1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2005, Intec Automation Inc. 4 * Copyright (C) 2014, Freescale Semiconductor, Inc. 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/mtd/spi-nor.h> 9 #include <linux/slab.h> 10 #include <linux/sort.h> 11 12 #include "core.h" 13 14 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) 15 #define SFDP_PARAM_HEADER_PTP(p) \ 16 (((p)->parameter_table_pointer[2] << 16) | \ 17 ((p)->parameter_table_pointer[1] << 8) | \ 18 ((p)->parameter_table_pointer[0] << 0)) 19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4) 20 21 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ 22 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ 23 #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ 24 #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */ 25 #define SFDP_SCCR_MAP_ID 0xff87 /* 26 * Status, Control and Configuration 27 * Register Map. 28 */ 29 #define SFDP_SCCR_MAP_MC_ID 0xff88 /* 30 * Status, Control and Configuration 31 * Register Map Offsets for Multi-Chip 32 * SPI Memory Devices. 33 */ 34 35 #define SFDP_SIGNATURE 0x50444653U 36 37 struct sfdp_header { 38 u32 signature; /* Ox50444653U <=> "SFDP" */ 39 u8 minor; 40 u8 major; 41 u8 nph; /* 0-base number of parameter headers */ 42 u8 unused; 43 44 /* Basic Flash Parameter Table. */ 45 struct sfdp_parameter_header bfpt_header; 46 }; 47 48 /* Fast Read settings. */ 49 struct sfdp_bfpt_read { 50 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ 51 u32 hwcaps; 52 53 /* 54 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us 55 * whether the Fast Read x-y-z command is supported. 56 */ 57 u32 supported_dword; 58 u32 supported_bit; 59 60 /* 61 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD 62 * encodes the op code, the number of mode clocks and the number of wait 63 * states to be used by Fast Read x-y-z command. 64 */ 65 u32 settings_dword; 66 u32 settings_shift; 67 68 /* The SPI protocol for this Fast Read x-y-z command. */ 69 enum spi_nor_protocol proto; 70 }; 71 72 struct sfdp_bfpt_erase { 73 /* 74 * The half-word at offset <shift> in DWORD <dword> encodes the 75 * op code and erase sector size to be used by Sector Erase commands. 76 */ 77 u32 dword; 78 u32 shift; 79 }; 80 81 #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) 82 #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) 83 #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) 84 #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) 85 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) 86 87 #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) 88 #define SMPT_CMD_READ_DUMMY_SHIFT 16 89 #define SMPT_CMD_READ_DUMMY(_cmd) \ 90 (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) 91 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL 92 93 #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) 94 #define SMPT_CMD_READ_DATA_SHIFT 24 95 #define SMPT_CMD_READ_DATA(_cmd) \ 96 (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) 97 98 #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) 99 #define SMPT_CMD_OPCODE_SHIFT 8 100 #define SMPT_CMD_OPCODE(_cmd) \ 101 (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) 102 103 #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) 104 #define SMPT_MAP_REGION_COUNT_SHIFT 16 105 #define SMPT_MAP_REGION_COUNT(_header) \ 106 ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ 107 SMPT_MAP_REGION_COUNT_SHIFT) + 1) 108 109 #define SMPT_MAP_ID_MASK GENMASK(15, 8) 110 #define SMPT_MAP_ID_SHIFT 8 111 #define SMPT_MAP_ID(_header) \ 112 (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) 113 114 #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) 115 #define SMPT_MAP_REGION_SIZE_SHIFT 8 116 #define SMPT_MAP_REGION_SIZE(_region) \ 117 (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ 118 SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) 119 120 #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) 121 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \ 122 ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) 123 124 #define SMPT_DESC_TYPE_MAP BIT(1) 125 #define SMPT_DESC_END BIT(0) 126 127 #define SFDP_4BAIT_DWORD_MAX 2 128 129 struct sfdp_4bait { 130 /* The hardware capability. */ 131 u32 hwcaps; 132 133 /* 134 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether 135 * the associated 4-byte address op code is supported. 136 */ 137 u32 supported_bit; 138 }; 139 140 /** 141 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, 142 * addr_nbytes and read_dummy members of the struct spi_nor 143 * should be previously set. 144 * @nor: pointer to a 'struct spi_nor' 145 * @addr: offset in the serial flash memory 146 * @len: number of bytes to read 147 * @buf: buffer where the data is copied into (dma-safe memory) 148 * 149 * Return: 0 on success, -errno otherwise. 150 */ 151 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) 152 { 153 ssize_t ret; 154 155 while (len) { 156 ret = spi_nor_read_data(nor, addr, len, buf); 157 if (ret < 0) 158 return ret; 159 if (!ret || ret > len) 160 return -EIO; 161 162 buf += ret; 163 addr += ret; 164 len -= ret; 165 } 166 return 0; 167 } 168 169 /** 170 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. 171 * @nor: pointer to a 'struct spi_nor' 172 * @addr: offset in the SFDP area to start reading data from 173 * @len: number of bytes to read 174 * @buf: buffer where the SFDP data are copied into (dma-safe memory) 175 * 176 * Whatever the actual numbers of bytes for address and dummy cycles are 177 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always 178 * followed by a 3-byte address and 8 dummy clock cycles. 179 * 180 * Return: 0 on success, -errno otherwise. 181 */ 182 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, 183 size_t len, void *buf) 184 { 185 u8 addr_nbytes, read_opcode, read_dummy; 186 int ret; 187 188 read_opcode = nor->read_opcode; 189 addr_nbytes = nor->addr_nbytes; 190 read_dummy = nor->read_dummy; 191 192 nor->read_opcode = SPINOR_OP_RDSFDP; 193 nor->addr_nbytes = 3; 194 nor->read_dummy = 8; 195 196 ret = spi_nor_read_raw(nor, addr, len, buf); 197 198 nor->read_opcode = read_opcode; 199 nor->addr_nbytes = addr_nbytes; 200 nor->read_dummy = read_dummy; 201 202 return ret; 203 } 204 205 /** 206 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. 