xref: /linux/drivers/mtd/spi-nor/core.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/math64.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/spi-nor.h>
18 #include <linux/mutex.h>
19 #include <linux/of_platform.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sizes.h>
22 #include <linux/slab.h>
23 #include <linux/spi/flash.h>
24 
25 #include "core.h"
26 
27 /* Define max times to check status register before we give up. */
28 
29 /*
30  * For everything but full-chip erase; probably could be much smaller, but kept
31  * around for safety for now
32  */
33 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
34 
35 /*
36  * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37  * for larger flash
38  */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
40 
41 #define SPI_NOR_MAX_ADDR_NBYTES	4
42 
43 #define SPI_NOR_SRST_SLEEP_MIN 200
44 #define SPI_NOR_SRST_SLEEP_MAX 400
45 
46 /**
47  * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
48  *			   extension type.
49  * @nor:		pointer to a 'struct spi_nor'
50  * @op:			pointer to the 'struct spi_mem_op' whose properties
51  *			need to be initialized.
52  *
53  * Right now, only "repeat" and "invert" are supported.
54  *
55  * Return: The opcode extension.
56  */
57 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
58 			      const struct spi_mem_op *op)
59 {
60 	switch (nor->cmd_ext_type) {
61 	case SPI_NOR_EXT_INVERT:
62 		return ~op->cmd.opcode;
63 
64 	case SPI_NOR_EXT_REPEAT:
65 		return op->cmd.opcode;
66 
67 	default:
68 		dev_err(nor->dev, "Unknown command extension type\n");
69 		return 0;
70 	}
71 }
72 
73 /**
74  * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
75  * @nor:		pointer to a 'struct spi_nor'
76  * @op:			pointer to the 'struct spi_mem_op' whose properties
77  *			need to be initialized.
78  * @proto:		the protocol from which the properties need to be set.
79  */
80 void spi_nor_spimem_setup_op(const struct spi_nor *nor,
81 			     struct spi_mem_op *op,
82 			     const enum spi_nor_protocol proto)
83 {
84 	u8 ext;
85 
86 	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
87 
88 	if (op->addr.nbytes)
89 		op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
90 
91 	if (op->dummy.nbytes)
92 		op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
93 
94 	if (op->data.nbytes)
95 		op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
96 
97 	if (spi_nor_protocol_is_dtr(proto)) {
98 		/*
99 		 * SPIMEM supports mixed DTR modes, but right now we can only
100 		 * have all phases either DTR or STR. IOW, SPIMEM can have
101 		 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
102 		 * phases to either DTR or STR.
103 		 */
104 		op->cmd.dtr = true;
105 		op->addr.dtr = true;
106 		op->dummy.dtr = true;
107 		op->data.dtr = true;
108 
109 		/* 2 bytes per clock cycle in DTR mode. */
110 		op->dummy.nbytes *= 2;
111 
112 		ext = spi_nor_get_cmd_ext(nor, op);
113 		op->cmd.opcode = (op->cmd.opcode << 8) | ext;
114 		op->cmd.nbytes = 2;
115 	}
116 }
117 
118 /**
119  * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
120  *                           transfer
121  * @nor:        pointer to 'struct spi_nor'
122  * @op:         pointer to 'struct spi_mem_op' template for transfer
123  *
124  * If we have to use the bounce buffer, the data field in @op will be updated.
125  *
126  * Return: true if the bounce buffer is needed, false if not
127  */
128 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
129 {
130 	/* op->data.buf.in occupies the same memory as op->data.buf.out */
131 	if (object_is_on_stack(op->data.buf.in) ||
132 	    !virt_addr_valid(op->data.buf.in)) {
133 		if (op->data.nbytes > nor->bouncebuf_size)
134 			op->data.nbytes = nor->bouncebuf_size;
135 		op->data.buf.in = nor->bouncebuf;
136 		return true;
137 	}
138 
139 	return false;
140 }
141 
142 /**
143  * spi_nor_spimem_exec_op() - execute a memory operation
144  * @nor:        pointer to 'struct spi_nor'
145  * @op:         pointer to 'struct spi_mem_op' template for transfer
146  *
147  * Return: 0 on success, -error otherwise.
148  */
149 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
150 {
151 	int error;
152 
153 	error = spi_mem_adjust_op_size(nor->spimem, op);
154 	if (error)
155 		return error;
156 
157 	return spi_mem_exec_op(nor->spimem, op);
158 }
159 
160 int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
161 				    u8 *buf, size_t len)
162 {
163 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
164 		return -EOPNOTSUPP;
165 
166 	return nor->controller_ops->read_reg(nor, opcode, buf, len);
167 }
168 
169 int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
170 				     const u8 *buf, size_t len)
171 {
172 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
173 		return -EOPNOTSUPP;
174 
175 	return nor->controller_ops->write_reg(nor, opcode, buf, len);
176 }
177 
178 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
179 {
180 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
181 		return -EOPNOTSUPP;
182 
183 	return nor->controller_ops->erase(nor, offs);
184 }
185 
186 /**
187  * spi_nor_spimem_read_data() - read data from flash's memory region via
188  *                              spi-mem
189  * @nor:        pointer to 'struct spi_nor'
190  * @from:       offset to read from
191  * @len:        number of bytes to read
192  * @buf:        pointer to dst buffer
193  *
194  * Return: number of bytes read successfully, -errno otherwise
195  */
196 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
197 					size_t len, u8 *buf)
198 {
199 	struct spi_mem_op op =
200 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
201 			   SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0),
202 			   SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
203 			   SPI_MEM_OP_DATA_IN(len, buf, 0));
204 	bool usebouncebuf;
205 	ssize_t nbytes;
206 	int error;
207 
208 	spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
209 
210 	/* convert the dummy cycles to the number of bytes */
211 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
212 	if (spi_nor_protocol_is_dtr(nor->read_proto))
213 		op.dummy.nbytes *= 2;
214 
215 	usebouncebuf = spi_nor_spimem_bounce(nor, &op);
216 
217 	if (nor->dirmap.rdesc) {
218 		nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
219 					     op.data.nbytes, op.data.buf.in);
220 	} else {
221 		error = spi_nor_spimem_exec_op(nor, &op);
222 		if (error)
223 			return error;
224 		nbytes = op.data.nbytes;
225 	}
226 
227 	if (usebouncebuf && nbytes > 0)
228 		memcpy(buf, op.data.buf.in, nbytes);
229 
230 	return nbytes;
231 }
232 
233 /**
234  * spi_nor_read_data() - read data from flash memory
235  * @nor:        pointer to 'struct spi_nor'
236  * @from:       offset to read from
237  * @len:        number of bytes to read
238  * @buf:        pointer to dst buffer
239  *
240  * Return: number of bytes read successfully, -errno otherwise
241  */
242 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
243 {
244 	if (nor->spimem)
245 		return spi_nor_spimem_read_data(nor, from, len, buf);
246 
247 	return nor->controller_ops->read(nor, from, len, buf);
248 }
249 
250 /**
251  * spi_nor_spimem_write_data() - write data to flash memory via
252  *                               spi-mem
253  * @nor:        pointer to 'struct spi_nor'
254  * @to:         offset to write to
255  * @len:        number of bytes to write
256  * @buf:        pointer to src buffer
257  *
258  * Return: number of bytes written successfully, -errno otherwise
259  */
260 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
261 					 size_t len, const u8 *buf)
262 {
263 	struct spi_mem_op op =
264 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
265 			   SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0),
266 			   SPI_MEM_OP_NO_DUMMY,
267 			   SPI_MEM_OP_DATA_OUT(len, buf, 0));
268 	ssize_t nbytes;
269 	int error;
270 
271 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
272 		op.addr.nbytes = 0;
273 
274 	spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
275 
276 	if (spi_nor_spimem_bounce(nor, &op))
277 		memcpy(nor->bouncebuf, buf, op.data.nbytes);
278 
279 	if (nor->dirmap.wdesc) {
280 		nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
281 					      op.data.nbytes, op.data.buf.out);
282 	} else {
283 		error = spi_nor_spimem_exec_op(nor, &op);
284 		if (error)
285 			return error;
286 		nbytes = op.data.nbytes;
287 	}
288 
289 	return nbytes;
290 }
291 
292 /**
293  * spi_nor_write_data() - write data to flash memory
294  * @nor:        pointer to 'struct spi_nor'
295  * @to:         offset to write to
296  * @len:        number of bytes to write
297  * @buf:        pointer to src buffer
298  *
299  * Return: number of bytes written successfully, -errno otherwise
300  */
301 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
302 			   const u8 *buf)
303 {
304 	if (nor->spimem)
305 		return spi_nor_spimem_write_data(nor, to, len, buf);
306 
307 	return nor->controller_ops->write(nor, to, len, buf);
308 }
309 
310 /**
311  * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or
312  * volatile.
313  * @nor:        pointer to 'struct spi_nor'.
314  * @op:		SPI memory operation. op->data.buf must be DMA-able.
315  * @proto:	SPI protocol to use for the register operation.
316  *
317  * Return: zero on success, -errno otherwise
318  */
319 int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op,
320 			 enum spi_nor_protocol proto)
321 {
322 	if (!nor->spimem)
323 		return -EOPNOTSUPP;
324 
325 	spi_nor_spimem_setup_op(nor, op, proto);
326 	return spi_nor_spimem_exec_op(nor, op);
327 }
328 
329 /**
330  * spi_nor_write_any_volatile_reg() - write any volatile register to flash
331  * memory.
332  * @nor:        pointer to 'struct spi_nor'
333  * @op:		SPI memory operation. op->data.buf must be DMA-able.
334  * @proto:	SPI protocol to use for the register operation.
335  *
336  * Writing volatile registers are instant according to some manufacturers
337  * (Cypress, Micron) and do not need any status polling.
338  *
339  * Return: zero on success, -errno otherwise
340  */
341 int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op,
342 				   enum spi_nor_protocol proto)
343 {
344 	int ret;
345 
346 	if (!nor->spimem)
347 		return -EOPNOTSUPP;
348 
349 	ret = spi_nor_write_enable(nor);
350 	if (ret)
351 		return ret;
352 	spi_nor_spimem_setup_op(nor, op, proto);
353 	return spi_nor_spimem_exec_op(nor, op);
354 }
355 
356 /**
357  * spi_nor_write_enable() - Set write enable latch with Write Enable command.
358  * @nor:	pointer to 'struct spi_nor'.
359  *
360  * Return: 0 on success, -errno otherwise.
361  */
362 int spi_nor_write_enable(struct spi_nor *nor)
363 {
364 	int ret;
365 
366 	if (nor->spimem) {
367 		struct spi_mem_op op = SPI_NOR_WREN_OP;
368 
369 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
370 
371 		ret = spi_mem_exec_op(nor->spimem, &op);
372 	} else {
373 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
374 						       NULL, 0);
375 	}
376 
377 	if (ret)
378 		dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
379 
380 	return ret;
381 }
382 
383 /**
384  * spi_nor_write_disable() - Send Write Disable instruction to the chip.
385  * @nor:	pointer to 'struct spi_nor'.
386  *
387  * Return: 0 on success, -errno otherwise.
388  */
389 int spi_nor_write_disable(struct spi_nor *nor)
390 {
391 	int ret;
392 
393 	if (nor->spimem) {
394 		struct spi_mem_op op = SPI_NOR_WRDI_OP;
395 
396 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
397 
398 		ret = spi_mem_exec_op(nor->spimem, &op);
399 	} else {
400 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
401 						       NULL, 0);
402 	}
403 
404 	if (ret)
405 		dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
406 
407 	return ret;
408 }
409 
410 /**
411  * spi_nor_read_id() - Read the JEDEC ID.
412  * @nor:	pointer to 'struct spi_nor'.
413  * @naddr:	number of address bytes to send. Can be zero if the operation
414  *		does not need to send an address.
415  * @ndummy:	number of dummy bytes to send after an opcode or address. Can
416  *		be zero if the operation does not require dummy bytes.
417  * @id:		pointer to a DMA-able buffer where the value of the JEDEC ID
418  *		will be written.
419  * @proto:	the SPI protocol for register operation.
420  *
421  * Return: 0 on success, -errno otherwise.
422  */
423 int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id,
424 		    enum spi_nor_protocol proto)
425 {
426 	int ret;
427 
428 	if (nor->spimem) {
429 		struct spi_mem_op op =
430 			SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN);
431 
432 		spi_nor_spimem_setup_op(nor, &op, proto);
433 		ret = spi_mem_exec_op(nor->spimem, &op);
434 	} else {
435 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
436 						    SPI_NOR_MAX_ID_LEN);
437 	}
438 	return ret;
439 }
440 
441 /**
442  * spi_nor_read_sr() - Read the Status Register.
443  * @nor:	pointer to 'struct spi_nor'.
444  * @sr:		pointer to a DMA-able buffer where the value of the
445  *              Status Register will be written. Should be at least 2 bytes.
446  *
447  * Return: 0 on success, -errno otherwise.
448  */
449 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
450 {
451 	int ret;
452 
453 	if (nor->spimem) {
454 		struct spi_mem_op op = SPI_NOR_RDSR_OP(sr);
455 
456 		if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
457 			op.addr.nbytes = nor->params->rdsr_addr_nbytes;
458 			op.dummy.nbytes = nor->params->rdsr_dummy;
459 			/*
460 			 * We don't want to read only one byte in DTR mode. So,
461 			 * read 2 and then discard the second byte.
462 			 */
463 			op.data.nbytes = 2;
464 		}
465 
466 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
467 
468 		ret = spi_mem_exec_op(nor->spimem, &op);
469 	} else {
470 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
471 						      1);
472 	}
473 
474 	if (ret)
475 		dev_dbg(nor->dev, "error %d reading SR\n", ret);
476 
477 	return ret;
478 }
479 
480 /**
481  * spi_nor_read_cr() - Read the Configuration Register using the
482  * SPINOR_OP_RDCR (35h) command.
483  * @nor:	pointer to 'struct spi_nor'
484  * @cr:		pointer to a DMA-able buffer where the value of the
485  *              Configuration Register will be written.
486  *
487  * Return: 0 on success, -errno otherwise.
488  */
489 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
490 {
491 	int ret;
492 
493 	if (nor->spimem) {
494 		struct spi_mem_op op = SPI_NOR_RDCR_OP(cr);
495 
496 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
497 
498 		ret = spi_mem_exec_op(nor->spimem, &op);
499 	} else {
500 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
501 						      1);
502 	}
503 
504 	if (ret)
505 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
506 
507 	return ret;
508 }
509 
510 /**
511  * spi_nor_set_4byte_addr_mode_en4b_ex4b() - Enter/Exit 4-byte address mode
512  *			using SPINOR_OP_EN4B/SPINOR_OP_EX4B. Typically used by
513  *			Winbond and Macronix.
514  * @nor:	pointer to 'struct spi_nor'.
515  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
516  *		address mode.
517  *
518  * Return: 0 on success, -errno otherwise.
