xref: /linux/drivers/mtd/spi-nor/core.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/math64.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/spi-nor.h>
18 #include <linux/mutex.h>
19 #include <linux/of_platform.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sizes.h>
22 #include <linux/slab.h>
23 #include <linux/spi/flash.h>
24 
25 #include "core.h"
26 
27 /* Define max times to check status register before we give up. */
28 
29 /*
30  * For everything but full-chip erase; probably could be much smaller, but kept
31  * around for safety for now
32  */
33 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
34 
35 /*
36  * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37  * for larger flash
38  */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
40 
41 #define SPI_NOR_MAX_ADDR_NBYTES	4
42 
43 #define SPI_NOR_SRST_SLEEP_MIN 200
44 #define SPI_NOR_SRST_SLEEP_MAX 400
45 
46 /**
47  * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
48  *			   extension type.
49  * @nor:		pointer to a 'struct spi_nor'
50  * @op:			pointer to the 'struct spi_mem_op' whose properties
51  *			need to be initialized.
52  *
53  * Right now, only "repeat" and "invert" are supported.
54  *
55  * Return: The opcode extension.
56  */
57 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
58 			      const struct spi_mem_op *op)
59 {
60 	switch (nor->cmd_ext_type) {
61 	case SPI_NOR_EXT_INVERT:
62 		return ~op->cmd.opcode;
63 
64 	case SPI_NOR_EXT_REPEAT:
65 		return op->cmd.opcode;
66 
67 	default:
68 		dev_err(nor->dev, "Unknown command extension type\n");
69 		return 0;
70 	}
71 }
72 
73 /**
74  * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
75  * @nor:		pointer to a 'struct spi_nor'
76  * @op:			pointer to the 'struct spi_mem_op' whose properties
77  *			need to be initialized.
78  * @proto:		the protocol from which the properties need to be set.
79  */
80 void spi_nor_spimem_setup_op(const struct spi_nor *nor,
81 			     struct spi_mem_op *op,
82 			     const enum spi_nor_protocol proto)
83 {
84 	u8 ext;
85 
86 	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
87 
88 	if (op->addr.nbytes)
89 		op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
90 
91 	if (op->dummy.nbytes)
92 		op->dummy.buswidth = spi_nor_get_protocol_data_nbits(proto);
93 
94 	if (op->data.nbytes)
95 		op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
96 
97 	if (spi_nor_protocol_is_dtr(proto)) {
98 		/*
99 		 * SPIMEM supports mixed DTR modes, but right now we can only
100 		 * have all phases either DTR or STR. IOW, SPIMEM can have
101 		 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
102 		 * phases to either DTR or STR.
103 		 */
104 		op->cmd.dtr = true;
105 		op->addr.dtr = true;
106 		op->dummy.dtr = true;
107 		op->data.dtr = true;
108 
109 		/* 2 bytes per clock cycle in DTR mode. */
110 		op->dummy.nbytes *= 2;
111 
112 		ext = spi_nor_get_cmd_ext(nor, op);
113 		op->cmd.opcode = (op->cmd.opcode << 8) | ext;
114 		op->cmd.nbytes = 2;
115 	}
116 
117 	if (proto == SNOR_PROTO_8_8_8_DTR && nor->flags & SNOR_F_SWAP16)
118 		op->data.swap16 = true;
119 }
120 
121 /**
122  * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
123  *                           transfer
124  * @nor:        pointer to 'struct spi_nor'
125  * @op:         pointer to 'struct spi_mem_op' template for transfer
126  *
127  * If we have to use the bounce buffer, the data field in @op will be updated.
128  *
129  * Return: true if the bounce buffer is needed, false if not
130  */
131 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
132 {
133 	/* op->data.buf.in occupies the same memory as op->data.buf.out */
134 	if (object_is_on_stack(op->data.buf.in) ||
135 	    !virt_addr_valid(op->data.buf.in)) {
136 		if (op->data.nbytes > nor->bouncebuf_size)
137 			op->data.nbytes = nor->bouncebuf_size;
138 		op->data.buf.in = nor->bouncebuf;
139 		return true;
140 	}
141 
142 	return false;
143 }
144 
145 /**
146  * spi_nor_spimem_exec_op() - execute a memory operation
147  * @nor:        pointer to 'struct spi_nor'
148  * @op:         pointer to 'struct spi_mem_op' template for transfer
149  *
150  * Return: 0 on success, -error otherwise.
151  */
152 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
153 {
154 	int error;
155 
156 	error = spi_mem_adjust_op_size(nor->spimem, op);
157 	if (error)
158 		return error;
159 
160 	return spi_mem_exec_op(nor->spimem, op);
161 }
162 
163 int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
164 				    u8 *buf, size_t len)
165 {
166 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
167 		return -EOPNOTSUPP;
168 
169 	return nor->controller_ops->read_reg(nor, opcode, buf, len);
170 }
171 
172 int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
173 				     const u8 *buf, size_t len)
174 {
175 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
176 		return -EOPNOTSUPP;
177 
178 	return nor->controller_ops->write_reg(nor, opcode, buf, len);
179 }
180 
181 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
182 {
183 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
184 		return -EOPNOTSUPP;
185 
186 	return nor->controller_ops->erase(nor, offs);
187 }
188 
189 /**
190  * spi_nor_spimem_read_data() - read data from flash's memory region via
191  *                              spi-mem
192  * @nor:        pointer to 'struct spi_nor'
193  * @from:       offset to read from
194  * @len:        number of bytes to read
195  * @buf:        pointer to dst buffer
196  *
197  * Return: number of bytes read successfully, -errno otherwise
198  */
199 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
200 					size_t len, u8 *buf)
201 {
202 	struct spi_mem_op op =
203 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
204 			   SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0),
205 			   SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
206 			   SPI_MEM_OP_DATA_IN(len, buf, 0));
207 	bool usebouncebuf;
208 	ssize_t nbytes;
209 	int error;
210 
211 	spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
212 
213 	/* convert the dummy cycles to the number of bytes */
214 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
215 	if (spi_nor_protocol_is_dtr(nor->read_proto))
216 		op.dummy.nbytes *= 2;
217 
218 	usebouncebuf = spi_nor_spimem_bounce(nor, &op);
219 
220 	if (nor->dirmap.rdesc) {
221 		nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
222 					     op.data.nbytes, op.data.buf.in);
223 	} else {
224 		error = spi_nor_spimem_exec_op(nor, &op);
225 		if (error)
226 			return error;
227 		nbytes = op.data.nbytes;
228 	}
229 
230 	if (usebouncebuf && nbytes > 0)
231 		memcpy(buf, op.data.buf.in, nbytes);
232 
233 	return nbytes;
234 }
235 
236 /**
237  * spi_nor_read_data() - read data from flash memory
238  * @nor:        pointer to 'struct spi_nor'
239  * @from:       offset to read from
240  * @len:        number of bytes to read
241  * @buf:        pointer to dst buffer
242  *
243  * Return: number of bytes read successfully, -errno otherwise
244  */
245 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
246 {
247 	if (nor->spimem)
248 		return spi_nor_spimem_read_data(nor, from, len, buf);
249 
250 	return nor->controller_ops->read(nor, from, len, buf);
251 }
252 
253 /**
254  * spi_nor_spimem_write_data() - write data to flash memory via
255  *                               spi-mem
256  * @nor:        pointer to 'struct spi_nor'
257  * @to:         offset to write to
258  * @len:        number of bytes to write
259  * @buf:        pointer to src buffer
260  *
261  * Return: number of bytes written successfully, -errno otherwise
262  */
263 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
264 					 size_t len, const u8 *buf)
265 {
266 	struct spi_mem_op op =
267 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
268 			   SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0),
269 			   SPI_MEM_OP_NO_DUMMY,
270 			   SPI_MEM_OP_DATA_OUT(len, buf, 0));
271 	ssize_t nbytes;
272 	int error;
273 
274 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
275 		op.addr.nbytes = 0;
276 
277 	spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
278 
279 	if (spi_nor_spimem_bounce(nor, &op))
280 		memcpy(nor->bouncebuf, buf, op.data.nbytes);
281 
282 	if (nor->dirmap.wdesc) {
283 		nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
284 					      op.data.nbytes, op.data.buf.out);
285 	} else {
286 		error = spi_nor_spimem_exec_op(nor, &op);
287 		if (error)
288 			return error;
289 		nbytes = op.data.nbytes;
290 	}
291 
292 	return nbytes;
293 }
294 
295 /**
296  * spi_nor_write_data() - write data to flash memory
297  * @nor:        pointer to 'struct spi_nor'
298  * @to:         offset to write to
299  * @len:        number of bytes to write
300  * @buf:        pointer to src buffer
301  *
302  * Return: number of bytes written successfully, -errno otherwise
303  */
304 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
305 			   const u8 *buf)
306 {
307 	if (nor->spimem)
308 		return spi_nor_spimem_write_data(nor, to, len, buf);
309 
310 	return nor->controller_ops->write(nor, to, len, buf);
311 }
312 
313 /**
314  * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or
315  * volatile.
