1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2005, Intec Automation Inc. 4 * Copyright (C) 2014, Freescale Semiconductor, Inc. 5 */ 6 7 #include <linux/mtd/spi-nor.h> 8 9 #include "core.h" 10 11 /* flash_info mfr_flag. Used to read proprietary FSR register. */ 12 #define USE_FSR BIT(0) 13 14 #define SPINOR_OP_MT_DIE_ERASE 0xc4 /* Chip (die) erase opcode */ 15 #define SPINOR_OP_RDFSR 0x70 /* Read flag status register */ 16 #define SPINOR_OP_CLFSR 0x50 /* Clear flag status register */ 17 #define SPINOR_OP_MT_DTR_RD 0xfd /* Fast Read opcode in DTR mode */ 18 #define SPINOR_OP_MT_RD_ANY_REG 0x85 /* Read volatile register */ 19 #define SPINOR_OP_MT_WR_ANY_REG 0x81 /* Write volatile register */ 20 #define SPINOR_REG_MT_CFR0V 0x00 /* For setting octal DTR mode */ 21 #define SPINOR_REG_MT_CFR1V 0x01 /* For setting dummy cycles */ 22 #define SPINOR_REG_MT_CFR1V_DEF 0x1f /* Default dummy cycles */ 23 #define SPINOR_MT_OCT_DTR 0xe7 /* Enable Octal DTR. */ 24 #define SPINOR_MT_EXSPI 0xff /* Enable Extended SPI (default) */ 25 26 /* Flag Status Register bits */ 27 #define FSR_READY BIT(7) /* Device status, 0 = Busy, 1 = Ready */ 28 #define FSR_E_ERR BIT(5) /* Erase operation status */ 29 #define FSR_P_ERR BIT(4) /* Program operation status */ 30 #define FSR_PT_ERR BIT(1) /* Protection error bit */ 31 32 /* Micron ST SPI NOR flash operations. */ 33 #define MICRON_ST_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \ 34 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 0), \ 35 SPI_MEM_OP_ADDR(naddr, addr, 0), \ 36 SPI_MEM_OP_NO_DUMMY, \ 37 SPI_MEM_OP_DATA_OUT(ndata, buf, 0)) 38 39 #define MICRON_ST_RDFSR_OP(buf) \ 40 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0), \ 41 SPI_MEM_OP_NO_ADDR, \ 42 SPI_MEM_OP_NO_DUMMY, \ 43 SPI_MEM_OP_DATA_IN(1, buf, 0)) 44 45 #define MICRON_ST_CLFSR_OP \ 46 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0), \ 47 SPI_MEM_OP_NO_ADDR, \ 48 SPI_MEM_OP_NO_DUMMY, \ 49 SPI_MEM_OP_NO_DATA) 50 51 static int micron_st_nor_octal_dtr_en(struct spi_nor *nor) 52 { 53 struct spi_mem_op op; 54 u8 *buf = nor->bouncebuf; 55 int ret; 56 u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; 57 58 /* Use 20 dummy cycles for memory array reads. */ 59 *buf = 20; 60 op = (struct spi_mem_op) 61 MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes, 62 SPINOR_REG_MT_CFR1V, 1, buf); 63 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); 64 if (ret) 65 return ret; 66 67 buf[0] = SPINOR_MT_OCT_DTR; 68 op = (struct spi_mem_op) 69 MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes, 70 SPINOR_REG_MT_CFR0V, 1, buf); 71 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); 72 if (ret) 73 return ret; 74 75 /* Read flash ID to make sure the switch was successful. */ 76 ret = spi_nor_read_id(nor, 0, 8, buf, SNOR_PROTO_8_8_8_DTR); 77 if (ret) { 78 dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret); 79 return ret; 80 } 81 82 if (memcmp(buf, nor->info->id->bytes, nor->info->id->len)) 83 return -EINVAL; 84 85 return 0; 86 } 87 88 static int micron_st_nor_octal_dtr_dis(struct spi_nor *nor) 89 { 90 struct spi_mem_op op; 91 u8 *buf = nor->bouncebuf; 92 int ret; 93 94 /* 95 * The register is 1-byte wide, but 1-byte transactions are not allowed 96 * in 8D-8D-8D mode. The next register is the dummy cycle configuration 97 * register. Since the transaction needs to be at least 2 bytes wide, 98 * set the next register to its default value. This also makes sense 99 * because the value was changed when enabling 8D-8D-8D mode, it should 100 * be reset when disabling. 