519  */
520 int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable)
521 {
522 	int ret;
523 
524 	if (nor->spimem) {
525 		struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable);
526 
527 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
528 
529 		ret = spi_mem_exec_op(nor->spimem, &op);
530 	} else {
531 		ret = spi_nor_controller_ops_write_reg(nor,
532 						       enable ? SPINOR_OP_EN4B :
533 								SPINOR_OP_EX4B,
534 						       NULL, 0);
535 	}
536 
537 	if (ret)
538 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
539 
540 	return ret;
541 }
542 
543 /**
544  * spi_nor_set_4byte_addr_mode_wren_en4b_ex4b() - Set 4-byte address mode using
545  * SPINOR_OP_WREN followed by SPINOR_OP_EN4B or SPINOR_OP_EX4B. Typically used
546  * by ST and Micron flashes.
547  * @nor:	pointer to 'struct spi_nor'.
548  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
549  *		address mode.
550  *
551  * Return: 0 on success, -errno otherwise.
552  */
553 int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, bool enable)
554 {
555 	int ret;
556 
557 	ret = spi_nor_write_enable(nor);
558 	if (ret)
559 		return ret;
560 
561 	ret = spi_nor_set_4byte_addr_mode_en4b_ex4b(nor, enable);
562 	if (ret)
563 		return ret;
564 
565 	return spi_nor_write_disable(nor);
566 }
567 
568 /**
569  * spi_nor_set_4byte_addr_mode_brwr() - Set 4-byte address mode using
570  *			SPINOR_OP_BRWR. Typically used by Spansion flashes.
571  * @nor:	pointer to 'struct spi_nor'.
572  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
573  *		address mode.
574  *
575  * 8-bit volatile bank register used to define A[30:A24] bits. MSB (bit[7]) is
576  * used to enable/disable 4-byte address mode. When MSB is set to ‘1’, 4-byte
577  * address mode is active and A[30:24] bits are don’t care. Write instruction is
578  * SPINOR_OP_BRWR(17h) with 1 byte of data.
579  *
580  * Return: 0 on success, -errno otherwise.
581  */
582 int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable)
583 {
584 	int ret;
585 
586 	nor->bouncebuf[0] = enable << 7;
587 
588 	if (nor->spimem) {
589 		struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf);
590 
591 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
592 
593 		ret = spi_mem_exec_op(nor->spimem, &op);
594 	} else {
595 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
596 						       nor->bouncebuf, 1);
597 	}
598 
599 	if (ret)
600 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
601 
602 	return ret;
603 }
604 
605 /**
606  * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
607  * for new commands.
608  * @nor:	pointer to 'struct spi_nor'.
609  *
610  * Return: 1 if ready, 0 if not ready, -errno on errors.
611  */
612 int spi_nor_sr_ready(struct spi_nor *nor)
613 {
614 	int ret;
615 
616 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
617 	if (ret)
618 		return ret;
619 
620 	return !(nor->bouncebuf[0] & SR_WIP);
621 }
622 
623 /**
624  * spi_nor_use_parallel_locking() - Checks if RWW locking scheme shall be used
625  * @nor:	pointer to 'struct spi_nor'.
626  *
627  * Return: true if parallel locking is enabled, false otherwise.
628  */
629 static bool spi_nor_use_parallel_locking(struct spi_nor *nor)
630 {
631 	return nor->flags & SNOR_F_RWW;
632 }
633 
634 /* Locking helpers for status read operations */
635 static int spi_nor_rww_start_rdst(struct spi_nor *nor)
636 {
637 	struct spi_nor_rww *rww = &nor->rww;
638 	int ret = -EAGAIN;
639 
640 	mutex_lock(&nor->lock);
641 
642 	if (rww->ongoing_io || rww->ongoing_rd)
643 		goto busy;
644 
645 	rww->ongoing_io = true;
646 	rww->ongoing_rd = true;
647 	ret = 0;
648 
649 busy:
650 	mutex_unlock(&nor->lock);
651 	return ret;
652 }
653 
654 static void spi_nor_rww_end_rdst(struct spi_nor *nor)
655 {
656 	struct spi_nor_rww *rww = &nor->rww;
657 
658 	mutex_lock(&nor->lock);
659 
660 	rww->ongoing_io = false;
661 	rww->ongoing_rd = false;
662 
663 	mutex_unlock(&nor->lock);
664 }
665 
666 static int spi_nor_lock_rdst(struct spi_nor *nor)
667 {
668 	if (spi_nor_use_parallel_locking(nor))
669 		return spi_nor_rww_start_rdst(nor);
670 
671 	return 0;
672 }
673 
674 static void spi_nor_unlock_rdst(struct spi_nor *nor)
675 {
676 	if (spi_nor_use_parallel_locking(nor)) {
677 		spi_nor_rww_end_rdst(nor);
678 		wake_up(&nor->rww.wait);
679 	}
680 }
681 
682 /**
683  * spi_nor_ready() - Query the flash to see if it is ready for new commands.
684  * @nor:	pointer to 'struct spi_nor'.
685  *
686  * Return: 1 if ready, 0 if not ready, -errno on errors.
687  */
688 static int spi_nor_ready(struct spi_nor *nor)
689 {
690 	int ret;
691 
692 	ret = spi_nor_lock_rdst(nor);
693 	if (ret)
694 		return 0;
695 
696 	/* Flashes might override the standard routine. */
697 	if (nor->params->ready)
698 		ret = nor->params->ready(nor);
699 	else
700 		ret = spi_nor_sr_ready(nor);
701 
702 	spi_nor_unlock_rdst(nor);
703 
704 	return ret;
705 }
706 
707 /**
708  * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
709  * Status Register until ready, or timeout occurs.
710  * @nor:		pointer to "struct spi_nor".
711  * @timeout_jiffies:	jiffies to wait until timeout.
712  *
713  * Return: 0 on success, -errno otherwise.
714  */
715 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
716 						unsigned long timeout_jiffies)
717 {
718 	unsigned long deadline;
719 	int timeout = 0, ret;
720 
721 	deadline = jiffies + timeout_jiffies;
722 
723 	while (!timeout) {
724 		if (time_after_eq(jiffies, deadline))
725 			timeout = 1;
726 
727 		ret = spi_nor_ready(nor);
728 		if (ret < 0)
729 			return ret;
730 		if (ret)
731 			return 0;
732 
733 		cond_resched();
734 	}
735 
736 	dev_dbg(nor->dev, "flash operation timed out\n");
737 
738 	return -ETIMEDOUT;
739 }
740 
741 /**
742  * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
743  * flash to be ready, or timeout occurs.
744  * @nor:	pointer to "struct spi_nor".
745  *
746  * Return: 0 on success, -errno otherwise.
747  */
748 int spi_nor_wait_till_ready(struct spi_nor *nor)
749 {
750 	return spi_nor_wait_till_ready_with_timeout(nor,
751 						    DEFAULT_READY_WAIT_JIFFIES);
752 }
753 
754 /**
755  * spi_nor_global_block_unlock() - Unlock Global Block Protection.
756  * @nor:	pointer to 'struct spi_nor'.
757  *
758  * Return: 0 on success, -errno otherwise.
759  */
760 int spi_nor_global_block_unlock(struct spi_nor *nor)
761 {
762 	int ret;
763 
764 	ret = spi_nor_write_enable(nor);
765 	if (ret)
766 		return ret;
767 
768 	if (nor->spimem) {
769 		struct spi_mem_op op = SPI_NOR_GBULK_OP;
770 
771 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
772 
773 		ret = spi_mem_exec_op(nor->spimem, &op);
774 	} else {
775 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
776 						       NULL, 0);
777 	}
778 
779 	if (ret) {
780 		dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
781 		return ret;
782 	}
783 
784 	return spi_nor_wait_till_ready(nor);
785 }
786 
787 /**
788  * spi_nor_write_sr() - Write the Status Register.
789  * @nor:	pointer to 'struct spi_nor'.
790  * @sr:		pointer to DMA-able buffer to write to the Status Register.
791  * @len:	number of bytes to write to the Status Register.
792  *
793  * Return: 0 on success, -errno otherwise.
794  */
795 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
796 {
797 	int ret;
798 
799 	ret = spi_nor_write_enable(nor);
800 	if (ret)
801 		return ret;
802 
803 	if (nor->spimem) {
804 		struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len);
805 
806 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
807 
808 		ret = spi_mem_exec_op(nor->spimem, &op);
809 	} else {
810 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
811 						       len);
812 	}
813 
814 	if (ret) {
815 		dev_dbg(nor->dev, "error %d writing SR\n", ret);
816 		return ret;
817 	}
818 
819 	return spi_nor_wait_till_ready(nor);
820 }
821 
822 /**
823  * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
824  * ensure that the byte written match the received value.
825  * @nor:	pointer to a 'struct spi_nor'.
826  * @sr1:	byte value to be written to the Status Register.
827  *
828  * Return: 0 on success, -errno otherwise.
829  */
830 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
831 {
832 	int ret;
833 
834 	nor->bouncebuf[0] = sr1;
835 
836 	ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
837 	if (ret)
838 		return ret;
839 
840 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
841 	if (ret)
842 		return ret;
843 
844 	if (nor->bouncebuf[0] != sr1) {
845 		dev_dbg(nor->dev, "SR1: read back test failed\n");
846 		return -EIO;
847 	}
848 
849 	return 0;
850 }
851 
852 /**
853  * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
854  * Status Register 2 in one shot. Ensure that the byte written in the Status
855  * Register 1 match the received value, and that the 16-bit Write did not
856  * affect what was already in the Status Register 2.
857  * @nor:	pointer to a 'struct spi_nor'.
858  * @sr1:	byte value to be written to the Status Register 1.
859  *
860  * Return: 0 on success, -errno otherwise.
861  */
862 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
863 {
864 	int ret;
865 	u8 *sr_cr = nor->bouncebuf;
866 	u8 cr_written;
867 
868 	/* Make sure we don't overwrite the contents of Status Register 2. */
869 	if (!(nor->flags & SNOR_F_NO_READ_CR)) {
870 		ret = spi_nor_read_cr(nor, &sr_cr[1]);
871 		if (ret)
872 			return ret;
873 	} else if (spi_nor_get_protocol_width(nor->read_proto) == 4 &&
874 		   spi_nor_get_protocol_width(nor->write_proto) == 4 &&
875 		   nor->params->quad_enable) {
876 		/*
877 		 * If the Status Register 2 Read command (35h) is not
878 		 * supported, we should at least be sure we don't
879 		 * change the value of the SR2 Quad Enable bit.
880 		 *
881 		 * When the Quad Enable method is set and the buswidth is 4, we
882 		 * can safely assume that the value of the QE bit is one, as a
883 		 * consequence of the nor->params->quad_enable() call.
884 		 *
885 		 * According to the JESD216 revB standard, BFPT DWORDS[15],
886 		 * bits 22:20, the 16-bit Write Status (01h) command is
887 		 * available just for the cases in which the QE bit is
888 		 * described in SR2 at BIT(1).
889 		 */
890 		sr_cr[1] = SR2_QUAD_EN_BIT1;
891 	} else {
892 		sr_cr[1] = 0;
893 	}
894 
895 	sr_cr[0] = sr1;
896 
897 	ret = spi_nor_write_sr(nor, sr_cr, 2);
898 	if (ret)
899 		return ret;
900 
901 	ret = spi_nor_read_sr(nor, sr_cr);
902 	if (ret)
903 		return ret;
904 
905 	if (sr1 != sr_cr[0]) {
906 		dev_dbg(nor->dev, "SR: Read back test failed\n");
907 		return -EIO;
908 	}
909 
910 	if (nor->flags & SNOR_F_NO_READ_CR)
911 		return 0;
912 
913 	cr_written = sr_cr[1];
914 
915 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
916 	if (ret)
917 		return ret;
918 
919 	if (cr_written != sr_cr[1]) {
920 		dev_dbg(nor->dev, "CR: read back test failed\n");
921 		return -EIO;
922 	}
923 
924 	return 0;
925 }
926 
927 /**
928  * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
929  * Configuration Register in one shot. Ensure that the byte written in the
930  * Configuration Register match the received value, and that the 16-bit Write
931  * did not affect what was already in the Status Register 1.
932  * @nor:	pointer to a 'struct spi_nor'.
933  * @cr:		byte value to be written to the Configuration Register.
934  *
935  * Return: 0 on success, -errno otherwise.
936  */
937 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
938 {
939 	int ret;
940 	u8 *sr_cr = nor->bouncebuf;
941 	u8 sr_written;
942 
943 	/* Keep the current value of the Status Register 1. */
944 	ret = spi_nor_read_sr(nor, sr_cr);
945 	if (ret)
946 		return ret;
947 
948 	sr_cr[1] = cr;
949 
950 	ret = spi_nor_write_sr(nor, sr_cr, 2);
951 	if (ret)
952 		return ret;
953 
954 	sr_written = sr_cr[0];
955 
956 	ret = spi_nor_read_sr(nor, sr_cr);
957 	if (ret)
958 		return ret;
959 
960 	if (sr_written != sr_cr[0]) {
961 		dev_dbg(nor->dev, "SR: Read back test failed\n");
962 		return -EIO;
963 	}
964 
965 	if (nor->flags & SNOR_F_NO_READ_CR)
966 		return 0;
967 
968 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
969 	if (ret)
970 		return ret;
971 
972 	if (cr != sr_cr[1]) {
973 		dev_dbg(nor->dev, "CR: read back test failed\n");
974 		return -EIO;
975 	}
976 
977 	return 0;
978 }
979 
980 /**
981  * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
982  * the byte written match the received value without affecting other bits in the
983  * Status Register 1 and 2.
984  * @nor:	pointer to a 'struct spi_nor'.
985  * @sr1:	byte value to be written to the Status Register.
986  *
987  * Return: 0 on success, -errno otherwise.
988  */
989 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
990 {
991 	if (nor->flags & SNOR_F_HAS_16BIT_SR)
992 		return spi_nor_write_16bit_sr_and_check(nor, sr1);
993 
994 	return spi_nor_write_sr1_and_check(nor, sr1);
995 }
996 
997 /**
998  * spi_nor_write_sr2() - Write the Status Register 2 using the
999  * SPINOR_OP_WRSR2 (3eh) command.
1000  * @nor:	pointer to 'struct spi_nor'.
1001  * @sr2:	pointer to DMA-able buffer to write to the Status Register 2.
1002  *
1003  * Return: 0 on success, -errno otherwise.
1004  */
1005 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1006 {
1007 	int ret;
1008 
1009 	ret = spi_nor_write_enable(nor);
1010 	if (ret)
1011 		return ret;
1012 
1013 	if (nor->spimem) {
1014 		struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2);
1015 
1016 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1017 
1018 		ret = spi_mem_exec_op(nor->spimem, &op);
1019 	} else {
1020 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
1021 						       sr2, 1);
1022 	}
1023 
1024 	if (ret) {
1025 		dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1026 		return ret;
1027 	}
1028 
1029 	return spi_nor_wait_till_ready(nor);
1030 }
1031 
1032 /**
1033  * spi_nor_read_sr2() - Read the Status Register 2 using the
1034  * SPINOR_OP_RDSR2 (3fh) command.