207 * @nor: pointer to a 'struct spi_nor' 208 * @addr: offset in the SFDP area to start reading data from 209 * @len: number of bytes to read 210 * @buf: buffer where the SFDP data are copied into 211 * 212 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not 213 * guaranteed to be dma-safe. 214 * 215 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() 216 * otherwise. 217 */ 218 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, 219 size_t len, void *buf) 220 { 221 void *dma_safe_buf; 222 int ret; 223 224 dma_safe_buf = kmalloc(len, GFP_KERNEL); 225 if (!dma_safe_buf) 226 return -ENOMEM; 227 228 ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); 229 memcpy(buf, dma_safe_buf, len); 230 kfree(dma_safe_buf); 231 232 return ret; 233 } 234 235 static void 236 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, 237 u16 half, 238 enum spi_nor_protocol proto) 239 { 240 read->num_mode_clocks = (half >> 5) & 0x07; 241 read->num_wait_states = (half >> 0) & 0x1f; 242 read->opcode = (half >> 8) & 0xff; 243 read->proto = proto; 244 } 245 246 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { 247 /* Fast Read 1-1-2 */ 248 { 249 SNOR_HWCAPS_READ_1_1_2, 250 SFDP_DWORD(1), BIT(16), /* Supported bit */ 251 SFDP_DWORD(4), 0, /* Settings */ 252 SNOR_PROTO_1_1_2, 253 }, 254 255 /* Fast Read 1-2-2 */ 256 { 257 SNOR_HWCAPS_READ_1_2_2, 258 SFDP_DWORD(1), BIT(20), /* Supported bit */ 259 SFDP_DWORD(4), 16, /* Settings */ 260 SNOR_PROTO_1_2_2, 261 }, 262 263 /* Fast Read 2-2-2 */ 264 { 265 SNOR_HWCAPS_READ_2_2_2, 266 SFDP_DWORD(5), BIT(0), /* Supported bit */ 267 SFDP_DWORD(6), 16, /* Settings */ 268 SNOR_PROTO_2_2_2, 269 }, 270 271 /* Fast Read 1-1-4 */ 272 { 273 SNOR_HWCAPS_READ_1_1_4, 274 SFDP_DWORD(1), BIT(22), /* Supported bit */ 275 SFDP_DWORD(3), 16, /* Settings */ 276 SNOR_PROTO_1_1_4, 277 }, 278 279 /* Fast Read 1-4-4 */ 280 { 281 SNOR_HWCAPS_READ_1_4_4, 282 SFDP_DWORD(1), BIT(21), /* Supported bit */ 283 SFDP_DWORD(3), 0, /* Settings */ 284 SNOR_PROTO_1_4_4, 285 }, 286 287 /* Fast Read 4-4-4 */ 288 { 289 SNOR_HWCAPS_READ_4_4_4, 290 SFDP_DWORD(5), BIT(4), /* Supported bit */ 291 SFDP_DWORD(7), 16, /* Settings */ 292 SNOR_PROTO_4_4_4, 293 }, 294 }; 295 296 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { 297 /* Erase Type 1 in DWORD8 bits[15:0] */ 298 {SFDP_DWORD(8), 0}, 299 300 /* Erase Type 2 in DWORD8 bits[31:16] */ 301 {SFDP_DWORD(8), 16}, 302 303 /* Erase Type 3 in DWORD9 bits[15:0] */ 304 {SFDP_DWORD(9), 0}, 305 306 /* Erase Type 4 in DWORD9 bits[31:16] */ 307 {SFDP_DWORD(9), 16}, 308 }; 309 310 /** 311 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT 312 * @erase: pointer to a structure that describes a SPI NOR erase type 313 * @size: the size of the sector/block erased by the erase type 314 * @opcode: the SPI command op code to erase the sector/block 315 * @i: erase type index as sorted in the Basic Flash Parameter Table 316 * 317 * The supported Erase Types will be sorted at init in ascending order, with 318 * the smallest Erase Type size being the first member in the erase_type array 319 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in 320 * the Basic Flash Parameter Table since it will be used later on to 321 * synchronize with the supported Erase Types defined in SFDP optional tables. 322 */ 323 static void 324 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, 325 u32 size, u8 opcode, u8 i) 326 { 327 erase->idx = i; 328 spi_nor_set_erase_type(erase, size, opcode); 329 } 330 331 /** 332 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size 333 * @l: member in the left half of the map's erase_type array 334 * @r: member in the right half of the map's erase_type array 335 * 336 * Comparison function used in the sort() call to sort in ascending order the 337 * map's erase types, the smallest erase type size being the first member in the 338 * sorted erase_type array. 339 * 340 * Return: the result of @l->size - @r->size 341 */ 342 static int spi_nor_map_cmp_erase_type(const void *l, const void *r) 343 { 344 const struct spi_nor_erase_type *left = l, *right = r; 345 346 return left->size - right->size; 347 } 348 349 /** 350 * spi_nor_sort_erase_mask() - sort erase mask 351 * @map: the erase map of the SPI NOR 352 * @erase_mask: the erase type mask to be sorted 353 * 354 * Replicate the sort done for the map's erase types in BFPT: sort the erase 355 * mask in ascending order with the smallest erase type size starting from 356 * BIT(0) in the sorted erase mask. 357 * 358 * Return: sorted erase mask. 359 */ 360 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) 361 { 362 struct spi_nor_erase_type *erase_type = map->erase_type; 363 int i; 364 u8 sorted_erase_mask = 0; 365 366 if (!erase_mask) 367 return 0; 368 369 /* Replicate the sort done for the map's erase types. */ 370 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 371 if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) 372 sorted_erase_mask |= BIT(i); 373 374 return sorted_erase_mask; 375 } 376 377 /** 378 * spi_nor_regions_sort_erase_types() - sort erase types in each region 379 * @map: the erase map of the SPI NOR 380 * 381 * Function assumes that the erase types defined in the erase map are already 382 * sorted in ascending order, with the smallest erase type size being the first 383 * member in the erase_type array. It replicates the sort done for the map's 384 * erase types. Each region's erase bitmask will indicate which erase types are 385 * supported from the sorted erase types defined in the erase map. 386 * Sort the all region's erase type at init in order to speed up the process of 387 * finding the best erase command at runtime. 388 */ 389 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) 390 { 391 struct spi_nor_erase_region *region = map->regions; 392 u8 sorted_erase_mask; 393 unsigned int i; 394 395 for (i = 0; i < map->n_regions; i++) { 396 sorted_erase_mask = 397 spi_nor_sort_erase_mask(map, region[i].erase_mask); 398 399 /* Overwrite erase mask. */ 400 region[i].erase_mask = sorted_erase_mask; 401 } 402 } 403 404 /** 405 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. 406 * @nor: pointer to a 'struct spi_nor' 407 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing 408 * the Basic Flash Parameter Table length and version 409 * 410 * The Basic Flash Parameter Table is the main and only mandatory table as 411 * defined by the SFDP (JESD216) specification. 