316  * @nor:        pointer to 'struct spi_nor'.
317  * @op:		SPI memory operation. op->data.buf must be DMA-able.
318  * @proto:	SPI protocol to use for the register operation.
319  *
320  * Return: zero on success, -errno otherwise
321  */
322 int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op,
323 			 enum spi_nor_protocol proto)
324 {
325 	if (!nor->spimem)
326 		return -EOPNOTSUPP;
327 
328 	spi_nor_spimem_setup_op(nor, op, proto);
329 	return spi_nor_spimem_exec_op(nor, op);
330 }
331 
332 /**
333  * spi_nor_write_any_volatile_reg() - write any volatile register to flash
334  * memory.
335  * @nor:        pointer to 'struct spi_nor'
336  * @op:		SPI memory operation. op->data.buf must be DMA-able.
337  * @proto:	SPI protocol to use for the register operation.
338  *
339  * Writing volatile registers are instant according to some manufacturers
340  * (Cypress, Micron) and do not need any status polling.
341  *
342  * Return: zero on success, -errno otherwise
343  */
344 int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op,
345 				   enum spi_nor_protocol proto)
346 {
347 	int ret;
348 
349 	if (!nor->spimem)
350 		return -EOPNOTSUPP;
351 
352 	ret = spi_nor_write_enable(nor);
353 	if (ret)
354 		return ret;
355 	spi_nor_spimem_setup_op(nor, op, proto);
356 	return spi_nor_spimem_exec_op(nor, op);
357 }
358 
359 /**
360  * spi_nor_write_enable() - Set write enable latch with Write Enable command.
361  * @nor:	pointer to 'struct spi_nor'.
362  *
363  * Return: 0 on success, -errno otherwise.
364  */
365 int spi_nor_write_enable(struct spi_nor *nor)
366 {
367 	int ret;
368 
369 	if (nor->spimem) {
370 		struct spi_mem_op op = SPI_NOR_WREN_OP;
371 
372 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
373 
374 		ret = spi_mem_exec_op(nor->spimem, &op);
375 	} else {
376 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
377 						       NULL, 0);
378 	}
379 
380 	if (ret)
381 		dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
382 
383 	return ret;
384 }
385 
386 /**
387  * spi_nor_write_disable() - Send Write Disable instruction to the chip.
388  * @nor:	pointer to 'struct spi_nor'.
389  *
390  * Return: 0 on success, -errno otherwise.
391  */
392 int spi_nor_write_disable(struct spi_nor *nor)
393 {
394 	int ret;
395 
396 	if (nor->spimem) {
397 		struct spi_mem_op op = SPI_NOR_WRDI_OP;
398 
399 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
400 
401 		ret = spi_mem_exec_op(nor->spimem, &op);
402 	} else {
403 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
404 						       NULL, 0);
405 	}
406 
407 	if (ret)
408 		dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
409 
410 	return ret;
411 }
412 
413 /**
414  * spi_nor_read_id() - Read the JEDEC ID.
415  * @nor:	pointer to 'struct spi_nor'.
416  * @naddr:	number of address bytes to send. Can be zero if the operation
417  *		does not need to send an address.
418  * @ndummy:	number of dummy bytes to send after an opcode or address. Can
419  *		be zero if the operation does not require dummy bytes.
420  * @id:		pointer to a DMA-able buffer where the value of the JEDEC ID
421  *		will be written.
422  * @proto:	the SPI protocol for register operation.
423  *
424  * Return: 0 on success, -errno otherwise.
425  */
426 int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id,
427 		    enum spi_nor_protocol proto)
428 {
429 	int ret;
430 
431 	if (nor->spimem) {
432 		struct spi_mem_op op =
433 			SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN);
434 
435 		spi_nor_spimem_setup_op(nor, &op, proto);
436 		ret = spi_mem_exec_op(nor->spimem, &op);
437 	} else {
438 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
439 						    SPI_NOR_MAX_ID_LEN);
440 	}
441 	return ret;
442 }
443 
444 /**
445  * spi_nor_read_sr() - Read the Status Register.
446  * @nor:	pointer to 'struct spi_nor'.
447  * @sr:		pointer to a DMA-able buffer where the value of the
448  *              Status Register will be written. Should be at least 2 bytes.
449  *
450  * Return: 0 on success, -errno otherwise.
451  */
452 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
453 {
454 	int ret;
455 
456 	if (nor->spimem) {
457 		struct spi_mem_op op = SPI_NOR_RDSR_OP(sr);
458 
459 		if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
460 			op.addr.nbytes = nor->params->rdsr_addr_nbytes;
461 			op.dummy.nbytes = nor->params->rdsr_dummy;
462 			/*
463 			 * We don't want to read only one byte in DTR mode. So,
464 			 * read 2 and then discard the second byte.