1035  * @nor:	pointer to 'struct spi_nor'.
1036  * @sr2:	pointer to DMA-able buffer where the value of the
1037  *		Status Register 2 will be written.
1038  *
1039  * Return: 0 on success, -errno otherwise.
1040  */
1041 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1042 {
1043 	int ret;
1044 
1045 	if (nor->spimem) {
1046 		struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2);
1047 
1048 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1049 
1050 		ret = spi_mem_exec_op(nor->spimem, &op);
1051 	} else {
1052 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
1053 						      1);
1054 	}
1055 
1056 	if (ret)
1057 		dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1058 
1059 	return ret;
1060 }
1061 
1062 /**
1063  * spi_nor_erase_die() - Erase the entire die.
1064  * @nor:	pointer to 'struct spi_nor'.
1065  * @addr:	address of the die.
1066  * @die_size:	size of the die.
1067  *
1068  * Return: 0 on success, -errno otherwise.
1069  */
1070 static int spi_nor_erase_die(struct spi_nor *nor, loff_t addr, size_t die_size)
1071 {
1072 	bool multi_die = nor->mtd.size != die_size;
1073 	int ret;
1074 
1075 	dev_dbg(nor->dev, " %lldKiB\n", (long long)(die_size >> 10));
1076 
1077 	if (nor->spimem) {
1078 		struct spi_mem_op op =
1079 			SPI_NOR_DIE_ERASE_OP(nor->params->die_erase_opcode,
1080 					     nor->addr_nbytes, addr, multi_die);
1081 
1082 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1083 
1084 		ret = spi_mem_exec_op(nor->spimem, &op);
1085 	} else {
1086 		if (multi_die)
1087 			return -EOPNOTSUPP;
1088 
1089 		ret = spi_nor_controller_ops_write_reg(nor,
1090 						       SPINOR_OP_CHIP_ERASE,
1091 						       NULL, 0);
1092 	}
1093 
1094 	if (ret)
1095 		dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1096 
1097 	return ret;
1098 }
1099 
1100 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1101 {
1102 	size_t i;
1103 
1104 	for (i = 0; i < size; i++)
1105 		if (table[i][0] == opcode)
1106 			return table[i][1];
1107 
1108 	/* No conversion found, keep input op code. */
1109 	return opcode;
1110 }
1111 
1112 u8 spi_nor_convert_3to4_read(u8 opcode)
1113 {
1114 	static const u8 spi_nor_3to4_read[][2] = {
1115 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
1116 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
1117 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
1118 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
1119 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
1120 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
1121 		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
1122 		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
1123 
1124 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
1125 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
1126 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
1127 	};
1128 
1129 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1130 				      ARRAY_SIZE(spi_nor_3to4_read));
1131 }
1132 
1133 static u8 spi_nor_convert_3to4_program(u8 opcode)
1134 {
1135 	static const u8 spi_nor_3to4_program[][2] = {
1136 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
1137 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
1138 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
1139 		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
1140 		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
1141 	};
1142 
1143 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1144 				      ARRAY_SIZE(spi_nor_3to4_program));
1145 }
1146 
1147 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1148 {
1149 	static const u8 spi_nor_3to4_erase[][2] = {
1150 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
1151 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
1152 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
1153 	};
1154 
1155 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1156 				      ARRAY_SIZE(spi_nor_3to4_erase));
1157 }
1158 
1159 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1160 {
1161 	return !!nor->params->erase_map.uniform_region.erase_mask;
1162 }
1163 
1164 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1165 {
1166 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1167 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1168 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1169 
1170 	if (!spi_nor_has_uniform_erase(nor)) {
1171 		struct spi_nor_erase_map *map = &nor->params->erase_map;
1172 		struct spi_nor_erase_type *erase;
1173 		int i;
1174 
1175 		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1176 			erase = &map->erase_type[i];
1177 			erase->opcode =
1178 				spi_nor_convert_3to4_erase(erase->opcode);
1179 		}
1180 	}
1181 }
1182 
1183 static int spi_nor_prep(struct spi_nor *nor)
1184 {
1185 	int ret = 0;
1186 
1187 	if (nor->controller_ops && nor->controller_ops->prepare)
1188 		ret = nor->controller_ops->prepare(nor);
1189 
1190 	return ret;
1191 }
1192 
1193 static void spi_nor_unprep(struct spi_nor *nor)
1194 {
1195 	if (nor->controller_ops && nor->controller_ops->unprepare)
1196 		nor->controller_ops->unprepare(nor);
1197 }
1198 
1199 static void spi_nor_offset_to_banks(u64 bank_size, loff_t start, size_t len,
1200 				    u8 *first, u8 *last)
1201 {
1202 	/* This is currently safe, the number of banks being very small */
1203 	*first = DIV_ROUND_DOWN_ULL(start, bank_size);
1204 	*last = DIV_ROUND_DOWN_ULL(start + len - 1, bank_size);
1205 }
1206 
1207 /* Generic helpers for internal locking and serialization */
1208 static bool spi_nor_rww_start_io(struct spi_nor *nor)
1209 {
1210 	struct spi_nor_rww *rww = &nor->rww;
1211 	bool start = false;
1212 
1213 	mutex_lock(&nor->lock);
1214 
1215 	if (rww->ongoing_io)
1216 		goto busy;
1217 
1218 	rww->ongoing_io = true;
1219 	start = true;
1220 
1221 busy:
1222 	mutex_unlock(&nor->lock);
1223 	return start;
1224 }
1225 
1226 static void spi_nor_rww_end_io(struct spi_nor *nor)
1227 {
1228 	mutex_lock(&nor->lock);
1229 	nor->rww.ongoing_io = false;
1230 	mutex_unlock(&nor->lock);
1231 }
1232 
1233 static int spi_nor_lock_device(struct spi_nor *nor)
1234 {
1235 	if (!spi_nor_use_parallel_locking(nor))
1236 		return 0;
1237 
1238 	return wait_event_killable(nor->rww.wait, spi_nor_rww_start_io(nor));
1239 }
1240 
1241 static void spi_nor_unlock_device(struct spi_nor *nor)
1242 {
1243 	if (spi_nor_use_parallel_locking(nor)) {
1244 		spi_nor_rww_end_io(nor);
1245 		wake_up(&nor->rww.wait);
1246 	}
1247 }
1248 
1249 /* Generic helpers for internal locking and serialization */
1250 static bool spi_nor_rww_start_exclusive(struct spi_nor *nor)
1251 {
1252 	struct spi_nor_rww *rww = &nor->rww;
1253 	bool start = false;
1254 
1255 	mutex_lock(&nor->lock);
1256 
1257 	if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1258 		goto busy;
1259 
1260 	rww->ongoing_io = true;
1261 	rww->ongoing_rd = true;
1262 	rww->ongoing_pe = true;
1263 	start = true;
1264 
1265 busy:
1266 	mutex_unlock(&nor->lock);
1267 	return start;
1268 }
1269 
1270 static void spi_nor_rww_end_exclusive(struct spi_nor *nor)
1271 {
1272 	struct spi_nor_rww *rww = &nor->rww;
1273 
1274 	mutex_lock(&nor->lock);
1275 	rww->ongoing_io = false;
1276 	rww->ongoing_rd = false;
1277 	rww->ongoing_pe = false;
1278 	mutex_unlock(&nor->lock);
1279 }
1280 
1281 int spi_nor_prep_and_lock(struct spi_nor *nor)
1282 {
1283 	int ret;
1284 
1285 	ret = spi_nor_prep(nor);
1286 	if (ret)
1287 		return ret;
1288 
1289 	if (!spi_nor_use_parallel_locking(nor))
1290 		mutex_lock(&nor->lock);
1291 	else
1292 		ret = wait_event_killable(nor->rww.wait,
1293 					  spi_nor_rww_start_exclusive(nor));
1294 
1295 	return ret;
1296 }
1297 
1298 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1299 {
1300 	if (!spi_nor_use_parallel_locking(nor)) {
1301 		mutex_unlock(&nor->lock);
1302 	} else {
1303 		spi_nor_rww_end_exclusive(nor);
1304 		wake_up(&nor->rww.wait);
1305 	}
1306 
1307 	spi_nor_unprep(nor);
1308 }
1309 
1310 /* Internal locking helpers for program and erase operations */
1311 static bool spi_nor_rww_start_pe(struct spi_nor *nor, loff_t start, size_t len)
1312 {
1313 	struct spi_nor_rww *rww = &nor->rww;
1314 	unsigned int used_banks = 0;
1315 	bool started = false;
1316 	u8 first, last;
1317 	int bank;
1318 
1319 	mutex_lock(&nor->lock);
1320 
1321 	if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1322 		goto busy;
1323 
1324 	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1325 	for (bank = first; bank <= last; bank++) {
1326 		if (rww->used_banks & BIT(bank))
1327 			goto busy;
1328 
1329 		used_banks |= BIT(bank);
1330 	}
1331 
1332 	rww->used_banks |= used_banks;
1333 	rww->ongoing_pe = true;
1334 	started = true;
1335 
1336 busy:
1337 	mutex_unlock(&nor->lock);
1338 	return started;
1339 }
1340 
1341 static void spi_nor_rww_end_pe(struct spi_nor *nor, loff_t start, size_t len)
1342 {
1343 	struct spi_nor_rww *rww = &nor->rww;
1344 	u8 first, last;
1345 	int bank;
1346 
1347 	mutex_lock(&nor->lock);
1348 
1349 	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1350 	for (bank = first; bank <= last; bank++)
1351 		rww->used_banks &= ~BIT(bank);
1352 
1353 	rww->ongoing_pe = false;
1354 
1355 	mutex_unlock(&nor->lock);
1356 }
1357 
1358 static int spi_nor_prep_and_lock_pe(struct spi_nor *nor, loff_t start, size_t len)
1359 {
1360 	int ret;
1361 
1362 	ret = spi_nor_prep(nor);
1363 	if (ret)
1364 		return ret;
1365 
1366 	if (!spi_nor_use_parallel_locking(nor))
1367 		mutex_lock(&nor->lock);
1368 	else
1369 		ret = wait_event_killable(nor->rww.wait,
1370 					  spi_nor_rww_start_pe(nor, start, len));
1371 
1372 	return ret;
1373 }
1374 
1375 static void spi_nor_unlock_and_unprep_pe(struct spi_nor *nor, loff_t start, size_t len)
1376 {
1377 	if (!spi_nor_use_parallel_locking(nor)) {
1378 		mutex_unlock(&nor->lock);
1379 	} else {
1380 		spi_nor_rww_end_pe(nor, start, len);
1381 		wake_up(&nor->rww.wait);
1382 	}
1383 
1384 	spi_nor_unprep(nor);
1385 }
1386 
1387 /* Internal locking helpers for read operations */
1388 static bool spi_nor_rww_start_rd(struct spi_nor *nor, loff_t start, size_t len)
1389 {
1390 	struct spi_nor_rww *rww = &nor->rww;
1391 	unsigned int used_banks = 0;
1392 	bool started = false;
1393 	u8 first, last;
1394 	int bank;
1395 
1396 	mutex_lock(&nor->lock);
1397 
1398 	if (rww->ongoing_io || rww->ongoing_rd)
1399 		goto busy;
1400 
1401 	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1402 	for (bank = first; bank <= last; bank++) {
1403 		if (rww->used_banks & BIT(bank))
1404 			goto busy;
1405 
1406 		used_banks |= BIT(bank);
1407 	}
1408 
1409 	rww->used_banks |= used_banks;
1410 	rww->ongoing_io = true;
1411 	rww->ongoing_rd = true;
1412 	started = true;
1413 
1414 busy:
1415 	mutex_unlock(&nor->lock);
1416 	return started;
1417 }
1418 
1419 static void spi_nor_rww_end_rd(struct spi_nor *nor, loff_t start, size_t len)
1420 {
1421 	struct spi_nor_rww *rww = &nor->rww;
1422 	u8 first, last;
1423 	int bank;
1424 
1425 	mutex_lock(&nor->lock);
1426 
1427 	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1428 	for (bank = first; bank <= last; bank++)
1429 		nor->rww.used_banks &= ~BIT(bank);
1430 
1431 	rww->ongoing_io = false;
1432 	rww->ongoing_rd = false;
1433 
1434 	mutex_unlock(&nor->lock);
1435 }
1436 
1437 static int spi_nor_prep_and_lock_rd(struct spi_nor *nor, loff_t start, size_t len)
1438 {
1439 	int ret;
1440 
1441 	ret = spi_nor_prep(nor);
1442 	if (ret)
1443 		return ret;
1444 
1445 	if (!spi_nor_use_parallel_locking(nor))
1446 		mutex_lock(&nor->lock);
1447 	else
1448 		ret = wait_event_killable(nor->rww.wait,
1449 					  spi_nor_rww_start_rd(nor, start, len));
1450 
1451 	return ret;
1452 }
1453 
1454 static void spi_nor_unlock_and_unprep_rd(struct spi_nor *nor, loff_t start, size_t len)
1455 {
1456 	if (!spi_nor_use_parallel_locking(nor)) {
1457 		mutex_unlock(&nor->lock);
1458 	} else {
1459 		spi_nor_rww_end_rd(nor, start, len);
1460 		wake_up(&nor->rww.wait);
1461 	}
1462 
1463 	spi_nor_unprep(nor);
1464 }
1465 
1466 /*
1467  * Initiate the erasure of a single sector
1468  */
1469 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1470 {
1471 	int i;
1472 
1473 	if (nor->spimem) {
1474 		struct spi_mem_op op =
1475 			SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode,
1476 						nor->addr_nbytes, addr);
1477 
1478 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1479 
1480 		return spi_mem_exec_op(nor->spimem, &op);
1481 	} else if (nor->controller_ops->erase) {
1482 		return spi_nor_controller_ops_erase(nor, addr);
1483 	}
1484 
1485 	/*
1486 	 * Default implementation, if driver doesn't have a specialized HW
1487 	 * control
1488 	 */
1489 	for (i = nor->addr_nbytes - 1; i >= 0; i--) {
1490 		nor->bouncebuf[i] = addr & 0xff;
1491 		addr >>= 8;
1492 	}
1493 
1494 	return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1495 						nor->bouncebuf, nor->addr_nbytes);
1496 }
1497 
1498 /**
1499  * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1500  * @erase:	pointer to a structure that describes a SPI NOR erase type
1501  * @dividend:	dividend value
1502  * @remainder:	pointer to u32 remainder (will be updated)
1503  *
1504  * Return: the result of the division
1505  */
1506 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1507 				     u64 dividend, u32 *remainder)
1508 {
1509 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1510 	*remainder = (u32)dividend & erase->size_mask;
1511 	return dividend >> erase->size_shift;
1512 }
1513 
1514 /**
1515  * spi_nor_find_best_erase_type() - find the best erase type for the given
1516  *				    offset in the serial flash memory and the
1517  *				    number of bytes to erase. The region in
1518  *				    which the address fits is expected to be
1519  *				    provided.