412 * It provides us with the total size (memory density) of the data array and 413 * the number of address bytes for Fast Read, Page Program and Sector Erase 414 * commands. 415 * For Fast READ commands, it also gives the number of mode clock cycles and 416 * wait states (regrouped in the number of dummy clock cycles) for each 417 * supported instruction op code. 418 * For Page Program, the page size is now available since JESD216 rev A, however 419 * the supported instruction op codes are still not provided. 420 * For Sector Erase commands, this table stores the supported instruction op 421 * codes and the associated sector sizes. 422 * Finally, the Quad Enable Requirements (QER) are also available since JESD216 423 * rev A. The QER bits encode the manufacturer dependent procedure to be 424 * executed to set the Quad Enable (QE) bit in some internal register of the 425 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before 426 * sending any Quad SPI command to the memory. Actually, setting the QE bit 427 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 428 * and IO3 hence enabling 4 (Quad) I/O lines. 429 * 430 * Return: 0 on success, -errno otherwise. 431 */ 432 static int spi_nor_parse_bfpt(struct spi_nor *nor, 433 const struct sfdp_parameter_header *bfpt_header) 434 { 435 struct spi_nor_flash_parameter *params = nor->params; 436 struct spi_nor_erase_map *map = ¶ms->erase_map; 437 struct spi_nor_erase_type *erase_type = map->erase_type; 438 struct sfdp_bfpt bfpt; 439 size_t len; 440 int i, cmd, err; 441 u32 addr, val; 442 u32 dword; 443 u16 half; 444 u8 erase_mask; 445 u8 wait_states, mode_clocks, opcode; 446 447 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ 448 if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) 449 return -EINVAL; 450 451 /* Read the Basic Flash Parameter Table. */ 452 len = min_t(size_t, sizeof(bfpt), 453 bfpt_header->length * sizeof(u32)); 454 addr = SFDP_PARAM_HEADER_PTP(bfpt_header); 455 memset(&bfpt, 0, sizeof(bfpt)); 456 err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); 457 if (err < 0) 458 return err; 459 460 /* Fix endianness of the BFPT DWORDs. */ 461 le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX); 462 463 /* Number of address bytes. */ 464 switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { 465 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: 466 case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4: 467 params->addr_nbytes = 3; 468 params->addr_mode_nbytes = 3; 469 break; 470 471 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: 472 params->addr_nbytes = 4; 473 params->addr_mode_nbytes = 4; 474 break; 475 476 default: 477 break; 478 } 479 480 /* Flash Memory Density (in bits). */ 481 val = bfpt.dwords[SFDP_DWORD(2)]; 482 if (val & BIT(31)) { 483 val &= ~BIT(31); 484 485 /* 486 * Prevent overflows on params->size. Anyway, a NOR of 2^64 487 * bits is unlikely to exist so this error probably means 488 * the BFPT we are reading is corrupted/wrong. 489 */ 490 if (val > 63) 491 return -EINVAL; 492 493 params->size = 1ULL << val; 494 } else { 495 params->size = val + 1; 496 } 497 params->size >>= 3; /* Convert to bytes. */ 498 499 /* Fast Read settings. */ 500 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { 501 const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; 502 struct spi_nor_read_command *read; 503 504 if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { 505 params->hwcaps.mask &= ~rd->hwcaps; 506 continue; 507 } 508 509 params->hwcaps.mask |= rd->hwcaps; 510 cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); 511 read = ¶ms->reads[cmd]; 512 half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; 513 spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); 514 } 515 516 /* 517 * Sector Erase settings. Reinitialize the uniform erase map using the 518 * Erase Types defined in the bfpt table. 519 */ 520 erase_mask = 0; 521 memset(¶ms->erase_map, 0, sizeof(params->erase_map)); 522 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { 523 const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; 524 u32 erasesize; 525 u8 opcode; 526 527 half = bfpt.dwords[er->dword] >> er->shift; 528 erasesize = half & 0xff; 529 530 /* erasesize == 0 means this Erase Type is not supported. */ 531 if (!erasesize) 532 continue; 533 534 erasesize = 1U << erasesize; 535 opcode = (half >> 8) & 0xff; 536 erase_mask |= BIT(i); 537 spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, 538 opcode, i); 539 } 540 spi_nor_init_uniform_erase_map(map, erase_mask, params->size); 541 /* 542 * Sort all the map's Erase Types in ascending order with the smallest 543 * erase size being the first member in the erase_type array. 544 */ 545 sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), 546 spi_nor_map_cmp_erase_type, NULL); 547 /* 548 * Sort the erase types in the uniform region in order to update the 549 * uniform_erase_type bitmask. The bitmask will be used later on when 550 * selecting the uniform erase. 551 */ 552 spi_nor_regions_sort_erase_types(map); 553 554 /* Stop here if not JESD216 rev A or later. */ 555 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216) 556 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 557 558 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ 559 val = bfpt.dwords[SFDP_DWORD(11)]; 560 val &= BFPT_DWORD11_PAGE_SIZE_MASK; 561 val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; 562 params->page_size = 1U << val; 563 564 /* Quad Enable Requirements. */ 565 switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) { 566 case BFPT_DWORD15_QER_NONE: 567 params->quad_enable = NULL; 568 break; 569 570 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: 571 /* 572 * Writing only one byte to the Status Register has the 573 * side-effect of clearing Status Register 2. 574 */ 575 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: 576 /* 577 * Read Configuration Register (35h) instruction is not 578 * supported. 579 */ 580 nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR; 581 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 582 break; 583 584 case BFPT_DWORD15_QER_SR1_BIT6: 585 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 586 params->quad_enable = spi_nor_sr1_bit6_quad_enable; 587 break; 588 589 case BFPT_DWORD15_QER_SR2_BIT7: 590 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 591 params->quad_enable = spi_nor_sr2_bit7_quad_enable; 592 break; 593 594 case BFPT_DWORD15_QER_SR2_BIT1: 595 /* 596 * JESD216 rev B or later does not specify if writing only one 597 * byte to the Status Register clears or not the Status 598 * Register 2, so let's be cautious and keep the default 599 * assumption of a 16-bit Write Status (01h) command. 