1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with 4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c 5 * 6 * Copyright (C) 2005, Intec Automation Inc. 7 * Copyright (C) 2014, Freescale Semiconductor, Inc. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/errno.h> 12 #include <linux/delay.h> 13 #include <linux/device.h> 14 #include <linux/math64.h> 15 #include <linux/module.h> 16 #include <linux/mtd/mtd.h> 17 #include <linux/mtd/spi-nor.h> 18 #include <linux/mutex.h> 19 #include <linux/of_platform.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/sizes.h> 22 #include <linux/slab.h> 23 #include <linux/spi/flash.h> 24 25 #include "core.h" 26 27 /* Define max times to check status register before we give up. */ 28 29 /* 30 * For everything but full-chip erase; probably could be much smaller, but kept 31 * around for safety for now 32 */ 33 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) 34 35 /* 36 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up 37 * for larger flash 38 */ 39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ) 40 41 #define SPI_NOR_MAX_ADDR_NBYTES 4 42 43 #define SPI_NOR_SRST_SLEEP_MIN 200 44 #define SPI_NOR_SRST_SLEEP_MAX 400 45 46 /** 47 * spi_nor_get_cmd_ext() - Get the command opcode extension based on the 48 * extension type. 49 * @nor: pointer to a 'struct spi_nor' 50 * @op: pointer to the 'struct spi_mem_op' whose properties 51 * need to be initialized. 52 * 53 * Right now, only "repeat" and "invert" are supported. 54 * 55 * Return: The opcode extension. 56 */ 57 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor, 58 const struct spi_mem_op *op) 59 { 60 switch (nor->cmd_ext_type) { 61 case SPI_NOR_EXT_INVERT: 62 return ~op->cmd.opcode; 63 64 case SPI_NOR_EXT_REPEAT: 65 return op->cmd.opcode; 66 67 default: 68 dev_err(nor->dev, "Unknown command extension type\n"); 69 return 0; 70 } 71 } 72 73 /** 74 * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op. 75 * @nor: pointer to a 'struct spi_nor' 76 * @op: pointer to the 'struct spi_mem_op' whose properties 77 * need to be initialized. 78 * @proto: the protocol from which the properties need to be set. 79 */ 80 void spi_nor_spimem_setup_op(const struct spi_nor *nor, 81 struct spi_mem_op *op, 82 const enum spi_nor_protocol proto) 83 { 84 u8 ext; 85 86 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto); 87 88 if (op->addr.nbytes) 89 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto); 90 91 if (op->dummy.nbytes) 92 op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto); 93 94 if (op->data.nbytes) 95 op->data.buswidth = spi_nor_get_protocol_data_nbits(proto); 96 97 if (spi_nor_protocol_is_dtr(proto)) { 98 /* 99 * SPIMEM supports mixed DTR modes, but right now we can only 100 * have all phases either DTR or STR. IOW, SPIMEM can have 101 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4 102 * phases to either DTR or STR. 103 */ 104 op->cmd.dtr = true; 105 op->addr.dtr = true; 106 op->dummy.dtr = true; 107 op->data.dtr = true; 108 109 /* 2 bytes per clock cycle in DTR mode. */ 110 op->dummy.nbytes *= 2; 111 112 ext = spi_nor_get_cmd_ext(nor, op); 113 op->cmd.opcode = (op->cmd.opcode << 8) | ext; 114 op->cmd.nbytes = 2; 115 } 116 } 117 118 /** 119 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data 120 * transfer 121 * @nor: pointer to 'struct spi_nor' 122 * @op: pointer to 'struct spi_mem_op' template for transfer 123 * 124 * If we have to use the bounce buffer, the data field in @op will be updated. 125 * 126 * Return: true if the bounce buffer is needed, false if not 127 */ 128 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op) 129 { 130 /* op->data.buf.in occupies the same memory as op->data.buf.out */ 131 if (object_is_on_stack(op->data.buf.in) || 132 !virt_addr_valid(op->data.buf.in)) { 133 if (op->data.nbytes > nor->bouncebuf_size) 134 op->data.nbytes = nor->bouncebuf_size; 135 op->data.buf.in = nor->bouncebuf; 136 return true; 137 } 138 139 return false; 140 } 141 142 /** 143 * spi_nor_spimem_exec_op() - execute a memory operation 144 * @nor: pointer to 'struct spi_nor' 145 * @op: pointer to 'struct spi_mem_op' template for transfer 146 * 147 * Return: 0 on success, -error otherwise. 148 */ 149 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op) 150 { 151 int error; 152 153 error = spi_mem_adjust_op_size(nor->spimem, op); 154 if (error) 155 return error; 156 157 return spi_mem_exec_op(nor->spimem, op); 158 } 159 160 int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode, 161 u8 *buf, size_t len) 162 { 163 if (spi_nor_protocol_is_dtr(nor->reg_proto)) 164 return -EOPNOTSUPP; 165 166 return nor->controller_ops->read_reg(nor, opcode, buf, len); 167 } 168 169 int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode, 170 const u8 *buf, size_t len) 171 { 172 if (spi_nor_protocol_is_dtr(nor->reg_proto)) 173 return -EOPNOTSUPP; 174 175 return nor->controller_ops->write_reg(nor, opcode, buf, len); 176 } 177 178 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs) 179 { 180 if (spi_nor_protocol_is_dtr(nor->reg_proto)) 181 return -EOPNOTSUPP; 182 183 return nor->controller_ops->erase(nor, offs); 184 } 185 186 /** 187 * spi_nor_spimem_read_data() - read data from flash's memory region via 188 * spi-mem 189 * @nor: pointer to 'struct spi_nor' 190 * @from: offset to read from 191 * @len: number of bytes to read 192 * @buf: pointer to dst buffer 193 * 194 * Return: number of bytes read successfully, -errno otherwise 195 */ 196 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from, 197 size_t len, u8 *buf) 198 { 199 struct spi_mem_op op = 200 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0), 201 SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0), 202 SPI_MEM_OP_DUMMY(nor->read_dummy, 0), 203 SPI_MEM_OP_DATA_IN(len, buf, 0)); 204 bool usebouncebuf; 205 ssize_t nbytes; 206 int error; 207 208 spi_nor_spimem_setup_op(nor, &op, nor->read_proto); 209 210 /* convert the dummy cycles to the number of bytes */ 211 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8; 212 if (spi_nor_protocol_is_dtr(nor->read_proto)) 213 op.dummy.nbytes *= 2; 214 215 usebouncebuf = spi_nor_spimem_bounce(nor, &op); 216 217 if (nor->dirmap.rdesc) { 218 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val, 219 op.data.nbytes, op.data.buf.in); 220 } else { 221 error = spi_nor_spimem_exec_op(nor, &op); 222 if (error) 223 return error; 224 nbytes = op.data.nbytes; 225 } 226 227 if (usebouncebuf && nbytes > 0) 228 memcpy(buf, op.data.buf.in, nbytes); 229 230 return nbytes; 231 } 232 233 /** 234 * spi_nor_read_data() - read data from flash memory 235 * @nor: pointer to 'struct spi_nor' 236 * @from: offset to read from 237 * @len: number of bytes to read 238 * @buf: pointer to dst buffer 239 * 240 * Return: number of bytes read successfully, -errno otherwise 241 */ 242 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf) 243 { 244 if (nor->spimem) 245 return spi_nor_spimem_read_data(nor, from, len, buf); 246 247 return nor->controller_ops->read(nor, from, len, buf); 248 } 249 250 /** 251 * spi_nor_spimem_write_data() - write data to flash memory via 252 * spi-mem 253 * @nor: pointer to 'struct spi_nor' 254 * @to: offset to write to 255 * @len: number of bytes to write 256 * @buf: pointer to src buffer 257 * 258 * Return: number of bytes written successfully, -errno otherwise 259 */ 260 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to, 261 size_t len, const u8 *buf) 262 { 263 struct spi_mem_op op = 264 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0), 265 SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0), 266 SPI_MEM_OP_NO_DUMMY, 267 SPI_MEM_OP_DATA_OUT(len, buf, 0)); 268 ssize_t nbytes; 269 int error; 270 271 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) 272 op.addr.nbytes = 0; 273 274 spi_nor_spimem_setup_op(nor, &op, nor->write_proto); 275 276 if (spi_nor_spimem_bounce(nor, &op)) 277 memcpy(nor->bouncebuf, buf, op.data.nbytes); 278 279 if (nor->dirmap.wdesc) { 280 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val, 281 op.data.nbytes, op.data.buf.out); 282 } else { 283 error = spi_nor_spimem_exec_op(nor, &op); 284 if (error) 285 return error; 286 nbytes = op.data.nbytes; 287 } 288 289 return nbytes; 290 } 291 292 /** 293 * spi_nor_write_data() - write data to flash memory 294 * @nor: pointer to 'struct spi_nor' 295 * @to: offset to write to 296 * @len: number of bytes to write 297 * @buf: pointer to src buffer 298 * 299 * Return: number of bytes written successfully, -errno otherwise 300 */ 301 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len, 302 const u8 *buf) 303 { 304 if (nor->spimem) 305 return spi_nor_spimem_write_data(nor, to, len, buf); 306 307 return nor->controller_ops->write(nor, to, len, buf); 308 } 309 310 /** 311 * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or 312 * volatile. 313 * @nor: pointer to 'struct spi_nor'. 314 * @op: SPI memory operation. op->data.buf must be DMA-able. 315 * @proto: SPI protocol to use for the register operation. 316 * 317 * Return: zero on success, -errno otherwise 318 */ 319 int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op, 320 enum spi_nor_protocol proto) 321 { 322 if (!nor->spimem) 323 return -EOPNOTSUPP; 324 325 spi_nor_spimem_setup_op(nor, op, proto); 326 return spi_nor_spimem_exec_op(nor, op); 327 } 328 329 /** 330 * spi_nor_write_any_volatile_reg() - write any volatile register to flash 331 * memory. 332 * @nor: pointer to 'struct spi_nor' 333 * @op: SPI memory operation. op->data.buf must be DMA-able. 334 * @proto: SPI protocol to use for the register operation. 335 * 336 * Writing volatile registers are instant according to some manufacturers 337 * (Cypress, Micron) and do not need any status polling. 338 * 339 * Return: zero on success, -errno otherwise 340 */ 341 int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op, 342 enum spi_nor_protocol proto) 343 { 344 int ret; 345 346 if (!nor->spimem) 347 return -EOPNOTSUPP; 348 349 ret = spi_nor_write_enable(nor); 350 if (ret) 351 return ret; 352 spi_nor_spimem_setup_op(nor, op, proto); 353 return spi_nor_spimem_exec_op(nor, op); 354 } 355 356 /** 357 * spi_nor_write_enable() - Set write enable latch with Write Enable command. 358 * @nor: pointer to 'struct spi_nor'. 359 * 360 * Return: 0 on success, -errno otherwise. 361 */ 362 int spi_nor_write_enable(struct spi_nor *nor) 363 { 364 int ret; 365 366 if (nor->spimem) { 367 struct spi_mem_op op = SPI_NOR_WREN_OP; 368 369 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 370 371 ret = spi_mem_exec_op(nor->spimem, &op); 372 } else { 373 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN, 374 NULL, 0); 375 } 376 377 if (ret) 378 dev_dbg(nor->dev, "error %d on Write Enable\n", ret); 379 380 return ret; 381 } 382 383 /** 384 * spi_nor_write_disable() - Send Write Disable instruction to the chip. 385 * @nor: pointer to 'struct spi_nor'. 386 * 387 * Return: 0 on success, -errno otherwise. 388 */ 389 int spi_nor_write_disable(struct spi_nor *nor) 390 { 391 int ret; 392 393 if (nor->spimem) { 394 struct spi_mem_op op = SPI_NOR_WRDI_OP; 395 396 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 397 398 ret = spi_mem_exec_op(nor->spimem, &op); 399 } else { 400 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI, 401 NULL, 0); 402 } 403 404 if (ret) 405 dev_dbg(nor->dev, "error %d on Write Disable\n", ret); 406 407 return ret; 408 } 409 410 /** 411 * spi_nor_read_id() - Read the JEDEC ID. 412 * @nor: pointer to 'struct spi_nor'. 413 * @naddr: number of address bytes to send. Can be zero if the operation 414 * does not need to send an address. 415 * @ndummy: number of dummy bytes to send after an opcode or address. Can 416 * be zero if the operation does not require dummy bytes. 417 * @id: pointer to a DMA-able buffer where the value of the JEDEC ID 418 * will be written. 419 * @proto: the SPI protocol for register operation. 420 * 421 * Return: 0 on success, -errno otherwise. 422 */ 423 int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id, 424 enum spi_nor_protocol proto) 425 { 426 int ret; 427 428 if (nor->spimem) { 429 struct spi_mem_op op = 430 SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN); 431 432 spi_nor_spimem_setup_op(nor, &op, proto); 433 ret = spi_mem_exec_op(nor->spimem, &op); 434 } else { 435 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id, 436 SPI_NOR_MAX_ID_LEN); 437 } 438 return ret; 439 } 440 441 /** 442 * spi_nor_read_sr() - Read the Status Register. 443 * @nor: pointer to 'struct spi_nor'. 444 * @sr: pointer to a DMA-able buffer where the value of the 445 * Status Register will be written. Should be at least 2 bytes. 446 * 447 * Return: 0 on success, -errno otherwise. 448 */ 449 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr) 450 { 451 int ret; 452 453 if (nor->spimem) { 454 struct spi_mem_op op = SPI_NOR_RDSR_OP(sr); 455 456 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { 457 op.addr.nbytes = nor->params->rdsr_addr_nbytes; 458 op.dummy.nbytes = nor->params->rdsr_dummy; 459 /* 460 * We don't want to read only one byte in DTR mode. So, 461 * read 2 and then discard the second byte. 462 */ 463 op.data.nbytes = 2; 464 } 465 466 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 467 468 ret = spi_mem_exec_op(nor->spimem, &op); 469 } else { 470 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr, 471 1); 472 } 473 474 if (ret) 475 dev_dbg(nor->dev, "error %d reading SR\n", ret); 476 477 return ret; 478 } 479 480 /** 481 * spi_nor_read_cr() - Read the Configuration Register using the 482 * SPINOR_OP_RDCR (35h) command. 483 * @nor: pointer to 'struct spi_nor' 484 * @cr: pointer to a DMA-able buffer where the value of the 485 * Configuration Register will be written. 