1520  * @map:	the erase map of the SPI NOR
1521  * @region:	pointer to a structure that describes a SPI NOR erase region
1522  * @addr:	offset in the serial flash memory
1523  * @len:	number of bytes to erase
1524  *
1525  * Return: a pointer to the best fitted erase type, NULL otherwise.
1526  */
1527 static const struct spi_nor_erase_type *
1528 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1529 			     const struct spi_nor_erase_region *region,
1530 			     u64 addr, u32 len)
1531 {
1532 	const struct spi_nor_erase_type *erase;
1533 	u32 rem;
1534 	int i;
1535 
1536 	/*
1537 	 * Erase types are ordered by size, with the smallest erase type at
1538 	 * index 0.
1539 	 */
1540 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1541 		/* Does the erase region support the tested erase type? */
1542 		if (!(region->erase_mask & BIT(i)))
1543 			continue;
1544 
1545 		erase = &map->erase_type[i];
1546 		if (!erase->size)
1547 			continue;
1548 
1549 		/* Alignment is not mandatory for overlaid regions */
1550 		if (region->overlaid && region->size <= len)
1551 			return erase;
1552 
1553 		/* Don't erase more than what the user has asked for. */
1554 		if (erase->size > len)
1555 			continue;
1556 
1557 		spi_nor_div_by_erase_size(erase, addr, &rem);
1558 		if (!rem)
1559 			return erase;
1560 	}
1561 
1562 	return NULL;
1563 }
1564 
1565 /**
1566  * spi_nor_init_erase_cmd() - initialize an erase command
1567  * @region:	pointer to a structure that describes a SPI NOR erase region
1568  * @erase:	pointer to a structure that describes a SPI NOR erase type
1569  *
1570  * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1571  *	   otherwise.
1572  */
1573 static struct spi_nor_erase_command *
1574 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1575 		       const struct spi_nor_erase_type *erase)
1576 {
1577 	struct spi_nor_erase_command *cmd;
1578 
1579 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1580 	if (!cmd)
1581 		return ERR_PTR(-ENOMEM);
1582 
1583 	INIT_LIST_HEAD(&cmd->list);
1584 	cmd->opcode = erase->opcode;
1585 	cmd->count = 1;
1586 
1587 	if (region->overlaid)
1588 		cmd->size = region->size;
1589 	else
1590 		cmd->size = erase->size;
1591 
1592 	return cmd;
1593 }
1594 
1595 /**
1596  * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1597  * @erase_list:	list of erase commands
1598  */
1599 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1600 {
1601 	struct spi_nor_erase_command *cmd, *next;
1602 
1603 	list_for_each_entry_safe(cmd, next, erase_list, list) {
1604 		list_del(&cmd->list);
1605 		kfree(cmd);
1606 	}
1607 }
1608 
1609 /**
1610  * spi_nor_init_erase_cmd_list() - initialize erase command list
1611  * @nor:	pointer to a 'struct spi_nor'
1612  * @erase_list:	list of erase commands to be executed once we validate that the
1613  *		erase can be performed
1614  * @addr:	offset in the serial flash memory
1615  * @len:	number of bytes to erase
1616  *
1617  * Builds the list of best fitted erase commands and verifies if the erase can
1618  * be performed.
1619  *
1620  * Return: 0 on success, -errno otherwise.
1621  */
1622 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1623 				       struct list_head *erase_list,
1624 				       u64 addr, u32 len)
1625 {
1626 	const struct spi_nor_erase_map *map = &nor->params->erase_map;
1627 	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1628 	struct spi_nor_erase_region *region;
1629 	struct spi_nor_erase_command *cmd = NULL;
1630 	u64 region_end;
1631 	unsigned int i;
1632 	int ret = -EINVAL;
1633 
1634 	for (i = 0; i < map->n_regions && len; i++) {
1635 		region = &map->regions[i];
1636 		region_end = region->offset + region->size;
1637 
1638 		while (len && addr >= region->offset && addr < region_end) {
1639 			erase = spi_nor_find_best_erase_type(map, region, addr,
1640 							     len);
1641 			if (!erase)
1642 				goto destroy_erase_cmd_list;
1643 
1644 			if (prev_erase != erase || erase->size != cmd->size ||
1645 			    region->overlaid) {
1646 				cmd = spi_nor_init_erase_cmd(region, erase);
1647 				if (IS_ERR(cmd)) {
1648 					ret = PTR_ERR(cmd);
1649 					goto destroy_erase_cmd_list;
1650 				}
1651 
1652 				list_add_tail(&cmd->list, erase_list);
1653 			} else {
1654 				cmd->count++;
1655 			}
1656 
1657 			len -= cmd->size;
1658 			addr += cmd->size;
1659 			prev_erase = erase;
1660 		}
1661 	}
1662 
1663 	return 0;
1664 
1665 destroy_erase_cmd_list:
1666 	spi_nor_destroy_erase_cmd_list(erase_list);
1667 	return ret;
1668 }
1669 
1670 /**
1671  * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1672  * @nor:	pointer to a 'struct spi_nor'
1673  * @addr:	offset in the serial flash memory
1674  * @len:	number of bytes to erase
1675  *
1676  * Build a list of best fitted erase commands and execute it once we validate
1677  * that the erase can be performed.
1678  *
1679  * Return: 0 on success, -errno otherwise.
1680  */
1681 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1682 {
1683 	LIST_HEAD(erase_list);
1684 	struct spi_nor_erase_command *cmd, *next;
1685 	int ret;
1686 
1687 	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1688 	if (ret)
1689 		return ret;
1690 
1691 	list_for_each_entry_safe(cmd, next, &erase_list, list) {
1692 		nor->erase_opcode = cmd->opcode;
1693 		while (cmd->count) {
1694 			dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
1695 				 cmd->size, cmd->opcode, cmd->count);
1696 
1697 			ret = spi_nor_lock_device(nor);
1698 			if (ret)
1699 				goto destroy_erase_cmd_list;
1700 
1701 			ret = spi_nor_write_enable(nor);
1702 			if (ret) {
1703 				spi_nor_unlock_device(nor);
1704 				goto destroy_erase_cmd_list;
1705 			}
1706 
1707 			ret = spi_nor_erase_sector(nor, addr);
1708 			spi_nor_unlock_device(nor);
1709 			if (ret)
1710 				goto destroy_erase_cmd_list;
1711 
1712 			ret = spi_nor_wait_till_ready(nor);
1713 			if (ret)
1714 				goto destroy_erase_cmd_list;
1715 
1716 			addr += cmd->size;
1717 			cmd->count--;
1718 		}
1719 		list_del(&cmd->list);
1720 		kfree(cmd);
1721 	}
1722 
1723 	return 0;
1724 
1725 destroy_erase_cmd_list:
1726 	spi_nor_destroy_erase_cmd_list(&erase_list);
1727 	return ret;
1728 }
1729 
1730 static int spi_nor_erase_dice(struct spi_nor *nor, loff_t addr,
1731 			      size_t len, size_t die_size)
1732 {
1733 	unsigned long timeout;
1734 	int ret;
1735 
1736 	/*
1737 	 * Scale the timeout linearly with the size of the flash, with
1738 	 * a minimum calibrated to an old 2MB flash. We could try to
1739 	 * pull these from CFI/SFDP, but these values should be good
1740 	 * enough for now.
1741 	 */
1742 	timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1743 		      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1744 		      (unsigned long)(nor->mtd.size / SZ_2M));
1745 
1746 	do {
1747 		ret = spi_nor_lock_device(nor);
1748 		if (ret)
1749 			return ret;
1750 
1751 		ret = spi_nor_write_enable(nor);
1752 		if (ret) {
1753 			spi_nor_unlock_device(nor);
1754 			return ret;
1755 		}
1756 
1757 		ret = spi_nor_erase_die(nor, addr, die_size);
1758 
1759 		spi_nor_unlock_device(nor);
1760 		if (ret)
1761 			return ret;
1762 
1763 		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1764 		if (ret)
1765 			return ret;
1766 
1767 		addr += die_size;
1768 		len -= die_size;
1769 
1770 	} while (len);
1771 
1772 	return 0;
1773 }
1774 
1775 /*
1776  * Erase an address range on the nor chip.  The address range may extend
1777  * one or more erase sectors. Return an error if there is a problem erasing.
1778  */
1779 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1780 {
1781 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1782 	u8 n_dice = nor->params->n_dice;
1783 	bool multi_die_erase = false;
1784 	u32 addr, len, rem;
1785 	size_t die_size;
1786 	int ret;
1787 
1788 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1789 			(long long)instr->len);
1790 
1791 	if (spi_nor_has_uniform_erase(nor)) {
1792 		div_u64_rem(instr->len, mtd->erasesize, &rem);
1793 		if (rem)
1794 			return -EINVAL;
1795 	}
1796 
1797 	addr = instr->addr;
1798 	len = instr->len;
1799 
1800 	if (n_dice) {
1801 		die_size = div_u64(mtd->size, n_dice);
1802 		if (!(len & (die_size - 1)) && !(addr & (die_size - 1)))
1803 			multi_die_erase = true;
1804 	} else {
1805 		die_size = mtd->size;
1806 	}
1807 
1808 	ret = spi_nor_prep_and_lock_pe(nor, instr->addr, instr->len);
1809 	if (ret)
1810 		return ret;
1811 
1812 	/* chip (die) erase? */
1813 	if ((len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) ||
1814 	    multi_die_erase) {
1815 		ret = spi_nor_erase_dice(nor, addr, len, die_size);
1816 		if (ret)
1817 			goto erase_err;
1818 
1819 	/* REVISIT in some cases we could speed up erasing large regions
1820 	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1821 	 * to use "small sector erase", but that's not always optimal.
1822 	 */
1823 
1824 	/* "sector"-at-a-time erase */
1825 	} else if (spi_nor_has_uniform_erase(nor)) {
1826 		while (len) {
1827 			ret = spi_nor_lock_device(nor);
1828 			if (ret)
1829 				goto erase_err;
1830 
1831 			ret = spi_nor_write_enable(nor);
1832 			if (ret) {
1833 				spi_nor_unlock_device(nor);
1834 				goto erase_err;
1835 			}
1836 
1837 			ret = spi_nor_erase_sector(nor, addr);
1838 			spi_nor_unlock_device(nor);
1839 			if (ret)
1840 				goto erase_err;
1841 
1842 			ret = spi_nor_wait_till_ready(nor);
1843 			if (ret)
1844 				goto erase_err;
1845 
1846 			addr += mtd->erasesize;
1847 			len -= mtd->erasesize;
1848 		}
1849 
1850 	/* erase multiple sectors */
1851 	} else {
1852 		ret = spi_nor_erase_multi_sectors(nor, addr, len);
1853 		if (ret)
1854 			goto erase_err;
1855 	}
1856 
1857 	ret = spi_nor_write_disable(nor);
1858 
1859 erase_err:
1860 	spi_nor_unlock_and_unprep_pe(nor, instr->addr, instr->len);
1861 
1862 	return ret;
1863 }
1864 
1865 /**
1866  * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1867  * Register 1.
1868  * @nor:	pointer to a 'struct spi_nor'
1869  *
1870  * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1871  *
1872  * Return: 0 on success, -errno otherwise.
1873  */
1874 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1875 {
1876 	int ret;
1877 
1878 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1879 	if (ret)
1880 		return ret;
1881 
1882 	if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1883 		return 0;
1884 
1885 	nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1886 
1887 	return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1888 }
1889 
1890 /**
1891  * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1892  * Register 2.
1893  * @nor:       pointer to a 'struct spi_nor'.
1894  *
1895  * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1896  *
1897  * Return: 0 on success, -errno otherwise.
1898  */
1899 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1900 {
1901 	int ret;
1902 
1903 	if (nor->flags & SNOR_F_NO_READ_CR)
1904 		return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1905 
1906 	ret = spi_nor_read_cr(nor, nor->bouncebuf);
1907 	if (ret)
1908 		return ret;
1909 
1910 	if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1911 		return 0;
1912 
1913 	nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1914 
1915 	return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1916 }
1917 
1918 /**
1919  * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1920  * @nor:	pointer to a 'struct spi_nor'
1921  *
1922  * Set the Quad Enable (QE) bit in the Status Register 2.
1923  *
1924  * This is one of the procedures to set the QE bit described in the SFDP
1925  * (JESD216 rev B) specification but no manufacturer using this procedure has
1926  * been identified yet, hence the name of the function.
1927  *
1928  * Return: 0 on success, -errno otherwise.
