not JESD216 rev C or later. */ 632 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B) 633 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 634 635 /* Parse 1-1-8 read instruction */ 636 opcode = FIELD_GET(BFPT_DWORD17_RD_1_1_8_CMD, bfpt.dwords[SFDP_DWORD(17)]); 637 if (opcode) { 638 mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_1_8_MODE_CLOCKS, 639 bfpt.dwords[SFDP_DWORD(17)]); 640 wait_states = FIELD_GET(BFPT_DWORD17_RD_1_1_8_WAIT_STATES, 641 bfpt.dwords[SFDP_DWORD(17)]); 642 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; 643 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], 644 mode_clocks, wait_states, opcode, 645 SNOR_PROTO_1_1_8); 646 } 647 648 /* Parse 1-8-8 read instruction */ 649 opcode = FIELD_GET(BFPT_DWORD17_RD_1_8_8_CMD, bfpt.dwords[SFDP_DWORD(17)]); 650 if (opcode) { 651 mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_8_8_MODE_CLOCKS, 652 bfpt.dwords[SFDP_DWORD(17)]); 653 wait_states = FIELD_GET(BFPT_DWORD17_RD_1_8_8_WAIT_STATES, 654 bfpt.dwords[SFDP_DWORD(17)]); 655 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_8_8; 656 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_8_8], 657 mode_clocks, wait_states, opcode, 658 SNOR_PROTO_1_8_8); 659 } 660 661 /* 8D-8D-8D command extension. */ 662 switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) { 663 case BFPT_DWORD18_CMD_EXT_REP: 664 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; 665 break; 666 667 case BFPT_DWORD18_CMD_EXT_INV: 668 nor->cmd_ext_type = SPI_NOR_EXT_INVERT; 669 break; 670 671 case BFPT_DWORD18_CMD_EXT_RES: 672 dev_dbg(nor->dev, "Reserved command extension used\n"); 673 break; 674 675 case BFPT_DWORD18_CMD_EXT_16B: 676 dev_dbg(nor->dev, "16-bit opcodes not supported\n"); 677 return -EOPNOTSUPP; 678 } 679 680 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 681 } 682 683 /** 684 * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the 685 * configuration detection command. 686 * @nor: pointer to a 'struct spi_nor' 687 * @settings: configuration detection command descriptor, dword1 688 */ 689 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings) 690 { 691 switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { 692 case SMPT_CMD_ADDRESS_LEN_0: 693 return 0; 694 case SMPT_CMD_ADDRESS_LEN_3: 695 return 3; 696 case SMPT_CMD_ADDRESS_LEN_4: 697 return 4; 698 case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: 699 default: 700 return nor->params->addr_mode_nbytes; 701 } 702 } 703 704 /** 705 * spi_nor_smpt_read_dummy() - return the configuration detection command read 706 * latency, in clock cycles. 707 * @nor: pointer to a 'struct spi_nor' 708 * @settings: configuration detection command descriptor, dword1 709 * 710 * Return: the number of dummy cycles for an SMPT read 711 */ 712 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) 713 { 714 u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); 715 716 if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) 717 return nor->read_dummy; 718 return read_dummy; 719 } 720 721 /** 722 * spi_nor_get_map_in_use() - get the configuration map in use 723 * @nor: pointer to a 'struct spi_nor' 724 * @smpt: pointer to the sector map parameter table 725 * @smpt_len: sector map parameter table length 726 * 727 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. 