465 			 */
466 			op.data.nbytes = 2;
467 		}
468 
469 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
470 
471 		ret = spi_mem_exec_op(nor->spimem, &op);
472 	} else {
473 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
474 						      1);
475 	}
476 
477 	if (ret)
478 		dev_dbg(nor->dev, "error %d reading SR\n", ret);
479 
480 	return ret;
481 }
482 
483 /**
484  * spi_nor_read_cr() - Read the Configuration Register using the
485  * SPINOR_OP_RDCR (35h) command.
486  * @nor:	pointer to 'struct spi_nor'
487  * @cr:		pointer to a DMA-able buffer where the value of the
488  *              Configuration Register will be written.
489  *
490  * Return: 0 on success, -errno otherwise.
491  */
492 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
493 {
494 	int ret;
495 
496 	if (nor->spimem) {
497 		struct spi_mem_op op = SPI_NOR_RDCR_OP(cr);
498 
499 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
500 
501 		ret = spi_mem_exec_op(nor->spimem, &op);
502 	} else {
503 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
504 						      1);
505 	}
506 
507 	if (ret)
508 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
509 
510 	return ret;
511 }
512 
513 /**
514  * spi_nor_set_4byte_addr_mode_en4b_ex4b() - Enter/Exit 4-byte address mode
515  *			using SPINOR_OP_EN4B/SPINOR_OP_EX4B. Typically used by
516  *			Winbond and Macronix.
517  * @nor:	pointer to 'struct spi_nor'.
518  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
519  *		address mode.
520  *
521  * Return: 0 on success, -errno otherwise.
522  */
523 int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable)
524 {
525 	int ret;
526 
527 	if (nor->spimem) {
528 		struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable);
529 
530 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
531 
532 		ret = spi_mem_exec_op(nor->spimem, &op);
533 	} else {
534 		ret = spi_nor_controller_ops_write_reg(nor,
535 						       enable ? SPINOR_OP_EN4B :
536 								SPINOR_OP_EX4B,
537 						       NULL, 0);
538 	}
539 
540 	if (ret)
541 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
542 
543 	return ret;
544 }
545 
546 /**
547  * spi_nor_set_4byte_addr_mode_wren_en4b_ex4b() - Set 4-byte address mode using
548  * SPINOR_OP_WREN followed by SPINOR_OP_EN4B or SPINOR_OP_EX4B. Typically used
549  * by ST and Micron flashes.
550  * @nor:	pointer to 'struct spi_nor'.
551  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
552  *		address mode.
553  *
554  * Return: 0 on success, -errno otherwise.
555  */
556 int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, bool enable)
557 {
558 	int ret;
559 
560 	ret = spi_nor_write_enable(nor);
561 	if (ret)
562 		return ret;
563 
564 	ret = spi_nor_set_4byte_addr_mode_en4b_ex4b(nor, enable);
565 	if (ret)
566 		return ret;
567 
568 	return spi_nor_write_disable(nor);
569 }
570 
571 /**
572  * spi_nor_set_4byte_addr_mode_brwr() - Set 4-byte address mode using
573  *			SPINOR_OP_BRWR. Typically used by Spansion flashes.
574  * @nor:	pointer to 'struct spi_nor'.
575  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
576  *		address mode.
577  *
578  * 8-bit volatile bank register used to define A[30:A24] bits. MSB (bit[7]) is
579  * used to enable/disable 4-byte address mode. When MSB is set to ‘1’, 4-byte
580  * address mode is active and A[30:24] bits are don’t care. Write instruction is
581  * SPINOR_OP_BRWR(17h) with 1 byte of data.
582  *
583  * Return: 0 on success, -errno otherwise.
584  */
585 int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable)
586 {
587 	int ret;
588 
589 	nor->bouncebuf[0] = enable << 7;
590 
591 	if (nor->spimem) {
592 		struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf);
593 
594 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
595 
596 		ret = spi_mem_exec_op(nor->spimem, &op);
597 	} else {
598 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
599 						       nor->bouncebuf, 1);
600 	}
601 
602 	if (ret)
603 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
604 
605 	return ret;
606 }
607 
608 /**
609  * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
610  * for new commands.
611  * @nor:	pointer to 'struct spi_nor'.
612  *
613  * Return: 1 if ready, 0 if not ready, -errno on errors.
614  */
615 int spi_nor_sr_ready(struct spi_nor *nor)
616 {
617 	int ret;
618 
619 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
620 	if (ret)
621 		return ret;
622 
623 	return !(nor->bouncebuf[0] & SR_WIP);
624 }
625 
626 /**
627  * spi_nor_use_parallel_locking() - Checks if RWW locking scheme shall be used
628  * @nor:	pointer to 'struct spi_nor'.
629  *
630  * Return: true if parallel locking is enabled, false otherwise.
631  */
632 static bool spi_nor_use_parallel_locking(struct spi_nor *nor)
633 {
634 	return nor->flags & SNOR_F_RWW;
635 }
636 
637 /* Locking helpers for status read operations */
638 static int spi_nor_rww_start_rdst(struct spi_nor *nor)
639 {
640 	struct spi_nor_rww *rww = &nor->rww;
641 	int ret = -EAGAIN;
642 
643 	mutex_lock(&nor->lock);
644 
645 	if (rww->ongoing_io || rww->ongoing_rd)
646 		goto busy;
647 
648 	rww->ongoing_io = true;
649 	rww->ongoing_rd = true;
650 	ret = 0;
651 
652 busy:
653 	mutex_unlock(&nor->lock);
654 	return ret;
655 }
656 
657 static void spi_nor_rww_end_rdst(struct spi_nor *nor)
658 {
659 	struct spi_nor_rww *rww = &nor->rww;
660 
661 	mutex_lock(&nor->lock);
662 
663 	rww->ongoing_io = false;
664 	rww->ongoing_rd = false;
665 
666 	mutex_unlock(&nor->lock);
667 }
668 
669 static int spi_nor_lock_rdst(struct spi_nor *nor)
670 {
671 	if (spi_nor_use_parallel_locking(nor))
672 		return spi_nor_rww_start_rdst(nor);
673 
674 	return 0;
675 }
676 
677 static void spi_nor_unlock_rdst(struct spi_nor *nor)
678 {
679 	if (spi_nor_use_parallel_locking(nor)) {
680 		spi_nor_rww_end_rdst(nor);
681 		wake_up(&nor->rww.wait);
682 	}
683 }
684 
685 /**
686  * spi_nor_ready() - Query the flash to see if it is ready for new commands.
687  * @nor:	pointer to 'struct spi_nor'.
688  *
689  * Return: 1 if ready, 0 if not ready, -errno on errors.
690  */
691 static int spi_nor_ready(struct spi_nor *nor)
692 {
693 	int ret;
694 
695 	ret = spi_nor_lock_rdst(nor);
696 	if (ret)
697 		return 0;
698 
699 	/* Flashes might override the standard routine. */
700 	if (nor->params->ready)
701 		ret = nor->params->ready(nor);
702 	else
703 		ret = spi_nor_sr_ready(nor);
704 
705 	spi_nor_unlock_rdst(nor);
706 
707 	return ret;
708 }
709 
710 /**
711  * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
712  * Status Register until ready, or timeout occurs.