1929  */
1930 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1931 {
1932 	u8 *sr2 = nor->bouncebuf;
1933 	int ret;
1934 	u8 sr2_written;
1935 
1936 	/* Check current Quad Enable bit value. */
1937 	ret = spi_nor_read_sr2(nor, sr2);
1938 	if (ret)
1939 		return ret;
1940 	if (*sr2 & SR2_QUAD_EN_BIT7)
1941 		return 0;
1942 
1943 	/* Update the Quad Enable bit. */
1944 	*sr2 |= SR2_QUAD_EN_BIT7;
1945 
1946 	ret = spi_nor_write_sr2(nor, sr2);
1947 	if (ret)
1948 		return ret;
1949 
1950 	sr2_written = *sr2;
1951 
1952 	/* Read back and check it. */
1953 	ret = spi_nor_read_sr2(nor, sr2);
1954 	if (ret)
1955 		return ret;
1956 
1957 	if (*sr2 != sr2_written) {
1958 		dev_dbg(nor->dev, "SR2: Read back test failed\n");
1959 		return -EIO;
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 static const struct spi_nor_manufacturer *manufacturers[] = {
1966 	&spi_nor_atmel,
1967 	&spi_nor_eon,
1968 	&spi_nor_esmt,
1969 	&spi_nor_everspin,
1970 	&spi_nor_gigadevice,
1971 	&spi_nor_intel,
1972 	&spi_nor_issi,
1973 	&spi_nor_macronix,
1974 	&spi_nor_micron,
1975 	&spi_nor_st,
1976 	&spi_nor_spansion,
1977 	&spi_nor_sst,
1978 	&spi_nor_winbond,
1979 	&spi_nor_xmc,
1980 };
1981 
1982 static const struct flash_info spi_nor_generic_flash = {
1983 	.name = "spi-nor-generic",
1984 };
1985 
1986 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
1987 						 const u8 *id)
1988 {
1989 	const struct flash_info *part;
1990 	unsigned int i, j;
1991 
1992 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
1993 		for (j = 0; j < manufacturers[i]->nparts; j++) {
1994 			part = &manufacturers[i]->parts[j];
1995 			if (part->id &&
1996 			    !memcmp(part->id->bytes, id, part->id->len)) {
1997 				nor->manufacturer = manufacturers[i];
1998 				return part;
1999 			}
2000 		}
2001 	}
2002 
2003 	return NULL;
2004 }
2005 
2006 static const struct flash_info *spi_nor_detect(struct spi_nor *nor)
2007 {
2008 	const struct flash_info *info;
2009 	u8 *id = nor->bouncebuf;
2010 	int ret;
2011 
2012 	ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto);
2013 	if (ret) {
2014 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2015 		return ERR_PTR(ret);
2016 	}
2017 
2018 	/* Cache the complete flash ID. */
2019 	nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL);
2020 	if (!nor->id)
2021 		return ERR_PTR(-ENOMEM);
2022 
2023 	info = spi_nor_match_id(nor, id);
2024 
2025 	/* Fallback to a generic flash described only by its SFDP data. */
2026 	if (!info) {
2027 		ret = spi_nor_check_sfdp_signature(nor);
2028 		if (!ret)
2029 			info = &spi_nor_generic_flash;
2030 	}
2031 
2032 	if (!info) {
2033 		dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2034 			SPI_NOR_MAX_ID_LEN, id);
2035 		return ERR_PTR(-ENODEV);
2036 	}
2037 	return info;
2038 }
2039 
2040 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2041 			size_t *retlen, u_char *buf)
2042 {
2043 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2044 	loff_t from_lock = from;
2045 	size_t len_lock = len;
2046 	ssize_t ret;
2047 
2048 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2049 
2050 	ret = spi_nor_prep_and_lock_rd(nor, from_lock, len_lock);
2051 	if (ret)
2052 		return ret;
2053 
2054 	while (len) {
2055 		loff_t addr = from;
2056 
2057 		ret = spi_nor_read_data(nor, addr, len, buf);
2058 		if (ret == 0) {
2059 			/* We shouldn't see 0-length reads */
2060 			ret = -EIO;
2061 			goto read_err;
2062 		}
2063 		if (ret < 0)
2064 			goto read_err;
2065 
2066 		WARN_ON(ret > len);
2067 		*retlen += ret;
2068 		buf += ret;
2069 		from += ret;
2070 		len -= ret;
2071 	}
2072 	ret = 0;
2073 
2074 read_err:
2075 	spi_nor_unlock_and_unprep_rd(nor, from_lock, len_lock);
2076 
2077 	return ret;
2078 }
2079 
2080 /*
2081  * Write an address range to the nor chip.  Data must be written in
2082  * FLASH_PAGESIZE chunks.  The address range may be any size provided
2083  * it is within the physical boundaries.
2084  */
2085 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2086 	size_t *retlen, const u_char *buf)
2087 {
2088 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2089 	size_t i;
2090 	ssize_t ret;
2091 	u32 page_size = nor->params->page_size;
2092 
2093 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2094 
2095 	ret = spi_nor_prep_and_lock_pe(nor, to, len);
2096 	if (ret)
2097 		return ret;
2098 
2099 	for (i = 0; i < len; ) {
2100 		ssize_t written;
2101 		loff_t addr = to + i;
2102 		size_t page_offset = addr & (page_size - 1);
2103 		/* the size of data remaining on the first page */
2104 		size_t page_remain = min_t(size_t, page_size - page_offset, len - i);
2105 
2106 		ret = spi_nor_lock_device(nor);
2107 		if (ret)
2108 			goto write_err;
2109 
2110 		ret = spi_nor_write_enable(nor);
2111 		if (ret) {
2112 			spi_nor_unlock_device(nor);
2113 			goto write_err;
2114 		}
2115 
2116 		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2117 		spi_nor_unlock_device(nor);
2118 		if (ret < 0)
2119 			goto write_err;
2120 		written = ret;
2121 
2122 		ret = spi_nor_wait_till_ready(nor);
2123 		if (ret)
2124 			goto write_err;
2125 		*retlen += written;
2126 		i += written;
2127 	}
2128 
2129 write_err:
2130 	spi_nor_unlock_and_unprep_pe(nor, to, len);
2131 
2132 	return ret;
2133 }
2134 
2135 static int spi_nor_check(struct spi_nor *nor)
2136 {
2137 	if (!nor->dev ||
2138 	    (!nor->spimem && !nor->controller_ops) ||
2139 	    (!nor->spimem && nor->controller_ops &&
2140 	    (!nor->controller_ops->read ||
2141 	     !nor->controller_ops->write ||
2142 	     !nor->controller_ops->read_reg ||
2143 	     !nor->controller_ops->write_reg))) {
2144 		pr_err("spi-nor: please fill all the necessary fields!\n");
2145 		return -EINVAL;
2146 	}
2147 
2148 	if (nor->spimem && nor->controller_ops) {
2149 		dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2150 		return -EINVAL;
2151 	}
2152 
2153 	return 0;
2154 }
2155 
2156 void
2157 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2158 			  u8 num_mode_clocks,
2159 			  u8 num_wait_states,
2160 			  u8 opcode,
2161 			  enum spi_nor_protocol proto)
2162 {
2163 	read->num_mode_clocks = num_mode_clocks;
2164 	read->num_wait_states = num_wait_states;
2165 	read->opcode = opcode;
2166 	read->proto = proto;
2167 }
2168 
2169 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2170 			     enum spi_nor_protocol proto)
2171 {
2172 	pp->opcode = opcode;
2173 	pp->proto = proto;
2174 }
2175 
2176 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2177 {
2178 	size_t i;
2179 
2180 	for (i = 0; i < size; i++)
2181 		if (table[i][0] == (int)hwcaps)
2182 			return table[i][1];
2183 
2184 	return -EINVAL;
2185 }
2186 
2187 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2188 {
2189 	static const int hwcaps_read2cmd[][2] = {
2190 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2191 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2192 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2193 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2194 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2195 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2196 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2197 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2198 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2199 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2200 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2201 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2202 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2203 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2204 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2205 		{ SNOR_HWCAPS_READ_8_8_8_DTR,	SNOR_CMD_READ_8_8_8_DTR },
2206 	};
2207 
2208 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2209 				  ARRAY_SIZE(hwcaps_read2cmd));
2210 }
2211 
2212 int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2213 {
2214 	static const int hwcaps_pp2cmd[][2] = {
2215 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2216 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2217 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2218 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2219 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2220 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2221 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2222 		{ SNOR_HWCAPS_PP_8_8_8_DTR,	SNOR_CMD_PP_8_8_8_DTR },
2223 	};
2224 
2225 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2226 				  ARRAY_SIZE(hwcaps_pp2cmd));
2227 }
2228 
2229 /**
2230  * spi_nor_spimem_check_op - check if the operation is supported
2231  *                           by controller
2232  *@nor:        pointer to a 'struct spi_nor'
2233  *@op:         pointer to op template to be checked
2234  *
2235  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2236  */
2237 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2238 				   struct spi_mem_op *op)
2239 {
2240 	/*
2241 	 * First test with 4 address bytes. The opcode itself might
2242 	 * be a 3B addressing opcode but we don't care, because
2243 	 * SPI controller implementation should not check the opcode,
2244 	 * but just the sequence.
2245 	 */
2246 	op->addr.nbytes = 4;
2247 	if (!spi_mem_supports_op(nor->spimem, op)) {
2248 		if (nor->params->size > SZ_16M)
2249 			return -EOPNOTSUPP;
2250 
2251 		/* If flash size <= 16MB, 3 address bytes are sufficient */
2252 		op->addr.nbytes = 3;
2253 		if (!spi_mem_supports_op(nor->spimem, op))
2254 			return -EOPNOTSUPP;
2255 	}
2256 
2257 	return 0;
2258 }
2259 
2260 /**
2261  * spi_nor_spimem_check_readop - check if the read op is supported
2262  *                               by controller
2263  *@nor:         pointer to a 'struct spi_nor'
2264  *@read:        pointer to op template to be checked
2265  *
2266  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2267  */
2268 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2269 				       const struct spi_nor_read_command *read)
2270 {
2271 	struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode);
2272 
2273 	spi_nor_spimem_setup_op(nor, &op, read->proto);
2274 
2275 	/* convert the dummy cycles to the number of bytes */
2276 	op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2277 			  op.dummy.buswidth / 8;
2278 	if (spi_nor_protocol_is_dtr(nor->read_proto))
2279 		op.dummy.nbytes *= 2;
2280 
2281 	return spi_nor_spimem_check_op(nor, &op);
2282 }
2283 
2284 /**
2285  * spi_nor_spimem_check_pp - check if the page program op is supported
2286  *                           by controller
2287  *@nor:         pointer to a 'struct spi_nor'
2288  *@pp:          pointer to op template to be checked
2289  *
2290  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2291  */
2292 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2293 				   const struct spi_nor_pp_command *pp)
2294 {
2295 	struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode);
2296 
2297 	spi_nor_spimem_setup_op(nor, &op, pp->proto);
2298 
2299 	return spi_nor_spimem_check_op(nor, &op);
2300 }
2301 
2302 /**
2303  * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2304  *                                based on SPI controller capabilities
2305  * @nor:        pointer to a 'struct spi_nor'
2306  * @hwcaps:     pointer to resulting capabilities after adjusting
2307  *              according to controller and flash's capability
2308  */
2309 static void
2310 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2311 {
2312 	struct spi_nor_flash_parameter *params = nor->params;
2313 	unsigned int cap;
2314 
2315 	/* X-X-X modes are not supported yet, mask them all. */
2316 	*hwcaps &= ~SNOR_HWCAPS_X_X_X;
2317 
2318 	/*
2319 	 * If the reset line is broken, we do not want to enter a stateful
2320 	 * mode.
2321 	 */
2322 	if (nor->flags & SNOR_F_BROKEN_RESET)
2323 		*hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
2324 
2325 	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2326 		int rdidx, ppidx;
2327 
2328 		if (!(*hwcaps & BIT(cap)))
2329 			continue;
2330 
2331 		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2332 		if (rdidx >= 0 &&
2333 		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
2334 			*hwcaps &= ~BIT(cap);
2335 
2336 		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2337 		if (ppidx < 0)
2338 			continue;
2339 
2340 		if (spi_nor_spimem_check_pp(nor,
2341 					    &params->page_programs[ppidx]))
2342 			*hwcaps &= ~BIT(cap);
2343 	}
2344 }
2345 
2346 /**
2347  * spi_nor_set_erase_type() - set a SPI NOR erase type
2348  * @erase:	pointer to a structure that describes a SPI NOR erase type
2349  * @size:	the size of the sector/block erased by the erase type
2350  * @opcode:	the SPI command op code to erase the sector/block
2351  */
2352 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2353 			    u8 opcode)
2354 {
2355 	erase->size = size;
2356 	erase->opcode = opcode;
2357 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2358 	erase->size_shift = ffs(erase->size) - 1;
2359 	erase->size_mask = (1 << erase->size_shift) - 1;
2360 }
2361 
2362 /**
2363  * spi_nor_mask_erase_type() - mask out a SPI NOR erase type
2364  * @erase:	pointer to a structure that describes a SPI NOR erase type
2365  */
2366 void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase)
2367 {
2368 	erase->size = 0;
2369 }
2370 
2371 /**
2372  * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2373  * @map:		the erase map of the SPI NOR
2374  * @erase_mask:		bitmask encoding erase types that can erase the entire
2375  *			flash memory
2376  * @flash_size:		the spi nor flash memory size
2377  */
2378 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2379 				    u8 erase_mask, u64 flash_size)
2380 {
2381 	map->uniform_region.offset = 0;
2382 	map->uniform_region.size = flash_size;
2383 	map->uniform_region.erase_mask = erase_mask;
2384 	map->regions = &map->uniform_region;
2385 	map->n_regions = 1;
2386 }
2387 
2388 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2389 			     const struct sfdp_parameter_header *bfpt_header,
2390 			     const struct sfdp_bfpt *bfpt)
2391 {
2392 	int ret;
2393 
2394 	if (nor->manufacturer && nor->manufacturer->fixups &&
2395 	    nor->manufacturer->fixups->post_bfpt) {
2396 		ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2397 							   bfpt);
2398 		if (ret)
2399 			return ret;
2400 	}
2401 
2402 	if (nor->info->fixups && nor->info->fixups->post_bfpt)
2403 		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
2404 
2405 	return 0;
2406 }
2407 
2408 static int spi_nor_select_read(struct spi_nor *nor,
2409 			       u32 shared_hwcaps)
2410 {
2411 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2412 	const struct spi_nor_read_command *read;
2413 
2414 	if (best_match < 0)
2415 		return -EINVAL;
2416 
2417 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2418 	if (cmd < 0)
2419 		return -EINVAL;
2420 
2421 	read = &nor->params->reads[cmd];
2422 	nor->read_opcode = read->opcode;
2423 	nor->read_proto = read->proto;
2424 
2425 	/*
2426 	 * In the SPI NOR framework, we don't need to make the difference
2427 	 * between mode clock cycles and wait state clock cycles.
2428 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2429 	 * flash memory to know whether it should enter or leave its 0-4-4
2430 	 * (Continuous Read / XIP) mode.
2431 	 * eXecution In Place is out of the scope of the mtd sub-system.
2432 	 * Hence we choose to merge both mode and wait state clock cycles
2433 	 * into the so called dummy clock cycles.
2434 	 */
2435 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2436 	return 0;
2437 }
2438 
2439 static int spi_nor_select_pp(struct spi_nor *nor,
2440 			     u32 shared_hwcaps)
2441 {
2442 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2443 	const struct spi_nor_pp_command *pp;
2444 
2445 	if (best_match < 0)
2446 		return -EINVAL;
2447 
2448 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2449 	if (cmd < 0)
2450 		return -EINVAL;
2451 
2452 	pp = &nor->params->page_programs[cmd];
2453 	nor->program_opcode = pp->opcode;
2454 	nor->write_proto = pp->proto;
2455 	return 0;
2456 }
2457 
2458 /**
2459  * spi_nor_select_uniform_erase() - select optimum uniform erase type
2460  * @map:		the erase map of the SPI NOR
2461  *
2462  * Once the optimum uniform sector erase command is found, disable all the
2463  * other.
2464  *
2465  * Return: pointer to erase type on success, NULL otherwise.
2466  */
2467 static const struct spi_nor_erase_type *
2468 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map)
2469 {
2470 	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2471 	int i;
2472 	u8 uniform_erase_type = map->uniform_region.erase_mask;
2473 
2474 	/*
2475 	 * Search for the biggest erase size, except for when compiled
2476 	 * to use 4k erases.
2477 	 */
2478 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2479 		if (!(uniform_erase_type & BIT(i)))
2480 			continue;
2481 
2482 		tested_erase = &map->erase_type[i];
2483 
2484 		/* Skip masked erase types. */
2485 		if (!tested_erase->size)
2486 			continue;
2487 
2488 		/*
2489 		 * If the current erase size is the 4k one, stop here,
2490 		 * we have found the right uniform Sector Erase command.