101 */ 102 buf[0] = SPINOR_MT_EXSPI; 103 buf[1] = SPINOR_REG_MT_CFR1V_DEF; 104 op = (struct spi_mem_op) 105 MICRON_ST_NOR_WR_ANY_REG_OP(nor->addr_nbytes, 106 SPINOR_REG_MT_CFR0V, 2, buf); 107 ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR); 108 if (ret) 109 return ret; 110 111 /* Read flash ID to make sure the switch was successful. */ 112 ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1); 113 if (ret) { 114 dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret); 115 return ret; 116 } 117 118 if (memcmp(buf, nor->info->id->bytes, nor->info->id->len)) 119 return -EINVAL; 120 121 return 0; 122 } 123 124 static int micron_st_nor_set_octal_dtr(struct spi_nor *nor, bool enable) 125 { 126 return enable ? micron_st_nor_octal_dtr_en(nor) : 127 micron_st_nor_octal_dtr_dis(nor); 128 } 129 130 static void mt35xu512aba_default_init(struct spi_nor *nor) 131 { 132 nor->params->set_octal_dtr = micron_st_nor_set_octal_dtr; 133 } 134 135 static int mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor) 136 { 137 /* Set the Fast Read settings. */ 138 nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; 139 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], 140 0, 20, SPINOR_OP_MT_DTR_RD, 141 SNOR_PROTO_8_8_8_DTR); 142 143 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; 144 nor->params->rdsr_dummy = 8; 145 nor->params->rdsr_addr_nbytes = 0; 146 147 /* 148 * The BFPT quad enable field is set to a reserved value so the quad 149 * enable function is ignored by spi_nor_parse_bfpt(). Make sure we 150 * disable it. 151 */ 152 nor->params->quad_enable = NULL; 153 154 return 0; 155 } 156 157 static const struct spi_nor_fixups mt35xu512aba_fixups = { 158 .default_init = mt35xu512aba_default_init, 159 .post_sfdp = mt35xu512aba_post_sfdp_fixup, 160 }; 161 162 static const struct flash_info micron_nor_parts[] = { 163 { 164 .id = SNOR_ID(0x2c, 0x5b, 0x1a), 165 .name = "mt35xu512aba", 166 .sector_size = SZ_128K, 167 .size = SZ_64M, 168 .no_sfdp_flags = SECT_4K | SPI_NOR_OCTAL_READ | 169 SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP, 170 .mfr_flags = USE_FSR, 171 .fixup_flags = SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE, 172 .fixups = &mt35xu512aba_fixups, 173 }, { 174 .id = SNOR_ID(0x2c, 0x5b, 0x1c), 175 .name = "mt35xu02g", 176 .sector_size = SZ_128K, 177 .size = SZ_256M, 178 .no_sfdp_flags = SECT_4K | SPI_NOR_OCTAL_READ, 179 .mfr_flags = USE_FSR, 180 .fixup_flags = SPI_NOR_4B_OPCODES, 181 }, 182 }; 183 184 static int mt25qu512a_post_bfpt_fixup(struct spi_nor *nor, 185 const struct sfdp_parameter_header *bfpt_header, 186 const struct sfdp_bfpt *bfpt) 187 { 188 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 189 return 0; 190 } 191 192 static struct spi_nor_fixups mt25qu512a_fixups = { 193 .post_bfpt = mt25qu512a_post_bfpt_fixup, 194 }; 195 196 static int st_nor_four_die_late_init(struct spi_nor *nor) 197 { 198 struct spi_nor_flash_parameter *params = nor->params; 199 200 params->die_erase_opcode = SPINOR_OP_MT_DIE_ERASE; 201 params->n_dice = 4; 202 203 /* 204 * Unfortunately the die erase opcode does not have a 4-byte opcode 205 * correspondent for these flashes. The SFDP 4BAIT table fails to 206 * consider the die erase too. We're forced to enter in the 4 byte 207 * address mode in order to benefit of the die erase. 