713  * @nor:		pointer to "struct spi_nor".
714  * @timeout_jiffies:	jiffies to wait until timeout.
715  *
716  * Return: 0 on success, -errno otherwise.
717  */
718 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
719 						unsigned long timeout_jiffies)
720 {
721 	unsigned long deadline;
722 	int timeout = 0, ret;
723 
724 	deadline = jiffies + timeout_jiffies;
725 
726 	while (!timeout) {
727 		if (time_after_eq(jiffies, deadline))
728 			timeout = 1;
729 
730 		ret = spi_nor_ready(nor);
731 		if (ret < 0)
732 			return ret;
733 		if (ret)
734 			return 0;
735 
736 		cond_resched();
737 	}
738 
739 	dev_dbg(nor->dev, "flash operation timed out\n");
740 
741 	return -ETIMEDOUT;
742 }
743 
744 /**
745  * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
746  * flash to be ready, or timeout occurs.
747  * @nor:	pointer to "struct spi_nor".
748  *
749  * Return: 0 on success, -errno otherwise.
750  */
751 int spi_nor_wait_till_ready(struct spi_nor *nor)
752 {
753 	return spi_nor_wait_till_ready_with_timeout(nor,
754 						    DEFAULT_READY_WAIT_JIFFIES);
755 }
756 
757 /**
758  * spi_nor_global_block_unlock() - Unlock Global Block Protection.
759  * @nor:	pointer to 'struct spi_nor'.
760  *
761  * Return: 0 on success, -errno otherwise.
762  */
763 int spi_nor_global_block_unlock(struct spi_nor *nor)
764 {
765 	int ret;
766 
767 	ret = spi_nor_write_enable(nor);
768 	if (ret)
769 		return ret;
770 
771 	if (nor->spimem) {
772 		struct spi_mem_op op = SPI_NOR_GBULK_OP;
773 
774 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
775 
776 		ret = spi_mem_exec_op(nor->spimem, &op);
777 	} else {
778 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
779 						       NULL, 0);
780 	}
781 
782 	if (ret) {
783 		dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
784 		return ret;
785 	}
786 
787 	return spi_nor_wait_till_ready(nor);
788 }
789 
790 /**
791  * spi_nor_write_sr() - Write the Status Register.
792  * @nor:	pointer to 'struct spi_nor'.
793  * @sr:		pointer to DMA-able buffer to write to the Status Register.
794  * @len:	number of bytes to write to the Status Register.
795  *
796  * Return: 0 on success, -errno otherwise.
797  */
798 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
799 {
800 	int ret;
801 
802 	ret = spi_nor_write_enable(nor);
803 	if (ret)
804 		return ret;
805 
806 	if (nor->spimem) {
807 		struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len);
808 
809 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
810 
811 		ret = spi_mem_exec_op(nor->spimem, &op);
812 	} else {
813 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
814 						       len);
815 	}
816 
817 	if (ret) {
818 		dev_dbg(nor->dev, "error %d writing SR\n", ret);
819 		return ret;
820 	}
821 
822 	return spi_nor_wait_till_ready(nor);
823 }
824 
825 /**
826  * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
827  * ensure that the byte written match the received value.
828  * @nor:	pointer to a 'struct spi_nor'.
829  * @sr1:	byte value to be written to the Status Register.
830  *
831  * Return: 0 on success, -errno otherwise.
832  */
833 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
834 {
835 	int ret;
836 
837 	nor->bouncebuf[0] = sr1;
838 
839 	ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
840 	if (ret)
841 		return ret;
842 
843 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
844 	if (ret)
845 		return ret;
846 
847 	if (nor->bouncebuf[0] != sr1) {
848 		dev_dbg(nor->dev, "SR1: read back test failed\n");
849 		return -EIO;
850 	}
851 
852 	return 0;
853 }
854 
855 /**
856  * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
857  * Status Register 2 in one shot. Ensure that the byte written in the Status
858  * Register 1 match the received value, and that the 16-bit Write did not
859  * affect what was already in the Status Register 2.
860  * @nor:	pointer to a 'struct spi_nor'.
861  * @sr1:	byte value to be written to the Status Register 1.
862  *
863  * Return: 0 on success, -errno otherwise.
864  */
865 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
866 {
867 	int ret;
868 	u8 *sr_cr = nor->bouncebuf;
869 	u8 cr_written;
870 
871 	/* Make sure we don't overwrite the contents of Status Register 2. */
872 	if (!(nor->flags & SNOR_F_NO_READ_CR)) {
873 		ret = spi_nor_read_cr(nor, &sr_cr[1]);
874 		if (ret)
875 			return ret;
876 	} else if (spi_nor_get_protocol_width(nor->read_proto) == 4 &&
877 		   spi_nor_get_protocol_width(nor->write_proto) == 4 &&
878 		   nor->params->quad_enable) {
879 		/*
880 		 * If the Status Register 2 Read command (35h) is not
881 		 * supported, we should at least be sure we don't
882 		 * change the value of the SR2 Quad Enable bit.
883 		 *
884 		 * When the Quad Enable method is set and the buswidth is 4, we
885 		 * can safely assume that the value of the QE bit is one, as a
886 		 * consequence of the nor->params->quad_enable() call.
887 		 *
888 		 * According to the JESD216 revB standard, BFPT DWORDS[15],
889 		 * bits 22:20, the 16-bit Write Status (01h) command is
890 		 * available just for the cases in which the QE bit is
891 		 * described in SR2 at BIT(1).
892 		 */
893 		sr_cr[1] = SR2_QUAD_EN_BIT1;
894 	} else {
895 		sr_cr[1] = 0;
896 	}
897 
898 	sr_cr[0] = sr1;
899 
900 	ret = spi_nor_write_sr(nor, sr_cr, 2);
901 	if (ret)
902 		return ret;
903 
904 	ret = spi_nor_read_sr(nor, sr_cr);
905 	if (ret)
906 		return ret;
907 
908 	if (sr1 != sr_cr[0]) {
909 		dev_dbg(nor->dev, "SR: Read back test failed\n");
910 		return -EIO;
911 	}
912 
913 	if (nor->flags & SNOR_F_NO_READ_CR)
914 		return 0;
915 
916 	cr_written = sr_cr[1];
917 
918 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
919 	if (ret)
920 		return ret;
921 
922 	if (cr_written != sr_cr[1]) {
923 		dev_dbg(nor->dev, "CR: read back test failed\n");
924 		return -EIO;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
932  * Configuration Register in one shot. Ensure that the byte written in the
933  * Configuration Register match the received value, and that the 16-bit Write
934  * did not affect what was already in the Status Register 1.
935  * @nor:	pointer to a 'struct spi_nor'.
936  * @cr:		byte value to be written to the Configuration Register.
937  *
938  * Return: 0 on success, -errno otherwise.