486 * 487 * Return: 0 on success, -errno otherwise. 488 */ 489 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr) 490 { 491 int ret; 492 493 if (nor->spimem) { 494 struct spi_mem_op op = SPI_NOR_RDCR_OP(cr); 495 496 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 497 498 ret = spi_mem_exec_op(nor->spimem, &op); 499 } else { 500 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr, 501 1); 502 } 503 504 if (ret) 505 dev_dbg(nor->dev, "error %d reading CR\n", ret); 506 507 return ret; 508 } 509 510 /** 511 * spi_nor_set_4byte_addr_mode_en4b_ex4b() - Enter/Exit 4-byte address mode 512 * using SPINOR_OP_EN4B/SPINOR_OP_EX4B. Typically used by 513 * Winbond and Macronix. 514 * @nor: pointer to 'struct spi_nor'. 515 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte 516 * address mode. 517 * 518 * Return: 0 on success, -errno otherwise. 519 */ 520 int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable) 521 { 522 int ret; 523 524 if (nor->spimem) { 525 struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable); 526 527 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 528 529 ret = spi_mem_exec_op(nor->spimem, &op); 530 } else { 531 ret = spi_nor_controller_ops_write_reg(nor, 532 enable ? SPINOR_OP_EN4B : 533 SPINOR_OP_EX4B, 534 NULL, 0); 535 } 536 537 if (ret) 538 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret); 539 540 return ret; 541 } 542 543 /** 544 * spi_nor_set_4byte_addr_mode_wren_en4b_ex4b() - Set 4-byte address mode using 545 * SPINOR_OP_WREN followed by SPINOR_OP_EN4B or SPINOR_OP_EX4B. Typically used 546 * by ST and Micron flashes. 547 * @nor: pointer to 'struct spi_nor'. 548 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte 549 * address mode. 550 * 551 * Return: 0 on success, -errno otherwise. 552 */ 553 int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, bool enable) 554 { 555 int ret; 556 557 ret = spi_nor_write_enable(nor); 558 if (ret) 559 return ret; 560 561 ret = spi_nor_set_4byte_addr_mode_en4b_ex4b(nor, enable); 562 if (ret) 563 return ret; 564 565 return spi_nor_write_disable(nor); 566 } 567 568 /** 569 * spi_nor_set_4byte_addr_mode_brwr() - Set 4-byte address mode using 570 * SPINOR_OP_BRWR. Typically used by Spansion flashes. 571 * @nor: pointer to 'struct spi_nor'. 572 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte 573 * address mode. 574 * 575 * 8-bit volatile bank register used to define A[30:A24] bits. MSB (bit[7]) is 576 * used to enable/disable 4-byte address mode. When MSB is set to ‘1’, 4-byte 577 * address mode is active and A[30:24] bits are don’t care. Write instruction is 578 * SPINOR_OP_BRWR(17h) with 1 byte of data. 579 * 580 * Return: 0 on success, -errno otherwise. 581 */ 582 int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable) 583 { 584 int ret; 585 586 nor->bouncebuf[0] = enable << 7; 587 588 if (nor->spimem) { 589 struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf); 590 591 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 592 593 ret = spi_mem_exec_op(nor->spimem, &op); 594 } else { 595 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR, 596 nor->bouncebuf, 1); 597 } 598 599 if (ret) 600 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret); 601 602 return ret; 603 } 604 605 /** 606 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready 607 * for new commands. 608 * @nor: pointer to 'struct spi_nor'. 609 * 610 * Return: 1 if ready, 0 if not ready, -errno on errors. 611 */ 612 int spi_nor_sr_ready(struct spi_nor *nor) 613 { 614 int ret; 615 616 ret = spi_nor_read_sr(nor, nor->bouncebuf); 617 if (ret) 618 return ret; 619 620 return !(nor->bouncebuf[0] & SR_WIP); 621 } 622 623 /** 624 * spi_nor_use_parallel_locking() - Checks if RWW locking scheme shall be used 625 * @nor: pointer to 'struct spi_nor'. 626 * 627 * Return: true if parallel locking is enabled, false otherwise. 628 */ 629 static bool spi_nor_use_parallel_locking(struct spi_nor *nor) 630 { 631 return nor->flags & SNOR_F_RWW; 632 } 633 634 /* Locking helpers for status read operations */ 635 static int spi_nor_rww_start_rdst(struct spi_nor *nor) 636 { 637 struct spi_nor_rww *rww = &nor->rww; 638 int ret = -EAGAIN; 639 640 mutex_lock(&nor->lock); 641 642 if (rww->ongoing_io || rww->ongoing_rd) 643 goto busy; 644 645 rww->ongoing_io = true; 646 rww->ongoing_rd = true; 647 ret = 0; 648 649 busy: 650 mutex_unlock(&nor->lock); 651 return ret; 652 } 653 654 static void spi_nor_rww_end_rdst(struct spi_nor *nor) 655 { 656 struct spi_nor_rww *rww = &nor->rww; 657 658 mutex_lock(&nor->lock); 659 660 rww->ongoing_io = false; 661 rww->ongoing_rd = false; 662 663 mutex_unlock(&nor->lock); 664 } 665 666 static int spi_nor_lock_rdst(struct spi_nor *nor) 667 { 668 if (spi_nor_use_parallel_locking(nor)) 669 return spi_nor_rww_start_rdst(nor); 670 671 return 0; 672 } 673 674 static void spi_nor_unlock_rdst(struct spi_nor *nor) 675 { 676 if (spi_nor_use_parallel_locking(nor)) { 677 spi_nor_rww_end_rdst(nor); 678 wake_up(&nor->rww.wait); 679 } 680 } 681 682 /** 683 * spi_nor_ready() - Query the flash to see if it is ready for new commands. 684 * @nor: pointer to 'struct spi_nor'. 685 * 686 * Return: 1 if ready, 0 if not ready, -errno on errors. 687 */ 688 static int spi_nor_ready(struct spi_nor *nor) 689 { 690 int ret; 691 692 ret = spi_nor_lock_rdst(nor); 693 if (ret) 694 return 0; 695 696 /* Flashes might override the standard routine. */ 697 if (nor->params->ready) 698 ret = nor->params->ready(nor); 699 else 700 ret = spi_nor_sr_ready(nor); 701 702 spi_nor_unlock_rdst(nor); 703 704 return ret; 705 } 706 707 /** 708 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the 709 * Status Register until ready, or timeout occurs. 710 * @nor: pointer to "struct spi_nor". 711 * @timeout_jiffies: jiffies to wait until timeout. 712 * 713 * Return: 0 on success, -errno otherwise. 714 */ 715 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, 716 unsigned long timeout_jiffies) 717 { 718 unsigned long deadline; 719 int timeout = 0, ret; 720 721 deadline = jiffies + timeout_jiffies; 722 723 while (!timeout) { 724 if (time_after_eq(jiffies, deadline)) 725 timeout = 1; 726 727 ret = spi_nor_ready(nor); 728 if (ret < 0) 729 return ret; 730 if (ret) 731 return 0; 732 733 cond_resched(); 734 } 735 736 dev_dbg(nor->dev, "flash operation timed out\n"); 737 738 return -ETIMEDOUT; 739 } 740 741 /** 742 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the 743 * flash to be ready, or timeout occurs. 744 * @nor: pointer to "struct spi_nor". 745 * 746 * Return: 0 on success, -errno otherwise. 747 */ 748 int spi_nor_wait_till_ready(struct spi_nor *nor) 749 { 750 return spi_nor_wait_till_ready_with_timeout(nor, 751 DEFAULT_READY_WAIT_JIFFIES); 752 } 753 754 /** 755 * spi_nor_global_block_unlock() - Unlock Global Block Protection. 756 * @nor: pointer to 'struct spi_nor'. 757 * 758 * Return: 0 on success, -errno otherwise. 759 */ 760 int spi_nor_global_block_unlock(struct spi_nor *nor) 761 { 762 int ret; 763 764 ret = spi_nor_write_enable(nor); 765 if (ret) 766 return ret; 767 768 if (nor->spimem) { 769 struct spi_mem_op op = SPI_NOR_GBULK_OP; 770 771 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 772 773 ret = spi_mem_exec_op(nor->spimem, &op); 774 } else { 775 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK, 776 NULL, 0); 777 } 778 779 if (ret) { 780 dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret); 781 return ret; 782 } 783 784 return spi_nor_wait_till_ready(nor); 785 } 786 787 /** 788 * spi_nor_write_sr() - Write the Status Register. 789 * @nor: pointer to 'struct spi_nor'. 790 * @sr: pointer to DMA-able buffer to write to the Status Register. 791 * @len: number of bytes to write to the Status Register. 792 * 793 * Return: 0 on success, -errno otherwise. 794 */ 795 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len) 796 { 797 int ret; 798 799 ret = spi_nor_write_enable(nor); 800 if (ret) 801 return ret; 802 803 if (nor->spimem) { 804 struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len); 805 806 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 807 808 ret = spi_mem_exec_op(nor->spimem, &op); 809 } else { 810 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr, 811 len); 812 } 813 814 if (ret) { 815 dev_dbg(nor->dev, "error %d writing SR\n", ret); 816 return ret; 817 } 818 819 return spi_nor_wait_till_ready(nor); 820 } 821 822 /** 823 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and 824 * ensure that the byte written match the received value. 825 * @nor: pointer to a 'struct spi_nor'. 826 * @sr1: byte value to be written to the Status Register. 827 * 828 * Return: 0 on success, -errno otherwise. 829 */ 830 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1) 831 { 832 int ret; 833 834 nor->bouncebuf[0] = sr1; 835 836 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1); 837 if (ret) 838 return ret; 839 840 ret = spi_nor_read_sr(nor, nor->bouncebuf); 841 if (ret) 842 return ret; 843 844 if (nor->bouncebuf[0] != sr1) { 845 dev_dbg(nor->dev, "SR1: read back test failed\n"); 846 return -EIO; 847 } 848 849 return 0; 850 } 851 852 /** 853 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the 854 * Status Register 2 in one shot. Ensure that the byte written in the Status 855 * Register 1 match the received value, and that the 16-bit Write did not 856 * affect what was already in the Status Register 2. 857 * @nor: pointer to a 'struct spi_nor'. 858 * @sr1: byte value to be written to the Status Register 1. 859 * 860 * Return: 0 on success, -errno otherwise. 861 */ 862 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1) 863 { 864 int ret; 865 u8 *sr_cr = nor->bouncebuf; 866 u8 cr_written; 867 868 /* Make sure we don't overwrite the contents of Status Register 2. */ 869 if (!(nor->flags & SNOR_F_NO_READ_CR)) { 870 ret = spi_nor_read_cr(nor, &sr_cr[1]); 871 if (ret) 872 return ret; 873 } else if (spi_nor_get_protocol_width(nor->read_proto) == 4 && 874 spi_nor_get_protocol_width(nor->write_proto) == 4 && 875 nor->params->quad_enable) { 876 /* 877 * If the Status Register 2 Read command (35h) is not 878 * supported, we should at least be sure we don't 879 * change the value of the SR2 Quad Enable bit. 880 * 881 * When the Quad Enable method is set and the buswidth is 4, we 882 * can safely assume that the value of the QE bit is one, as a 883 * consequence of the nor->params->quad_enable() call. 884 * 885 * According to the JESD216 revB standard, BFPT DWORDS[15], 886 * bits 22:20, the 16-bit Write Status (01h) command is 887 * available just for the cases in which the QE bit is 888 * described in SR2 at BIT(1). 889 */ 890 sr_cr[1] = SR2_QUAD_EN_BIT1; 891 } else { 892 sr_cr[1] = 0; 893 } 894 895 sr_cr[0] = sr1; 896 897 ret = spi_nor_write_sr(nor, sr_cr, 2); 898 if (ret) 899 return ret; 900 901 ret = spi_nor_read_sr(nor, sr_cr); 902 if (ret) 903 return ret; 904 905 if (sr1 != sr_cr[0]) { 906 dev_dbg(nor->dev, "SR: Read back test failed\n"); 907 return -EIO; 908 } 909 910 if (nor->flags & SNOR_F_NO_READ_CR) 911 return 0; 912 913 cr_written = sr_cr[1]; 914 915 ret = spi_nor_read_cr(nor, &sr_cr[1]); 916 if (ret) 917 return ret; 918 919 if (cr_written != sr_cr[1]) { 920 dev_dbg(nor->dev, "CR: read back test failed\n"); 921 return -EIO; 922 } 923 924 return 0; 925 } 926 927 /** 928 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the 929 * Configuration Register in one shot. Ensure that the byte written in the 930 * Configuration Register match the received value, and that the 16-bit Write 931 * did not affect what was already in the Status Register 1. 932 * @nor: pointer to a 'struct spi_nor'. 933 * @cr: byte value to be written to the Configuration Register. 934 * 935 * Return: 0 on success, -errno otherwise. 936 */ 937 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr) 938 { 939 int ret; 940 u8 *sr_cr = nor->bouncebuf; 941 u8 sr_written; 942 943 /* Keep the current value of the Status Register 1. */ 944 ret = spi_nor_read_sr(nor, sr_cr); 945 if (ret) 946 return ret; 947 948 sr_cr[1] = cr; 949 950 ret = spi_nor_write_sr(nor, sr_cr, 2); 951 if (ret) 952 return ret; 953 954 sr_written = sr_cr[0]; 955 956 ret = spi_nor_read_sr(nor, sr_cr); 957 if (ret) 958 return ret; 959 960 if (sr_written != sr_cr[0]) { 961 dev_dbg(nor->dev, "SR: Read back test failed\n"); 962 return -EIO; 963 } 964 965 if (nor->flags & SNOR_F_NO_READ_CR) 966 return 0; 967 968 ret = spi_nor_read_cr(nor, &sr_cr[1]); 969 if (ret) 970 return ret; 971 972 if (cr != sr_cr[1]) { 973 dev_dbg(nor->dev, "CR: read back test failed\n"); 974 return -EIO; 975 } 976 977 return 0; 978 } 979 980 /** 981 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that 982 * the byte written match the received value without affecting other bits in the 983 * Status Register 1 and 2. 984 * @nor: pointer to a 'struct spi_nor'. 985 * @sr1: byte value to be written to the Status Register. 986 * 987 * Return: 0 on success, -errno otherwise. 988 */ 989 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1) 990 { 991 if (nor->flags & SNOR_F_HAS_16BIT_SR) 992 return spi_nor_write_16bit_sr_and_check(nor, sr1); 993 994 return spi_nor_write_sr1_and_check(nor, sr1); 995 } 996 997 /** 998 * spi_nor_write_sr2() - Write the Status Register 2 using the 999 * SPINOR_OP_WRSR2 (3eh) command. 1000 * @nor: pointer to 'struct spi_nor'. 1001 * @sr2: pointer to DMA-able buffer to write to the Status Register 2. 1002 * 1003 * Return: 0 on success, -errno otherwise. 