208 */ 209 return spi_nor_set_4byte_addr_mode(nor, true); 210 } 211 212 static int st_nor_two_die_late_init(struct spi_nor *nor) 213 { 214 struct spi_nor_flash_parameter *params = nor->params; 215 216 params->die_erase_opcode = SPINOR_OP_MT_DIE_ERASE; 217 params->n_dice = 2; 218 219 /* 220 * Unfortunately the die erase opcode does not have a 4-byte opcode 221 * correspondent for these flashes. The SFDP 4BAIT table fails to 222 * consider the die erase too. We're forced to enter in the 4 byte 223 * address mode in order to benefit of the die erase. 224 */ 225 return spi_nor_set_4byte_addr_mode(nor, true); 226 } 227 228 static struct spi_nor_fixups n25q00_fixups = { 229 .late_init = st_nor_four_die_late_init, 230 }; 231 232 static struct spi_nor_fixups mt25q01_fixups = { 233 .late_init = st_nor_two_die_late_init, 234 }; 235 236 static struct spi_nor_fixups mt25q02_fixups = { 237 .late_init = st_nor_four_die_late_init, 238 }; 239 240 static const struct flash_info st_nor_parts[] = { 241 { 242 .name = "m25p05-nonjedec", 243 .sector_size = SZ_32K, 244 .size = SZ_64K, 245 }, { 246 .name = "m25p10-nonjedec", 247 .sector_size = SZ_32K, 248 .size = SZ_128K, 249 }, { 250 .name = "m25p20-nonjedec", 251 .size = SZ_256K, 252 }, { 253 .name = "m25p40-nonjedec", 254 .size = SZ_512K, 255 }, { 256 .name = "m25p80-nonjedec", 257 .size = SZ_1M, 258 }, { 259 .name = "m25p16-nonjedec", 260 .size = SZ_2M, 261 }, { 262 .name = "m25p32-nonjedec", 263 .size = SZ_4M, 264 }, { 265 .name = "m25p64-nonjedec", 266 .size = SZ_8M, 267 }, { 268 .name = "m25p128-nonjedec", 269 .sector_size = SZ_256K, 270 .size = SZ_16M, 271 }, { 272 .id = SNOR_ID(0x20, 0x20, 0x10), 273 .name = "m25p05", 274 .sector_size = SZ_32K, 275 .size = SZ_64K, 276 }, { 277 .id = SNOR_ID(0x20, 0x20, 0x11), 278 .name = "m25p10", 279 .sector_size = SZ_32K, 280 .size = SZ_128K, 281 }, { 282 .id = SNOR_ID(0x20, 0x20, 0x12), 283 .name = "m25p20", 284 .size = SZ_256K, 285 }, { 286 .id = SNOR_ID(0x20, 0x20, 0x13), 287 .name = "m25p40", 288 .size = SZ_512K, 289 }, { 290 .id = SNOR_ID(0x20, 0x20, 0x14), 291 .name = "m25p80", 292 .size = SZ_1M, 293 }, { 294 .id = SNOR_ID(0x20, 0x20, 0x15), 295 .name = "m25p16", 296 .size = SZ_2M, 297 }, { 298 .id = SNOR_ID(0x20, 0x20, 0x16), 299 .name = "m25p32", 300 .size = SZ_4M, 301 }, { 302 .id = SNOR_ID(0x20, 0x20, 0x17), 303 .name = "m25p64", 304 .size = SZ_8M, 305 }, { 306 .id = SNOR_ID(0x20, 0x20, 0x18), 307 .name = "m25p128", 308 .sector_size = SZ_256K, 309 .size = SZ_16M, 310 }, { 311 .id = SNOR_ID(0x20, 0x40, 0x11), 312 .name = "m45pe10", 313 .size = SZ_128K, 314 }, { 315 .id = SNOR_ID(0x20, 0x40, 0x14), 316 .name = "m45pe80", 317 .size = SZ_1M, 318 }, { 319 .id = SNOR_ID(0x20, 0x40, 0x15), 320 .name = "m45pe16", 321 .size = SZ_2M, 322 }, { 323 .id = SNOR_ID(0x20, 0x63, 0x16), 324 .name = "m25px32-s1", 325 .size = SZ_4M, 326 .no_sfdp_flags = SECT_4K, 327 }, { 328 .id = SNOR_ID(0x20, 0x71, 0x14), 329 .name = "m25px80", 330 .size = SZ_1M, 331 }, { 332 .id = SNOR_ID(0x20, 0x71, 0x15), 333 .name = "m25px16", 334 .size = SZ_2M, 335 .no_sfdp_flags = SECT_4K, 336 }, { 337 .id = SNOR_ID(0x20, 0x71, 0x16), 338 .name = "m25px32", 339 .size = SZ_4M, 340 .no_sfdp_flags = SECT_4K, 341 }, { 342 .id = SNOR_ID(0x20, 0x71, 0x17), 343 .name = "m25px64", 344 .size = SZ_8M, 345 }, { 346 .id = SNOR_ID(0x20, 0x73, 0x16), 347 .name = "m25px32-s0", 348 .size = SZ_4M, 349 .no_sfdp_flags = SECT_4K, 350 }, { 351 .id = SNOR_ID(0x20, 0x80, 0x12), 352 .name = "m25pe20", 353 .size = SZ_256K, 354 }, { 355 .id = SNOR_ID(0x20, 0x80, 0x14), 356 .name = "m25pe80", 357 .size = SZ_1M, 358 }, { 359 .id = SNOR_ID(0x20, 0x80, 0x15), 360 .name = "m25pe16", 361 .size = SZ_2M, 362 .no_sfdp_flags = SECT_4K, 363 }, { 364 .id = SNOR_ID(0x20, 0xba, 0x16), 365 .name = "n25q032", 366 .size = SZ_4M, 367 .no_sfdp_flags = SPI_NOR_QUAD_READ, 368 }, { 369 .id = SNOR_ID(0x20, 0xba, 0x17), 370 .name = "n25q064", 371 .size = SZ_8M, 372 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, 373 }, { 374 .id = SNOR_ID(0x20, 0xba, 0x18), 375 .name = "n25q128a13", 376 .size = SZ_16M, 377 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | 378 SPI_NOR_BP3_SR_BIT6, 379 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, 380 .mfr_flags = USE_FSR, 381 }, { 382 .id = SNOR_ID(0x20, 0xba, 0x19, 0x10, 0x44, 0x00), 383 .name = "mt25ql256a", 384 .size = SZ_32M, 385 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 386 .fixup_flags = SPI_NOR_4B_OPCODES, 387 .mfr_flags = USE_FSR, 388 }, { 389 .id = SNOR_ID(0x20, 0xba, 0x19), 390 .name = "n25q256a", 391 .size = SZ_32M, 392 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 393 .mfr_flags = USE_FSR, 394 }, { 395 .id = SNOR_ID(0x20, 0xba, 0x20, 0x10, 0x44, 0x00), 396 .name = "mt25ql512a", 397 .size = SZ_64M, 398 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 399 .fixup_flags = SPI_NOR_4B_OPCODES, 400 .mfr_flags = USE_FSR, 401 }, { 402 .id = SNOR_ID(0x20, 0xba, 0x20), 403 .name = "n25q512ax3", 404 .size = SZ_64M, 405 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | 406 SPI_NOR_BP3_SR_BIT6, 407 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, 408 .mfr_flags = USE_FSR, 409 }, { 410 .id = SNOR_ID(0x20, 0xba, 0x21), 411 .name = "n25q00", 412 .size = SZ_128M, 413 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | 414 SPI_NOR_BP3_SR_BIT6, 415 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, 416 .mfr_flags = USE_FSR, 417 .fixups = &n25q00_fixups, 418 }, { 419 .id = SNOR_ID(0x20, 0xba, 0x22), 420 .name = "mt25ql02g", 421 .size = SZ_256M, 422 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, 423 .mfr_flags = USE_FSR, 424 .fixups = &mt25q02_fixups, 425 }, { 426 .id = SNOR_ID(0x20, 0xbb, 0x15), 427 .name = "n25q016a", 428 .size = SZ_2M, 429 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, 430 }, { 431 .id = SNOR_ID(0x20, 0xbb, 0x16), 432 .name = "n25q032a", 433 .size = SZ_4M, 434 .no_sfdp_flags = SPI_NOR_QUAD_READ, 435 }, { 436 .id = SNOR_ID(0x20, 0xbb, 0x17), 437 .name = "n25q064a", 438 .size = SZ_8M, 439 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, 440 }, { 441 .id = SNOR_ID(0x20, 0xbb, 0x18), 442 .name = "n25q128a11", 443 .size = SZ_16M, 444 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | 445 SPI_NOR_BP3_SR_BIT6, 446 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, 447 .mfr_flags = USE_FSR, 448 }, { 449 .id = SNOR_ID(0x20, 0xbb, 0x19, 0x10, 0x44, 0x00), 450 .name = "mt25qu256a", 451 .size = SZ_32M, 452 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | 453 SPI_NOR_BP3_SR_BIT6, 454 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 455 .fixup_flags = SPI_NOR_4B_OPCODES, 456 .mfr_flags = USE_FSR, 457 }, { 458 .id = SNOR_ID(0x20, 0xbb, 0x19), 459 .name = "n25q256ax1", 460 .size = SZ_32M, 461 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, 462 .mfr_flags = USE_FSR, 463 }, { 464 .id = SNOR_ID(0x20, 0xbb, 0x20, 0x10, 0x44, 0x00), 465 .name = "mt25qu512a", 466 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | 467 SPI_NOR_BP3_SR_BIT6, 468 .mfr_flags = USE_FSR, 469 .fixups = &mt25qu512a_fixups, 470 }, { 471 .id = SNOR_ID(0x20, 0xbb, 0x20), 472 .name = "n25q512a", 473 .size = SZ_64M, 474 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | 475 SPI_NOR_BP3_SR_BIT6, 476 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, 477 .mfr_flags = USE_FSR, 478 }, { 479 .id = SNOR_ID(0x20, 0xbb, 0x21, 0x10, 0x44, 0x00), 480 .name = "mt25qu01g", 481 .mfr_flags = USE_FSR, 482 .fixups = &mt25q01_fixups, 483 }, { 484 .id = SNOR_ID(0x20, 0xbb, 0x21), 485 .name = "n25q00a", 486 .size = SZ_128M, 487 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, 488 .mfr_flags = USE_FSR, 489 .fixups = &n25q00_fixups, 490 }, { 491 .id = SNOR_ID(0x20, 0xbb, 0x22), 492 .name = "mt25qu02g", 493 .size = SZ_256M, 494 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, 495 .mfr_flags = USE_FSR, 496 .fixups = &mt25q02_fixups, 497 } 498 }; 499 500 /** 501 * micron_st_nor_read_fsr() - Read the Flag Status Register. 502 * @nor: pointer to 'struct spi_nor' 503 * @fsr: pointer to a DMA-able buffer where the value of the 504 * Flag Status Register will be written. Should be at least 2 505 * bytes. 506 * 507 * Return: 0 on success, -errno otherwise. 508 */ 509 static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr) 510 { 511 int ret; 512 513 if (nor->spimem) { 514 struct spi_mem_op op = MICRON_ST_RDFSR_OP(fsr); 515 516 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { 517 op.addr.nbytes = nor->params->rdsr_addr_nbytes; 518 op.dummy.nbytes = nor->params->rdsr_dummy; 519 /* 520 * We don't want to read only one byte in DTR mode. So, 521 * read 2 and then discard the second byte. 522 */ 523 op.data.nbytes = 2; 524 } 525 526 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 527 528 ret = spi_mem_exec_op(nor->spimem, &op); 529 } else { 530 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr, 531 1); 532 } 533 534 if (ret) 535 dev_dbg(nor->dev, "error %d reading FSR\n", ret); 536 537 return ret; 538 } 539 540 /** 541 * micron_st_nor_clear_fsr() - Clear the Flag Status Register. 542 * @nor: pointer to 'struct spi_nor'. 