939  */
940 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
941 {
942 	int ret;
943 	u8 *sr_cr = nor->bouncebuf;
944 	u8 sr_written;
945 
946 	/* Keep the current value of the Status Register 1. */
947 	ret = spi_nor_read_sr(nor, sr_cr);
948 	if (ret)
949 		return ret;
950 
951 	sr_cr[1] = cr;
952 
953 	ret = spi_nor_write_sr(nor, sr_cr, 2);
954 	if (ret)
955 		return ret;
956 
957 	sr_written = sr_cr[0];
958 
959 	ret = spi_nor_read_sr(nor, sr_cr);
960 	if (ret)
961 		return ret;
962 
963 	if (sr_written != sr_cr[0]) {
964 		dev_dbg(nor->dev, "SR: Read back test failed\n");
965 		return -EIO;
966 	}
967 
968 	if (nor->flags & SNOR_F_NO_READ_CR)
969 		return 0;
970 
971 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
972 	if (ret)
973 		return ret;
974 
975 	if (cr != sr_cr[1]) {
976 		dev_dbg(nor->dev, "CR: read back test failed\n");
977 		return -EIO;
978 	}
979 
980 	return 0;
981 }
982 
983 /**
984  * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
985  * the byte written match the received value without affecting other bits in the
986  * Status Register 1 and 2.
987  * @nor:	pointer to a 'struct spi_nor'.
988  * @sr1:	byte value to be written to the Status Register.
989  *
990  * Return: 0 on success, -errno otherwise.
991  */
992 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
993 {
994 	if (nor->flags & SNOR_F_HAS_16BIT_SR)
995 		return spi_nor_write_16bit_sr_and_check(nor, sr1);
996 
997 	return spi_nor_write_sr1_and_check(nor, sr1);
998 }
999 
1000 /**
1001  * spi_nor_write_sr2() - Write the Status Register 2 using the
1002  * SPINOR_OP_WRSR2 (3eh) command.
1003  * @nor:	pointer to 'struct spi_nor'.
1004  * @sr2:	pointer to DMA-able buffer to write to the Status Register 2.
1005  *
1006  * Return: 0 on success, -errno otherwise.
1007  */
1008 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1009 {
1010 	int ret;
1011 
1012 	ret = spi_nor_write_enable(nor);
1013 	if (ret)
1014 		return ret;
1015 
1016 	if (nor->spimem) {
1017 		struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2);
1018 
1019 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1020 
1021 		ret = spi_mem_exec_op(nor->spimem, &op);
1022 	} else {
1023 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
1024 						       sr2, 1);
1025 	}
1026 
1027 	if (ret) {
1028 		dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1029 		return ret;
1030 	}
1031 
1032 	return spi_nor_wait_till_ready(nor);
1033 }
1034 
1035 /**
1036  * spi_nor_read_sr2() - Read the Status Register 2 using the
1037  * SPINOR_OP_RDSR2 (3fh) command.
1038  * @nor:	pointer to 'struct spi_nor'.
1039  * @sr2:	pointer to DMA-able buffer where the value of the
1040  *		Status Register 2 will be written.
1041  *
1042  * Return: 0 on success, -errno otherwise.
1043  */
1044 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1045 {
1046 	int ret;
1047 
1048 	if (nor->spimem) {
1049 		struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2);
1050 
1051 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1052 
1053 		ret = spi_mem_exec_op(nor->spimem, &op);
1054 	} else {
1055 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
1056 						      1);
1057 	}
1058 
1059 	if (ret)
1060 		dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1061 
1062 	return ret;
1063 }
1064 
1065 /**
1066  * spi_nor_erase_die() - Erase the entire die.
1067  * @nor:	pointer to 'struct spi_nor'.
1068  * @addr:	address of the die.
1069  * @die_size:	size of the die.
1070  *
1071  * Return: 0 on success, -errno otherwise.
1072  */
1073 static int spi_nor_erase_die(struct spi_nor *nor, loff_t addr, size_t die_size)
1074 {
1075 	bool multi_die = nor->mtd.size != die_size;
1076 	int ret;
1077 
1078 	dev_dbg(nor->dev, " %lldKiB\n", (long long)(die_size >> 10));
1079 
1080 	if (nor->spimem) {
1081 		struct spi_mem_op op =
1082 			SPI_NOR_DIE_ERASE_OP(nor->params->die_erase_opcode,
1083 					     nor->addr_nbytes, addr, multi_die);
1084 
1085 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1086 
1087 		ret = spi_mem_exec_op(nor->spimem, &op);
1088 	} else {
1089 		if (multi_die)
1090 			return -EOPNOTSUPP;
1091 
1092 		ret = spi_nor_controller_ops_write_reg(nor,
1093 						       SPINOR_OP_CHIP_ERASE,
1094 						       NULL, 0);
1095 	}
1096 
1097 	if (ret)
1098 		dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1099 
1100 	return ret;
1101 }
1102 
1103 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1104 {
1105 	size_t i;
1106 
1107 	for (i = 0; i < size; i++)
1108 		if (table[i][0] == opcode)
1109 			return table[i][1];
1110 
1111 	/* No conversion found, keep input op code. */
1112 	return opcode;
1113 }
1114 
1115 u8 spi_nor_convert_3to4_read(u8 opcode)
1116 {
1117 	static const u8 spi_nor_3to4_read[][2] = {
1118 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
1119 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
1120 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
1121 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
1122 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
1123 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
1124 		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
1125 		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
1126 
1127 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
1128 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
1129 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
1130 	};
1131 
1132 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1133 				      ARRAY_SIZE(spi_nor_3to4_read));
1134 }
1135 
1136 static u8 spi_nor_convert_3to4_program(u8 opcode)
1137 {
1138 	static const u8 spi_nor_3to4_program[][2] = {
1139 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
1140 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
1141 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
1142 		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
1143 		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
1144 	};
1145 
1146 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1147 				      ARRAY_SIZE(spi_nor_3to4_program));
1148 }
1149 
1150 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1151 {
1152 	static const u8 spi_nor_3to4_erase[][2] = {
1153 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
1154 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
1155 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
1156 	};
1157 
1158 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1159 				      ARRAY_SIZE(spi_nor_3to4_erase));