1004 */ 1005 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2) 1006 { 1007 int ret; 1008 1009 ret = spi_nor_write_enable(nor); 1010 if (ret) 1011 return ret; 1012 1013 if (nor->spimem) { 1014 struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2); 1015 1016 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 1017 1018 ret = spi_mem_exec_op(nor->spimem, &op); 1019 } else { 1020 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2, 1021 sr2, 1); 1022 } 1023 1024 if (ret) { 1025 dev_dbg(nor->dev, "error %d writing SR2\n", ret); 1026 return ret; 1027 } 1028 1029 return spi_nor_wait_till_ready(nor); 1030 } 1031 1032 /** 1033 * spi_nor_read_sr2() - Read the Status Register 2 using the 1034 * SPINOR_OP_RDSR2 (3fh) command. 1035 * @nor: pointer to 'struct spi_nor'. 1036 * @sr2: pointer to DMA-able buffer where the value of the 1037 * Status Register 2 will be written. 1038 * 1039 * Return: 0 on success, -errno otherwise. 1040 */ 1041 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2) 1042 { 1043 int ret; 1044 1045 if (nor->spimem) { 1046 struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2); 1047 1048 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 1049 1050 ret = spi_mem_exec_op(nor->spimem, &op); 1051 } else { 1052 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2, 1053 1); 1054 } 1055 1056 if (ret) 1057 dev_dbg(nor->dev, "error %d reading SR2\n", ret); 1058 1059 return ret; 1060 } 1061 1062 /** 1063 * spi_nor_erase_die() - Erase the entire die. 1064 * @nor: pointer to 'struct spi_nor'. 1065 * @addr: address of the die. 1066 * @die_size: size of the die. 1067 * 1068 * Return: 0 on success, -errno otherwise. 1069 */ 1070 static int spi_nor_erase_die(struct spi_nor *nor, loff_t addr, size_t die_size) 1071 { 1072 bool multi_die = nor->mtd.size != die_size; 1073 int ret; 1074 1075 dev_dbg(nor->dev, " %lldKiB\n", (long long)(die_size >> 10)); 1076 1077 if (nor->spimem) { 1078 struct spi_mem_op op = 1079 SPI_NOR_DIE_ERASE_OP(nor->params->die_erase_opcode, 1080 nor->addr_nbytes, addr, multi_die); 1081 1082 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 1083 1084 ret = spi_mem_exec_op(nor->spimem, &op); 1085 } else { 1086 if (multi_die) 1087 return -EOPNOTSUPP; 1088 1089 ret = spi_nor_controller_ops_write_reg(nor, 1090 SPINOR_OP_CHIP_ERASE, 1091 NULL, 0); 1092 } 1093 1094 if (ret) 1095 dev_dbg(nor->dev, "error %d erasing chip\n", ret); 1096 1097 return ret; 1098 } 1099 1100 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) 1101 { 1102 size_t i; 1103 1104 for (i = 0; i < size; i++) 1105 if (table[i][0] == opcode) 1106 return table[i][1]; 1107 1108 /* No conversion found, keep input op code. */ 1109 return opcode; 1110 } 1111 1112 u8 spi_nor_convert_3to4_read(u8 opcode) 1113 { 1114 static const u8 spi_nor_3to4_read[][2] = { 1115 { SPINOR_OP_READ, SPINOR_OP_READ_4B }, 1116 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, 1117 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, 1118 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, 1119 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, 1120 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, 1121 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B }, 1122 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B }, 1123 1124 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, 1125 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, 1126 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B }, 1127 }; 1128 1129 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, 1130 ARRAY_SIZE(spi_nor_3to4_read)); 1131 } 1132 1133 static u8 spi_nor_convert_3to4_program(u8 opcode) 1134 { 1135 static const u8 spi_nor_3to4_program[][2] = { 1136 { SPINOR_OP_PP, SPINOR_OP_PP_4B }, 1137 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, 1138 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, 1139 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B }, 1140 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B }, 1141 }; 1142 1143 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, 1144 ARRAY_SIZE(spi_nor_3to4_program)); 1145 } 1146 1147 static u8 spi_nor_convert_3to4_erase(u8 opcode) 1148 { 1149 static const u8 spi_nor_3to4_erase[][2] = { 1150 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, 1151 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, 1152 { SPINOR_OP_SE, SPINOR_OP_SE_4B }, 1153 }; 1154 1155 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, 1156 ARRAY_SIZE(spi_nor_3to4_erase)); 1157 } 1158 1159 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor) 1160 { 1161 return !!nor->params->erase_map.uniform_region.erase_mask; 1162 } 1163 1164 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor) 1165 { 1166 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); 1167 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); 1168 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); 1169 1170 if (!spi_nor_has_uniform_erase(nor)) { 1171 struct spi_nor_erase_map *map = &nor->params->erase_map; 1172 struct spi_nor_erase_type *erase; 1173 int i; 1174 1175 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1176 erase = &map->erase_type[i]; 1177 erase->opcode = 1178 spi_nor_convert_3to4_erase(erase->opcode); 1179 } 1180 } 1181 } 1182 1183 static int spi_nor_prep(struct spi_nor *nor) 1184 { 1185 int ret = 0; 1186 1187 if (nor->controller_ops && nor->controller_ops->prepare) 1188 ret = nor->controller_ops->prepare(nor); 1189 1190 return ret; 1191 } 1192 1193 static void spi_nor_unprep(struct spi_nor *nor) 1194 { 1195 if (nor->controller_ops && nor->controller_ops->unprepare) 1196 nor->controller_ops->unprepare(nor); 1197 } 1198 1199 static void spi_nor_offset_to_banks(u64 bank_size, loff_t start, size_t len, 1200 u8 *first, u8 *last) 1201 { 1202 /* This is currently safe, the number of banks being very small */ 1203 *first = DIV_ROUND_DOWN_ULL(start, bank_size); 1204 *last = DIV_ROUND_DOWN_ULL(start + len - 1, bank_size); 1205 } 1206 1207 /* Generic helpers for internal locking and serialization */ 1208 static bool spi_nor_rww_start_io(struct spi_nor *nor) 1209 { 1210 struct spi_nor_rww *rww = &nor->rww; 1211 bool start = false; 1212 1213 mutex_lock(&nor->lock); 1214 1215 if (rww->ongoing_io) 1216 goto busy; 1217 1218 rww->ongoing_io = true; 1219 start = true; 1220 1221 busy: 1222 mutex_unlock(&nor->lock); 1223 return start; 1224 } 1225 1226 static void spi_nor_rww_end_io(struct spi_nor *nor) 1227 { 1228 mutex_lock(&nor->lock); 1229 nor->rww.ongoing_io = false; 1230 mutex_unlock(&nor->lock); 1231 } 1232 1233 static int spi_nor_lock_device(struct spi_nor *nor) 1234 { 1235 if (!spi_nor_use_parallel_locking(nor)) 1236 return 0; 1237 1238 return wait_event_killable(nor->rww.wait, spi_nor_rww_start_io(nor)); 1239 } 1240 1241 static void spi_nor_unlock_device(struct spi_nor *nor) 1242 { 1243 if (spi_nor_use_parallel_locking(nor)) { 1244 spi_nor_rww_end_io(nor); 1245 wake_up(&nor->rww.wait); 1246 } 1247 } 1248 1249 /* Generic helpers for internal locking and serialization */ 1250 static bool spi_nor_rww_start_exclusive(struct spi_nor *nor) 1251 { 1252 struct spi_nor_rww *rww = &nor->rww; 1253 bool start = false; 1254 1255 mutex_lock(&nor->lock); 1256 1257 if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe) 1258 goto busy; 1259 1260 rww->ongoing_io = true; 1261 rww->ongoing_rd = true; 1262 rww->ongoing_pe = true; 1263 start = true; 1264 1265 busy: 1266 mutex_unlock(&nor->lock); 1267 return start; 1268 } 1269 1270 static void spi_nor_rww_end_exclusive(struct spi_nor *nor) 1271 { 1272 struct spi_nor_rww *rww = &nor->rww; 1273 1274 mutex_lock(&nor->lock); 1275 rww->ongoing_io = false; 1276 rww->ongoing_rd = false; 1277 rww->ongoing_pe = false; 1278 mutex_unlock(&nor->lock); 1279 } 1280 1281 int spi_nor_prep_and_lock(struct spi_nor *nor) 1282 { 1283 int ret; 1284 1285 ret = spi_nor_prep(nor); 1286 if (ret) 1287 return ret; 1288 1289 if (!spi_nor_use_parallel_locking(nor)) 1290 mutex_lock(&nor->lock); 1291 else 1292 ret = wait_event_killable(nor->rww.wait, 1293 spi_nor_rww_start_exclusive(nor)); 1294 1295 return ret; 1296 } 1297 1298 void spi_nor_unlock_and_unprep(struct spi_nor *nor) 1299 { 1300 if (!spi_nor_use_parallel_locking(nor)) { 1301 mutex_unlock(&nor->lock); 1302 } else { 1303 spi_nor_rww_end_exclusive(nor); 1304 wake_up(&nor->rww.wait); 1305 } 1306 1307 spi_nor_unprep(nor); 1308 } 1309 1310 /* Internal locking helpers for program and erase operations */ 1311 static bool spi_nor_rww_start_pe(struct spi_nor *nor, loff_t start, size_t len) 1312 { 1313 struct spi_nor_rww *rww = &nor->rww; 1314 unsigned int used_banks = 0; 1315 bool started = false; 1316 u8 first, last; 1317 int bank; 1318 1319 mutex_lock(&nor->lock); 1320 1321 if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe) 1322 goto busy; 1323 1324 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last); 1325 for (bank = first; bank <= last; bank++) { 1326 if (rww->used_banks & BIT(bank)) 1327 goto busy; 1328 1329 used_banks |= BIT(bank); 1330 } 1331 1332 rww->used_banks |= used_banks; 1333 rww->ongoing_pe = true; 1334 started = true; 1335 1336 busy: 1337 mutex_unlock(&nor->lock); 1338 return started; 1339 } 1340 1341 static void spi_nor_rww_end_pe(struct spi_nor *nor, loff_t start, size_t len) 1342 { 1343 struct spi_nor_rww *rww = &nor->rww; 1344 u8 first, last; 1345 int bank; 1346 1347 mutex_lock(&nor->lock); 1348 1349 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last); 1350 for (bank = first; bank <= last; bank++) 1351 rww->used_banks &= ~BIT(bank); 1352 1353 rww->ongoing_pe = false; 1354 1355 mutex_unlock(&nor->lock); 1356 } 1357 1358 static int spi_nor_prep_and_lock_pe(struct spi_nor *nor, loff_t start, size_t len) 1359 { 1360 int ret; 1361 1362 ret = spi_nor_prep(nor); 1363 if (ret) 1364 return ret; 1365 1366 if (!spi_nor_use_parallel_locking(nor)) 1367 mutex_lock(&nor->lock); 1368 else 1369 ret = wait_event_killable(nor->rww.wait, 1370 spi_nor_rww_start_pe(nor, start, len)); 1371 1372 return ret; 1373 } 1374 1375 static void spi_nor_unlock_and_unprep_pe(struct spi_nor *nor, loff_t start, size_t len) 1376 { 1377 if (!spi_nor_use_parallel_locking(nor)) { 1378 mutex_unlock(&nor->lock); 1379 } else { 1380 spi_nor_rww_end_pe(nor, start, len); 1381 wake_up(&nor->rww.wait); 1382 } 1383 1384 spi_nor_unprep(nor); 1385 } 1386 1387 /* Internal locking helpers for read operations */ 1388 static bool spi_nor_rww_start_rd(struct spi_nor *nor, loff_t start, size_t len) 1389 { 1390 struct spi_nor_rww *rww = &nor->rww; 1391 unsigned int used_banks = 0; 1392 bool started = false; 1393 u8 first, last; 1394 int bank; 1395 1396 mutex_lock(&nor->lock); 1397 1398 if (rww->ongoing_io || rww->ongoing_rd) 1399 goto busy; 1400 1401 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last); 1402 for (bank = first; bank <= last; bank++) { 1403 if (rww->used_banks & BIT(bank)) 1404 goto busy; 1405 1406 used_banks |= BIT(bank); 1407 } 1408 1409 rww->used_banks |= used_banks; 1410 rww->ongoing_io = true; 1411 rww->ongoing_rd = true; 1412 started = true; 1413 1414 busy: 1415 mutex_unlock(&nor->lock); 1416 return started; 1417 } 1418 1419 static void spi_nor_rww_end_rd(struct spi_nor *nor, loff_t start, size_t len) 1420 { 1421 struct spi_nor_rww *rww = &nor->rww; 1422 u8 first, last; 1423 int bank; 1424 1425 mutex_lock(&nor->lock); 1426 1427 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last); 1428 for (bank = first; bank <= last; bank++) 1429 nor->rww.used_banks &= ~BIT(bank); 1430 1431 rww->ongoing_io = false; 1432 rww->ongoing_rd = false; 1433 1434 mutex_unlock(&nor->lock); 1435 } 1436 1437 static int spi_nor_prep_and_lock_rd(struct spi_nor *nor, loff_t start, size_t len) 1438 { 1439 int ret; 1440 1441 ret = spi_nor_prep(nor); 1442 if (ret) 1443 return ret; 1444 1445 if (!spi_nor_use_parallel_locking(nor)) 1446 mutex_lock(&nor->lock); 1447 else 1448 ret = wait_event_killable(nor->rww.wait, 1449 spi_nor_rww_start_rd(nor, start, len)); 1450 1451 return ret; 1452 } 1453 1454 static void spi_nor_unlock_and_unprep_rd(struct spi_nor *nor, loff_t start, size_t len) 1455 { 1456 if (!spi_nor_use_parallel_locking(nor)) { 1457 mutex_unlock(&nor->lock); 1458 } else { 1459 spi_nor_rww_end_rd(nor, start, len); 1460 wake_up(&nor->rww.wait); 1461 } 1462 1463 spi_nor_unprep(nor); 1464 } 1465 1466 /* 1467 * Initiate the erasure of a single sector 1468 */ 1469 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) 1470 { 1471 int i; 1472 1473 if (nor->spimem) { 1474 struct spi_mem_op op = 1475 SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode, 1476 nor->addr_nbytes, addr); 1477 1478 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 1479 1480 return spi_mem_exec_op(nor->spimem, &op); 1481 } else if (nor->controller_ops->erase) { 1482 return spi_nor_controller_ops_erase(nor, addr); 1483 } 1484 1485 /* 1486 * Default implementation, if driver doesn't have a specialized HW 1487 * control 1488 */ 1489 for (i = nor->addr_nbytes - 1; i >= 0; i--) { 1490 nor->bouncebuf[i] = addr & 0xff; 1491 addr >>= 8; 1492 } 1493 1494 return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode, 1495 nor->bouncebuf, nor->addr_nbytes); 1496 } 1497 1498 /** 1499 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend 1500 * @erase: pointer to a structure that describes a SPI NOR erase type 1501 * @dividend: dividend value 1502 * @remainder: pointer to u32 remainder (will be updated) 1503 * 1504 * Return: the result of the division 1505 */ 1506 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase, 1507 u64 dividend, u32 *remainder) 1508 { 1509 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ 1510 *remainder = (u32)dividend & erase->size_mask; 1511 return dividend >> erase->size_shift; 1512 } 1513 1514 /** 1515 * spi_nor_find_best_erase_type() - find the best erase type for the given 1516 * offset in the serial flash memory and the 1517 * number of bytes to erase. The region in 1518 * which the address fits is expected to be 1519 * provided. 