2491 		 */
2492 		if (IS_ENABLED(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS) &&
2493 		    tested_erase->size == SZ_4K) {
2494 			erase = tested_erase;
2495 			break;
2496 		}
2497 
2498 		/*
2499 		 * Otherwise, the current erase size is still a valid candidate.
2500 		 * Select the biggest valid candidate.
2501 		 */
2502 		if (!erase && tested_erase->size)
2503 			erase = tested_erase;
2504 			/* keep iterating to find the wanted_size */
2505 	}
2506 
2507 	if (!erase)
2508 		return NULL;
2509 
2510 	/* Disable all other Sector Erase commands. */
2511 	map->uniform_region.erase_mask = BIT(erase - map->erase_type);
2512 	return erase;
2513 }
2514 
2515 static int spi_nor_select_erase(struct spi_nor *nor)
2516 {
2517 	struct spi_nor_erase_map *map = &nor->params->erase_map;
2518 	const struct spi_nor_erase_type *erase = NULL;
2519 	struct mtd_info *mtd = &nor->mtd;
2520 	int i;
2521 
2522 	/*
2523 	 * The previous implementation handling Sector Erase commands assumed
2524 	 * that the SPI flash memory has an uniform layout then used only one
2525 	 * of the supported erase sizes for all Sector Erase commands.
2526 	 * So to be backward compatible, the new implementation also tries to
2527 	 * manage the SPI flash memory as uniform with a single erase sector
2528 	 * size, when possible.
2529 	 */
2530 	if (spi_nor_has_uniform_erase(nor)) {
2531 		erase = spi_nor_select_uniform_erase(map);
2532 		if (!erase)
2533 			return -EINVAL;
2534 		nor->erase_opcode = erase->opcode;
2535 		mtd->erasesize = erase->size;
2536 		return 0;
2537 	}
2538 
2539 	/*
2540 	 * For non-uniform SPI flash memory, set mtd->erasesize to the
2541 	 * maximum erase sector size. No need to set nor->erase_opcode.
2542 	 */
2543 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2544 		if (map->erase_type[i].size) {
2545 			erase = &map->erase_type[i];
2546 			break;
2547 		}
2548 	}
2549 
2550 	if (!erase)
2551 		return -EINVAL;
2552 
2553 	mtd->erasesize = erase->size;
2554 	return 0;
2555 }
2556 
2557 static int spi_nor_set_addr_nbytes(struct spi_nor *nor)
2558 {
2559 	if (nor->params->addr_nbytes) {
2560 		nor->addr_nbytes = nor->params->addr_nbytes;
2561 	} else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
2562 		/*
2563 		 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
2564 		 * in this protocol an odd addr_nbytes cannot be used because
2565 		 * then the address phase would only span a cycle and a half.
2566 		 * Half a cycle would be left over. We would then have to start
2567 		 * the dummy phase in the middle of a cycle and so too the data
2568 		 * phase, and we will end the transaction with half a cycle left
2569 		 * over.
2570 		 *
2571 		 * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to
2572 		 * avoid this situation.
2573 		 */
2574 		nor->addr_nbytes = 4;
2575 	} else if (nor->info->addr_nbytes) {
2576 		nor->addr_nbytes = nor->info->addr_nbytes;
2577 	} else {
2578 		nor->addr_nbytes = 3;
2579 	}
2580 
2581 	if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) {
2582 		/* enable 4-byte addressing if the device exceeds 16MiB */
2583 		nor->addr_nbytes = 4;
2584 	}
2585 
2586 	if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) {
2587 		dev_dbg(nor->dev, "The number of address bytes is too large: %u\n",
2588 			nor->addr_nbytes);
2589 		return -EINVAL;
2590 	}
2591 
2592 	/* Set 4byte opcodes when possible. */
2593 	if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES &&
2594 	    !(nor->flags & SNOR_F_HAS_4BAIT))
2595 		spi_nor_set_4byte_opcodes(nor);
2596 
2597 	return 0;
2598 }
2599 
2600 static int spi_nor_setup(struct spi_nor *nor,
2601 			 const struct spi_nor_hwcaps *hwcaps)
2602 {
2603 	struct spi_nor_flash_parameter *params = nor->params;
2604 	u32 ignored_mask, shared_mask;
2605 	int err;
2606 
2607 	/*
2608 	 * Keep only the hardware capabilities supported by both the SPI
2609 	 * controller and the SPI flash memory.
2610 	 */
2611 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2612 
2613 	if (nor->spimem) {
2614 		/*
2615 		 * When called from spi_nor_probe(), all caps are set and we
2616 		 * need to discard some of them based on what the SPI
2617 		 * controller actually supports (using spi_mem_supports_op()).
2618 		 */
2619 		spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2620 	} else {
2621 		/*
2622 		 * SPI n-n-n protocols are not supported when the SPI
2623 		 * controller directly implements the spi_nor interface.
2624 		 * Yet another reason to switch to spi-mem.
2625 		 */
2626 		ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2627 		if (shared_mask & ignored_mask) {
2628 			dev_dbg(nor->dev,
2629 				"SPI n-n-n protocols are not supported.\n");
2630 			shared_mask &= ~ignored_mask;
2631 		}
2632 	}
2633 
2634 	/* Select the (Fast) Read command. */
2635 	err = spi_nor_select_read(nor, shared_mask);
2636 	if (err) {
2637 		dev_dbg(nor->dev,
2638 			"can't select read settings supported by both the SPI controller and memory.\n");
2639 		return err;
2640 	}
2641 
2642 	/* Select the Page Program command. */
2643 	err = spi_nor_select_pp(nor, shared_mask);
2644 	if (err) {
2645 		dev_dbg(nor->dev,
2646 			"can't select write settings supported by both the SPI controller and memory.\n");
2647 		return err;
2648 	}
2649 
2650 	/* Select the Sector Erase command. */
2651 	err = spi_nor_select_erase(nor);
2652 	if (err) {
2653 		dev_dbg(nor->dev,
2654 			"can't select erase settings supported by both the SPI controller and memory.\n");
2655 		return err;
2656 	}
2657 
2658 	return spi_nor_set_addr_nbytes(nor);
2659 }
2660 
2661 /**
2662  * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2663  * settings based on MFR register and ->default_init() hook.
2664  * @nor:	pointer to a 'struct spi_nor'.
2665  */
2666 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2667 {
2668 	if (nor->manufacturer && nor->manufacturer->fixups &&
2669 	    nor->manufacturer->fixups->default_init)
2670 		nor->manufacturer->fixups->default_init(nor);
2671 
2672 	if (nor->info->fixups && nor->info->fixups->default_init)
2673 		nor->info->fixups->default_init(nor);
2674 }
2675 
2676 /**
2677  * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and
2678  * settings based on nor->info->sfdp_flags. This method should be called only by
2679  * flashes that do not define SFDP tables. If the flash supports SFDP but the
2680  * information is wrong and the settings from this function can not be retrieved
2681  * by parsing SFDP, one should instead use the fixup hooks and update the wrong
2682  * bits.
2683  * @nor:	pointer to a 'struct spi_nor'.
2684  */
2685 static void spi_nor_no_sfdp_init_params(struct spi_nor *nor)
2686 {
2687 	struct spi_nor_flash_parameter *params = nor->params;
2688 	struct spi_nor_erase_map *map = &params->erase_map;
2689 	const struct flash_info *info = nor->info;
2690 	const u8 no_sfdp_flags = info->no_sfdp_flags;
2691 	u8 i, erase_mask;
2692 
2693 	if (no_sfdp_flags & SPI_NOR_DUAL_READ) {
2694 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2695 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2696 					  0, 8, SPINOR_OP_READ_1_1_2,
2697 					  SNOR_PROTO_1_1_2);
2698 	}
2699 
2700 	if (no_sfdp_flags & SPI_NOR_QUAD_READ) {
2701 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2702 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2703 					  0, 8, SPINOR_OP_READ_1_1_4,
2704 					  SNOR_PROTO_1_1_4);
2705 	}
2706 
2707 	if (no_sfdp_flags & SPI_NOR_OCTAL_READ) {
2708 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2709 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2710 					  0, 8, SPINOR_OP_READ_1_1_8,
2711 					  SNOR_PROTO_1_1_8);
2712 	}
2713 
2714 	if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) {
2715 		params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2716 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
2717 					  0, 20, SPINOR_OP_READ_FAST,
2718 					  SNOR_PROTO_8_8_8_DTR);
2719 	}
2720 
2721 	if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) {
2722 		params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2723 		/*
2724 		 * Since xSPI Page Program opcode is backward compatible with
2725 		 * Legacy SPI, use Legacy SPI opcode there as well.
2726 		 */
2727 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2728 					SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2729 	}
2730 
2731 	/*
2732 	 * Sector Erase settings. Sort Erase Types in ascending order, with the
2733 	 * smallest erase size starting at BIT(0).
2734 	 */
2735 	erase_mask = 0;
2736 	i = 0;
2737 	if (no_sfdp_flags & SECT_4K) {
2738 		erase_mask |= BIT(i);
2739 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2740 				       SPINOR_OP_BE_4K);
2741 		i++;
2742 	}
2743 	erase_mask |= BIT(i);
2744 	spi_nor_set_erase_type(&map->erase_type[i],
2745 			       info->sector_size ?: SPI_NOR_DEFAULT_SECTOR_SIZE,
2746 			       SPINOR_OP_SE);
2747 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2748 }
2749 
2750 /**
2751  * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined
2752  * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP.
2753  * @nor:	pointer to a 'struct spi_nor'
2754  */
2755 static void spi_nor_init_flags(struct spi_nor *nor)
2756 {
2757 	struct device_node *np = spi_nor_get_flash_node(nor);
2758 	const u16 flags = nor->info->flags;
2759 
2760 	if (of_property_read_bool(np, "broken-flash-reset"))
2761 		nor->flags |= SNOR_F_BROKEN_RESET;
2762 
2763 	if (of_property_read_bool(np, "no-wp"))
2764 		nor->flags |= SNOR_F_NO_WP;
2765 
2766 	if (flags & SPI_NOR_SWP_IS_VOLATILE)
2767 		nor->flags |= SNOR_F_SWP_IS_VOLATILE;
2768 
2769 	if (flags & SPI_NOR_HAS_LOCK)
2770 		nor->flags |= SNOR_F_HAS_LOCK;
2771 
2772 	if (flags & SPI_NOR_HAS_TB) {
2773 		nor->flags |= SNOR_F_HAS_SR_TB;
2774 		if (flags & SPI_NOR_TB_SR_BIT6)
2775 			nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
2776 	}
2777 
2778 	if (flags & SPI_NOR_4BIT_BP) {
2779 		nor->flags |= SNOR_F_HAS_4BIT_BP;
2780 		if (flags & SPI_NOR_BP3_SR_BIT6)
2781 			nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
2782 	}
2783 
2784 	if (flags & SPI_NOR_RWW && nor->params->n_banks > 1 &&
2785 	    !nor->controller_ops)
2786 		nor->flags |= SNOR_F_RWW;
2787 }
2788 
2789 /**
2790  * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not
2791  * be discovered by SFDP for this particular flash because the SFDP table that
2792  * indicates this support is not defined in the flash. In case the table for
2793  * this support is defined but has wrong values, one should instead use a
2794  * post_sfdp() hook to set the SNOR_F equivalent flag.
2795  * @nor:       pointer to a 'struct spi_nor'
2796  */
2797 static void spi_nor_init_fixup_flags(struct spi_nor *nor)
2798 {
2799 	const u8 fixup_flags = nor->info->fixup_flags;
2800 
2801 	if (fixup_flags & SPI_NOR_4B_OPCODES)
2802 		nor->flags |= SNOR_F_4B_OPCODES;
2803 
2804 	if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE)
2805 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
2806 }
2807 
2808 /**
2809  * spi_nor_late_init_params() - Late initialization of default flash parameters.
2810  * @nor:	pointer to a 'struct spi_nor'
2811  *
2812  * Used to initialize flash parameters that are not declared in the JESD216
2813  * SFDP standard, or where SFDP tables are not defined at all.
2814  * Will replace the spi_nor_manufacturer_init_params() method.
2815  */
2816 static int spi_nor_late_init_params(struct spi_nor *nor)
2817 {
2818 	struct spi_nor_flash_parameter *params = nor->params;
2819 	int ret;
2820 
2821 	if (nor->manufacturer && nor->manufacturer->fixups &&
2822 	    nor->manufacturer->fixups->late_init) {
2823 		ret = nor->manufacturer->fixups->late_init(nor);
2824 		if (ret)
2825 			return ret;
2826 	}
2827 
2828 	/* Needed by some flashes late_init hooks. */
2829 	spi_nor_init_flags(nor);
2830 
2831 	if (nor->info->fixups && nor->info->fixups->late_init) {
2832 		ret = nor->info->fixups->late_init(nor);
2833 		if (ret)
2834 			return ret;
2835 	}
2836 
2837 	if (!nor->params->die_erase_opcode)
2838 		nor->params->die_erase_opcode = SPINOR_OP_CHIP_ERASE;
2839 
2840 	/* Default method kept for backward compatibility. */
2841 	if (!params->set_4byte_addr_mode)
2842 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
2843 
2844 	spi_nor_init_fixup_flags(nor);
2845 
2846 	/*
2847 	 * NOR protection support. When locking_ops are not provided, we pick
2848 	 * the default ones.
2849 	 */
2850 	if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2851 		spi_nor_init_default_locking_ops(nor);
2852 
2853 	if (params->n_banks > 1)
2854 		params->bank_size = div_u64(params->size, params->n_banks);
2855 
2856 	return 0;
2857 }
2858 
2859 /**
2860  * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash
2861  * parameters and settings based on JESD216 SFDP standard.
2862  * @nor:	pointer to a 'struct spi_nor'.
2863  *
2864  * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2865  * legacy flash parameters and settings will be restored.
2866  */
2867 static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor)
2868 {
2869 	struct spi_nor_flash_parameter sfdp_params;
2870 
2871 	memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2872 
2873 	if (spi_nor_parse_sfdp(nor)) {
2874 		memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2875 		nor->flags &= ~SNOR_F_4B_OPCODES;
2876 	}
2877 }
2878 
2879 /**
2880  * spi_nor_init_params_deprecated() - Deprecated way of initializing flash
2881  * parameters and settings.
2882  * @nor:	pointer to a 'struct spi_nor'.
2883  *
2884  * The method assumes that flash doesn't support SFDP so it initializes flash
2885  * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten
2886  * when parsing SFDP, if supported.
2887  */
2888 static void spi_nor_init_params_deprecated(struct spi_nor *nor)
2889 {
2890 	spi_nor_no_sfdp_init_params(nor);
2891 
2892 	spi_nor_manufacturer_init_params(nor);
2893 
2894 	if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ |
2895 					SPI_NOR_QUAD_READ |
2896 					SPI_NOR_OCTAL_READ |
2897 					SPI_NOR_OCTAL_DTR_READ))
2898 		spi_nor_sfdp_init_params_deprecated(nor);
2899 }
2900 
2901 /**
2902  * spi_nor_init_default_params() - Default initialization of flash parameters
2903  * and settings. Done for all flashes, regardless is they define SFDP tables
2904  * or not.