600 */ 601 nor->flags |= SNOR_F_HAS_16BIT_SR; 602 603 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 604 break; 605 606 default: 607 dev_dbg(nor->dev, "BFPT QER reserved value used\n"); 608 break; 609 } 610 611 dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK; 612 if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR)) 613 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr; 614 else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B)) 615 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b; 616 else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B)) 617 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b; 618 else 619 dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n"); 620 621 /* Soft Reset support. */ 622 if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST) 623 nor->flags |= SNOR_F_SOFT_RESET; 624 625 /* Stop here if not JESD216 rev C or later. */ 626 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B) 627 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 628 629 /* Parse 1-1-8 read instruction */ 630 opcode = FIELD_GET(BFPT_DWORD17_RD_1_1_8_CMD, bfpt.dwords[SFDP_DWORD(17)]); 631 if (opcode) { 632 mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_1_8_MODE_CLOCKS, 633 bfpt.dwords[SFDP_DWORD(17)]); 634 wait_states = FIELD_GET(BFPT_DWORD17_RD_1_1_8_WAIT_STATES, 635 bfpt.dwords[SFDP_DWORD(17)]); 636 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; 637 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], 638 mode_clocks, wait_states, opcode, 639 SNOR_PROTO_1_1_8); 640 } 641 642 /* Parse 1-8-8 read instruction */ 643 opcode = FIELD_GET(BFPT_DWORD17_RD_1_8_8_CMD, bfpt.dwords[SFDP_DWORD(17)]); 644 if (opcode) { 645 mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_8_8_MODE_CLOCKS, 646 bfpt.dwords[SFDP_DWORD(17)]); 647 wait_states = FIELD_GET(BFPT_DWORD17_RD_1_8_8_WAIT_STATES, 648 bfpt.dwords[SFDP_DWORD(17)]); 649 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_8_8; 650 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_8_8], 651 mode_clocks, wait_states, opcode, 652 SNOR_PROTO_1_8_8); 653 } 654 655 /* 8D-8D-8D command extension. */ 656 switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) { 657 case BFPT_DWORD18_CMD_EXT_REP: 658 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; 659 break; 660 661 case BFPT_DWORD18_CMD_EXT_INV: 662 nor->cmd_ext_type = SPI_NOR_EXT_INVERT; 663 break; 664 665 case BFPT_DWORD18_CMD_EXT_RES: 666 dev_dbg(nor->dev, "Reserved command extension used\n"); 667 break; 668 669 case BFPT_DWORD18_CMD_EXT_16B: 670 dev_dbg(nor->dev, "16-bit opcodes not supported\n"); 671 return -EOPNOTSUPP; 672 } 673 674 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 675 } 676 677 /** 678 * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the 679 * configuration detection command. 680 * @nor: pointer to a 'struct spi_nor' 681 * @settings: configuration detection command descriptor, dword1 682 */ 683 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings) 684 { 685 switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { 686 case SMPT_CMD_ADDRESS_LEN_0: 687 return 0; 688 case SMPT_CMD_ADDRESS_LEN_3: 689 return 3; 690 case SMPT_CMD_ADDRESS_LEN_4: 691 return 4; 692 case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: 693 default: 694 return nor->params->addr_mode_nbytes; 695 } 696 } 697 698 /** 699 * spi_nor_smpt_read_dummy() - return the configuration detection command read 700 * latency, in clock cycles. 701 * @nor: pointer to a 'struct spi_nor' 702 * @settings: configuration detection command descriptor, dword1 703 * 704 * Return: the number of dummy cycles for an SMPT read 705 */ 706 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) 707 { 708 u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); 709 710 if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) 711 return nor->read_dummy; 712 return read_dummy; 713 } 714 715 /** 716 * spi_nor_get_map_in_use() - get the configuration map in use 717 * @nor: pointer to a 'struct spi_nor' 718 * @smpt: pointer to the sector map parameter table 719 * @smpt_len: sector map parameter table length 720 * 721 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. 722 */ 723 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, 724 u8 smpt_len) 725 { 726 const u32 *ret; 727 u8 *buf; 728 u32 addr; 729 int err; 730 u8 i; 731 u8 addr_nbytes, read_opcode, read_dummy; 732 u8 read_data_mask, map_id; 733 734 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 735 buf = kmalloc(sizeof(*buf), GFP_KERNEL); 736 if (!buf) 737 return ERR_PTR(-ENOMEM); 738 739 addr_nbytes = nor->addr_nbytes; 740 read_dummy = nor->read_dummy; 741 read_opcode = nor->read_opcode; 742 743 map_id = 0; 744 /* Determine if there are any optional Detection Command Descriptors */ 745 for (i = 0; i < smpt_len; i += 2) { 746 if (smpt[i] & SMPT_DESC_TYPE_MAP) 747 break; 748 749 read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); 750 nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]); 751 nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); 752 nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); 753 addr = smpt[i + 1]; 754 755 err = spi_nor_read_raw(nor, addr, 1, buf); 756 if (err) { 757 ret = ERR_PTR(err); 758 goto out; 759 } 760 761 /* 762 * Build an index value that is used to select the Sector Map 763 * Configuration that is currently in use. 764 */ 765 map_id = map_id << 1 | !!(*buf & read_data_mask); 766 } 767 768 /* 769 * If command descriptors are provided, they always precede map 770 * descriptors in the table. There is no need to start the iteration 771 * over smpt array all over again. 772 * 773 * Find the matching configuration map. 774 */ 775 ret = ERR_PTR(-EINVAL); 776 while (i < smpt_len) { 777 if (SMPT_MAP_ID(smpt[i]) == map_id) { 778 ret = smpt + i; 779 break; 780 } 781 782 /* 783 * If there are no more configuration map descriptors and no 784 * configuration ID matched the configuration identifier, the 785 * sector address map is unknown. 