728 */ 729 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, 730 u8 smpt_len) 731 { 732 const u32 *ret; 733 u8 *buf; 734 u32 addr; 735 int err; 736 u8 i; 737 u8 addr_nbytes, read_opcode, read_dummy; 738 u8 read_data_mask, map_id; 739 740 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 741 buf = kmalloc(sizeof(*buf), GFP_KERNEL); 742 if (!buf) 743 return ERR_PTR(-ENOMEM); 744 745 addr_nbytes = nor->addr_nbytes; 746 read_dummy = nor->read_dummy; 747 read_opcode = nor->read_opcode; 748 749 map_id = 0; 750 /* Determine if there are any optional Detection Command Descriptors */ 751 for (i = 0; i < smpt_len; i += 2) { 752 if (smpt[i] & SMPT_DESC_TYPE_MAP) 753 break; 754 755 read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); 756 nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]); 757 nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); 758 nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); 759 addr = smpt[i + 1]; 760 761 err = spi_nor_read_raw(nor, addr, 1, buf); 762 if (err) { 763 ret = ERR_PTR(err); 764 goto out; 765 } 766 767 /* 768 * Build an index value that is used to select the Sector Map 769 * Configuration that is currently in use. 770 */ 771 map_id = map_id << 1 | !!(*buf & read_data_mask); 772 } 773 774 /* 775 * If command descriptors are provided, they always precede map 776 * descriptors in the table. There is no need to start the iteration 777 * over smpt array all over again. 778 * 779 * Find the matching configuration map. 780 */ 781 ret = ERR_PTR(-EINVAL); 782 while (i < smpt_len) { 783 if (SMPT_MAP_ID(smpt[i]) == map_id) { 784 ret = smpt + i; 785 break; 786 } 787 788 /* 789 * If there are no more configuration map descriptors and no 790 * configuration ID matched the configuration identifier, the 791 * sector address map is unknown. 792 */ 793 if (smpt[i] & SMPT_DESC_END) 794 break; 795 796 /* increment the table index to the next map */ 797 i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; 798 } 799 800 /* fall through */ 801 out: 802 kfree(buf); 803 nor->addr_nbytes = addr_nbytes; 804 nor->read_dummy = read_dummy; 805 nor->read_opcode = read_opcode; 806 return ret; 807 } 808 809 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region) 810 { 811 region->offset |= SNOR_LAST_REGION; 812 } 813 814 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region) 815 { 816 region->offset |= SNOR_OVERLAID_REGION; 817 } 818 819 /** 820 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid 821 * @region: pointer to a structure that describes a SPI NOR erase region 822 * @erase: pointer to a structure that describes a SPI NOR erase type 823 * @erase_type: erase type bitmask 824 */ 825 static void 826 spi_nor_region_check_overlay(struct spi_nor_erase_region *region, 827 const struct spi_nor_erase_type *erase, 828 const u8 erase_type) 829 { 830 int i; 831 832 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 833 if (!(erase[i].size && erase_type & BIT(erase[i].idx))) 834 continue; 835 if (region->size & erase[i].size_mask) { 836 spi_nor_region_mark_overlay(region); 837 return; 838 } 839 } 840 } 841 842 /** 843 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map 844 * @nor: pointer to a 'struct spi_nor' 845 * @smpt: pointer to the sector map parameter table 846 * 847 * Return: 0 on success, -errno otherwise. 848 */ 849 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, 850 const u32 *smpt) 851 { 852 struct spi_nor_erase_map *map = &nor->params->erase_map; 853 struct spi_nor_erase_type *erase = map->erase_type; 854 struct spi_nor_erase_region *region; 855 u64 offset; 856 u32 region_count; 857 int i, j; 858 u8 uniform_erase_type, save_uniform_erase_type; 859 u8 erase_type, regions_erase_type; 860 861 region_count = SMPT_MAP_REGION_COUNT(*smpt); 862 /* 863 * The regions will be freed when the driver detaches from the 864 * device. 865 */ 866 region = devm_kcalloc(nor->dev, region_count, sizeof(*region), 867 GFP_KERNEL); 868 if (!region) 869 return -ENOMEM; 870 map->regions = region; 871 872 uniform_erase_type = 0xff; 873 regions_erase_type = 0; 874 offset = 0; 875 /* Populate regions. */ 876 for (i = 0; i < region_count; i++) { 877 j = i + 1; /* index for the region dword */ 878 region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); 879 erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); 880 region[i].offset = offset | erase_type; 881 882 spi_nor_region_check_overlay(®ion[i], erase, erase_type); 883 884 /* 885 * Save the erase types that are supported in all regions and 886 * can erase the entire flash memory. 