1520 * @map: the erase map of the SPI NOR 1521 * @region: pointer to a structure that describes a SPI NOR erase region 1522 * @addr: offset in the serial flash memory 1523 * @len: number of bytes to erase 1524 * 1525 * Return: a pointer to the best fitted erase type, NULL otherwise. 1526 */ 1527 static const struct spi_nor_erase_type * 1528 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map, 1529 const struct spi_nor_erase_region *region, 1530 u64 addr, u32 len) 1531 { 1532 const struct spi_nor_erase_type *erase; 1533 u32 rem; 1534 int i; 1535 1536 /* 1537 * Erase types are ordered by size, with the smallest erase type at 1538 * index 0. 1539 */ 1540 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { 1541 /* Does the erase region support the tested erase type? */ 1542 if (!(region->erase_mask & BIT(i))) 1543 continue; 1544 1545 erase = &map->erase_type[i]; 1546 if (!erase->size) 1547 continue; 1548 1549 /* Alignment is not mandatory for overlaid regions */ 1550 if (region->overlaid && region->size <= len) 1551 return erase; 1552 1553 /* Don't erase more than what the user has asked for. */ 1554 if (erase->size > len) 1555 continue; 1556 1557 spi_nor_div_by_erase_size(erase, addr, &rem); 1558 if (!rem) 1559 return erase; 1560 } 1561 1562 return NULL; 1563 } 1564 1565 /** 1566 * spi_nor_init_erase_cmd() - initialize an erase command 1567 * @region: pointer to a structure that describes a SPI NOR erase region 1568 * @erase: pointer to a structure that describes a SPI NOR erase type 1569 * 1570 * Return: the pointer to the allocated erase command, ERR_PTR(-errno) 1571 * otherwise. 1572 */ 1573 static struct spi_nor_erase_command * 1574 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region, 1575 const struct spi_nor_erase_type *erase) 1576 { 1577 struct spi_nor_erase_command *cmd; 1578 1579 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); 1580 if (!cmd) 1581 return ERR_PTR(-ENOMEM); 1582 1583 INIT_LIST_HEAD(&cmd->list); 1584 cmd->opcode = erase->opcode; 1585 cmd->count = 1; 1586 1587 if (region->overlaid) 1588 cmd->size = region->size; 1589 else 1590 cmd->size = erase->size; 1591 1592 return cmd; 1593 } 1594 1595 /** 1596 * spi_nor_destroy_erase_cmd_list() - destroy erase command list 1597 * @erase_list: list of erase commands 1598 */ 1599 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list) 1600 { 1601 struct spi_nor_erase_command *cmd, *next; 1602 1603 list_for_each_entry_safe(cmd, next, erase_list, list) { 1604 list_del(&cmd->list); 1605 kfree(cmd); 1606 } 1607 } 1608 1609 /** 1610 * spi_nor_init_erase_cmd_list() - initialize erase command list 1611 * @nor: pointer to a 'struct spi_nor' 1612 * @erase_list: list of erase commands to be executed once we validate that the 1613 * erase can be performed 1614 * @addr: offset in the serial flash memory 1615 * @len: number of bytes to erase 1616 * 1617 * Builds the list of best fitted erase commands and verifies if the erase can 1618 * be performed. 1619 * 1620 * Return: 0 on success, -errno otherwise. 1621 */ 1622 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor, 1623 struct list_head *erase_list, 1624 u64 addr, u32 len) 1625 { 1626 const struct spi_nor_erase_map *map = &nor->params->erase_map; 1627 const struct spi_nor_erase_type *erase, *prev_erase = NULL; 1628 struct spi_nor_erase_region *region; 1629 struct spi_nor_erase_command *cmd = NULL; 1630 u64 region_end; 1631 unsigned int i; 1632 int ret = -EINVAL; 1633 1634 for (i = 0; i < map->n_regions && len; i++) { 1635 region = &map->regions[i]; 1636 region_end = region->offset + region->size; 1637 1638 while (len && addr >= region->offset && addr < region_end) { 1639 erase = spi_nor_find_best_erase_type(map, region, addr, 1640 len); 1641 if (!erase) 1642 goto destroy_erase_cmd_list; 1643 1644 if (prev_erase != erase || erase->size != cmd->size || 1645 region->overlaid) { 1646 cmd = spi_nor_init_erase_cmd(region, erase); 1647 if (IS_ERR(cmd)) { 1648 ret = PTR_ERR(cmd); 1649 goto destroy_erase_cmd_list; 1650 } 1651 1652 list_add_tail(&cmd->list, erase_list); 1653 } else { 1654 cmd->count++; 1655 } 1656 1657 len -= cmd->size; 1658 addr += cmd->size; 1659 prev_erase = erase; 1660 } 1661 } 1662 1663 return 0; 1664 1665 destroy_erase_cmd_list: 1666 spi_nor_destroy_erase_cmd_list(erase_list); 1667 return ret; 1668 } 1669 1670 /** 1671 * spi_nor_erase_multi_sectors() - perform a non-uniform erase 1672 * @nor: pointer to a 'struct spi_nor' 1673 * @addr: offset in the serial flash memory 1674 * @len: number of bytes to erase 1675 * 1676 * Build a list of best fitted erase commands and execute it once we validate 1677 * that the erase can be performed. 1678 * 1679 * Return: 0 on success, -errno otherwise. 1680 */ 1681 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len) 1682 { 1683 LIST_HEAD(erase_list); 1684 struct spi_nor_erase_command *cmd, *next; 1685 int ret; 1686 1687 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len); 1688 if (ret) 1689 return ret; 1690 1691 list_for_each_entry_safe(cmd, next, &erase_list, list) { 1692 nor->erase_opcode = cmd->opcode; 1693 while (cmd->count) { 1694 dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n", 1695 cmd->size, cmd->opcode, cmd->count); 1696 1697 ret = spi_nor_lock_device(nor); 1698 if (ret) 1699 goto destroy_erase_cmd_list; 1700 1701 ret = spi_nor_write_enable(nor); 1702 if (ret) { 1703 spi_nor_unlock_device(nor); 1704 goto destroy_erase_cmd_list; 1705 } 1706 1707 ret = spi_nor_erase_sector(nor, addr); 1708 spi_nor_unlock_device(nor); 1709 if (ret) 1710 goto destroy_erase_cmd_list; 1711 1712 ret = spi_nor_wait_till_ready(nor); 1713 if (ret) 1714 goto destroy_erase_cmd_list; 1715 1716 addr += cmd->size; 1717 cmd->count--; 1718 } 1719 list_del(&cmd->list); 1720 kfree(cmd); 1721 } 1722 1723 return 0; 1724 1725 destroy_erase_cmd_list: 1726 spi_nor_destroy_erase_cmd_list(&erase_list); 1727 return ret; 1728 } 1729 1730 static int spi_nor_erase_dice(struct spi_nor *nor, loff_t addr, 1731 size_t len, size_t die_size) 1732 { 1733 unsigned long timeout; 1734 int ret; 1735 1736 /* 1737 * Scale the timeout linearly with the size of the flash, with 1738 * a minimum calibrated to an old 2MB flash. We could try to 1739 * pull these from CFI/SFDP, but these values should be good 1740 * enough for now. 1741 */ 1742 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES, 1743 CHIP_ERASE_2MB_READY_WAIT_JIFFIES * 1744 (unsigned long)(nor->mtd.size / SZ_2M)); 1745 1746 do { 1747 ret = spi_nor_lock_device(nor); 1748 if (ret) 1749 return ret; 1750 1751 ret = spi_nor_write_enable(nor); 1752 if (ret) { 1753 spi_nor_unlock_device(nor); 1754 return ret; 1755 } 1756 1757 ret = spi_nor_erase_die(nor, addr, die_size); 1758 1759 spi_nor_unlock_device(nor); 1760 if (ret) 1761 return ret; 1762 1763 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout); 1764 if (ret) 1765 return ret; 1766 1767 addr += die_size; 1768 len -= die_size; 1769 1770 } while (len); 1771 1772 return 0; 1773 } 1774 1775 /* 1776 * Erase an address range on the nor chip. The address range may extend 1777 * one or more erase sectors. Return an error if there is a problem erasing. 1778 */ 1779 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) 1780 { 1781 struct spi_nor *nor = mtd_to_spi_nor(mtd); 1782 u8 n_dice = nor->params->n_dice; 1783 bool multi_die_erase = false; 1784 u32 addr, len, rem; 1785 size_t die_size; 1786 int ret; 1787 1788 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, 1789 (long long)instr->len); 1790 1791 if (spi_nor_has_uniform_erase(nor)) { 1792 div_u64_rem(instr->len, mtd->erasesize, &rem); 1793 if (rem) 1794 return -EINVAL; 1795 } 1796 1797 addr = instr->addr; 1798 len = instr->len; 1799 1800 if (n_dice) { 1801 die_size = div_u64(mtd->size, n_dice); 1802 if (!(len & (die_size - 1)) && !(addr & (die_size - 1))) 1803 multi_die_erase = true; 1804 } else { 1805 die_size = mtd->size; 1806 } 1807 1808 ret = spi_nor_prep_and_lock_pe(nor, instr->addr, instr->len); 1809 if (ret) 1810 return ret; 1811 1812 /* chip (die) erase? */ 1813 if ((len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) || 1814 multi_die_erase) { 1815 ret = spi_nor_erase_dice(nor, addr, len, die_size); 1816 if (ret) 1817 goto erase_err; 1818 1819 /* REVISIT in some cases we could speed up erasing large regions 1820 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up 1821 * to use "small sector erase", but that's not always optimal. 1822 */ 1823 1824 /* "sector"-at-a-time erase */ 1825 } else if (spi_nor_has_uniform_erase(nor)) { 1826 while (len) { 1827 ret = spi_nor_lock_device(nor); 1828 if (ret) 1829 goto erase_err; 1830 1831 ret = spi_nor_write_enable(nor); 1832 if (ret) { 1833 spi_nor_unlock_device(nor); 1834 goto erase_err; 1835 } 1836 1837 ret = spi_nor_erase_sector(nor, addr); 1838 spi_nor_unlock_device(nor); 1839 if (ret) 1840 goto erase_err; 1841 1842 ret = spi_nor_wait_till_ready(nor); 1843 if (ret) 1844 goto erase_err; 1845 1846 addr += mtd->erasesize; 1847 len -= mtd->erasesize; 1848 } 1849 1850 /* erase multiple sectors */ 1851 } else { 1852 ret = spi_nor_erase_multi_sectors(nor, addr, len); 1853 if (ret) 1854 goto erase_err; 1855 } 1856 1857 ret = spi_nor_write_disable(nor); 1858 1859 erase_err: 1860 spi_nor_unlock_and_unprep_pe(nor, instr->addr, instr->len); 1861 1862 return ret; 1863 } 1864 1865 /** 1866 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status 1867 * Register 1. 1868 * @nor: pointer to a 'struct spi_nor' 1869 * 1870 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories. 1871 * 1872 * Return: 0 on success, -errno otherwise. 1873 */ 1874 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor) 1875 { 1876 int ret; 1877 1878 ret = spi_nor_read_sr(nor, nor->bouncebuf); 1879 if (ret) 1880 return ret; 1881 1882 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6) 1883 return 0; 1884 1885 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6; 1886 1887 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]); 1888 } 1889 1890 /** 1891 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status 1892 * Register 2. 1893 * @nor: pointer to a 'struct spi_nor'. 1894 * 1895 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories. 1896 * 1897 * Return: 0 on success, -errno otherwise. 1898 */ 1899 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor) 1900 { 1901 int ret; 1902 1903 if (nor->flags & SNOR_F_NO_READ_CR) 1904 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1); 1905 1906 ret = spi_nor_read_cr(nor, nor->bouncebuf); 1907 if (ret) 1908 return ret; 1909 1910 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1) 1911 return 0; 1912 1913 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1; 1914 1915 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]); 1916 } 1917 1918 /** 1919 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2. 1920 * @nor: pointer to a 'struct spi_nor' 1921 * 1922 * Set the Quad Enable (QE) bit in the Status Register 2. 1923 * 1924 * This is one of the procedures to set the QE bit described in the SFDP 1925 * (JESD216 rev B) specification but no manufacturer using this procedure has 1926 * been identified yet, hence the name of the function. 1927 * 1928 * Return: 0 on success, -errno otherwise. 1929 */ 1930 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor) 1931 { 1932 u8 *sr2 = nor->bouncebuf; 1933 int ret; 1934 u8 sr2_written; 1935 1936 /* Check current Quad Enable bit value. */ 1937 ret = spi_nor_read_sr2(nor, sr2); 1938 if (ret) 1939 return ret; 1940 if (*sr2 & SR2_QUAD_EN_BIT7) 1941 return 0; 1942 1943 /* Update the Quad Enable bit. */ 1944 *sr2 |= SR2_QUAD_EN_BIT7; 1945 1946 ret = spi_nor_write_sr2(nor, sr2); 1947 if (ret) 1948 return ret; 1949 1950 sr2_written = *sr2; 1951 1952 /* Read back and check it. */ 1953 ret = spi_nor_read_sr2(nor, sr2); 1954 if (ret) 1955 return ret; 1956 1957 if (*sr2 != sr2_written) { 1958 dev_dbg(nor->dev, "SR2: Read back test failed\n"); 1959 return -EIO; 1960 } 1961 1962 return 0; 1963 } 1964 1965 static const struct spi_nor_manufacturer *manufacturers[] = { 1966 &spi_nor_atmel, 1967 &spi_nor_eon, 1968 &spi_nor_esmt, 1969 &spi_nor_everspin, 1970 &spi_nor_gigadevice, 1971 &spi_nor_intel, 1972 &spi_nor_issi, 1973 &spi_nor_macronix, 1974 &spi_nor_micron, 1975 &spi_nor_st, 1976 &spi_nor_spansion, 1977 &spi_nor_sst, 1978 &spi_nor_winbond, 1979 &spi_nor_xmc, 1980 }; 1981 1982 static const struct flash_info spi_nor_generic_flash = { 1983 .name = "spi-nor-generic", 1984 }; 1985 1986 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor, 1987 const u8 *id) 1988 { 1989 const struct flash_info *part; 1990 unsigned int i, j; 1991 1992 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) { 1993 for (j = 0; j < manufacturers[i]->nparts; j++) { 1994 part = &manufacturers[i]->parts[j]; 1995 if (part->id && 1996 !memcmp(part->id->bytes, id, part->id->len)) { 1997 nor->manufacturer = manufacturers[i]; 1998 return part; 1999 } 2000 } 2001 } 2002 2003 return NULL; 2004 } 2005 2006 static const struct flash_info *spi_nor_detect(struct spi_nor *nor) 2007 { 2008 const struct flash_info *info; 2009 u8 *id = nor->bouncebuf; 2010 int ret; 2011 2012 ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto); 2013 if (ret) { 2014 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret); 2015 return ERR_PTR(ret); 2016 } 2017 2018 /* Cache the complete flash ID. */ 2019 nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL); 2020 if (!nor->id) 2021 return ERR_PTR(-ENOMEM); 2022 2023 info = spi_nor_match_id(nor, id); 2024 2025 /* Fallback to a generic flash described only by its SFDP data. */ 2026 if (!info) { 2027 ret = spi_nor_check_sfdp_signature(nor); 2028 if (!ret) 2029 info = &spi_nor_generic_flash; 2030 } 2031 2032 if (!info) { 2033 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n", 2034 SPI_NOR_MAX_ID_LEN, id); 2035 return ERR_PTR(-ENODEV); 2036 } 2037 return info; 2038 } 2039 2040 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, 2041 size_t *retlen, u_char *buf) 2042 { 2043 struct spi_nor *nor = mtd_to_spi_nor(mtd); 2044 loff_t from_lock = from; 2045 size_t len_lock = len; 2046 ssize_t ret; 2047 2048 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); 2049 2050 ret = spi_nor_prep_and_lock_rd(nor, from_lock, len_lock); 2051 if (ret) 2052 return ret; 2053 2054 while (len) { 2055 loff_t addr = from; 2056 2057 ret = spi_nor_read_data(nor, addr, len, buf); 2058 if (ret == 0) { 2059 /* We shouldn't see 0-length reads */ 2060 ret = -EIO; 2061 goto read_err; 2062 } 2063 if (ret < 0) 2064 goto read_err; 2065 2066 WARN_ON(ret > len); 2067 *retlen += ret; 2068 buf += ret; 2069 from += ret; 2070 len -= ret; 2071 } 2072 ret = 0; 2073 2074 read_err: 2075 spi_nor_unlock_and_unprep_rd(nor, from_lock, len_lock); 2076 2077 return ret; 2078 } 2079 2080 /* 2081 * Write an address range to the nor chip. Data must be written in 2082 * FLASH_PAGESIZE chunks. The address range may be any size provided 2083 * it is within the physical boundaries. 