786 */ 787 if (smpt[i] & SMPT_DESC_END) 788 break; 789 790 /* increment the table index to the next map */ 791 i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; 792 } 793 794 /* fall through */ 795 out: 796 kfree(buf); 797 nor->addr_nbytes = addr_nbytes; 798 nor->read_dummy = read_dummy; 799 nor->read_opcode = read_opcode; 800 return ret; 801 } 802 803 /** 804 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid 805 * @region: pointer to a structure that describes a SPI NOR erase region 806 * @erase: pointer to a structure that describes a SPI NOR erase type 807 * @erase_type: erase type bitmask 808 */ 809 static void 810 spi_nor_region_check_overlay(struct spi_nor_erase_region *region, 811 const struct spi_nor_erase_type *erase, 812 const u8 erase_type) 813 { 814 int i; 815 816 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 817 if (!(erase[i].size && erase_type & BIT(erase[i].idx))) 818 continue; 819 if (region->size & erase[i].size_mask) { 820 region->overlaid = true; 821 return; 822 } 823 } 824 } 825 826 /** 827 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map 828 * @nor: pointer to a 'struct spi_nor' 829 * @smpt: pointer to the sector map parameter table 830 * 831 * Return: 0 on success, -errno otherwise. 832 */ 833 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, 834 const u32 *smpt) 835 { 836 struct spi_nor_erase_map *map = &nor->params->erase_map; 837 struct spi_nor_erase_type *erase = map->erase_type; 838 struct spi_nor_erase_region *region; 839 u64 offset; 840 u32 region_count; 841 int i, j; 842 u8 uniform_erase_type, save_uniform_erase_type; 843 u8 erase_type, regions_erase_type; 844 845 region_count = SMPT_MAP_REGION_COUNT(*smpt); 846 /* 847 * The regions will be freed when the driver detaches from the 848 * device. 849 */ 850 region = devm_kcalloc(nor->dev, region_count, sizeof(*region), 851 GFP_KERNEL); 852 if (!region) 853 return -ENOMEM; 854 map->regions = region; 855 map->n_regions = region_count; 856 857 uniform_erase_type = 0xff; 858 regions_erase_type = 0; 859 offset = 0; 860 /* Populate regions. */ 861 for (i = 0; i < region_count; i++) { 862 j = i + 1; /* index for the region dword */ 863 region[i].offset = offset; 864 region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); 865 erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); 866 region[i].erase_mask = erase_type; 867 868 spi_nor_region_check_overlay(®ion[i], erase, erase_type); 869 870 /* 871 * Save the erase types that are supported in all regions and 872 * can erase the entire flash memory. 873 */ 874 uniform_erase_type &= erase_type; 875 876 /* 877 * regions_erase_type mask will indicate all the erase types 878 * supported in this configuration map. 879 */ 880 regions_erase_type |= erase_type; 881 882 offset = region[i].offset + region[i].size; 883 } 884 885 save_uniform_erase_type = map->uniform_region.erase_mask; 886 map->uniform_region.erase_mask = 887 spi_nor_sort_erase_mask(map, 888 uniform_erase_type); 889 890 if (!regions_erase_type) { 891 /* 892 * Roll back to the previous uniform_erase_type mask, SMPT is 893 * broken. 894 */ 895 map->uniform_region.erase_mask = save_uniform_erase_type; 896 return -EINVAL; 897 } 898 899 /* 900 * BFPT advertises all the erase types supported by all the possible 901 * map configurations. Mask out the erase types that are not supported 902 * by the current map configuration. 903 */ 904 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 905 if (!(regions_erase_type & BIT(erase[i].idx))) 906 spi_nor_mask_erase_type(&erase[i]); 907 908 return 0; 909 } 910 911 /** 912 * spi_nor_parse_smpt() - parse Sector Map Parameter Table 913 * @nor: pointer to a 'struct spi_nor' 914 * @smpt_header: sector map parameter table header 915 * 916 * This table is optional, but when available, we parse it to identify the 917 * location and size of sectors within the main data array of the flash memory 918 * device and to identify which Erase Types are supported by each sector. 919 * 920 * Return: 0 on success, -errno otherwise. 921 */ 922 static int spi_nor_parse_smpt(struct spi_nor *nor, 923 const struct sfdp_parameter_header *smpt_header) 924 { 925 const u32 *sector_map; 926 u32 *smpt; 927 size_t len; 928 u32 addr; 929 int ret; 930 931 /* Read the Sector Map Parameter Table. */ 932 len = smpt_header->length * sizeof(*smpt); 933 smpt = kmalloc(len, GFP_KERNEL); 934 if (!smpt) 935 return -ENOMEM; 936 937 addr = SFDP_PARAM_HEADER_PTP(smpt_header); 938 ret = spi_nor_read_sfdp(nor, addr, len, smpt); 939 if (ret) 940 goto out; 941 942 /* Fix endianness of the SMPT DWORDs. */ 943 le32_to_cpu_array(smpt, smpt_header->length); 944 945 sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); 946 if (IS_ERR(sector_map)) { 947 ret = PTR_ERR(sector_map); 948 goto out; 949 } 950 951 ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); 952 if (ret) 953 goto out; 954 955 spi_nor_regions_sort_erase_types(&nor->params->erase_map); 956 /* fall through */ 957 out: 958 kfree(smpt); 959 return ret; 960 } 961 962 /** 963 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table 964 * @nor: pointer to a 'struct spi_nor'. 965 * @param_header: pointer to the 'struct sfdp_parameter_header' describing 966 * the 4-Byte Address Instruction Table length and version. 967 * 968 * Return: 0 on success, -errno otherwise. 969 */ 970 static int spi_nor_parse_4bait(struct spi_nor *nor, 971 const struct sfdp_parameter_header *param_header) 972 { 973 static const struct sfdp_4bait reads[] = { 974 { SNOR_HWCAPS_READ, BIT(0) }, 975 { SNOR_HWCAPS_READ_FAST, BIT(1) }, 976 { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, 977 { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, 978 { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, 979 { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, 980 { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, 981 { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, 982 { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, 983 { SNOR_HWCAPS_READ_1_1_8, BIT(20) }, 984 { SNOR_HWCAPS_READ_1_8_8, BIT(21) }, 985 }; 986 static const struct sfdp_4bait programs[] = { 987 { SNOR_HWCAPS_PP, BIT(6) }, 988 { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, 989 { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, 990 }; 991 static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { 992 { 0u /* not used */, BIT(9) }, 993 { 0u /* not used */, BIT(10) }, 994 { 0u /* not used */, BIT(11) }, 995 { 0u /* not used */, BIT(12) }, 996 }; 997 struct spi_nor_flash_parameter *params = nor->params; 998 struct spi_nor_pp_command *params_pp = params->page_programs; 999 struct spi_nor_erase_map *map = ¶ms->erase_map; 1000 struct spi_nor_erase_type *erase_type = map->erase_type; 1001 u32 *dwords; 1002 size_t len; 1003 u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; 1004 int i, ret; 1005 1006 if (param_header->major != SFDP_JESD216_MAJOR || 1007 param_header->length < SFDP_4BAIT_DWORD_MAX) 1008 return -EINVAL; 1009 1010 /* Read the 4-byte Address Instruction Table. */ 1011 len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; 1012 1013 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 1014 dwords = kmalloc(len, GFP_KERNEL); 1015 if (!dwords) 1016 return -ENOMEM; 1017 1018 addr = SFDP_PARAM_HEADER_PTP(param_header); 1019 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1020 if (ret) 1021 goto out; 1022 1023 /* Fix endianness of the 4BAIT DWORDs. */ 1024 le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX); 1025 1026 /* 1027 * Compute the subset of (Fast) Read commands for which the 4-byte 1028 * version is supported. 1029 */ 1030 discard_hwcaps = 0; 1031 read_hwcaps = 0; 1032 for (i = 0; i < ARRAY_SIZE(reads); i++) { 1033 const struct sfdp_4bait *read = &reads[i]; 1034 1035 discard_hwcaps |= read->hwcaps; 1036 if ((params->hwcaps.mask & read->hwcaps) && 1037 (dwords[SFDP_DWORD(1)] & read->supported_bit)) 1038 read_hwcaps |= read->hwcaps; 1039 } 1040 1041 /* 1042 * Compute the subset of Page Program commands for which the 4-byte 1043 * version is supported. 1044 */ 1045 pp_hwcaps = 0; 1046 for (i = 0; i < ARRAY_SIZE(programs); i++) { 1047 const struct sfdp_4bait *program = &programs[i]; 1048 1049 /* 1050 * The 4 Byte Address Instruction (Optional) Table is the only 1051 * SFDP table that indicates support for Page Program Commands. 1052 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest 1053 * authority for specifying Page Program support. 1054 */ 1055 discard_hwcaps |= program->hwcaps; 1056 if (dwords[SFDP_DWORD(1)] & program->supported_bit) 1057 pp_hwcaps |= program->hwcaps; 1058 } 1059 1060 /* 1061 * Compute the subset of Sector Erase commands for which the 4-byte 1062 * version is supported. 1063 */ 1064 erase_mask = 0; 1065 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1066 const struct sfdp_4bait *erase = &erases[i]; 1067 1068 if (dwords[SFDP_DWORD(1)] & erase->supported_bit) 1069 erase_mask |= BIT(i); 1070 } 1071 1072 /* Replicate the sort done for the map's erase types in BFPT. */ 1073 erase_mask = spi_nor_sort_erase_mask(map, erase_mask); 1074 1075 /* 1076 * We need at least one 4-byte op code per read, program and erase 1077 * operation; the .read(), .write() and .erase() hooks share the 1078 * nor->addr_nbytes value. 1079 */ 1080 if (!read_hwcaps || !pp_hwcaps || !erase_mask) 1081 goto out; 1082 1083 /* 1084 * Discard all operations from the 4-byte instruction set which are 1085 * not supported by this memory. 1086 */ 1087 params->hwcaps.mask &= ~discard_hwcaps; 1088 params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); 1089 1090 /* Use the 4-byte address instruction set. */ 1091 for (i = 0; i < SNOR_CMD_READ_MAX; i++) { 1092 struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; 1093 1094 read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); 1095 } 1096 1097 /* 4BAIT is the only SFDP table that indicates page program support. */ 1098 if (pp_hwcaps & SNOR_HWCAPS_PP) { 1099 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], 1100 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); 1101 /* 1102 * Since xSPI Page Program opcode is backward compatible with 1103 * Legacy SPI, use Legacy SPI opcode there as well. 1104 */ 1105 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR], 1106 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); 1107 } 1108 if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) 1109 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], 1110 SPINOR_OP_PP_1_1_4_4B, 1111 SNOR_PROTO_1_1_4); 1112 if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) 1113 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], 1114 SPINOR_OP_PP_1_4_4_4B, 1115 SNOR_PROTO_1_4_4); 1116 1117 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1118 if (erase_mask & BIT(i)) 1119 erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >> 1120 erase_type[i].idx * 8) & 0xFF; 1121 else 1122 spi_nor_mask_erase_type(&erase_type[i]); 1123 } 1124 1125 /* 1126 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() 1127 * later because we already did the conversion to 4byte opcodes. Also, 1128 * this latest function implements a legacy quirk for the erase size of 1129 * Spansion memory. However this quirk is no longer needed with new 1130 * SFDP compliant memories. 1131 */ 1132 params->addr_nbytes = 4; 1133 nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; 1134 1135 /* fall through */ 1136 out: 1137 kfree(dwords); 1138 return ret; 1139 } 1140 1141 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29) 1142 #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28) 1143 #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8) 1144 #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7) 1145 #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27) 1146 #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17) 1147 #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7) 1148 1149 /** 1150 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table 1151 * @nor: pointer to a 'struct spi_nor' 1152 * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing 1153 * the Profile 1.0 Table length and version. 1154 * 1155 * Return: 0 on success, -errno otherwise. 