887 */ 888 uniform_erase_type &= erase_type; 889 890 /* 891 * regions_erase_type mask will indicate all the erase types 892 * supported in this configuration map. 893 */ 894 regions_erase_type |= erase_type; 895 896 offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) + 897 region[i].size; 898 } 899 spi_nor_region_mark_end(®ion[i - 1]); 900 901 save_uniform_erase_type = map->uniform_erase_type; 902 map->uniform_erase_type = spi_nor_sort_erase_mask(map, 903 uniform_erase_type); 904 905 if (!regions_erase_type) { 906 /* 907 * Roll back to the previous uniform_erase_type mask, SMPT is 908 * broken. 909 */ 910 map->uniform_erase_type = save_uniform_erase_type; 911 return -EINVAL; 912 } 913 914 /* 915 * BFPT advertises all the erase types supported by all the possible 916 * map configurations. Mask out the erase types that are not supported 917 * by the current map configuration. 918 */ 919 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 920 if (!(regions_erase_type & BIT(erase[i].idx))) 921 spi_nor_mask_erase_type(&erase[i]); 922 923 return 0; 924 } 925 926 /** 927 * spi_nor_parse_smpt() - parse Sector Map Parameter Table 928 * @nor: pointer to a 'struct spi_nor' 929 * @smpt_header: sector map parameter table header 930 * 931 * This table is optional, but when available, we parse it to identify the 932 * location and size of sectors within the main data array of the flash memory 933 * device and to identify which Erase Types are supported by each sector. 934 * 935 * Return: 0 on success, -errno otherwise. 936 */ 937 static int spi_nor_parse_smpt(struct spi_nor *nor, 938 const struct sfdp_parameter_header *smpt_header) 939 { 940 const u32 *sector_map; 941 u32 *smpt; 942 size_t len; 943 u32 addr; 944 int ret; 945 946 /* Read the Sector Map Parameter Table. */ 947 len = smpt_header->length * sizeof(*smpt); 948 smpt = kmalloc(len, GFP_KERNEL); 949 if (!smpt) 950 return -ENOMEM; 951 952 addr = SFDP_PARAM_HEADER_PTP(smpt_header); 953 ret = spi_nor_read_sfdp(nor, addr, len, smpt); 954 if (ret) 955 goto out; 956 957 /* Fix endianness of the SMPT DWORDs. */ 958 le32_to_cpu_array(smpt, smpt_header->length); 959 960 sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); 961 if (IS_ERR(sector_map)) { 962 ret = PTR_ERR(sector_map); 963 goto out; 964 } 965 966 ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); 967 if (ret) 968 goto out; 969 970 spi_nor_regions_sort_erase_types(&nor->params->erase_map); 971 /* fall through */ 972 out: 973 kfree(smpt); 974 return ret; 975 } 976 977 /** 978 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table 979 * @nor: pointer to a 'struct spi_nor'. 980 * @param_header: pointer to the 'struct sfdp_parameter_header' describing 981 * the 4-Byte Address Instruction Table length and version. 982 * 983 * Return: 0 on success, -errno otherwise. 984 */ 985 static int spi_nor_parse_4bait(struct spi_nor *nor, 986 const struct sfdp_parameter_header *param_header) 987 { 988 static const struct sfdp_4bait reads[] = { 989 { SNOR_HWCAPS_READ, BIT(0) }, 990 { SNOR_HWCAPS_READ_FAST, BIT(1) }, 991 { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, 992 { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, 993 { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, 994 { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, 995 { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, 996 { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, 997 { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, 998 { SNOR_HWCAPS_READ_1_1_8, BIT(20) }, 999 { SNOR_HWCAPS_READ_1_8_8, BIT(21) }, 1000 }; 1001 static const struct sfdp_4bait programs[] = { 1002 { SNOR_HWCAPS_PP, BIT(6) }, 1003 { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, 1004 { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, 1005 }; 1006 static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { 1007 { 0u /* not used */, BIT(9) }, 1008 { 0u /* not used */, BIT(10) }, 1009 { 0u /* not used */, BIT(11) }, 1010 { 0u /* not used */, BIT(12) }, 1011 }; 1012 struct spi_nor_flash_parameter *params = nor->params; 1013 struct spi_nor_pp_command *params_pp = params->page_programs; 1014 struct spi_nor_erase_map *map = ¶ms->erase_map; 1015 struct spi_nor_erase_type *erase_type = map->erase_type; 1016 u32 *dwords; 1017 size_t len; 1018 u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; 1019 int i, ret; 1020 1021 if (param_header->major != SFDP_JESD216_MAJOR || 1022 param_header->length < SFDP_4BAIT_DWORD_MAX) 1023 return -EINVAL; 1024 1025 /* Read the 4-byte Address Instruction Table. */ 1026 len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; 1027 1028 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 1029 dwords = kmalloc(len, GFP_KERNEL); 1030 if (!dwords) 1031 return -ENOMEM; 1032 1033 addr = SFDP_PARAM_HEADER_PTP(param_header); 1034 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1035 if (ret) 1036 goto out; 1037 1038 /* Fix endianness of the 4BAIT DWORDs. */ 1039 le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX); 1040 1041 /* 1042 * Compute the subset of (Fast) Read commands for which the 4-byte 1043 * version is supported. 1044 */ 1045 discard_hwcaps = 0; 1046 read_hwcaps = 0; 1047 for (i = 0; i < ARRAY_SIZE(reads); i++) { 1048 const struct sfdp_4bait *read = &reads[i]; 1049 1050 discard_hwcaps |= read->hwcaps; 1051 if ((params->hwcaps.mask & read->hwcaps) && 1052 (dwords[SFDP_DWORD(1)] & read->supported_bit)) 1053 read_hwcaps |= read->hwcaps; 1054 } 1055 1056 /* 1057 * Compute the subset of Page Program commands for which the 4-byte 1058 * version is supported. 1059 */ 1060 pp_hwcaps = 0; 1061 for (i = 0; i < ARRAY_SIZE(programs); i++) { 1062 const struct sfdp_4bait *program = &programs[i]; 1063 1064 /* 1065 * The 4 Byte Address Instruction (Optional) Table is the only 1066 * SFDP table that indicates support for Page Program Commands. 1067 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest 1068 * authority for specifying Page Program support. 1069 */ 1070 discard_hwcaps |= program->hwcaps; 1071 if (dwords[SFDP_DWORD(1)] & program->supported_bit) 1072 pp_hwcaps |= program->hwcaps; 1073 } 1074 1075 /* 1076 * Compute the subset of Sector Erase commands for which the 4-byte 1077 * version is supported. 1078 */ 1079 erase_mask = 0; 1080 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1081 const struct sfdp_4bait *erase = &erases[i]; 1082 1083 if (dwords[SFDP_DWORD(1)] & erase->supported_bit) 1084 erase_mask |= BIT(i); 1085 } 1086 1087 /* Replicate the sort done for the map's erase types in BFPT. */ 1088 erase_mask = spi_nor_sort_erase_mask(map, erase_mask); 1089 1090 /* 1091 * We need at least one 4-byte op code per read, program and erase 1092 * operation; the .read(), .write() and .erase() hooks share the 1093 * nor->addr_nbytes value. 1094 */ 1095 if (!read_hwcaps || !pp_hwcaps || !erase_mask) 1096 goto out; 1097 1098 /* 1099 * Discard all operations from the 4-byte instruction set which are 1100 * not supported by this memory. 