2905  * @nor:	pointer to a 'struct spi_nor'.
2906  */
2907 static void spi_nor_init_default_params(struct spi_nor *nor)
2908 {
2909 	struct spi_nor_flash_parameter *params = nor->params;
2910 	const struct flash_info *info = nor->info;
2911 	struct device_node *np = spi_nor_get_flash_node(nor);
2912 
2913 	params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2914 	params->otp.org = info->otp;
2915 
2916 	/* Default to 16-bit Write Status (01h) Command */
2917 	nor->flags |= SNOR_F_HAS_16BIT_SR;
2918 
2919 	/* Set SPI NOR sizes. */
2920 	params->writesize = 1;
2921 	params->size = info->size;
2922 	params->bank_size = params->size;
2923 	params->page_size = info->page_size ?: SPI_NOR_DEFAULT_PAGE_SIZE;
2924 	params->n_banks = info->n_banks ?: SPI_NOR_DEFAULT_N_BANKS;
2925 
2926 	/* Default to Fast Read for non-DT and enable it if requested by DT. */
2927 	if (!np || of_property_read_bool(np, "m25p,fast-read"))
2928 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2929 
2930 	/* (Fast) Read settings. */
2931 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
2932 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2933 				  0, 0, SPINOR_OP_READ,
2934 				  SNOR_PROTO_1_1_1);
2935 
2936 	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2937 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2938 					  0, 8, SPINOR_OP_READ_FAST,
2939 					  SNOR_PROTO_1_1_1);
2940 	/* Page Program settings. */
2941 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
2942 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2943 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2944 
2945 	if (info->flags & SPI_NOR_QUAD_PP) {
2946 		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
2947 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
2948 					SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
2949 	}
2950 }
2951 
2952 /**
2953  * spi_nor_init_params() - Initialize the flash's parameters and settings.
2954  * @nor:	pointer to a 'struct spi_nor'.
2955  *
2956  * The flash parameters and settings are initialized based on a sequence of
2957  * calls that are ordered by priority:
2958  *
2959  * 1/ Default flash parameters initialization. The initializations are done
2960  *    based on nor->info data:
2961  *		spi_nor_info_init_params()
2962  *
2963  * which can be overwritten by:
2964  * 2/ Manufacturer flash parameters initialization. The initializations are
2965  *    done based on MFR register, or when the decisions can not be done solely
2966  *    based on MFR, by using specific flash_info tweeks, ->default_init():
2967  *		spi_nor_manufacturer_init_params()
2968  *
2969  * which can be overwritten by:
2970  * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2971  *    should be more accurate that the above.
2972  *		spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params()
2973  *
2974  *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
2975  *    the flash parameters and settings immediately after parsing the Basic
2976  *    Flash Parameter Table.
2977  *    spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed.
2978  *    It is used to tweak various flash parameters when information provided
2979  *    by the SFDP tables are wrong.
2980  *
2981  * which can be overwritten by:
2982  * 4/ Late flash parameters initialization, used to initialize flash
2983  * parameters that are not declared in the JESD216 SFDP standard, or where SFDP
2984  * tables are not defined at all.
2985  *		spi_nor_late_init_params()
2986  *
2987  * Return: 0 on success, -errno otherwise.
2988  */
2989 static int spi_nor_init_params(struct spi_nor *nor)
2990 {
2991 	int ret;
2992 
2993 	nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2994 	if (!nor->params)
2995 		return -ENOMEM;
2996 
2997 	spi_nor_init_default_params(nor);
2998 
2999 	if (spi_nor_needs_sfdp(nor)) {
3000 		ret = spi_nor_parse_sfdp(nor);
3001 		if (ret) {
3002 			dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n");
3003 			return ret;
3004 		}
3005 	} else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) {
3006 		spi_nor_no_sfdp_init_params(nor);
3007 	} else {
3008 		spi_nor_init_params_deprecated(nor);
3009 	}
3010 
3011 	ret = spi_nor_late_init_params(nor);
3012 	if (ret)
3013 		return ret;
3014 
3015 	if (WARN_ON(!is_power_of_2(nor->params->page_size)))
3016 		return -EINVAL;
3017 
3018 	return 0;
3019 }
3020 
3021 /** spi_nor_set_octal_dtr() - enable or disable Octal DTR I/O.
3022  * @nor:                 pointer to a 'struct spi_nor'
3023  * @enable:              whether to enable or disable Octal DTR
3024  *
3025  * Return: 0 on success, -errno otherwise.
3026  */
3027 static int spi_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
3028 {
3029 	int ret;
3030 
3031 	if (!nor->params->set_octal_dtr)
3032 		return 0;
3033 
3034 	if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
3035 	      nor->write_proto == SNOR_PROTO_8_8_8_DTR))
3036 		return 0;
3037 
3038 	if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
3039 		return 0;
3040 
3041 	ret = nor->params->set_octal_dtr(nor, enable);
3042 	if (ret)
3043 		return ret;
3044 
3045 	if (enable)
3046 		nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
3047 	else
3048 		nor->reg_proto = SNOR_PROTO_1_1_1;
3049 
3050 	return 0;
3051 }
3052 
3053 /**
3054  * spi_nor_quad_enable() - enable Quad I/O if needed.
3055  * @nor:                pointer to a 'struct spi_nor'
3056  *
3057  * Return: 0 on success, -errno otherwise.
3058  */
3059 static int spi_nor_quad_enable(struct spi_nor *nor)
3060 {
3061 	if (!nor->params->quad_enable)
3062 		return 0;
3063 
3064 	if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
3065 	      spi_nor_get_protocol_width(nor->write_proto) == 4))
3066 		return 0;
3067 
3068 	return nor->params->quad_enable(nor);
3069 }
3070 
3071 /**
3072  * spi_nor_set_4byte_addr_mode() - Set address mode.
3073  * @nor:                pointer to a 'struct spi_nor'.
3074  * @enable:             enable/disable 4 byte address mode.
3075  *
3076  * Return: 0 on success, -errno otherwise.
3077  */
3078 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
3079 {
3080 	struct spi_nor_flash_parameter *params = nor->params;
3081 	int ret;
3082 
3083 	if (enable) {
3084 		/*
3085 		 * If the RESET# pin isn't hooked up properly, or the system
3086 		 * otherwise doesn't perform a reset command in the boot
3087 		 * sequence, it's impossible to 100% protect against unexpected
3088 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
3089 		 * designer) that this is bad.
3090 		 */
3091 		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
3092 			  "enabling reset hack; may not recover from unexpected reboots\n");
3093 	}
3094 
3095 	ret = params->set_4byte_addr_mode(nor, enable);
3096 	if (ret && ret != -EOPNOTSUPP)
3097 		return ret;
3098 
3099 	if (enable) {
3100 		params->addr_nbytes = 4;
3101 		params->addr_mode_nbytes = 4;
3102 	} else {
3103 		params->addr_nbytes = 3;
3104 		params->addr_mode_nbytes = 3;
3105 	}
3106 
3107 	return 0;
3108 }
3109 
3110 static int spi_nor_init(struct spi_nor *nor)
3111 {
3112 	int err;
3113 
3114 	err = spi_nor_set_octal_dtr(nor, true);
3115 	if (err) {
3116 		dev_dbg(nor->dev, "octal mode not supported\n");
3117 		return err;
3118 	}
3119 
3120 	err = spi_nor_quad_enable(nor);
3121 	if (err) {
3122 		dev_dbg(nor->dev, "quad mode not supported\n");
3123 		return err;
3124 	}
3125 
3126 	/*
3127 	 * Some SPI NOR flashes are write protected by default after a power-on
3128 	 * reset cycle, in order to avoid inadvertent writes during power-up.
3129 	 * Backward compatibility imposes to unlock the entire flash memory
3130 	 * array at power-up by default. Depending on the kernel configuration
3131 	 * (1) do nothing, (2) always unlock the entire flash array or (3)
3132 	 * unlock the entire flash array only when the software write
3133 	 * protection bits are volatile. The latter is indicated by
3134 	 * SNOR_F_SWP_IS_VOLATILE.
3135 	 */
3136 	if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
3137 	    (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
3138 	     nor->flags & SNOR_F_SWP_IS_VOLATILE))
3139 		spi_nor_try_unlock_all(nor);
3140 
3141 	if (nor->addr_nbytes == 4 &&
3142 	    nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
3143 	    !(nor->flags & SNOR_F_4B_OPCODES))
3144 		return spi_nor_set_4byte_addr_mode(nor, true);
3145 
3146 	return 0;
3147 }
3148 
3149 /**
3150  * spi_nor_soft_reset() - Perform a software reset
3151  * @nor:	pointer to 'struct spi_nor'
3152  *
3153  * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
3154  * the device to its power-on-reset state. This is useful when the software has
3155  * made some changes to device (volatile) registers and needs to reset it before
3156  * shutting down, for example.
3157  *
3158  * Not every flash supports this sequence. The same set of opcodes might be used
3159  * for some other operation on a flash that does not support this. Support for
3160  * this sequence can be discovered via SFDP in the BFPT table.
3161  *
3162  * Return: 0 on success, -errno otherwise.
3163  */
3164 static void spi_nor_soft_reset(struct spi_nor *nor)
3165 {
3166 	struct spi_mem_op op;
3167 	int ret;
3168 
3169 	op = (struct spi_mem_op)SPINOR_SRSTEN_OP;
3170 
3171 	spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3172 
3173 	ret = spi_mem_exec_op(nor->spimem, &op);
3174 	if (ret) {
3175 		if (ret != -EOPNOTSUPP)
3176 			dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3177 		return;
3178 	}
3179 
3180 	op = (struct spi_mem_op)SPINOR_SRST_OP;
3181 
3182 	spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3183 
3184 	ret = spi_mem_exec_op(nor->spimem, &op);
3185 	if (ret) {
3186 		dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3187 		return;
3188 	}
3189 
3190 	/*
3191 	 * Software Reset is not instant, and the delay varies from flash to
3192 	 * flash. Looking at a few flashes, most range somewhere below 100
3193 	 * microseconds. So, sleep for a range of 200-400 us.
3194 	 */
3195 	usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
3196 }
3197 
3198 /* mtd suspend handler */
3199 static int spi_nor_suspend(struct mtd_info *mtd)
3200 {
3201 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
3202 	int ret;
3203 
3204 	/* Disable octal DTR mode if we enabled it. */
3205 	ret = spi_nor_set_octal_dtr(nor, false);
3206 	if (ret)
3207 		dev_err(nor->dev, "suspend() failed\n");
3208 
3209 	return ret;
3210 }
3211 
3212 /* mtd resume handler */
3213 static void spi_nor_resume(struct mtd_info *mtd)
3214 {
3215 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
3216 	struct device *dev = nor->dev;
3217 	int ret;
3218 
3219 	/* re-initialize the nor chip */
3220 	ret = spi_nor_init(nor);
3221 	if (ret)
3222 		dev_err(dev, "resume() failed\n");
3223 }
3224 
3225 static int spi_nor_get_device(struct mtd_info *mtd)
3226 {
3227 	struct mtd_info *master = mtd_get_master(mtd);
3228 	struct spi_nor *nor = mtd_to_spi_nor(master);
3229 	struct device *dev;
3230 
3231 	if (nor->spimem)
3232 		dev = nor->spimem->spi->controller->dev.parent;
3233 	else
3234 		dev = nor->dev;
3235 
3236 	if (!try_module_get(dev->driver->owner))
3237 		return -ENODEV;
3238 
3239 	return 0;
3240 }
3241 
3242 static void spi_nor_put_device(struct mtd_info *mtd)
3243 {
3244 	struct mtd_info *master = mtd_get_master(mtd);
3245 	struct spi_nor *nor = mtd_to_spi_nor(master);
3246 	struct device *dev;
3247 
3248 	if (nor->spimem)
3249 		dev = nor->spimem->spi->controller->dev.parent;
3250 	else
3251 		dev = nor->dev;
3252 
3253 	module_put(dev->driver->owner);
3254 }
3255 
3256 static void spi_nor_restore(struct spi_nor *nor)
3257 {
3258 	int ret;
3259 
3260 	/* restore the addressing mode */
3261 	if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3262 	    nor->flags & SNOR_F_BROKEN_RESET) {
3263 		ret = spi_nor_set_4byte_addr_mode(nor, false);
3264 		if (ret)
3265 			/*
3266 			 * Do not stop the execution in the hope that the flash
3267 			 * will default to the 3-byte address mode after the
3268 			 * software reset.
3269 			 */
3270 			dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret);
3271 	}
3272 
3273 	if (nor->flags & SNOR_F_SOFT_RESET)
3274 		spi_nor_soft_reset(nor);
3275 }
3276 
3277 static const struct flash_info *spi_nor_match_name(struct spi_nor *nor,
3278 						   const char *name)
3279 {
3280 	unsigned int i, j;
3281 
3282 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3283 		for (j = 0; j < manufacturers[i]->nparts; j++) {
3284 			if (manufacturers[i]->parts[j].name &&
3285 			    !strcmp(name, manufacturers[i]->parts[j].name)) {
3286 				nor->manufacturer = manufacturers[i];
3287 				return &manufacturers[i]->parts[j];
3288 			}
3289 		}
3290 	}
3291 
3292 	return NULL;
3293 }
3294 
3295 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3296 						       const char *name)
3297 {
3298 	const struct flash_info *info = NULL;
3299 
3300 	if (name)
3301 		info = spi_nor_match_name(nor, name);
3302 	/*
3303 	 * Auto-detect if chip name wasn't specified or not found, or the chip
3304 	 * has an ID. If the chip supposedly has an ID, we also do an
3305 	 * auto-detection to compare it later.
3306 	 */
3307 	if (!info || info->id) {
3308 		const struct flash_info *jinfo;
3309 
3310 		jinfo = spi_nor_detect(nor);
3311 		if (IS_ERR(jinfo))
3312 			return jinfo;
3313 
3314 		/*
3315 		 * If caller has specified name of flash model that can normally
3316 		 * be detected using JEDEC, let's verify it.