1160 }
1161 
1162 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1163 {
1164 	return !!nor->params->erase_map.uniform_region.erase_mask;
1165 }
1166 
1167 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1168 {
1169 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1170 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1171 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1172 
1173 	if (!spi_nor_has_uniform_erase(nor)) {
1174 		struct spi_nor_erase_map *map = &nor->params->erase_map;
1175 		struct spi_nor_erase_type *erase;
1176 		int i;
1177 
1178 		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1179 			erase = &map->erase_type[i];
1180 			erase->opcode =
1181 				spi_nor_convert_3to4_erase(erase->opcode);
1182 		}
1183 	}
1184 }
1185 
1186 static int spi_nor_prep(struct spi_nor *nor)
1187 {
1188 	int ret = 0;
1189 
1190 	if (nor->controller_ops && nor->controller_ops->prepare)
1191 		ret = nor->controller_ops->prepare(nor);
1192 
1193 	return ret;
1194 }
1195 
1196 static void spi_nor_unprep(struct spi_nor *nor)
1197 {
1198 	if (nor->controller_ops && nor->controller_ops->unprepare)
1199 		nor->controller_ops->unprepare(nor);
1200 }
1201 
1202 static void spi_nor_offset_to_banks(u64 bank_size, loff_t start, size_t len,
1203 				    u8 *first, u8 *last)
1204 {
1205 	/* This is currently safe, the number of banks being very small */
1206 	*first = DIV_ROUND_DOWN_ULL(start, bank_size);
1207 	*last = DIV_ROUND_DOWN_ULL(start + len - 1, bank_size);
1208 }
1209 
1210 /* Generic helpers for internal locking and serialization */
1211 static bool spi_nor_rww_start_io(struct spi_nor *nor)
1212 {
1213 	struct spi_nor_rww *rww = &nor->rww;
1214 	bool start = false;
1215 
1216 	mutex_lock(&nor->lock);
1217 
1218 	if (rww->ongoing_io)
1219 		goto busy;
1220 
1221 	rww->ongoing_io = true;
1222 	start = true;
1223 
1224 busy:
1225 	mutex_unlock(&nor->lock);
1226 	return start;
1227 }
1228 
1229 static void spi_nor_rww_end_io(struct spi_nor *nor)
1230 {
1231 	mutex_lock(&nor->lock);
1232 	nor->rww.ongoing_io = false;
1233 	mutex_unlock(&nor->lock);
1234 }
1235 
1236 static int spi_nor_lock_device(struct spi_nor *nor)
1237 {
1238 	if (!spi_nor_use_parallel_locking(nor))
1239 		return 0;
1240 
1241 	return wait_event_killable(nor->rww.wait, spi_nor_rww_start_io(nor));
1242 }
1243 
1244 static void spi_nor_unlock_device(struct spi_nor *nor)
1245 {
1246 	if (spi_nor_use_parallel_locking(nor)) {
1247 		spi_nor_rww_end_io(nor);
1248 		wake_up(&nor->rww.wait);
1249 	}
1250 }
1251 
1252 /* Generic helpers for internal locking and serialization */
1253 static bool spi_nor_rww_start_exclusive(struct spi_nor *nor)
1254 {
1255 	struct spi_nor_rww *rww = &nor->rww;
1256 	bool start = false;
1257 
1258 	mutex_lock(&nor->lock);
1259 
1260 	if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1261 		goto busy;
1262 
1263 	rww->ongoing_io = true;
1264 	rww->ongoing_rd = true;
1265 	rww->ongoing_pe = true;
1266 	start = true;
1267 
1268 busy:
1269 	mutex_unlock(&nor->lock);
1270 	return start;
1271 }
1272 
1273 static void spi_nor_rww_end_exclusive(struct spi_nor *nor)
1274 {
1275 	struct spi_nor_rww *rww = &nor->rww;
1276 
1277 	mutex_lock(&nor->lock);
1278 	rww->ongoing_io = false;
1279 	rww->ongoing_rd = false;
1280 	rww->ongoing_pe = false;
1281 	mutex_unlock(&nor->lock);
1282 }
1283 
1284 int spi_nor_prep_and_lock(struct spi_nor *nor)
1285 {
1286 	int ret;
1287 
1288 	ret = spi_nor_prep(nor);
1289 	if (ret)
1290 		return ret;
1291 
1292 	if (!spi_nor_use_parallel_locking(nor))
1293 		mutex_lock(&nor->lock);
1294 	else
1295 		ret = wait_event_killable(nor->rww.wait,
1296 					  spi_nor_rww_start_exclusive(nor));
1297 
1298 	return ret;
1299 }
1300 
1301 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1302 {
1303 	if (!spi_nor_use_parallel_locking(nor)) {
1304 		mutex_unlock(&nor->lock);
1305 	} else {
1306 		spi_nor_rww_end_exclusive(nor);
1307 		wake_up(&nor->rww.wait);
1308 	}
1309 
1310 	spi_nor_unprep(nor);
1311 }
1312 
1313 /* Internal locking helpers for program and erase operations */
1314 static bool spi_nor_rww_start_pe(struct spi_nor *nor, loff_t start, size_t len)
1315 {
1316 	struct spi_nor_rww *rww = &nor->rww;
1317 	unsigned int used_banks = 0;
1318 	bool started = false;
1319 	u8 first, last;
1320 	int bank;
1321 
1322 	mutex_lock(&nor->lock);
1323 
1324 	if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1325 		goto busy;
1326 
1327 	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1328 	for (bank = first; bank <= last; bank++) {
1329 		if (rww->used_banks & BIT(bank))
1330 			goto busy;
1331 
1332 		used_banks |= BIT(bank);
1333 	}
1334 
1335 	rww->used_banks |= used_banks;
1336 	rww->ongoing_pe = true;
1337 	started = true;
1338 
1339 busy:
1340 	mutex_unlock(&nor->lock);
1341 	return started;
1342 }
1343 
1344 static void spi_nor_rww_end_pe(struct spi_nor *nor, loff_t start, size_t len)
1345 {
1346 	struct spi_nor_rww *rww = &nor->rww;
1347 	u8 first, last;
1348 	int bank;
1349 
1350 	mutex_lock(&nor->lock);
1351 
1352 	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1353 	for (bank = first; bank <= last; bank++)
1354 		rww->used_banks &= ~BIT(bank);
1355 
1356 	rww->ongoing_pe = false;
1357 
1358 	mutex_unlock(&nor->lock);
1359 }
1360 
1361 static int spi_nor_prep_and_lock_pe(struct spi_nor *nor, loff_t start, size_t len)
1362 {
1363 	int ret;
1364 
1365 	ret = spi_nor_prep(nor);
1366 	if (ret)
1367 		return ret;
1368 
1369 	if (!spi_nor_use_parallel_locking(nor))
1370 		mutex_lock(&nor->lock);
1371 	else
1372 		ret = wait_event_killable(nor->rww.wait,
1373 					  spi_nor_rww_start_pe(nor, start, len));
1374 
1375 	return ret;
1376 }
1377 
1378 static void spi_nor_unlock_and_unprep_pe(struct spi_nor *nor, loff_t start, size_t len)
1379 {
1380 	if (!spi_nor_use_parallel_locking(nor)) {
1381 		mutex_unlock(&nor->lock);
1382 	} else {
1383 		spi_nor_rww_end_pe(nor, start, len);
1384 		wake_up(&nor->rww.wait);
1385 	}
1386 
1387 	spi_nor_unprep(nor);
1388 }
1389 
1390 /* Internal locking helpers for read operations */
1391 static bool spi_nor_rww_start_rd(struct spi_nor *nor, loff_t start, size_t len)
1392 {
1393 	struct spi_nor_rww *rww = &nor->rww;
1394 	unsigned int used_banks = 0;
1395 	bool started = false;
1396 	u8 first, last;
1397 	int bank;
1398 
1399 	mutex_lock(&nor->lock);
1400 
1401 	if (rww->ongoing_io || rww->ongoing_rd)
1402 		goto busy;