1101 */ 1102 params->hwcaps.mask &= ~discard_hwcaps; 1103 params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); 1104 1105 /* Use the 4-byte address instruction set. */ 1106 for (i = 0; i < SNOR_CMD_READ_MAX; i++) { 1107 struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; 1108 1109 read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); 1110 } 1111 1112 /* 4BAIT is the only SFDP table that indicates page program support. */ 1113 if (pp_hwcaps & SNOR_HWCAPS_PP) { 1114 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], 1115 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); 1116 /* 1117 * Since xSPI Page Program opcode is backward compatible with 1118 * Legacy SPI, use Legacy SPI opcode there as well. 1119 */ 1120 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR], 1121 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); 1122 } 1123 if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) 1124 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], 1125 SPINOR_OP_PP_1_1_4_4B, 1126 SNOR_PROTO_1_1_4); 1127 if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) 1128 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], 1129 SPINOR_OP_PP_1_4_4_4B, 1130 SNOR_PROTO_1_4_4); 1131 1132 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1133 if (erase_mask & BIT(i)) 1134 erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >> 1135 erase_type[i].idx * 8) & 0xFF; 1136 else 1137 spi_nor_mask_erase_type(&erase_type[i]); 1138 } 1139 1140 /* 1141 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() 1142 * later because we already did the conversion to 4byte opcodes. Also, 1143 * this latest function implements a legacy quirk for the erase size of 1144 * Spansion memory. However this quirk is no longer needed with new 1145 * SFDP compliant memories. 1146 */ 1147 params->addr_nbytes = 4; 1148 nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; 1149 1150 /* fall through */ 1151 out: 1152 kfree(dwords); 1153 return ret; 1154 } 1155 1156 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29) 1157 #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28) 1158 #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8) 1159 #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7) 1160 #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27) 1161 #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17) 1162 #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7) 1163 1164 /** 1165 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table 1166 * @nor: pointer to a 'struct spi_nor' 1167 * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing 1168 * the Profile 1.0 Table length and version. 1169 * 1170 * Return: 0 on success, -errno otherwise. 1171 */ 1172 static int spi_nor_parse_profile1(struct spi_nor *nor, 1173 const struct sfdp_parameter_header *profile1_header) 1174 { 1175 u32 *dwords, addr; 1176 size_t len; 1177 int ret; 1178 u8 dummy, opcode; 1179 1180 len = profile1_header->length * sizeof(*dwords); 1181 dwords = kmalloc(len, GFP_KERNEL); 1182 if (!dwords) 1183 return -ENOMEM; 1184 1185 addr = SFDP_PARAM_HEADER_PTP(profile1_header); 1186 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1187 if (ret) 1188 goto out; 1189 1190 le32_to_cpu_array(dwords, profile1_header->length); 1191 1192 /* Get 8D-8D-8D fast read opcode and dummy cycles. */ 1193 opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]); 1194 1195 /* Set the Read Status Register dummy cycles and dummy address bytes. */ 1196 if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY) 1197 nor->params->rdsr_dummy = 8; 1198 else 1199 nor->params->rdsr_dummy = 4; 1200 1201 if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES) 1202 nor->params->rdsr_addr_nbytes = 4; 1203 else 1204 nor->params->rdsr_addr_nbytes = 0; 1205 1206 /* 1207 * We don't know what speed the controller is running at. Find the 1208 * dummy cycles for the fastest frequency the flash can run at to be 1209 * sure we are never short of dummy cycles. A value of 0 means the 1210 * frequency is not supported. 1211 * 1212 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let 1213 * flashes set the correct value if needed in their fixup hooks. 