1156 */ 1157 static int spi_nor_parse_profile1(struct spi_nor *nor, 1158 const struct sfdp_parameter_header *profile1_header) 1159 { 1160 u32 *dwords, addr; 1161 size_t len; 1162 int ret; 1163 u8 dummy, opcode; 1164 1165 len = profile1_header->length * sizeof(*dwords); 1166 dwords = kmalloc(len, GFP_KERNEL); 1167 if (!dwords) 1168 return -ENOMEM; 1169 1170 addr = SFDP_PARAM_HEADER_PTP(profile1_header); 1171 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1172 if (ret) 1173 goto out; 1174 1175 le32_to_cpu_array(dwords, profile1_header->length); 1176 1177 /* Get 8D-8D-8D fast read opcode and dummy cycles. */ 1178 opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]); 1179 1180 /* Set the Read Status Register dummy cycles and dummy address bytes. */ 1181 if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY) 1182 nor->params->rdsr_dummy = 8; 1183 else 1184 nor->params->rdsr_dummy = 4; 1185 1186 if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES) 1187 nor->params->rdsr_addr_nbytes = 4; 1188 else 1189 nor->params->rdsr_addr_nbytes = 0; 1190 1191 /* 1192 * We don't know what speed the controller is running at. Find the 1193 * dummy cycles for the fastest frequency the flash can run at to be 1194 * sure we are never short of dummy cycles. A value of 0 means the 1195 * frequency is not supported. 1196 * 1197 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let 1198 * flashes set the correct value if needed in their fixup hooks. 1199 */ 1200 dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]); 1201 if (!dummy) 1202 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, 1203 dwords[SFDP_DWORD(5)]); 1204 if (!dummy) 1205 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, 1206 dwords[SFDP_DWORD(5)]); 1207 if (!dummy) 1208 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, 1209 dwords[SFDP_DWORD(5)]); 1210 if (!dummy) 1211 dev_dbg(nor->dev, 1212 "Can't find dummy cycles from Profile 1.0 table\n"); 1213 1214 /* Round up to an even value to avoid tripping controllers up. */ 1215 dummy = round_up(dummy, 2); 1216 1217 /* Update the fast read settings. */ 1218 nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; 1219 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], 1220 0, dummy, opcode, 1221 SNOR_PROTO_8_8_8_DTR); 1222 1223 /* 1224 * Page Program is "Required Command" in the xSPI Profile 1.0. Update 1225 * the params->hwcaps.mask here. 1226 */ 1227 nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; 1228 1229 out: 1230 kfree(dwords); 1231 return ret; 1232 } 1233 1234 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31) 1235 1236 /** 1237 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register 1238 * Map. 1239 * @nor: pointer to a 'struct spi_nor' 1240 * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing 1241 * the SCCR Map table length and version. 1242 * 1243 * Return: 0 on success, -errno otherwise. 1244 */ 1245 static int spi_nor_parse_sccr(struct spi_nor *nor, 1246 const struct sfdp_parameter_header *sccr_header) 1247 { 1248 struct spi_nor_flash_parameter *params = nor->params; 1249 u32 *dwords, addr; 1250 size_t len; 1251 int ret; 1252 1253 len = sccr_header->length * sizeof(*dwords); 1254 dwords = kmalloc(len, GFP_KERNEL); 1255 if (!dwords) 1256 return -ENOMEM; 1257 1258 addr = SFDP_PARAM_HEADER_PTP(sccr_header); 1259 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1260 if (ret) 1261 goto out; 1262 1263 le32_to_cpu_array(dwords, sccr_header->length); 1264 1265 /* Address offset for volatile registers (die 0) */ 1266 if (!params->vreg_offset) { 1267 params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords), 1268 GFP_KERNEL); 1269 if (!params->vreg_offset) { 1270 ret = -ENOMEM; 1271 goto out; 1272 } 1273 } 1274 params->vreg_offset[0] = dwords[SFDP_DWORD(1)]; 1275 params->n_dice = 1; 1276 1277 if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, 1278 dwords[SFDP_DWORD(22)])) 1279 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; 1280 1281 out: 1282 kfree(dwords); 1283 return ret; 1284 } 1285 1286 /** 1287 * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration 1288 * Register Map Offsets for Multi-Chip SPI Memory 1289 * Devices. 1290 * @nor: pointer to a 'struct spi_nor' 1291 * @sccr_mc_header: pointer to the 'struct sfdp_parameter_header' describing 1292 * the SCCR Map offsets table length and version. 1293 * 1294 * Return: 0 on success, -errno otherwise. 1295 */ 1296 static int spi_nor_parse_sccr_mc(struct spi_nor *nor, 1297 const struct sfdp_parameter_header *sccr_mc_header) 1298 { 1299 struct spi_nor_flash_parameter *params = nor->params; 1300 u32 *dwords, addr; 1301 u8 i, n_dice; 1302 size_t len; 1303 int ret; 1304 1305 len = sccr_mc_header->length * sizeof(*dwords); 1306 dwords = kmalloc(len, GFP_KERNEL); 1307 if (!dwords) 1308 return -ENOMEM; 1309 1310 addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header); 1311 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1312 if (ret) 1313 goto out; 1314 1315 le32_to_cpu_array(dwords, sccr_mc_header->length); 1316 1317 /* 1318 * Pair of DOWRDs (volatile and non-volatile register offsets) per 1319 * additional die. Hence, length = 2 * (number of additional dice). 1320 */ 1321 n_dice = 1 + sccr_mc_header->length / 2; 1322 1323 /* Address offset for volatile registers of additional dice */ 1324 params->vreg_offset = 1325 devm_krealloc(nor->dev, params->vreg_offset, 1326 n_dice * sizeof(*dwords), 1327 GFP_KERNEL); 1328 if (!params->vreg_offset) { 1329 ret = -ENOMEM; 1330 goto out; 1331 } 1332 1333 for (i = 1; i < n_dice; i++) 1334 params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2]; 1335 1336 params->n_dice = n_dice; 1337 1338 out: 1339 kfree(dwords); 1340 return ret; 1341 } 1342 1343 /** 1344 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings 1345 * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP 1346 * tables. 1347 * @nor: pointer to a 'struct spi_nor' 1348 * 1349 * Used to tweak various flash parameters when information provided by the SFDP 1350 * tables are wrong. 1351 */ 1352 static int spi_nor_post_sfdp_fixups(struct spi_nor *nor) 1353 { 1354 int ret; 1355 1356 if (nor->manufacturer && nor->manufacturer->fixups && 1357 nor->manufacturer->fixups->post_sfdp) { 1358 ret = nor->manufacturer->fixups->post_sfdp(nor); 1359 if (ret) 1360 return ret; 1361 } 1362 1363 if (nor->info->fixups && nor->info->fixups->post_sfdp) 1364 return nor->info->fixups->post_sfdp(nor); 1365 1366 return 0; 1367 } 1368 1369 /** 1370 * spi_nor_check_sfdp_signature() - check for a valid SFDP signature 1371 * @nor: pointer to a 'struct spi_nor' 1372 * 1373 * Used to detect if the flash supports the RDSFDP command as well as the 1374 * presence of a valid SFDP table. 1375 * 1376 * Return: 0 on success, -errno otherwise. 