1403 
1404 	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1405 	for (bank = first; bank <= last; bank++) {
1406 		if (rww->used_banks & BIT(bank))
1407 			goto busy;
1408 
1409 		used_banks |= BIT(bank);
1410 	}
1411 
1412 	rww->used_banks |= used_banks;
1413 	rww->ongoing_io = true;
1414 	rww->ongoing_rd = true;
1415 	started = true;
1416 
1417 busy:
1418 	mutex_unlock(&nor->lock);
1419 	return started;
1420 }
1421 
1422 static void spi_nor_rww_end_rd(struct spi_nor *nor, loff_t start, size_t len)
1423 {
1424 	struct spi_nor_rww *rww = &nor->rww;
1425 	u8 first, last;
1426 	int bank;
1427 
1428 	mutex_lock(&nor->lock);
1429 
1430 	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1431 	for (bank = first; bank <= last; bank++)
1432 		nor->rww.used_banks &= ~BIT(bank);
1433 
1434 	rww->ongoing_io = false;
1435 	rww->ongoing_rd = false;
1436 
1437 	mutex_unlock(&nor->lock);
1438 }
1439 
1440 static int spi_nor_prep_and_lock_rd(struct spi_nor *nor, loff_t start, size_t len)
1441 {
1442 	int ret;
1443 
1444 	ret = spi_nor_prep(nor);
1445 	if (ret)
1446 		return ret;
1447 
1448 	if (!spi_nor_use_parallel_locking(nor))
1449 		mutex_lock(&nor->lock);
1450 	else
1451 		ret = wait_event_killable(nor->rww.wait,
1452 					  spi_nor_rww_start_rd(nor, start, len));
1453 
1454 	return ret;
1455 }
1456 
1457 static void spi_nor_unlock_and_unprep_rd(struct spi_nor *nor, loff_t start, size_t len)
1458 {
1459 	if (!spi_nor_use_parallel_locking(nor)) {
1460 		mutex_unlock(&nor->lock);
1461 	} else {
1462 		spi_nor_rww_end_rd(nor, start, len);
1463 		wake_up(&nor->rww.wait);
1464 	}
1465 
1466 	spi_nor_unprep(nor);
1467 }
1468 
1469 /*
1470  * Initiate the erasure of a single sector
1471  */
1472 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1473 {
1474 	int i;
1475 
1476 	if (nor->spimem) {
1477 		struct spi_mem_op op =
1478 			SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode,
1479 						nor->addr_nbytes, addr);
1480 
1481 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1482 
1483 		return spi_mem_exec_op(nor->spimem, &op);
1484 	} else if (nor->controller_ops->erase) {
1485 		return spi_nor_controller_ops_erase(nor, addr);
1486 	}
1487 
1488 	/*
1489 	 * Default implementation, if driver doesn't have a specialized HW
1490 	 * control
1491 	 */
1492 	for (i = nor->addr_nbytes - 1; i >= 0; i--) {
1493 		nor->bouncebuf[i] = addr & 0xff;
1494 		addr >>= 8;
1495 	}
1496 
1497 	return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1498 						nor->bouncebuf, nor->addr_nbytes);
1499 }
1500 
1501 /**
1502  * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1503  * @erase:	pointer to a structure that describes a SPI NOR erase type
1504  * @dividend:	dividend value
1505  * @remainder:	pointer to u32 remainder (will be updated)
1506  *
1507  * Return: the result of the division
1508  */
1509 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1510 				     u64 dividend, u32 *remainder)
1511 {
1512 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1513 	*remainder = (u32)dividend & erase->size_mask;
1514 	return dividend >> erase->size_shift;
1515 }
1516 
1517 /**
1518  * spi_nor_find_best_erase_type() - find the best erase type for the given
1519  *				    offset in the serial flash memory and the
1520  *				    number of bytes to erase. The region in
1521  *				    which the address fits is expected to be
1522  *				    provided.
1523  * @map:	the erase map of the SPI NOR
1524  * @region:	pointer to a structure that describes a SPI NOR erase region
1525  * @addr:	offset in the serial flash memory
1526  * @len:	number of bytes to erase
1527  *
1528  * Return: a pointer to the best fitted erase type, NULL otherwise.
1529  */
1530 static const struct spi_nor_erase_type *
1531 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1532 			     const struct spi_nor_erase_region *region,
1533 			     u64 addr, u32 len)
1534 {
1535 	const struct spi_nor_erase_type *erase;
1536 	u32 rem;
1537 	int i;
1538 
1539 	/*
1540 	 * Erase types are ordered by size, with the smallest erase type at
1541 	 * index 0.
1542 	 */
1543 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1544 		/* Does the erase region support the tested erase type? */
1545 		if (!(region->erase_mask & BIT(i)))
1546 			continue;
1547 
1548 		erase = &map->erase_type[i];
1549 		if (!erase->size)
1550 			continue;
1551 
1552 		/* Alignment is not mandatory for overlaid regions */
1553 		if (region->overlaid && region->size <= len)
1554 			return erase;
1555 
1556 		/* Don't erase more than what the user has asked for. */
1557 		if (erase->size > len)
1558 			continue;
1559 
1560 		spi_nor_div_by_erase_size(erase, addr, &rem);
1561 		if (!rem)
1562 			return erase;
1563 	}
1564 
1565 	return NULL;
1566 }
1567 
1568 /**
1569  * spi_nor_init_erase_cmd() - initialize an erase command
1570  * @region:	pointer to a structure that describes a SPI NOR erase region
1571  * @erase:	pointer to a structure that describes a SPI NOR erase type
1572  *
1573  * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1574  *	   otherwise.
1575  */
1576 static struct spi_nor_erase_command *
1577 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1578 		       const struct spi_nor_erase_type *erase)
1579 {
1580 	struct spi_nor_erase_command *cmd;
1581 
1582 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1583 	if (!cmd)
1584 		return ERR_PTR(-ENOMEM);
1585 
1586 	INIT_LIST_HEAD(&cmd->list);
1587 	cmd->opcode = erase->opcode;
1588 	cmd->count = 1;
1589 
1590 	if (region->overlaid)
1591 		cmd->size = region->size;
1592 	else
1593 		cmd->size = erase->size;
1594 
1595 	return cmd;
1596 }
1597 
1598 /**
1599  * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1600  * @erase_list:	list of erase commands
1601  */
1602 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1603 {
1604 	struct spi_nor_erase_command *cmd, *next;
1605 
1606 	list_for_each_entry_safe(cmd, next, erase_list, list) {
1607 		list_del(&cmd->list);
1608 		kfree(cmd);
1609 	}
1610 }
1611 
1612 /**
1613  * spi_nor_init_erase_cmd_list() - initialize erase command list
1614  * @nor:	pointer to a 'struct spi_nor'
1615  * @erase_list:	list of erase commands to be executed once we validate that the
1616  *		erase can be performed
1617  * @addr:	offset in the serial flash memory
1618  * @len:	number of bytes to erase
1619  *
1620  * Builds the list of best fitted erase commands and verifies if the erase can
1621  * be performed.