543 */ 544 static void micron_st_nor_clear_fsr(struct spi_nor *nor) 545 { 546 int ret; 547 548 if (nor->spimem) { 549 struct spi_mem_op op = MICRON_ST_CLFSR_OP; 550 551 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 552 553 ret = spi_mem_exec_op(nor->spimem, &op); 554 } else { 555 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR, 556 NULL, 0); 557 } 558 559 if (ret) 560 dev_dbg(nor->dev, "error %d clearing FSR\n", ret); 561 } 562 563 /** 564 * micron_st_nor_ready() - Query the Status Register as well as the Flag Status 565 * Register to see if the flash is ready for new commands. If there are any 566 * errors in the FSR clear them. 567 * @nor: pointer to 'struct spi_nor'. 568 * 569 * Return: 1 if ready, 0 if not ready, -errno on errors. 570 */ 571 static int micron_st_nor_ready(struct spi_nor *nor) 572 { 573 int sr_ready, ret; 574 575 sr_ready = spi_nor_sr_ready(nor); 576 if (sr_ready < 0) 577 return sr_ready; 578 579 ret = micron_st_nor_read_fsr(nor, nor->bouncebuf); 580 if (ret) { 581 /* 582 * Some controllers, such as Intel SPI, do not support low 583 * level operations such as reading the flag status 584 * register. They only expose small amount of high level 585 * operations to the software. If this is the case we use 586 * only the status register value. 587 */ 588 return ret == -EOPNOTSUPP ? sr_ready : ret; 589 } 590 591 if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) { 592 if (nor->bouncebuf[0] & FSR_E_ERR) 593 dev_err(nor->dev, "Erase operation failed.\n"); 594 else 595 dev_err(nor->dev, "Program operation failed.\n"); 596 597 if (nor->bouncebuf[0] & FSR_PT_ERR) 598 dev_err(nor->dev, 599 "Attempted to modify a protected sector.\n"); 600 601 micron_st_nor_clear_fsr(nor); 602 603 /* 604 * WEL bit remains set to one when an erase or page program 605 * error occurs. Issue a Write Disable command to protect 606 * against inadvertent writes that can possibly corrupt the 607 * contents of the memory. 608 */ 609 ret = spi_nor_write_disable(nor); 610 if (ret) 611 return ret; 612 613 return -EIO; 614 } 615 616 return sr_ready && !!(nor->bouncebuf[0] & FSR_READY); 617 } 618 619 static void micron_st_nor_default_init(struct spi_nor *nor) 620 { 621 nor->flags |= SNOR_F_HAS_LOCK; 622 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 623 nor->params->quad_enable = NULL; 624 } 625 626 static int micron_st_nor_late_init(struct spi_nor *nor) 627 { 628 struct spi_nor_flash_parameter *params = nor->params; 629 630 if (nor->info->mfr_flags & USE_FSR) 631 params->ready = micron_st_nor_ready; 632 633 if (!params->set_4byte_addr_mode) 634 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b; 635 636 return 0; 637 } 638 639 static const struct spi_nor_fixups micron_st_nor_fixups = { 640 .default_init = micron_st_nor_default_init, 641 .late_init = micron_st_nor_late_init, 642 }; 643 644 const struct spi_nor_manufacturer spi_nor_micron = { 645 .name = "micron", 646 .parts = micron_nor_parts, 647 .nparts = ARRAY_SIZE(micron_nor_parts), 648 .fixups = µn_st_nor_fixups, 649 }; 650 651 const struct spi_nor_manufacturer spi_nor_st = { 652 .name = "st", 653 .parts = st_nor_parts, 654 .nparts = ARRAY_SIZE(st_nor_parts), 655 .fixups = µn_st_nor_fixups, 656 }; 657