2084 */ 2085 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, 2086 size_t *retlen, const u_char *buf) 2087 { 2088 struct spi_nor *nor = mtd_to_spi_nor(mtd); 2089 size_t i; 2090 ssize_t ret; 2091 u32 page_size = nor->params->page_size; 2092 2093 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); 2094 2095 ret = spi_nor_prep_and_lock_pe(nor, to, len); 2096 if (ret) 2097 return ret; 2098 2099 for (i = 0; i < len; ) { 2100 ssize_t written; 2101 loff_t addr = to + i; 2102 size_t page_offset = addr & (page_size - 1); 2103 /* the size of data remaining on the first page */ 2104 size_t page_remain = min_t(size_t, page_size - page_offset, len - i); 2105 2106 ret = spi_nor_lock_device(nor); 2107 if (ret) 2108 goto write_err; 2109 2110 ret = spi_nor_write_enable(nor); 2111 if (ret) { 2112 spi_nor_unlock_device(nor); 2113 goto write_err; 2114 } 2115 2116 ret = spi_nor_write_data(nor, addr, page_remain, buf + i); 2117 spi_nor_unlock_device(nor); 2118 if (ret < 0) 2119 goto write_err; 2120 written = ret; 2121 2122 ret = spi_nor_wait_till_ready(nor); 2123 if (ret) 2124 goto write_err; 2125 *retlen += written; 2126 i += written; 2127 } 2128 2129 write_err: 2130 spi_nor_unlock_and_unprep_pe(nor, to, len); 2131 2132 return ret; 2133 } 2134 2135 static int spi_nor_check(struct spi_nor *nor) 2136 { 2137 if (!nor->dev || 2138 (!nor->spimem && !nor->controller_ops) || 2139 (!nor->spimem && nor->controller_ops && 2140 (!nor->controller_ops->read || 2141 !nor->controller_ops->write || 2142 !nor->controller_ops->read_reg || 2143 !nor->controller_ops->write_reg))) { 2144 pr_err("spi-nor: please fill all the necessary fields!\n"); 2145 return -EINVAL; 2146 } 2147 2148 if (nor->spimem && nor->controller_ops) { 2149 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n"); 2150 return -EINVAL; 2151 } 2152 2153 return 0; 2154 } 2155 2156 void 2157 spi_nor_set_read_settings(struct spi_nor_read_command *read, 2158 u8 num_mode_clocks, 2159 u8 num_wait_states, 2160 u8 opcode, 2161 enum spi_nor_protocol proto) 2162 { 2163 read->num_mode_clocks = num_mode_clocks; 2164 read->num_wait_states = num_wait_states; 2165 read->opcode = opcode; 2166 read->proto = proto; 2167 } 2168 2169 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode, 2170 enum spi_nor_protocol proto) 2171 { 2172 pp->opcode = opcode; 2173 pp->proto = proto; 2174 } 2175 2176 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size) 2177 { 2178 size_t i; 2179 2180 for (i = 0; i < size; i++) 2181 if (table[i][0] == (int)hwcaps) 2182 return table[i][1]; 2183 2184 return -EINVAL; 2185 } 2186 2187 int spi_nor_hwcaps_read2cmd(u32 hwcaps) 2188 { 2189 static const int hwcaps_read2cmd[][2] = { 2190 { SNOR_HWCAPS_READ, SNOR_CMD_READ }, 2191 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST }, 2192 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR }, 2193 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 }, 2194 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 }, 2195 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 }, 2196 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR }, 2197 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 }, 2198 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 }, 2199 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 }, 2200 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR }, 2201 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 }, 2202 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 }, 2203 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 }, 2204 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR }, 2205 { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR }, 2206 }; 2207 2208 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd, 2209 ARRAY_SIZE(hwcaps_read2cmd)); 2210 } 2211 2212 int spi_nor_hwcaps_pp2cmd(u32 hwcaps) 2213 { 2214 static const int hwcaps_pp2cmd[][2] = { 2215 { SNOR_HWCAPS_PP, SNOR_CMD_PP }, 2216 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 }, 2217 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 }, 2218 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 }, 2219 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 }, 2220 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 }, 2221 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 }, 2222 { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR }, 2223 }; 2224 2225 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd, 2226 ARRAY_SIZE(hwcaps_pp2cmd)); 2227 } 2228 2229 /** 2230 * spi_nor_spimem_check_op - check if the operation is supported 2231 * by controller 2232 *@nor: pointer to a 'struct spi_nor' 2233 *@op: pointer to op template to be checked 2234 * 2235 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. 2236 */ 2237 static int spi_nor_spimem_check_op(struct spi_nor *nor, 2238 struct spi_mem_op *op) 2239 { 2240 /* 2241 * First test with 4 address bytes. The opcode itself might 2242 * be a 3B addressing opcode but we don't care, because 2243 * SPI controller implementation should not check the opcode, 2244 * but just the sequence. 2245 */ 2246 op->addr.nbytes = 4; 2247 if (!spi_mem_supports_op(nor->spimem, op)) { 2248 if (nor->params->size > SZ_16M) 2249 return -EOPNOTSUPP; 2250 2251 /* If flash size <= 16MB, 3 address bytes are sufficient */ 2252 op->addr.nbytes = 3; 2253 if (!spi_mem_supports_op(nor->spimem, op)) 2254 return -EOPNOTSUPP; 2255 } 2256 2257 return 0; 2258 } 2259 2260 /** 2261 * spi_nor_spimem_check_readop - check if the read op is supported 2262 * by controller 2263 *@nor: pointer to a 'struct spi_nor' 2264 *@read: pointer to op template to be checked 2265 * 2266 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. 2267 */ 2268 static int spi_nor_spimem_check_readop(struct spi_nor *nor, 2269 const struct spi_nor_read_command *read) 2270 { 2271 struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode); 2272 2273 spi_nor_spimem_setup_op(nor, &op, read->proto); 2274 2275 /* convert the dummy cycles to the number of bytes */ 2276 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) * 2277 op.dummy.buswidth / 8; 2278 if (spi_nor_protocol_is_dtr(nor->read_proto)) 2279 op.dummy.nbytes *= 2; 2280 2281 return spi_nor_spimem_check_op(nor, &op); 2282 } 2283 2284 /** 2285 * spi_nor_spimem_check_pp - check if the page program op is supported 2286 * by controller 2287 *@nor: pointer to a 'struct spi_nor' 2288 *@pp: pointer to op template to be checked 2289 * 2290 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. 2291 */ 2292 static int spi_nor_spimem_check_pp(struct spi_nor *nor, 2293 const struct spi_nor_pp_command *pp) 2294 { 2295 struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode); 2296 2297 spi_nor_spimem_setup_op(nor, &op, pp->proto); 2298 2299 return spi_nor_spimem_check_op(nor, &op); 2300 } 2301 2302 /** 2303 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol 2304 * based on SPI controller capabilities 2305 * @nor: pointer to a 'struct spi_nor' 2306 * @hwcaps: pointer to resulting capabilities after adjusting 2307 * according to controller and flash's capability 2308 */ 2309 static void 2310 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps) 2311 { 2312 struct spi_nor_flash_parameter *params = nor->params; 2313 unsigned int cap; 2314 2315 /* X-X-X modes are not supported yet, mask them all. */ 2316 *hwcaps &= ~SNOR_HWCAPS_X_X_X; 2317 2318 /* 2319 * If the reset line is broken, we do not want to enter a stateful 2320 * mode. 2321 */ 2322 if (nor->flags & SNOR_F_BROKEN_RESET) 2323 *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR); 2324 2325 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) { 2326 int rdidx, ppidx; 2327 2328 if (!(*hwcaps & BIT(cap))) 2329 continue; 2330 2331 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap)); 2332 if (rdidx >= 0 && 2333 spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx])) 2334 *hwcaps &= ~BIT(cap); 2335 2336 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap)); 2337 if (ppidx < 0) 2338 continue; 2339 2340 if (spi_nor_spimem_check_pp(nor, 2341 ¶ms->page_programs[ppidx])) 2342 *hwcaps &= ~BIT(cap); 2343 } 2344 } 2345 2346 /** 2347 * spi_nor_set_erase_type() - set a SPI NOR erase type 2348 * @erase: pointer to a structure that describes a SPI NOR erase type 2349 * @size: the size of the sector/block erased by the erase type 2350 * @opcode: the SPI command op code to erase the sector/block 2351 */ 2352 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size, 2353 u8 opcode) 2354 { 2355 erase->size = size; 2356 erase->opcode = opcode; 2357 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ 2358 erase->size_shift = ffs(erase->size) - 1; 2359 erase->size_mask = (1 << erase->size_shift) - 1; 2360 } 2361 2362 /** 2363 * spi_nor_mask_erase_type() - mask out a SPI NOR erase type 2364 * @erase: pointer to a structure that describes a SPI NOR erase type 2365 */ 2366 void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase) 2367 { 2368 erase->size = 0; 2369 } 2370 2371 /** 2372 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map 2373 * @map: the erase map of the SPI NOR 2374 * @erase_mask: bitmask encoding erase types that can erase the entire 2375 * flash memory 2376 * @flash_size: the spi nor flash memory size 2377 */ 2378 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map, 2379 u8 erase_mask, u64 flash_size) 2380 { 2381 map->uniform_region.offset = 0; 2382 map->uniform_region.size = flash_size; 2383 map->uniform_region.erase_mask = erase_mask; 2384 map->regions = &map->uniform_region; 2385 map->n_regions = 1; 2386 } 2387 2388 int spi_nor_post_bfpt_fixups(struct spi_nor *nor, 2389 const struct sfdp_parameter_header *bfpt_header, 2390 const struct sfdp_bfpt *bfpt) 2391 { 2392 int ret; 2393 2394 if (nor->manufacturer && nor->manufacturer->fixups && 2395 nor->manufacturer->fixups->post_bfpt) { 2396 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header, 2397 bfpt); 2398 if (ret) 2399 return ret; 2400 } 2401 2402 if (nor->info->fixups && nor->info->fixups->post_bfpt) 2403 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt); 2404 2405 return 0; 2406 } 2407 2408 static int spi_nor_select_read(struct spi_nor *nor, 2409 u32 shared_hwcaps) 2410 { 2411 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1; 2412 const struct spi_nor_read_command *read; 2413 2414 if (best_match < 0) 2415 return -EINVAL; 2416 2417 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match)); 2418 if (cmd < 0) 2419 return -EINVAL; 2420 2421 read = &nor->params->reads[cmd]; 2422 nor->read_opcode = read->opcode; 2423 nor->read_proto = read->proto; 2424 2425 /* 2426 * In the SPI NOR framework, we don't need to make the difference 2427 * between mode clock cycles and wait state clock cycles. 2428 * Indeed, the value of the mode clock cycles is used by a QSPI 2429 * flash memory to know whether it should enter or leave its 0-4-4 2430 * (Continuous Read / XIP) mode. 2431 * eXecution In Place is out of the scope of the mtd sub-system. 2432 * Hence we choose to merge both mode and wait state clock cycles 2433 * into the so called dummy clock cycles. 2434 */ 2435 nor->read_dummy = read->num_mode_clocks + read->num_wait_states; 2436 return 0; 2437 } 2438 2439 static int spi_nor_select_pp(struct spi_nor *nor, 2440 u32 shared_hwcaps) 2441 { 2442 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1; 2443 const struct spi_nor_pp_command *pp; 2444 2445 if (best_match < 0) 2446 return -EINVAL; 2447 2448 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match)); 2449 if (cmd < 0) 2450 return -EINVAL; 2451 2452 pp = &nor->params->page_programs[cmd]; 2453 nor->program_opcode = pp->opcode; 2454 nor->write_proto = pp->proto; 2455 return 0; 2456 } 2457 2458 /** 2459 * spi_nor_select_uniform_erase() - select optimum uniform erase type 2460 * @map: the erase map of the SPI NOR 2461 * 2462 * Once the optimum uniform sector erase command is found, disable all the 2463 * other. 2464 * 2465 * Return: pointer to erase type on success, NULL otherwise. 2466 */ 2467 static const struct spi_nor_erase_type * 2468 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map) 2469 { 2470 const struct spi_nor_erase_type *tested_erase, *erase = NULL; 2471 int i; 2472 u8 uniform_erase_type = map->uniform_region.erase_mask; 2473 2474 /* 2475 * Search for the biggest erase size, except for when compiled 2476 * to use 4k erases. 