1377 */ 1378 int spi_nor_check_sfdp_signature(struct spi_nor *nor) 1379 { 1380 u32 signature; 1381 int err; 1382 1383 /* Get the SFDP header. */ 1384 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature), 1385 &signature); 1386 if (err < 0) 1387 return err; 1388 1389 /* Check the SFDP signature. */ 1390 if (le32_to_cpu(signature) != SFDP_SIGNATURE) 1391 return -EINVAL; 1392 1393 return 0; 1394 } 1395 1396 /** 1397 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. 1398 * @nor: pointer to a 'struct spi_nor' 1399 * 1400 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 1401 * specification. This is a standard which tends to supported by almost all 1402 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at 1403 * runtime the main parameters needed to perform basic SPI flash operations such 1404 * as Fast Read, Page Program or Sector Erase commands. 1405 * 1406 * Return: 0 on success, -errno otherwise. 1407 */ 1408 int spi_nor_parse_sfdp(struct spi_nor *nor) 1409 { 1410 const struct sfdp_parameter_header *param_header, *bfpt_header; 1411 struct sfdp_parameter_header *param_headers = NULL; 1412 struct sfdp_header header; 1413 struct device *dev = nor->dev; 1414 struct sfdp *sfdp; 1415 size_t sfdp_size; 1416 size_t psize; 1417 int i, err; 1418 1419 /* Get the SFDP header. */ 1420 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); 1421 if (err < 0) 1422 return err; 1423 1424 /* Check the SFDP header version. */ 1425 if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || 1426 header.major != SFDP_JESD216_MAJOR) 1427 return -EINVAL; 1428 1429 /* 1430 * Verify that the first and only mandatory parameter header is a 1431 * Basic Flash Parameter Table header as specified in JESD216. 1432 */ 1433 bfpt_header = &header.bfpt_header; 1434 if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || 1435 bfpt_header->major != SFDP_JESD216_MAJOR) 1436 return -EINVAL; 1437 1438 sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) + 1439 SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header); 1440 1441 /* 1442 * Allocate memory then read all parameter headers with a single 1443 * Read SFDP command. These parameter headers will actually be parsed 1444 * twice: a first time to get the latest revision of the basic flash 1445 * parameter table, then a second time to handle the supported optional 1446 * tables. 1447 * Hence we read the parameter headers once for all to reduce the 1448 * processing time. Also we use kmalloc() instead of devm_kmalloc() 1449 * because we don't need to keep these parameter headers: the allocated 1450 * memory is always released with kfree() before exiting this function. 1451 */ 1452 if (header.nph) { 1453 psize = header.nph * sizeof(*param_headers); 1454 1455 param_headers = kmalloc(psize, GFP_KERNEL); 1456 if (!param_headers) 1457 return -ENOMEM; 1458 1459 err = spi_nor_read_sfdp(nor, sizeof(header), 1460 psize, param_headers); 1461 if (err < 0) { 1462 dev_dbg(dev, "failed to read SFDP parameter headers\n"); 1463 goto exit; 1464 } 1465 } 1466 1467 /* 1468 * Cache the complete SFDP data. It is not (easily) possible to fetch 1469 * SFDP after probe time and we need it for the sysfs access. 1470 */ 1471 for (i = 0; i < header.nph; i++) { 1472 param_header = ¶m_headers[i]; 1473 sfdp_size = max_t(size_t, sfdp_size, 1474 SFDP_PARAM_HEADER_PTP(param_header) + 1475 SFDP_PARAM_HEADER_PARAM_LEN(param_header)); 1476 } 1477 1478 /* 1479 * Limit the total size to a reasonable value to avoid allocating too 1480 * much memory just of because the flash returned some insane values. 1481 */ 1482 if (sfdp_size > PAGE_SIZE) { 1483 dev_dbg(dev, "SFDP data (%zu) too big, truncating\n", 1484 sfdp_size); 1485 sfdp_size = PAGE_SIZE; 1486 } 1487 1488 sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL); 1489 if (!sfdp) { 1490 err = -ENOMEM; 1491 goto exit; 1492 } 1493 1494 /* 1495 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the 1496 * sfdp_size should be a multiple of DWORDs. But in case a flash 1497 * is not spec compliant, make sure that we have enough space to store 1498 * the complete SFDP data. 1499 */ 1500 sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords)); 1501 sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords, 1502 sizeof(*sfdp->dwords), GFP_KERNEL); 1503 if (!sfdp->dwords) { 1504 err = -ENOMEM; 1505 devm_kfree(dev, sfdp); 1506 goto exit; 1507 } 1508 1509 err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords); 1510 if (err < 0) { 1511 dev_dbg(dev, "failed to read SFDP data\n"); 1512 devm_kfree(dev, sfdp->dwords); 1513 devm_kfree(dev, sfdp); 1514 goto exit; 1515 } 1516 1517 nor->sfdp = sfdp; 1518 1519 /* 1520 * Check other parameter headers to get the latest revision of 1521 * the basic flash parameter table. 1522 */ 1523 for (i = 0; i < header.nph; i++) { 1524 param_header = ¶m_headers[i]; 1525 1526 if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && 1527 param_header->major == SFDP_JESD216_MAJOR && 1528 (param_header->minor > bfpt_header->minor || 1529 (param_header->minor == bfpt_header->minor && 1530 param_header->length > bfpt_header->length))) 1531 bfpt_header = param_header; 1532 } 1533 1534 err = spi_nor_parse_bfpt(nor, bfpt_header); 1535 if (err) 1536 goto exit; 1537 1538 /* Parse optional parameter tables. */ 1539 for (i = 0; i < header.nph; i++) { 1540 param_header = ¶m_headers[i]; 1541 1542 switch (SFDP_PARAM_HEADER_ID(param_header)) { 1543 case SFDP_SECTOR_MAP_ID: 1544 err = spi_nor_parse_smpt(nor, param_header); 1545 break; 1546 1547 case SFDP_4BAIT_ID: 1548 err = spi_nor_parse_4bait(nor, param_header); 1549 break; 1550 1551 case SFDP_PROFILE1_ID: 1552 err = spi_nor_parse_profile1(nor, param_header); 1553 break; 1554 1555 case SFDP_SCCR_MAP_ID: 1556 err = spi_nor_parse_sccr(nor, param_header); 1557 break; 1558 1559 case SFDP_SCCR_MAP_MC_ID: 1560 err = spi_nor_parse_sccr_mc(nor, param_header); 1561 break; 1562 1563 default: 1564 break; 1565 } 1566 1567 if (err) { 1568 dev_warn(dev, "Failed to parse optional parameter table: %04x\n", 1569 SFDP_PARAM_HEADER_ID(param_header)); 1570 /* 1571 * Let's not drop all information we extracted so far 1572 * if optional table parsers fail. In case of failing, 1573 * each optional parser is responsible to roll back to 1574 * the previously known spi_nor data. 1575 */ 1576 err = 0; 1577 } 1578 } 1579 1580 err = spi_nor_post_sfdp_fixups(nor); 1581 exit: 1582 kfree(param_headers); 1583 return err; 1584 } 1585