1214 */ 1215 dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]); 1216 if (!dummy) 1217 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, 1218 dwords[SFDP_DWORD(5)]); 1219 if (!dummy) 1220 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, 1221 dwords[SFDP_DWORD(5)]); 1222 if (!dummy) 1223 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, 1224 dwords[SFDP_DWORD(5)]); 1225 if (!dummy) 1226 dev_dbg(nor->dev, 1227 "Can't find dummy cycles from Profile 1.0 table\n"); 1228 1229 /* Round up to an even value to avoid tripping controllers up. */ 1230 dummy = round_up(dummy, 2); 1231 1232 /* Update the fast read settings. */ 1233 nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; 1234 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], 1235 0, dummy, opcode, 1236 SNOR_PROTO_8_8_8_DTR); 1237 1238 /* 1239 * Page Program is "Required Command" in the xSPI Profile 1.0. Update 1240 * the params->hwcaps.mask here. 1241 */ 1242 nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; 1243 1244 out: 1245 kfree(dwords); 1246 return ret; 1247 } 1248 1249 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31) 1250 1251 /** 1252 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register 1253 * Map. 1254 * @nor: pointer to a 'struct spi_nor' 1255 * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing 1256 * the SCCR Map table length and version. 1257 * 1258 * Return: 0 on success, -errno otherwise. 1259 */ 1260 static int spi_nor_parse_sccr(struct spi_nor *nor, 1261 const struct sfdp_parameter_header *sccr_header) 1262 { 1263 struct spi_nor_flash_parameter *params = nor->params; 1264 u32 *dwords, addr; 1265 size_t len; 1266 int ret; 1267 1268 len = sccr_header->length * sizeof(*dwords); 1269 dwords = kmalloc(len, GFP_KERNEL); 1270 if (!dwords) 1271 return -ENOMEM; 1272 1273 addr = SFDP_PARAM_HEADER_PTP(sccr_header); 1274 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1275 if (ret) 1276 goto out; 1277 1278 le32_to_cpu_array(dwords, sccr_header->length); 1279 1280 /* Address offset for volatile registers (die 0) */ 1281 if (!params->vreg_offset) { 1282 params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords), 1283 GFP_KERNEL); 1284 if (!params->vreg_offset) { 1285 ret = -ENOMEM; 1286 goto out; 1287 } 1288 } 1289 params->vreg_offset[0] = dwords[SFDP_DWORD(1)]; 1290 params->n_dice = 1; 1291 1292 if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, 1293 dwords[SFDP_DWORD(22)])) 1294 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; 1295 1296 out: 1297 kfree(dwords); 1298 return ret; 1299 } 1300 1301 /** 1302 * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration 1303 * Register Map Offsets for Multi-Chip SPI Memory 1304 * Devices. 1305 * @nor: pointer to a 'struct spi_nor' 1306 * @sccr_mc_header: pointer to the 'struct sfdp_parameter_header' describing 1307 * the SCCR Map offsets table length and version. 1308 * 1309 * Return: 0 on success, -errno otherwise. 1310 */ 1311 static int spi_nor_parse_sccr_mc(struct spi_nor *nor, 1312 const struct sfdp_parameter_header *sccr_mc_header) 1313 { 1314 struct spi_nor_flash_parameter *params = nor->params; 1315 u32 *dwords, addr; 1316 u8 i, n_dice; 1317 size_t len; 1318 int ret; 1319 1320 len = sccr_mc_header->length * sizeof(*dwords); 1321 dwords = kmalloc(len, GFP_KERNEL); 1322 if (!dwords) 1323 return -ENOMEM; 1324 1325 addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header); 1326 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1327 if (ret) 1328 goto out; 1329 1330 le32_to_cpu_array(dwords, sccr_mc_header->length); 1331 1332 /* 1333 * Pair of DOWRDs (volatile and non-volatile register offsets) per 1334 * additional die. Hence, length = 2 * (number of additional dice). 