2477 */ 2478 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { 2479 if (!(uniform_erase_type & BIT(i))) 2480 continue; 2481 2482 tested_erase = &map->erase_type[i]; 2483 2484 /* Skip masked erase types. */ 2485 if (!tested_erase->size) 2486 continue; 2487 2488 /* 2489 * If the current erase size is the 4k one, stop here, 2490 * we have found the right uniform Sector Erase command. 2491 */ 2492 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS) && 2493 tested_erase->size == SZ_4K) { 2494 erase = tested_erase; 2495 break; 2496 } 2497 2498 /* 2499 * Otherwise, the current erase size is still a valid candidate. 2500 * Select the biggest valid candidate. 2501 */ 2502 if (!erase && tested_erase->size) 2503 erase = tested_erase; 2504 /* keep iterating to find the wanted_size */ 2505 } 2506 2507 if (!erase) 2508 return NULL; 2509 2510 /* Disable all other Sector Erase commands. */ 2511 map->uniform_region.erase_mask = BIT(erase - map->erase_type); 2512 return erase; 2513 } 2514 2515 static int spi_nor_select_erase(struct spi_nor *nor) 2516 { 2517 struct spi_nor_erase_map *map = &nor->params->erase_map; 2518 const struct spi_nor_erase_type *erase = NULL; 2519 struct mtd_info *mtd = &nor->mtd; 2520 int i; 2521 2522 /* 2523 * The previous implementation handling Sector Erase commands assumed 2524 * that the SPI flash memory has an uniform layout then used only one 2525 * of the supported erase sizes for all Sector Erase commands. 2526 * So to be backward compatible, the new implementation also tries to 2527 * manage the SPI flash memory as uniform with a single erase sector 2528 * size, when possible. 2529 */ 2530 if (spi_nor_has_uniform_erase(nor)) { 2531 erase = spi_nor_select_uniform_erase(map); 2532 if (!erase) 2533 return -EINVAL; 2534 nor->erase_opcode = erase->opcode; 2535 mtd->erasesize = erase->size; 2536 return 0; 2537 } 2538 2539 /* 2540 * For non-uniform SPI flash memory, set mtd->erasesize to the 2541 * maximum erase sector size. No need to set nor->erase_opcode. 2542 */ 2543 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { 2544 if (map->erase_type[i].size) { 2545 erase = &map->erase_type[i]; 2546 break; 2547 } 2548 } 2549 2550 if (!erase) 2551 return -EINVAL; 2552 2553 mtd->erasesize = erase->size; 2554 return 0; 2555 } 2556 2557 static int spi_nor_set_addr_nbytes(struct spi_nor *nor) 2558 { 2559 if (nor->params->addr_nbytes) { 2560 nor->addr_nbytes = nor->params->addr_nbytes; 2561 } else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) { 2562 /* 2563 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So 2564 * in this protocol an odd addr_nbytes cannot be used because 2565 * then the address phase would only span a cycle and a half. 2566 * Half a cycle would be left over. We would then have to start 2567 * the dummy phase in the middle of a cycle and so too the data 2568 * phase, and we will end the transaction with half a cycle left 2569 * over. 2570 * 2571 * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to 2572 * avoid this situation. 2573 */ 2574 nor->addr_nbytes = 4; 2575 } else if (nor->info->addr_nbytes) { 2576 nor->addr_nbytes = nor->info->addr_nbytes; 2577 } else { 2578 nor->addr_nbytes = 3; 2579 } 2580 2581 if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) { 2582 /* enable 4-byte addressing if the device exceeds 16MiB */ 2583 nor->addr_nbytes = 4; 2584 } 2585 2586 if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) { 2587 dev_dbg(nor->dev, "The number of address bytes is too large: %u\n", 2588 nor->addr_nbytes); 2589 return -EINVAL; 2590 } 2591 2592 /* Set 4byte opcodes when possible. */ 2593 if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES && 2594 !(nor->flags & SNOR_F_HAS_4BAIT)) 2595 spi_nor_set_4byte_opcodes(nor); 2596 2597 return 0; 2598 } 2599 2600 static int spi_nor_setup(struct spi_nor *nor, 2601 const struct spi_nor_hwcaps *hwcaps) 2602 { 2603 struct spi_nor_flash_parameter *params = nor->params; 2604 u32 ignored_mask, shared_mask; 2605 int err; 2606 2607 /* 2608 * Keep only the hardware capabilities supported by both the SPI 2609 * controller and the SPI flash memory. 2610 */ 2611 shared_mask = hwcaps->mask & params->hwcaps.mask; 2612 2613 if (nor->spimem) { 2614 /* 2615 * When called from spi_nor_probe(), all caps are set and we 2616 * need to discard some of them based on what the SPI 2617 * controller actually supports (using spi_mem_supports_op()). 2618 */ 2619 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask); 2620 } else { 2621 /* 2622 * SPI n-n-n protocols are not supported when the SPI 2623 * controller directly implements the spi_nor interface. 2624 * Yet another reason to switch to spi-mem. 2625 */ 2626 ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR; 2627 if (shared_mask & ignored_mask) { 2628 dev_dbg(nor->dev, 2629 "SPI n-n-n protocols are not supported.\n"); 2630 shared_mask &= ~ignored_mask; 2631 } 2632 } 2633 2634 /* Select the (Fast) Read command. */ 2635 err = spi_nor_select_read(nor, shared_mask); 2636 if (err) { 2637 dev_dbg(nor->dev, 2638 "can't select read settings supported by both the SPI controller and memory.\n"); 2639 return err; 2640 } 2641 2642 /* Select the Page Program command. */ 2643 err = spi_nor_select_pp(nor, shared_mask); 2644 if (err) { 2645 dev_dbg(nor->dev, 2646 "can't select write settings supported by both the SPI controller and memory.\n"); 2647 return err; 2648 } 2649 2650 /* Select the Sector Erase command. */ 2651 err = spi_nor_select_erase(nor); 2652 if (err) { 2653 dev_dbg(nor->dev, 2654 "can't select erase settings supported by both the SPI controller and memory.\n"); 2655 return err; 2656 } 2657 2658 return spi_nor_set_addr_nbytes(nor); 2659 } 2660 2661 /** 2662 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and 2663 * settings based on MFR register and ->default_init() hook. 2664 * @nor: pointer to a 'struct spi_nor'. 2665 */ 2666 static void spi_nor_manufacturer_init_params(struct spi_nor *nor) 2667 { 2668 if (nor->manufacturer && nor->manufacturer->fixups && 2669 nor->manufacturer->fixups->default_init) 2670 nor->manufacturer->fixups->default_init(nor); 2671 2672 if (nor->info->fixups && nor->info->fixups->default_init) 2673 nor->info->fixups->default_init(nor); 2674 } 2675 2676 /** 2677 * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and 2678 * settings based on nor->info->sfdp_flags. This method should be called only by 2679 * flashes that do not define SFDP tables. If the flash supports SFDP but the 2680 * information is wrong and the settings from this function can not be retrieved 2681 * by parsing SFDP, one should instead use the fixup hooks and update the wrong 2682 * bits. 2683 * @nor: pointer to a 'struct spi_nor'. 2684 */ 2685 static void spi_nor_no_sfdp_init_params(struct spi_nor *nor) 2686 { 2687 struct spi_nor_flash_parameter *params = nor->params; 2688 struct spi_nor_erase_map *map = ¶ms->erase_map; 2689 const struct flash_info *info = nor->info; 2690 const u8 no_sfdp_flags = info->no_sfdp_flags; 2691 u8 i, erase_mask; 2692 2693 if (no_sfdp_flags & SPI_NOR_DUAL_READ) { 2694 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; 2695 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2], 2696 0, 8, SPINOR_OP_READ_1_1_2, 2697 SNOR_PROTO_1_1_2); 2698 } 2699 2700 if (no_sfdp_flags & SPI_NOR_QUAD_READ) { 2701 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; 2702 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4], 2703 0, 8, SPINOR_OP_READ_1_1_4, 2704 SNOR_PROTO_1_1_4); 2705 } 2706 2707 if (no_sfdp_flags & SPI_NOR_OCTAL_READ) { 2708 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; 2709 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], 2710 0, 8, SPINOR_OP_READ_1_1_8, 2711 SNOR_PROTO_1_1_8); 2712 } 2713 2714 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) { 2715 params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; 2716 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR], 2717 0, 20, SPINOR_OP_READ_FAST, 2718 SNOR_PROTO_8_8_8_DTR); 2719 } 2720 2721 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) { 2722 params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; 2723 /* 2724 * Since xSPI Page Program opcode is backward compatible with 2725 * Legacy SPI, use Legacy SPI opcode there as well. 2726 */ 2727 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR], 2728 SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR); 2729 } 2730 2731 /* 2732 * Sector Erase settings. Sort Erase Types in ascending order, with the 2733 * smallest erase size starting at BIT(0). 2734 */ 2735 erase_mask = 0; 2736 i = 0; 2737 if (no_sfdp_flags & SECT_4K) { 2738 erase_mask |= BIT(i); 2739 spi_nor_set_erase_type(&map->erase_type[i], 4096u, 2740 SPINOR_OP_BE_4K); 2741 i++; 2742 } 2743 erase_mask |= BIT(i); 2744 spi_nor_set_erase_type(&map->erase_type[i], 2745 info->sector_size ?: SPI_NOR_DEFAULT_SECTOR_SIZE, 2746 SPINOR_OP_SE); 2747 spi_nor_init_uniform_erase_map(map, erase_mask, params->size); 2748 } 2749 2750 /** 2751 * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined 2752 * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP. 2753 * @nor: pointer to a 'struct spi_nor' 2754 */ 2755 static void spi_nor_init_flags(struct spi_nor *nor) 2756 { 2757 struct device_node *np = spi_nor_get_flash_node(nor); 2758 const u16 flags = nor->info->flags; 2759 2760 if (of_property_read_bool(np, "broken-flash-reset")) 2761 nor->flags |= SNOR_F_BROKEN_RESET; 2762 2763 if (of_property_read_bool(np, "no-wp")) 2764 nor->flags |= SNOR_F_NO_WP; 2765 2766 if (flags & SPI_NOR_SWP_IS_VOLATILE) 2767 nor->flags |= SNOR_F_SWP_IS_VOLATILE; 2768 2769 if (flags & SPI_NOR_HAS_LOCK) 2770 nor->flags |= SNOR_F_HAS_LOCK; 2771 2772 if (flags & SPI_NOR_HAS_TB) { 2773 nor->flags |= SNOR_F_HAS_SR_TB; 2774 if (flags & SPI_NOR_TB_SR_BIT6) 2775 nor->flags |= SNOR_F_HAS_SR_TB_BIT6; 2776 } 2777 2778 if (flags & SPI_NOR_4BIT_BP) { 2779 nor->flags |= SNOR_F_HAS_4BIT_BP; 2780 if (flags & SPI_NOR_BP3_SR_BIT6) 2781 nor->flags |= SNOR_F_HAS_SR_BP3_BIT6; 2782 } 2783 2784 if (flags & SPI_NOR_RWW && nor->params->n_banks > 1 && 2785 !nor->controller_ops) 2786 nor->flags |= SNOR_F_RWW; 2787 } 2788 2789 /** 2790 * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not 2791 * be discovered by SFDP for this particular flash because the SFDP table that 2792 * indicates this support is not defined in the flash. In case the table for 2793 * this support is defined but has wrong values, one should instead use a 2794 * post_sfdp() hook to set the SNOR_F equivalent flag. 2795 * @nor: pointer to a 'struct spi_nor' 2796 */ 2797 static void spi_nor_init_fixup_flags(struct spi_nor *nor) 2798 { 2799 const u8 fixup_flags = nor->info->fixup_flags; 2800 2801 if (fixup_flags & SPI_NOR_4B_OPCODES) 2802 nor->flags |= SNOR_F_4B_OPCODES; 2803 2804 if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE) 2805 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; 2806 } 2807 2808 /** 2809 * spi_nor_late_init_params() - Late initialization of default flash parameters. 2810 * @nor: pointer to a 'struct spi_nor' 2811 * 2812 * Used to initialize flash parameters that are not declared in the JESD216 2813 * SFDP standard, or where SFDP tables are not defined at all. 2814 * Will replace the spi_nor_manufacturer_init_params() method. 2815 */ 2816 static int spi_nor_late_init_params(struct spi_nor *nor) 2817 { 2818 struct spi_nor_flash_parameter *params = nor->params; 2819 int ret; 2820 2821 if (nor->manufacturer && nor->manufacturer->fixups && 2822 nor->manufacturer->fixups->late_init) { 2823 ret = nor->manufacturer->fixups->late_init(nor); 2824 if (ret) 2825 return ret; 2826 } 2827 2828 /* Needed by some flashes late_init hooks. */ 2829 spi_nor_init_flags(nor); 2830 2831 if (nor->info->fixups && nor->info->fixups->late_init) { 2832 ret = nor->info->fixups->late_init(nor); 2833 if (ret) 2834 return ret; 2835 } 2836 2837 if (!nor->params->die_erase_opcode) 2838 nor->params->die_erase_opcode = SPINOR_OP_CHIP_ERASE; 2839 2840 /* Default method kept for backward compatibility. */ 2841 if (!params->set_4byte_addr_mode) 2842 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr; 2843 2844 spi_nor_init_fixup_flags(nor); 2845 2846 /* 2847 * NOR protection support. When locking_ops are not provided, we pick 2848 * the default ones. 2849 */ 2850 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops) 2851 spi_nor_init_default_locking_ops(nor); 2852 2853 if (params->n_banks > 1) 2854 params->bank_size = div_u64(params->size, params->n_banks); 2855 2856 return 0; 2857 } 2858 2859 /** 2860 * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash 2861 * parameters and settings based on JESD216 SFDP standard. 2862 * @nor: pointer to a 'struct spi_nor'. 2863 * 2864 * The method has a roll-back mechanism: in case the SFDP parsing fails, the 2865 * legacy flash parameters and settings will be restored. 2866 */ 2867 static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor) 2868 { 2869 struct spi_nor_flash_parameter sfdp_params; 2870 2871 memcpy(&sfdp_params, nor->params, sizeof(sfdp_params)); 2872 2873 if (spi_nor_parse_sfdp(nor)) { 2874 memcpy(nor->params, &sfdp_params, sizeof(*nor->params)); 2875 nor->flags &= ~SNOR_F_4B_OPCODES; 2876 } 2877 } 2878 2879 /** 2880 * spi_nor_init_params_deprecated() - Deprecated way of initializing flash 2881 * parameters and settings. 2882 * @nor: pointer to a 'struct spi_nor'. 2883 * 2884 * The method assumes that flash doesn't support SFDP so it initializes flash 2885 * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten 2886 * when parsing SFDP, if supported. 