3317 		 */
3318 		if (info && jinfo != info)
3319 			dev_warn(nor->dev, "found %s, expected %s\n",
3320 				 jinfo->name, info->name);
3321 
3322 		/* If info was set before, JEDEC knows better. */
3323 		info = jinfo;
3324 	}
3325 
3326 	return info;
3327 }
3328 
3329 static u32
3330 spi_nor_get_region_erasesize(const struct spi_nor_erase_region *region,
3331 			     const struct spi_nor_erase_type *erase_type)
3332 {
3333 	int i;
3334 
3335 	if (region->overlaid)
3336 		return region->size;
3337 
3338 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
3339 		if (region->erase_mask & BIT(i))
3340 			return erase_type[i].size;
3341 	}
3342 
3343 	return 0;
3344 }
3345 
3346 static int spi_nor_set_mtd_eraseregions(struct spi_nor *nor)
3347 {
3348 	const struct spi_nor_erase_map *map = &nor->params->erase_map;
3349 	const struct spi_nor_erase_region *region = map->regions;
3350 	struct mtd_erase_region_info *mtd_region;
3351 	struct mtd_info *mtd = &nor->mtd;
3352 	u32 erasesize, i;
3353 
3354 	mtd_region = devm_kcalloc(nor->dev, map->n_regions, sizeof(*mtd_region),
3355 				  GFP_KERNEL);
3356 	if (!mtd_region)
3357 		return -ENOMEM;
3358 
3359 	for (i = 0; i < map->n_regions; i++) {
3360 		erasesize = spi_nor_get_region_erasesize(&region[i],
3361 							 map->erase_type);
3362 		if (!erasesize)
3363 			return -EINVAL;
3364 
3365 		mtd_region[i].erasesize = erasesize;
3366 		mtd_region[i].numblocks = div_u64(region[i].size, erasesize);
3367 		mtd_region[i].offset = region[i].offset;
3368 	}
3369 
3370 	mtd->numeraseregions = map->n_regions;
3371 	mtd->eraseregions = mtd_region;
3372 
3373 	return 0;
3374 }
3375 
3376 static int spi_nor_set_mtd_info(struct spi_nor *nor)
3377 {
3378 	struct mtd_info *mtd = &nor->mtd;
3379 	struct device *dev = nor->dev;
3380 
3381 	spi_nor_set_mtd_locking_ops(nor);
3382 	spi_nor_set_mtd_otp_ops(nor);
3383 
3384 	mtd->dev.parent = dev;
3385 	if (!mtd->name)
3386 		mtd->name = dev_name(dev);
3387 	mtd->type = MTD_NORFLASH;
3388 	mtd->flags = MTD_CAP_NORFLASH;
3389 	/* Unset BIT_WRITEABLE to enable JFFS2 write buffer for ECC'd NOR */
3390 	if (nor->flags & SNOR_F_ECC)
3391 		mtd->flags &= ~MTD_BIT_WRITEABLE;
3392 	if (nor->info->flags & SPI_NOR_NO_ERASE)
3393 		mtd->flags |= MTD_NO_ERASE;
3394 	else
3395 		mtd->_erase = spi_nor_erase;
3396 	mtd->writesize = nor->params->writesize;
3397 	mtd->writebufsize = nor->params->page_size;
3398 	mtd->size = nor->params->size;
3399 	mtd->_read = spi_nor_read;
3400 	/* Might be already set by some SST flashes. */
3401 	if (!mtd->_write)
3402 		mtd->_write = spi_nor_write;
3403 	mtd->_suspend = spi_nor_suspend;
3404 	mtd->_resume = spi_nor_resume;
3405 	mtd->_get_device = spi_nor_get_device;
3406 	mtd->_put_device = spi_nor_put_device;
3407 
3408 	if (!spi_nor_has_uniform_erase(nor))
3409 		return spi_nor_set_mtd_eraseregions(nor);
3410 
3411 	return 0;
3412 }
3413 
3414 static int spi_nor_hw_reset(struct spi_nor *nor)
3415 {
3416 	struct gpio_desc *reset;
3417 
3418 	reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW);
3419 	if (IS_ERR_OR_NULL(reset))
3420 		return PTR_ERR_OR_ZERO(reset);
3421 
3422 	/*
3423 	 * Experimental delay values by looking at different flash device
3424 	 * vendors datasheets.
3425 	 */
3426 	usleep_range(1, 5);
3427 	gpiod_set_value_cansleep(reset, 1);
3428 	usleep_range(100, 150);
3429 	gpiod_set_value_cansleep(reset, 0);
3430 	usleep_range(1000, 1200);
3431 
3432 	return 0;
3433 }
3434 
3435 int spi_nor_scan(struct spi_nor *nor, const char *name,
3436 		 const struct spi_nor_hwcaps *hwcaps)
3437 {
3438 	const struct flash_info *info;
3439 	struct device *dev = nor->dev;
3440 	int ret;
3441 
3442 	ret = spi_nor_check(nor);
3443 	if (ret)
3444 		return ret;
3445 
3446 	/* Reset SPI protocol for all commands. */
3447 	nor->reg_proto = SNOR_PROTO_1_1_1;
3448 	nor->read_proto = SNOR_PROTO_1_1_1;
3449 	nor->write_proto = SNOR_PROTO_1_1_1;
3450 
3451 	/*
3452 	 * We need the bounce buffer early to read/write registers when going
3453 	 * through the spi-mem layer (buffers have to be DMA-able).
3454 	 * For spi-mem drivers, we'll reallocate a new buffer if
3455 	 * nor->params->page_size turns out to be greater than PAGE_SIZE (which
3456 	 * shouldn't happen before long since NOR pages are usually less
3457 	 * than 1KB) after spi_nor_scan() returns.
3458 	 */
3459 	nor->bouncebuf_size = PAGE_SIZE;
3460 	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3461 				      GFP_KERNEL);
3462 	if (!nor->bouncebuf)
3463 		return -ENOMEM;
3464 
3465 	ret = spi_nor_hw_reset(nor);
3466 	if (ret)
3467 		return ret;
3468 
3469 	info = spi_nor_get_flash_info(nor, name);
3470 	if (IS_ERR(info))
3471 		return PTR_ERR(info);
3472 
3473 	nor->info = info;
3474 
3475 	mutex_init(&nor->lock);
3476 
3477 	/* Init flash parameters based on flash_info struct and SFDP */
3478 	ret = spi_nor_init_params(nor);
3479 	if (ret)
3480 		return ret;
3481 
3482 	if (spi_nor_use_parallel_locking(nor))
3483 		init_waitqueue_head(&nor->rww.wait);
3484 
3485 	/*
3486 	 * Configure the SPI memory:
3487 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3488 	 * - set the number of dummy cycles (mode cycles + wait states).
3489 	 * - set the SPI protocols for register and memory accesses.
3490 	 * - set the number of address bytes.
3491 	 */
3492 	ret = spi_nor_setup(nor, hwcaps);
3493 	if (ret)
3494 		return ret;
3495 
3496 	/* Send all the required SPI flash commands to initialize device */
3497 	ret = spi_nor_init(nor);
3498 	if (ret)
3499 		return ret;
3500 
3501 	/* No mtd_info fields should be used up to this point. */
3502 	ret = spi_nor_set_mtd_info(nor);
3503 	if (ret)
3504 		return ret;
3505 
3506 	dev_dbg(dev, "Manufacturer and device ID: %*phN\n",
3507 		SPI_NOR_MAX_ID_LEN, nor->id);
3508 
3509 	return 0;
3510 }
3511 EXPORT_SYMBOL_GPL(spi_nor_scan);
3512 
3513 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3514 {
3515 	struct spi_mem_dirmap_info info = {
3516 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3517 				      SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3518 				      SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3519 				      SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3520 		.offset = 0,
3521 		.length = nor->params->size,
3522 	};
3523 	struct spi_mem_op *op = &info.op_tmpl;
3524 
3525 	spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3526 
3527 	/* convert the dummy cycles to the number of bytes */
3528 	op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3529 	if (spi_nor_protocol_is_dtr(nor->read_proto))
3530 		op->dummy.nbytes *= 2;
3531 
3532 	/*
3533 	 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3534 	 * of data bytes is non-zero, the data buswidth won't be set here. So,
3535 	 * do it explicitly.
3536 	 */
3537 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3538 
3539 	nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3540 						       &info);
3541 	return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3542 }
3543 
3544 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3545 {
3546 	struct spi_mem_dirmap_info info = {
3547 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3548 				      SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3549 				      SPI_MEM_OP_NO_DUMMY,
3550 				      SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3551 		.offset = 0,
3552 		.length = nor->params->size,
3553 	};
3554 	struct spi_mem_op *op = &info.op_tmpl;
3555 
3556 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3557 		op->addr.nbytes = 0;
3558 
3559 	spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3560 
3561 	/*
3562 	 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3563 	 * of data bytes is non-zero, the data buswidth won't be set here. So,
3564 	 * do it explicitly.
3565 	 */
3566 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3567 
3568 	nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3569 						       &info);
3570 	return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3571 }
3572 
3573 static int spi_nor_probe(struct spi_mem *spimem)
3574 {
3575 	struct spi_device *spi = spimem->spi;
3576 	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3577 	struct spi_nor *nor;
3578 	/*
3579 	 * Enable all caps by default. The core will mask them after
3580 	 * checking what's really supported using spi_mem_supports_op().
3581 	 */
3582 	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3583 	char *flash_name;
3584 	int ret;
3585 
3586 	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3587 	if (!nor)
3588 		return -ENOMEM;
3589 
3590 	nor->spimem = spimem;
3591 	nor->dev = &spi->dev;
3592 	spi_nor_set_flash_node(nor, spi->dev.of_node);
3593 
3594 	spi_mem_set_drvdata(spimem, nor);
3595 
3596 	if (data && data->name)
3597 		nor->mtd.name = data->name;
3598 
3599 	if (!nor->mtd.name)
3600 		nor->mtd.name = spi_mem_get_name(spimem);
3601 
3602 	/*
3603 	 * For some (historical?) reason many platforms provide two different
3604 	 * names in flash_platform_data: "name" and "type". Quite often name is
3605 	 * set to "m25p80" and then "type" provides a real chip name.
3606 	 * If that's the case, respect "type" and ignore a "name".
3607 	 */
3608 	if (data && data->type)
3609 		flash_name = data->type;
3610 	else if (!strcmp(spi->modalias, "spi-nor"))
3611 		flash_name = NULL; /* auto-detect */
3612 	else
3613 		flash_name = spi->modalias;
3614 
3615 	ret = spi_nor_scan(nor, flash_name, &hwcaps);
3616 	if (ret)
3617 		return ret;
3618 
3619 	spi_nor_debugfs_register(nor);
3620 
3621 	/*
3622 	 * None of the existing parts have > 512B pages, but let's play safe
3623 	 * and add this logic so that if anyone ever adds support for such
3624 	 * a NOR we don't end up with buffer overflows.
3625 	 */
3626 	if (nor->params->page_size > PAGE_SIZE) {
3627 		nor->bouncebuf_size = nor->params->page_size;
3628 		devm_kfree(nor->dev, nor->bouncebuf);
3629 		nor->bouncebuf = devm_kmalloc(nor->dev,
3630 					      nor->bouncebuf_size,
3631 					      GFP_KERNEL);
3632 		if (!nor->bouncebuf)
3633 			return -ENOMEM;
3634 	}
3635 
3636 	ret = spi_nor_create_read_dirmap(nor);
3637 	if (ret)
3638 		return ret;
3639 
3640 	ret = spi_nor_create_write_dirmap(nor);
3641 	if (ret)
3642 		return ret;
3643 
3644 	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3645 				   data ? data->nr_parts : 0);
3646 }
3647 
3648 static int spi_nor_remove(struct spi_mem *spimem)
3649 {
3650 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3651 
3652 	spi_nor_restore(nor);
3653 
3654 	/* Clean up MTD stuff. */
3655 	return mtd_device_unregister(&nor->mtd);
3656 }
3657 
3658 static void spi_nor_shutdown(struct spi_mem *spimem)
3659 {
3660 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3661 
3662 	spi_nor_restore(nor);
3663 }
3664 
3665 /*
3666  * Do NOT add to this array without reading the following:
3667  *
3668  * Historically, many flash devices are bound to this driver by their name. But
3669  * since most of these flash are compatible to some extent, and their
3670  * differences can often be differentiated by the JEDEC read-ID command, we
3671  * encourage new users to add support to the spi-nor library, and simply bind
3672  * against a generic string here (e.g., "jedec,spi-nor").
3673  *
3674  * Many flash names are kept here in this list to keep them available
3675  * as module aliases for existing platforms.
3676  */
3677 static const struct spi_device_id spi_nor_dev_ids[] = {
3678 	/*
3679 	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3680 	 * hack around the fact that the SPI core does not provide uevent
3681 	 * matching for .of_match_table
3682 	 */
3683 	{"spi-nor"},
3684 
3685 	/*
3686 	 * Entries not used in DTs that should be safe to drop after replacing
3687 	 * them with "spi-nor" in platform data.
3688 	 */
3689 	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},
3690 
3691 	/*
3692 	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3693 	 * should be kept for backward compatibility.
3694 	 */
3695 	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
3696 	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
3697 	{"mx25l25635e"},{"mx66l51235l"},
3698 	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
3699 	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
3700 	{"s25fl064k"},
3701 	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3702 	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
3703 	{"m25p64"},	{"m25p128"},
3704 	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
3705 	{"w25q80bl"},	{"w25q128"},	{"w25q256"},
3706 
3707 	/* Flashes that can't be detected using JEDEC */
3708 	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
3709 	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
3710 	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},
3711 
3712 	/* Everspin MRAMs (non-JEDEC) */
3713 	{ "mr25h128" }, /* 128 Kib, 40 MHz */
3714 	{ "mr25h256" }, /* 256 Kib, 40 MHz */
3715 	{ "mr25h10" },  /*   1 Mib, 40 MHz */
3716 	{ "mr25h40" },  /*   4 Mib, 40 MHz */
3717 
3718 	{ },
3719 };
3720 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3721 
3722 static const struct of_device_id spi_nor_of_table[] = {
3723 	/*
3724 	 * Generic compatibility for SPI NOR that can be identified by the
3725 	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3726 	 */
3727 	{ .compatible = "jedec,spi-nor" },
3728 	{ /* sentinel */ },
3729 };
3730 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3731 
3732 /*
3733  * REVISIT: many of these chips have deep power-down modes, which
3734  * should clearly be entered on suspend() to minimize power use.
3735  * And also when they're otherwise idle...
3736  */
3737 static struct spi_mem_driver spi_nor_driver = {
3738 	.spidrv = {
3739 		.driver = {
3740 			.name = "spi-nor",
3741 			.of_match_table = spi_nor_of_table,
3742 			.dev_groups = spi_nor_sysfs_groups,
3743 		},
3744 		.id_table = spi_nor_dev_ids,
3745 	},
3746 	.probe = spi_nor_probe,
3747 	.remove = spi_nor_remove,
3748 	.shutdown = spi_nor_shutdown,
3749 };
3750 
3751 static int __init spi_nor_module_init(void)
3752 {
3753 	return spi_mem_driver_register(&spi_nor_driver);
3754 }
3755 module_init(spi_nor_module_init);
3756 
3757 static void __exit spi_nor_module_exit(void)
3758 {
3759 	spi_mem_driver_unregister(&spi_nor_driver);
3760 	spi_nor_debugfs_shutdown();
3761 }
3762 module_exit(spi_nor_module_exit);
3763 
3764 MODULE_LICENSE("GPL v2");
3765 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3766 MODULE_AUTHOR("Mike Lavender");
3767 MODULE_DESCRIPTION("framework for SPI NOR");
3768