1335 */ 1336 n_dice = 1 + sccr_mc_header->length / 2; 1337 1338 /* Address offset for volatile registers of additional dice */ 1339 params->vreg_offset = 1340 devm_krealloc(nor->dev, params->vreg_offset, 1341 n_dice * sizeof(*dwords), 1342 GFP_KERNEL); 1343 if (!params->vreg_offset) { 1344 ret = -ENOMEM; 1345 goto out; 1346 } 1347 1348 for (i = 1; i < n_dice; i++) 1349 params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2]; 1350 1351 params->n_dice = n_dice; 1352 1353 out: 1354 kfree(dwords); 1355 return ret; 1356 } 1357 1358 /** 1359 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings 1360 * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP 1361 * tables. 1362 * @nor: pointer to a 'struct spi_nor' 1363 * 1364 * Used to tweak various flash parameters when information provided by the SFDP 1365 * tables are wrong. 1366 */ 1367 static int spi_nor_post_sfdp_fixups(struct spi_nor *nor) 1368 { 1369 int ret; 1370 1371 if (nor->manufacturer && nor->manufacturer->fixups && 1372 nor->manufacturer->fixups->post_sfdp) { 1373 ret = nor->manufacturer->fixups->post_sfdp(nor); 1374 if (ret) 1375 return ret; 1376 } 1377 1378 if (nor->info->fixups && nor->info->fixups->post_sfdp) 1379 return nor->info->fixups->post_sfdp(nor); 1380 1381 return 0; 1382 } 1383 1384 /** 1385 * spi_nor_check_sfdp_signature() - check for a valid SFDP signature 1386 * @nor: pointer to a 'struct spi_nor' 1387 * 1388 * Used to detect if the flash supports the RDSFDP command as well as the 1389 * presence of a valid SFDP table. 1390 * 1391 * Return: 0 on success, -errno otherwise. 1392 */ 1393 int spi_nor_check_sfdp_signature(struct spi_nor *nor) 1394 { 1395 u32 signature; 1396 int err; 1397 1398 /* Get the SFDP header. */ 1399 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature), 1400 &signature); 1401 if (err < 0) 1402 return err; 1403 1404 /* Check the SFDP signature. */ 1405 if (le32_to_cpu(signature) != SFDP_SIGNATURE) 1406 return -EINVAL; 1407 1408 return 0; 1409 } 1410 1411 /** 1412 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. 1413 * @nor: pointer to a 'struct spi_nor' 1414 * 1415 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 1416 * specification. This is a standard which tends to supported by almost all 1417 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at 1418 * runtime the main parameters needed to perform basic SPI flash operations such 1419 * as Fast Read, Page Program or Sector Erase commands. 1420 * 1421 * Return: 0 on success, -errno otherwise. 1422 */ 1423 int spi_nor_parse_sfdp(struct spi_nor *nor) 1424 { 1425 const struct sfdp_parameter_header *param_header, *bfpt_header; 1426 struct sfdp_parameter_header *param_headers = NULL; 1427 struct sfdp_header header; 1428 struct device *dev = nor->dev; 1429 struct sfdp *sfdp; 1430 size_t sfdp_size; 1431 size_t psize; 1432 int i, err; 1433 1434 /* Get the SFDP header. */ 1435 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); 1436 if (err < 0) 1437 return err; 1438 1439 /* Check the SFDP header version. */ 1440 if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || 1441 header.major != SFDP_JESD216_MAJOR) 1442 return -EINVAL; 1443 1444 /* 1445 * Verify that the first and only mandatory parameter header is a 1446 * Basic Flash Parameter Table header as specified in JESD216. 1447 */ 1448 bfpt_header = &header.bfpt_header; 1449 if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || 1450 bfpt_header->major != SFDP_JESD216_MAJOR) 1451 return -EINVAL; 1452 1453 sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) + 1454 SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header); 1455 1456 /* 1457 * Allocate memory then read all parameter headers with a single 1458 * Read SFDP command. These parameter headers will actually be parsed 1459 * twice: a first time to get the latest revision of the basic flash 1460 * parameter table, then a second time to handle the supported optional 1461 * tables. 1462 * Hence we read the parameter headers once for all to reduce the 1463 * processing time. Also we use kmalloc() instead of devm_kmalloc() 1464 * because we don't need to keep these parameter headers: the allocated 1465 * memory is always released with kfree() before exiting this function. 