2887 */ 2888 static void spi_nor_init_params_deprecated(struct spi_nor *nor) 2889 { 2890 spi_nor_no_sfdp_init_params(nor); 2891 2892 spi_nor_manufacturer_init_params(nor); 2893 2894 if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ | 2895 SPI_NOR_QUAD_READ | 2896 SPI_NOR_OCTAL_READ | 2897 SPI_NOR_OCTAL_DTR_READ)) 2898 spi_nor_sfdp_init_params_deprecated(nor); 2899 } 2900 2901 /** 2902 * spi_nor_init_default_params() - Default initialization of flash parameters 2903 * and settings. Done for all flashes, regardless is they define SFDP tables 2904 * or not. 2905 * @nor: pointer to a 'struct spi_nor'. 2906 */ 2907 static void spi_nor_init_default_params(struct spi_nor *nor) 2908 { 2909 struct spi_nor_flash_parameter *params = nor->params; 2910 const struct flash_info *info = nor->info; 2911 struct device_node *np = spi_nor_get_flash_node(nor); 2912 2913 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 2914 params->otp.org = info->otp; 2915 2916 /* Default to 16-bit Write Status (01h) Command */ 2917 nor->flags |= SNOR_F_HAS_16BIT_SR; 2918 2919 /* Set SPI NOR sizes. */ 2920 params->writesize = 1; 2921 params->size = info->size; 2922 params->bank_size = params->size; 2923 params->page_size = info->page_size ?: SPI_NOR_DEFAULT_PAGE_SIZE; 2924 params->n_banks = info->n_banks ?: SPI_NOR_DEFAULT_N_BANKS; 2925 2926 /* Default to Fast Read for non-DT and enable it if requested by DT. */ 2927 if (!np || of_property_read_bool(np, "m25p,fast-read")) 2928 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST; 2929 2930 /* (Fast) Read settings. */ 2931 params->hwcaps.mask |= SNOR_HWCAPS_READ; 2932 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ], 2933 0, 0, SPINOR_OP_READ, 2934 SNOR_PROTO_1_1_1); 2935 2936 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST) 2937 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST], 2938 0, 8, SPINOR_OP_READ_FAST, 2939 SNOR_PROTO_1_1_1); 2940 /* Page Program settings. */ 2941 params->hwcaps.mask |= SNOR_HWCAPS_PP; 2942 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], 2943 SPINOR_OP_PP, SNOR_PROTO_1_1_1); 2944 2945 if (info->flags & SPI_NOR_QUAD_PP) { 2946 params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; 2947 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4], 2948 SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4); 2949 } 2950 } 2951 2952 /** 2953 * spi_nor_init_params() - Initialize the flash's parameters and settings. 2954 * @nor: pointer to a 'struct spi_nor'. 2955 * 2956 * The flash parameters and settings are initialized based on a sequence of 2957 * calls that are ordered by priority: 2958 * 2959 * 1/ Default flash parameters initialization. The initializations are done 2960 * based on nor->info data: 2961 * spi_nor_info_init_params() 2962 * 2963 * which can be overwritten by: 2964 * 2/ Manufacturer flash parameters initialization. The initializations are 2965 * done based on MFR register, or when the decisions can not be done solely 2966 * based on MFR, by using specific flash_info tweeks, ->default_init(): 2967 * spi_nor_manufacturer_init_params() 2968 * 2969 * which can be overwritten by: 2970 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and 2971 * should be more accurate that the above. 2972 * spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params() 2973 * 2974 * Please note that there is a ->post_bfpt() fixup hook that can overwrite 2975 * the flash parameters and settings immediately after parsing the Basic 2976 * Flash Parameter Table. 2977 * spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed. 2978 * It is used to tweak various flash parameters when information provided 2979 * by the SFDP tables are wrong. 2980 * 2981 * which can be overwritten by: 2982 * 4/ Late flash parameters initialization, used to initialize flash 2983 * parameters that are not declared in the JESD216 SFDP standard, or where SFDP 2984 * tables are not defined at all. 2985 * spi_nor_late_init_params() 2986 * 2987 * Return: 0 on success, -errno otherwise. 2988 */ 2989 static int spi_nor_init_params(struct spi_nor *nor) 2990 { 2991 int ret; 2992 2993 nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL); 2994 if (!nor->params) 2995 return -ENOMEM; 2996 2997 spi_nor_init_default_params(nor); 2998 2999 if (spi_nor_needs_sfdp(nor)) { 3000 ret = spi_nor_parse_sfdp(nor); 3001 if (ret) { 3002 dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n"); 3003 return ret; 3004 } 3005 } else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) { 3006 spi_nor_no_sfdp_init_params(nor); 3007 } else { 3008 spi_nor_init_params_deprecated(nor); 3009 } 3010 3011 ret = spi_nor_late_init_params(nor); 3012 if (ret) 3013 return ret; 3014 3015 if (WARN_ON(!is_power_of_2(nor->params->page_size))) 3016 return -EINVAL; 3017 3018 return 0; 3019 } 3020 3021 /** spi_nor_set_octal_dtr() - enable or disable Octal DTR I/O. 3022 * @nor: pointer to a 'struct spi_nor' 3023 * @enable: whether to enable or disable Octal DTR 3024 * 3025 * Return: 0 on success, -errno otherwise. 3026 */ 3027 static int spi_nor_set_octal_dtr(struct spi_nor *nor, bool enable) 3028 { 3029 int ret; 3030 3031 if (!nor->params->set_octal_dtr) 3032 return 0; 3033 3034 if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR && 3035 nor->write_proto == SNOR_PROTO_8_8_8_DTR)) 3036 return 0; 3037 3038 if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE)) 3039 return 0; 3040 3041 ret = nor->params->set_octal_dtr(nor, enable); 3042 if (ret) 3043 return ret; 3044 3045 if (enable) 3046 nor->reg_proto = SNOR_PROTO_8_8_8_DTR; 3047 else 3048 nor->reg_proto = SNOR_PROTO_1_1_1; 3049 3050 return 0; 3051 } 3052 3053 /** 3054 * spi_nor_quad_enable() - enable Quad I/O if needed. 3055 * @nor: pointer to a 'struct spi_nor' 3056 * 3057 * Return: 0 on success, -errno otherwise. 3058 */ 3059 static int spi_nor_quad_enable(struct spi_nor *nor) 3060 { 3061 if (!nor->params->quad_enable) 3062 return 0; 3063 3064 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 || 3065 spi_nor_get_protocol_width(nor->write_proto) == 4)) 3066 return 0; 3067 3068 return nor->params->quad_enable(nor); 3069 } 3070 3071 /** 3072 * spi_nor_set_4byte_addr_mode() - Set address mode. 3073 * @nor: pointer to a 'struct spi_nor'. 3074 * @enable: enable/disable 4 byte address mode. 3075 * 3076 * Return: 0 on success, -errno otherwise. 3077 */ 3078 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable) 3079 { 3080 struct spi_nor_flash_parameter *params = nor->params; 3081 int ret; 3082 3083 if (enable) { 3084 /* 3085 * If the RESET# pin isn't hooked up properly, or the system 3086 * otherwise doesn't perform a reset command in the boot 3087 * sequence, it's impossible to 100% protect against unexpected 3088 * reboots (e.g., crashes). Warn the user (or hopefully, system 3089 * designer) that this is bad. 3090 */ 3091 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET, 3092 "enabling reset hack; may not recover from unexpected reboots\n"); 3093 } 3094 3095 ret = params->set_4byte_addr_mode(nor, enable); 3096 if (ret && ret != -EOPNOTSUPP) 3097 return ret; 3098 3099 if (enable) { 3100 params->addr_nbytes = 4; 3101 params->addr_mode_nbytes = 4; 3102 } else { 3103 params->addr_nbytes = 3; 3104 params->addr_mode_nbytes = 3; 3105 } 3106 3107 return 0; 3108 } 3109 3110 static int spi_nor_init(struct spi_nor *nor) 3111 { 3112 int err; 3113 3114 err = spi_nor_set_octal_dtr(nor, true); 3115 if (err) { 3116 dev_dbg(nor->dev, "octal mode not supported\n"); 3117 return err; 3118 } 3119 3120 err = spi_nor_quad_enable(nor); 3121 if (err) { 3122 dev_dbg(nor->dev, "quad mode not supported\n"); 3123 return err; 3124 } 3125 3126 /* 3127 * Some SPI NOR flashes are write protected by default after a power-on 3128 * reset cycle, in order to avoid inadvertent writes during power-up. 3129 * Backward compatibility imposes to unlock the entire flash memory 3130 * array at power-up by default. Depending on the kernel configuration 3131 * (1) do nothing, (2) always unlock the entire flash array or (3) 3132 * unlock the entire flash array only when the software write 3133 * protection bits are volatile. The latter is indicated by 3134 * SNOR_F_SWP_IS_VOLATILE. 3135 */ 3136 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) || 3137 (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) && 3138 nor->flags & SNOR_F_SWP_IS_VOLATILE)) 3139 spi_nor_try_unlock_all(nor); 3140 3141 if (nor->addr_nbytes == 4 && 3142 nor->read_proto != SNOR_PROTO_8_8_8_DTR && 3143 !(nor->flags & SNOR_F_4B_OPCODES)) 3144 return spi_nor_set_4byte_addr_mode(nor, true); 3145 3146 return 0; 3147 } 3148 3149 /** 3150 * spi_nor_soft_reset() - Perform a software reset 3151 * @nor: pointer to 'struct spi_nor' 3152 * 3153 * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets 3154 * the device to its power-on-reset state. This is useful when the software has 3155 * made some changes to device (volatile) registers and needs to reset it before 3156 * shutting down, for example. 3157 * 3158 * Not every flash supports this sequence. The same set of opcodes might be used 3159 * for some other operation on a flash that does not support this. Support for 3160 * this sequence can be discovered via SFDP in the BFPT table. 3161 * 3162 * Return: 0 on success, -errno otherwise. 3163 */ 3164 static void spi_nor_soft_reset(struct spi_nor *nor) 3165 { 3166 struct spi_mem_op op; 3167 int ret; 3168 3169 op = (struct spi_mem_op)SPINOR_SRSTEN_OP; 3170 3171 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 3172 3173 ret = spi_mem_exec_op(nor->spimem, &op); 3174 if (ret) { 3175 if (ret != -EOPNOTSUPP) 3176 dev_warn(nor->dev, "Software reset failed: %d\n", ret); 3177 return; 3178 } 3179 3180 op = (struct spi_mem_op)SPINOR_SRST_OP; 3181 3182 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 3183 3184 ret = spi_mem_exec_op(nor->spimem, &op); 3185 if (ret) { 3186 dev_warn(nor->dev, "Software reset failed: %d\n", ret); 3187 return; 3188 } 3189 3190 /* 3191 * Software Reset is not instant, and the delay varies from flash to 3192 * flash. Looking at a few flashes, most range somewhere below 100 3193 * microseconds. So, sleep for a range of 200-400 us. 3194 */ 3195 usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX); 3196 } 3197 3198 /* mtd suspend handler */ 3199 static int spi_nor_suspend(struct mtd_info *mtd) 3200 { 3201 struct spi_nor *nor = mtd_to_spi_nor(mtd); 3202 int ret; 3203 3204 /* Disable octal DTR mode if we enabled it. */ 3205 ret = spi_nor_set_octal_dtr(nor, false); 3206 if (ret) 3207 dev_err(nor->dev, "suspend() failed\n"); 3208 3209 return ret; 3210 } 3211 3212 /* mtd resume handler */ 3213 static void spi_nor_resume(struct mtd_info *mtd) 3214 { 3215 struct spi_nor *nor = mtd_to_spi_nor(mtd); 3216 struct device *dev = nor->dev; 3217 int ret; 3218 3219 /* re-initialize the nor chip */ 3220 ret = spi_nor_init(nor); 3221 if (ret) 3222 dev_err(dev, "resume() failed\n"); 3223 } 3224 3225 static int spi_nor_get_device(struct mtd_info *mtd) 3226 { 3227 struct mtd_info *master = mtd_get_master(mtd); 3228 struct spi_nor *nor = mtd_to_spi_nor(master); 3229 struct device *dev; 3230 3231 if (nor->spimem) 3232 dev = nor->spimem->spi->controller->dev.parent; 3233 else 3234 dev = nor->dev; 3235 3236 if (!try_module_get(dev->driver->owner)) 3237 return -ENODEV; 3238 3239 return 0; 3240 } 3241 3242 static void spi_nor_put_device(struct mtd_info *mtd) 3243 { 3244 struct mtd_info *master = mtd_get_master(mtd); 3245 struct spi_nor *nor = mtd_to_spi_nor(master); 3246 struct device *dev; 3247 3248 if (nor->spimem) 3249 dev = nor->spimem->spi->controller->dev.parent; 3250 else 3251 dev = nor->dev; 3252 3253 module_put(dev->driver->owner); 3254 } 3255 3256 static void spi_nor_restore(struct spi_nor *nor) 3257 { 3258 int ret; 3259 3260 /* restore the addressing mode */ 3261 if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) && 3262 nor->flags & SNOR_F_BROKEN_RESET) { 3263 ret = spi_nor_set_4byte_addr_mode(nor, false); 3264 if (ret) 3265 /* 3266 * Do not stop the execution in the hope that the flash 3267 * will default to the 3-byte address mode after the 3268 * software reset. 3269 */ 3270 dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret); 3271 } 3272 3273 if (nor->flags & SNOR_F_SOFT_RESET) 3274 spi_nor_soft_reset(nor); 3275 } 3276 3277 static const struct flash_info *spi_nor_match_name(struct spi_nor *nor, 3278 const char *name) 3279 { 3280 unsigned int i, j; 3281 3282 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) { 3283 for (j = 0; j < manufacturers[i]->nparts; j++) { 3284 if (manufacturers[i]->parts[j].name && 3285 !strcmp(name, manufacturers[i]->parts[j].name)) { 3286 nor->manufacturer = manufacturers[i]; 3287 return &manufacturers[i]->parts[j]; 3288 } 3289 } 3290 } 3291 3292 return NULL; 3293 } 3294 3295 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor, 3296 const char *name) 3297 { 3298 const struct flash_info *info = NULL; 3299 3300 if (name) 3301 info = spi_nor_match_name(nor, name); 3302 /* 3303 * Auto-detect if chip name wasn't specified or not found, or the chip 3304 * has an ID. If the chip supposedly has an ID, we also do an 3305 * auto-detection to compare it later. 