1466 */ 1467 if (header.nph) { 1468 psize = header.nph * sizeof(*param_headers); 1469 1470 param_headers = kmalloc(psize, GFP_KERNEL); 1471 if (!param_headers) 1472 return -ENOMEM; 1473 1474 err = spi_nor_read_sfdp(nor, sizeof(header), 1475 psize, param_headers); 1476 if (err < 0) { 1477 dev_dbg(dev, "failed to read SFDP parameter headers\n"); 1478 goto exit; 1479 } 1480 } 1481 1482 /* 1483 * Cache the complete SFDP data. It is not (easily) possible to fetch 1484 * SFDP after probe time and we need it for the sysfs access. 1485 */ 1486 for (i = 0; i < header.nph; i++) { 1487 param_header = ¶m_headers[i]; 1488 sfdp_size = max_t(size_t, sfdp_size, 1489 SFDP_PARAM_HEADER_PTP(param_header) + 1490 SFDP_PARAM_HEADER_PARAM_LEN(param_header)); 1491 } 1492 1493 /* 1494 * Limit the total size to a reasonable value to avoid allocating too 1495 * much memory just of because the flash returned some insane values. 1496 */ 1497 if (sfdp_size > PAGE_SIZE) { 1498 dev_dbg(dev, "SFDP data (%zu) too big, truncating\n", 1499 sfdp_size); 1500 sfdp_size = PAGE_SIZE; 1501 } 1502 1503 sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL); 1504 if (!sfdp) { 1505 err = -ENOMEM; 1506 goto exit; 1507 } 1508 1509 /* 1510 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the 1511 * sfdp_size should be a multiple of DWORDs. But in case a flash 1512 * is not spec compliant, make sure that we have enough space to store 1513 * the complete SFDP data. 1514 */ 1515 sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords)); 1516 sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords, 1517 sizeof(*sfdp->dwords), GFP_KERNEL); 1518 if (!sfdp->dwords) { 1519 err = -ENOMEM; 1520 devm_kfree(dev, sfdp); 1521 goto exit; 1522 } 1523 1524 err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords); 1525 if (err < 0) { 1526 dev_dbg(dev, "failed to read SFDP data\n"); 1527 devm_kfree(dev, sfdp->dwords); 1528 devm_kfree(dev, sfdp); 1529 goto exit; 1530 } 1531 1532 nor->sfdp = sfdp; 1533 1534 /* 1535 * Check other parameter headers to get the latest revision of 1536 * the basic flash parameter table. 1537 */ 1538 for (i = 0; i < header.nph; i++) { 1539 param_header = ¶m_headers[i]; 1540 1541 if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && 1542 param_header->major == SFDP_JESD216_MAJOR && 1543 (param_header->minor > bfpt_header->minor || 1544 (param_header->minor == bfpt_header->minor && 1545 param_header->length > bfpt_header->length))) 1546 bfpt_header = param_header; 1547 } 1548 1549 err = spi_nor_parse_bfpt(nor, bfpt_header); 1550 if (err) 1551 goto exit; 1552 1553 /* Parse optional parameter tables. */ 1554 for (i = 0; i < header.nph; i++) { 1555 param_header = ¶m_headers[i]; 1556 1557 switch (SFDP_PARAM_HEADER_ID(param_header)) { 1558 case SFDP_SECTOR_MAP_ID: 1559 err = spi_nor_parse_smpt(nor, param_header); 1560 break; 1561 1562 case SFDP_4BAIT_ID: 1563 err = spi_nor_parse_4bait(nor, param_header); 1564 break; 1565 1566 case SFDP_PROFILE1_ID: 1567 err = spi_nor_parse_profile1(nor, param_header); 1568 break; 1569 1570 case SFDP_SCCR_MAP_ID: 1571 err = spi_nor_parse_sccr(nor, param_header); 1572 break; 1573 1574 case SFDP_SCCR_MAP_MC_ID: 1575 err = spi_nor_parse_sccr_mc(nor, param_header); 1576 break; 1577 1578 default: 1579 break; 1580 } 1581 1582 if (err) { 1583 dev_warn(dev, "Failed to parse optional parameter table: %04x\n", 1584 SFDP_PARAM_HEADER_ID(param_header)); 1585 /* 1586 * Let's not drop all information we extracted so far 1587 * if optional table parsers fail. In case of failing, 1588 * each optional parser is responsible to roll back to 1589 * the previously known spi_nor data. 1590 */ 1591 err = 0; 1592 } 1593 } 1594 1595 err = spi_nor_post_sfdp_fixups(nor); 1596 exit: 1597 kfree(param_headers); 1598 return err; 1599 } 1600