3306 */ 3307 if (!info || info->id) { 3308 const struct flash_info *jinfo; 3309 3310 jinfo = spi_nor_detect(nor); 3311 if (IS_ERR(jinfo)) 3312 return jinfo; 3313 3314 /* 3315 * If caller has specified name of flash model that can normally 3316 * be detected using JEDEC, let's verify it. 3317 */ 3318 if (info && jinfo != info) 3319 dev_warn(nor->dev, "found %s, expected %s\n", 3320 jinfo->name, info->name); 3321 3322 /* If info was set before, JEDEC knows better. */ 3323 info = jinfo; 3324 } 3325 3326 return info; 3327 } 3328 3329 static u32 3330 spi_nor_get_region_erasesize(const struct spi_nor_erase_region *region, 3331 const struct spi_nor_erase_type *erase_type) 3332 { 3333 int i; 3334 3335 if (region->overlaid) 3336 return region->size; 3337 3338 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { 3339 if (region->erase_mask & BIT(i)) 3340 return erase_type[i].size; 3341 } 3342 3343 return 0; 3344 } 3345 3346 static int spi_nor_set_mtd_eraseregions(struct spi_nor *nor) 3347 { 3348 const struct spi_nor_erase_map *map = &nor->params->erase_map; 3349 const struct spi_nor_erase_region *region = map->regions; 3350 struct mtd_erase_region_info *mtd_region; 3351 struct mtd_info *mtd = &nor->mtd; 3352 u32 erasesize, i; 3353 3354 mtd_region = devm_kcalloc(nor->dev, map->n_regions, sizeof(*mtd_region), 3355 GFP_KERNEL); 3356 if (!mtd_region) 3357 return -ENOMEM; 3358 3359 for (i = 0; i < map->n_regions; i++) { 3360 erasesize = spi_nor_get_region_erasesize(®ion[i], 3361 map->erase_type); 3362 if (!erasesize) 3363 return -EINVAL; 3364 3365 mtd_region[i].erasesize = erasesize; 3366 mtd_region[i].numblocks = div_u64(region[i].size, erasesize); 3367 mtd_region[i].offset = region[i].offset; 3368 } 3369 3370 mtd->numeraseregions = map->n_regions; 3371 mtd->eraseregions = mtd_region; 3372 3373 return 0; 3374 } 3375 3376 static int spi_nor_set_mtd_info(struct spi_nor *nor) 3377 { 3378 struct mtd_info *mtd = &nor->mtd; 3379 struct device *dev = nor->dev; 3380 3381 spi_nor_set_mtd_locking_ops(nor); 3382 spi_nor_set_mtd_otp_ops(nor); 3383 3384 mtd->dev.parent = dev; 3385 if (!mtd->name) 3386 mtd->name = dev_name(dev); 3387 mtd->type = MTD_NORFLASH; 3388 mtd->flags = MTD_CAP_NORFLASH; 3389 /* Unset BIT_WRITEABLE to enable JFFS2 write buffer for ECC'd NOR */ 3390 if (nor->flags & SNOR_F_ECC) 3391 mtd->flags &= ~MTD_BIT_WRITEABLE; 3392 if (nor->info->flags & SPI_NOR_NO_ERASE) 3393 mtd->flags |= MTD_NO_ERASE; 3394 else 3395 mtd->_erase = spi_nor_erase; 3396 mtd->writesize = nor->params->writesize; 3397 mtd->writebufsize = nor->params->page_size; 3398 mtd->size = nor->params->size; 3399 mtd->_read = spi_nor_read; 3400 /* Might be already set by some SST flashes. */ 3401 if (!mtd->_write) 3402 mtd->_write = spi_nor_write; 3403 mtd->_suspend = spi_nor_suspend; 3404 mtd->_resume = spi_nor_resume; 3405 mtd->_get_device = spi_nor_get_device; 3406 mtd->_put_device = spi_nor_put_device; 3407 3408 if (!spi_nor_has_uniform_erase(nor)) 3409 return spi_nor_set_mtd_eraseregions(nor); 3410 3411 return 0; 3412 } 3413 3414 static int spi_nor_hw_reset(struct spi_nor *nor) 3415 { 3416 struct gpio_desc *reset; 3417 3418 reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW); 3419 if (IS_ERR_OR_NULL(reset)) 3420 return PTR_ERR_OR_ZERO(reset); 3421 3422 /* 3423 * Experimental delay values by looking at different flash device 3424 * vendors datasheets. 3425 */ 3426 usleep_range(1, 5); 3427 gpiod_set_value_cansleep(reset, 1); 3428 usleep_range(100, 150); 3429 gpiod_set_value_cansleep(reset, 0); 3430 usleep_range(1000, 1200); 3431 3432 return 0; 3433 } 3434 3435 int spi_nor_scan(struct spi_nor *nor, const char *name, 3436 const struct spi_nor_hwcaps *hwcaps) 3437 { 3438 const struct flash_info *info; 3439 struct device *dev = nor->dev; 3440 int ret; 3441 3442 ret = spi_nor_check(nor); 3443 if (ret) 3444 return ret; 3445 3446 /* Reset SPI protocol for all commands. */ 3447 nor->reg_proto = SNOR_PROTO_1_1_1; 3448 nor->read_proto = SNOR_PROTO_1_1_1; 3449 nor->write_proto = SNOR_PROTO_1_1_1; 3450 3451 /* 3452 * We need the bounce buffer early to read/write registers when going 3453 * through the spi-mem layer (buffers have to be DMA-able). 3454 * For spi-mem drivers, we'll reallocate a new buffer if 3455 * nor->params->page_size turns out to be greater than PAGE_SIZE (which 3456 * shouldn't happen before long since NOR pages are usually less 3457 * than 1KB) after spi_nor_scan() returns. 3458 */ 3459 nor->bouncebuf_size = PAGE_SIZE; 3460 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size, 3461 GFP_KERNEL); 3462 if (!nor->bouncebuf) 3463 return -ENOMEM; 3464 3465 ret = spi_nor_hw_reset(nor); 3466 if (ret) 3467 return ret; 3468 3469 info = spi_nor_get_flash_info(nor, name); 3470 if (IS_ERR(info)) 3471 return PTR_ERR(info); 3472 3473 nor->info = info; 3474 3475 mutex_init(&nor->lock); 3476 3477 /* Init flash parameters based on flash_info struct and SFDP */ 3478 ret = spi_nor_init_params(nor); 3479 if (ret) 3480 return ret; 3481 3482 if (spi_nor_use_parallel_locking(nor)) 3483 init_waitqueue_head(&nor->rww.wait); 3484 3485 /* 3486 * Configure the SPI memory: 3487 * - select op codes for (Fast) Read, Page Program and Sector Erase. 3488 * - set the number of dummy cycles (mode cycles + wait states). 3489 * - set the SPI protocols for register and memory accesses. 3490 * - set the number of address bytes. 3491 */ 3492 ret = spi_nor_setup(nor, hwcaps); 3493 if (ret) 3494 return ret; 3495 3496 /* Send all the required SPI flash commands to initialize device */ 3497 ret = spi_nor_init(nor); 3498 if (ret) 3499 return ret; 3500 3501 /* No mtd_info fields should be used up to this point. */ 3502 ret = spi_nor_set_mtd_info(nor); 3503 if (ret) 3504 return ret; 3505 3506 dev_dbg(dev, "Manufacturer and device ID: %*phN\n", 3507 SPI_NOR_MAX_ID_LEN, nor->id); 3508 3509 return 0; 3510 } 3511 EXPORT_SYMBOL_GPL(spi_nor_scan); 3512 3513 static int spi_nor_create_read_dirmap(struct spi_nor *nor) 3514 { 3515 struct spi_mem_dirmap_info info = { 3516 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0), 3517 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0), 3518 SPI_MEM_OP_DUMMY(nor->read_dummy, 0), 3519 SPI_MEM_OP_DATA_IN(0, NULL, 0)), 3520 .offset = 0, 3521 .length = nor->params->size, 3522 }; 3523 struct spi_mem_op *op = &info.op_tmpl; 3524 3525 spi_nor_spimem_setup_op(nor, op, nor->read_proto); 3526 3527 /* convert the dummy cycles to the number of bytes */ 3528 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8; 3529 if (spi_nor_protocol_is_dtr(nor->read_proto)) 3530 op->dummy.nbytes *= 2; 3531 3532 /* 3533 * Since spi_nor_spimem_setup_op() only sets buswidth when the number 3534 * of data bytes is non-zero, the data buswidth won't be set here. So, 3535 * do it explicitly. 3536 */ 3537 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto); 3538 3539 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem, 3540 &info); 3541 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc); 3542 } 3543 3544 static int spi_nor_create_write_dirmap(struct spi_nor *nor) 3545 { 3546 struct spi_mem_dirmap_info info = { 3547 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0), 3548 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0), 3549 SPI_MEM_OP_NO_DUMMY, 3550 SPI_MEM_OP_DATA_OUT(0, NULL, 0)), 3551 .offset = 0, 3552 .length = nor->params->size, 3553 }; 3554 struct spi_mem_op *op = &info.op_tmpl; 3555 3556 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) 3557 op->addr.nbytes = 0; 3558 3559 spi_nor_spimem_setup_op(nor, op, nor->write_proto); 3560 3561 /* 3562 * Since spi_nor_spimem_setup_op() only sets buswidth when the number 3563 * of data bytes is non-zero, the data buswidth won't be set here. So, 3564 * do it explicitly. 3565 */ 3566 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto); 3567 3568 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem, 3569 &info); 3570 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc); 3571 } 3572 3573 static int spi_nor_probe(struct spi_mem *spimem) 3574 { 3575 struct spi_device *spi = spimem->spi; 3576 struct flash_platform_data *data = dev_get_platdata(&spi->dev); 3577 struct spi_nor *nor; 3578 /* 3579 * Enable all caps by default. The core will mask them after 3580 * checking what's really supported using spi_mem_supports_op(). 3581 */ 3582 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL }; 3583 char *flash_name; 3584 int ret; 3585 3586 nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL); 3587 if (!nor) 3588 return -ENOMEM; 3589 3590 nor->spimem = spimem; 3591 nor->dev = &spi->dev; 3592 spi_nor_set_flash_node(nor, spi->dev.of_node); 3593 3594 spi_mem_set_drvdata(spimem, nor); 3595 3596 if (data && data->name) 3597 nor->mtd.name = data->name; 3598 3599 if (!nor->mtd.name) 3600 nor->mtd.name = spi_mem_get_name(spimem); 3601 3602 /* 3603 * For some (historical?) reason many platforms provide two different 3604 * names in flash_platform_data: "name" and "type". Quite often name is 3605 * set to "m25p80" and then "type" provides a real chip name. 3606 * If that's the case, respect "type" and ignore a "name". 3607 */ 3608 if (data && data->type) 3609 flash_name = data->type; 3610 else if (!strcmp(spi->modalias, "spi-nor")) 3611 flash_name = NULL; /* auto-detect */ 3612 else 3613 flash_name = spi->modalias; 3614 3615 ret = spi_nor_scan(nor, flash_name, &hwcaps); 3616 if (ret) 3617 return ret; 3618 3619 spi_nor_debugfs_register(nor); 3620 3621 /* 3622 * None of the existing parts have > 512B pages, but let's play safe 3623 * and add this logic so that if anyone ever adds support for such 3624 * a NOR we don't end up with buffer overflows. 3625 */ 3626 if (nor->params->page_size > PAGE_SIZE) { 3627 nor->bouncebuf_size = nor->params->page_size; 3628 devm_kfree(nor->dev, nor->bouncebuf); 3629 nor->bouncebuf = devm_kmalloc(nor->dev, 3630 nor->bouncebuf_size, 3631 GFP_KERNEL); 3632 if (!nor->bouncebuf) 3633 return -ENOMEM; 3634 } 3635 3636 ret = spi_nor_create_read_dirmap(nor); 3637 if (ret) 3638 return ret; 3639 3640 ret = spi_nor_create_write_dirmap(nor); 3641 if (ret) 3642 return ret; 3643 3644 return mtd_device_register(&nor->mtd, data ? data->parts : NULL, 3645 data ? data->nr_parts : 0); 3646 } 3647 3648 static int spi_nor_remove(struct spi_mem *spimem) 3649 { 3650 struct spi_nor *nor = spi_mem_get_drvdata(spimem); 3651 3652 spi_nor_restore(nor); 3653 3654 /* Clean up MTD stuff. */ 3655 return mtd_device_unregister(&nor->mtd); 3656 } 3657 3658 static void spi_nor_shutdown(struct spi_mem *spimem) 3659 { 3660 struct spi_nor *nor = spi_mem_get_drvdata(spimem); 3661 3662 spi_nor_restore(nor); 3663 } 3664 3665 /* 3666 * Do NOT add to this array without reading the following: 3667 * 3668 * Historically, many flash devices are bound to this driver by their name. But 3669 * since most of these flash are compatible to some extent, and their 3670 * differences can often be differentiated by the JEDEC read-ID command, we 3671 * encourage new users to add support to the spi-nor library, and simply bind 3672 * against a generic string here (e.g., "jedec,spi-nor"). 3673 * 3674 * Many flash names are kept here in this list to keep them available 3675 * as module aliases for existing platforms. 3676 */ 3677 static const struct spi_device_id spi_nor_dev_ids[] = { 3678 /* 3679 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and 3680 * hack around the fact that the SPI core does not provide uevent 3681 * matching for .of_match_table 3682 */ 3683 {"spi-nor"}, 3684 3685 /* 3686 * Entries not used in DTs that should be safe to drop after replacing 3687 * them with "spi-nor" in platform data. 3688 */ 3689 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"}, 3690 3691 /* 3692 * Entries that were used in DTs without "jedec,spi-nor" fallback and 3693 * should be kept for backward compatibility. 3694 */ 3695 {"at25df321a"}, {"at25df641"}, {"at26df081a"}, 3696 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"}, 3697 {"mx25l25635e"},{"mx66l51235l"}, 3698 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"}, 3699 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"}, 3700 {"s25fl064k"}, 3701 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"}, 3702 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"}, 3703 {"m25p64"}, {"m25p128"}, 3704 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"}, 3705 {"w25q80bl"}, {"w25q128"}, {"w25q256"}, 3706 3707 /* Flashes that can't be detected using JEDEC */ 3708 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"}, 3709 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"}, 3710 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"}, 3711 3712 /* Everspin MRAMs (non-JEDEC) */ 3713 { "mr25h128" }, /* 128 Kib, 40 MHz */ 3714 { "mr25h256" }, /* 256 Kib, 40 MHz */ 3715 { "mr25h10" }, /* 1 Mib, 40 MHz */ 3716 { "mr25h40" }, /* 4 Mib, 40 MHz */ 3717 3718 { }, 3719 }; 3720 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids); 3721 3722 static const struct of_device_id spi_nor_of_table[] = { 3723 /* 3724 * Generic compatibility for SPI NOR that can be identified by the 3725 * JEDEC READ ID opcode (0x9F). Use this, if possible. 3726 */ 3727 { .compatible = "jedec,spi-nor" }, 3728 { /* sentinel */ }, 3729 }; 3730 MODULE_DEVICE_TABLE(of, spi_nor_of_table); 3731 3732 /* 3733 * REVISIT: many of these chips have deep power-down modes, which 3734 * should clearly be entered on suspend() to minimize power use. 3735 * And also when they're otherwise idle... 3736 */ 3737 static struct spi_mem_driver spi_nor_driver = { 3738 .spidrv = { 3739 .driver = { 3740 .name = "spi-nor", 3741 .of_match_table = spi_nor_of_table, 3742 .dev_groups = spi_nor_sysfs_groups, 3743 }, 3744 .id_table = spi_nor_dev_ids, 3745 }, 3746 .probe = spi_nor_probe, 3747 .remove = spi_nor_remove, 3748 .shutdown = spi_nor_shutdown, 3749 }; 3750 3751 static int __init spi_nor_module_init(void) 3752 { 3753 return spi_mem_driver_register(&spi_nor_driver); 3754 } 3755 module_init(spi_nor_module_init); 3756 3757 static void __exit spi_nor_module_exit(void) 3758 { 3759 spi_mem_driver_unregister(&spi_nor_driver); 3760 spi_nor_debugfs_shutdown(); 3761 } 3762 module_exit(spi_nor_module_exit); 3763 3764 MODULE_LICENSE("GPL v2"); 3765 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); 3766 MODULE_AUTHOR("Mike Lavender"); 3767 MODULE_DESCRIPTION("framework for SPI NOR"); 3768