1622  *
1623  * Return: 0 on success, -errno otherwise.
1624  */
1625 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1626 				       struct list_head *erase_list,
1627 				       u64 addr, u32 len)
1628 {
1629 	const struct spi_nor_erase_map *map = &nor->params->erase_map;
1630 	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1631 	struct spi_nor_erase_region *region;
1632 	struct spi_nor_erase_command *cmd = NULL;
1633 	u64 region_end;
1634 	unsigned int i;
1635 	int ret = -EINVAL;
1636 
1637 	for (i = 0; i < map->n_regions && len; i++) {
1638 		region = &map->regions[i];
1639 		region_end = region->offset + region->size;
1640 
1641 		while (len && addr >= region->offset && addr < region_end) {
1642 			erase = spi_nor_find_best_erase_type(map, region, addr,
1643 							     len);
1644 			if (!erase)
1645 				goto destroy_erase_cmd_list;
1646 
1647 			if (prev_erase != erase || erase->size != cmd->size ||
1648 			    region->overlaid) {
1649 				cmd = spi_nor_init_erase_cmd(region, erase);
1650 				if (IS_ERR(cmd)) {
1651 					ret = PTR_ERR(cmd);
1652 					goto destroy_erase_cmd_list;
1653 				}
1654 
1655 				list_add_tail(&cmd->list, erase_list);
1656 			} else {
1657 				cmd->count++;
1658 			}
1659 
1660 			len -= cmd->size;
1661 			addr += cmd->size;
1662 			prev_erase = erase;
1663 		}
1664 	}
1665 
1666 	return 0;
1667 
1668 destroy_erase_cmd_list:
1669 	spi_nor_destroy_erase_cmd_list(erase_list);
1670 	return ret;
1671 }
1672 
1673 /**
1674  * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1675  * @nor:	pointer to a 'struct spi_nor'
1676  * @addr:	offset in the serial flash memory
1677  * @len:	number of bytes to erase
1678  *
1679  * Build a list of best fitted erase commands and execute it once we validate
1680  * that the erase can be performed.
1681  *
1682  * Return: 0 on success, -errno otherwise.
1683  */
1684 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1685 {
1686 	LIST_HEAD(erase_list);
1687 	struct spi_nor_erase_command *cmd, *next;
1688 	int ret;
1689 
1690 	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1691 	if (ret)
1692 		return ret;
1693 
1694 	list_for_each_entry_safe(cmd, next, &erase_list, list) {
1695 		nor->erase_opcode = cmd->opcode;
1696 		while (cmd->count) {
1697 			dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
1698 				 cmd->size, cmd->opcode, cmd->count);
1699 
1700 			ret = spi_nor_lock_device(nor);
1701 			if (ret)
1702 				goto destroy_erase_cmd_list;
1703 
1704 			ret = spi_nor_write_enable(nor);
1705 			if (ret) {
1706 				spi_nor_unlock_device(nor);
1707 				goto destroy_erase_cmd_list;
1708 			}
1709 
1710 			ret = spi_nor_erase_sector(nor, addr);
1711 			spi_nor_unlock_device(nor);
1712 			if (ret)
1713 				goto destroy_erase_cmd_list;
1714 
1715 			ret = spi_nor_wait_till_ready(nor);
1716 			if (ret)
1717 				goto destroy_erase_cmd_list;
1718 
1719 			addr += cmd->size;
1720 			cmd->count--;
1721 		}
1722 		list_del(&cmd->list);
1723 		kfree(cmd);
1724 	}
1725 
1726 	return 0;
1727 
1728 destroy_erase_cmd_list:
1729 	spi_nor_destroy_erase_cmd_list(&erase_list);
1730 	return ret;
1731 }
1732 
1733 static int spi_nor_erase_dice(struct spi_nor *nor, loff_t addr,
1734 			      size_t len, size_t die_size)
1735 {
1736 	unsigned long timeout;
1737 	int ret;
1738 
1739 	/*
1740 	 * Scale the timeout linearly with the size of the flash, with
1741 	 * a minimum calibrated to an old 2MB flash. We could try to
1742 	 * pull these from CFI/SFDP, but these values should be good
1743 	 * enough for now.
1744 	 */
1745 	timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1746 		      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1747 		      (unsigned long)(nor->mtd.size / SZ_2M));
1748 
1749 	do {
1750 		ret = spi_nor_lock_device(nor);
1751 		if (ret)
1752 			return ret;
1753 
1754 		ret = spi_nor_write_enable(nor);
1755 		if (ret) {
1756 			spi_nor_unlock_device(nor);
1757 			return ret;
1758 		}
1759 
1760 		ret = spi_nor_erase_die(nor, addr, die_size);
1761 
1762 		spi_nor_unlock_device(nor);
1763 		if (ret)
1764 			return ret;
1765 
1766 		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1767 		if (ret)
1768 			return ret;
1769 
1770 		addr += die_size;
1771 		len -= die_size;
1772 
1773 	} while (len);
1774 
1775 	return 0;
1776 }
1777 
1778 /*
1779  * Erase an address range on the nor chip.  The address range may extend
1780  * one or more erase sectors. Return an error if there is a problem erasing.
1781  */
1782 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1783 {
1784 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1785 	u8 n_dice = nor->params->n_dice;
1786 	bool multi_die_erase = false;
1787 	u32 addr, len, rem;
1788 	size_t die_size;
1789 	int ret;
1790 
1791 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1792 			(long long)instr->len);
1793 
1794 	if (spi_nor_has_uniform_erase(nor)) {
1795 		div_u64_rem(instr->len, mtd->erasesize, &rem);
1796 		if (rem)
1797 			return -EINVAL;
1798 	}
1799 
1800 	addr = instr->addr;
1801 	len = instr->len;
1802 
1803 	if (n_dice) {
1804 		die_size = div_u64(mtd->size, n_dice);
1805 		if (!(len & (die_size - 1)) && !(addr & (die_size - 1)))
1806 			multi_die_erase = true;
1807 	} else {
1808 		die_size = mtd->size;
1809 	}
1810 
1811 	ret = spi_nor_prep_and_lock_pe(nor, instr->addr, instr->len);
1812 	if (ret)
1813 		return ret;
1814 
1815 	/* chip (die) erase? */
1816 	if ((len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) ||
1817 	    multi_die_erase) {
1818 		ret = spi_nor_erase_dice(nor, addr, len, die_size);
1819 		if (ret)
1820 			goto erase_err;
1821 
1822 	/* REVISIT in some cases we could speed up erasing large regions
1823 	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1824 	 * to use "small sector erase", but that's not always optimal.
1825 	 */
1826 
1827 	/* "sector"-at-a-time erase */
1828 	} else if (spi_nor_has_uniform_erase(nor)) {
1829 		while (len) {
1830 			ret = spi_nor_lock_device(nor);
1831 			if (ret)
1832 				goto erase_err;
1833 
1834 			ret = spi_nor_write_enable(nor);
1835 			if (ret) {
1836 				spi_nor_unlock_device(nor);
1837 				goto erase_err;
1838 			}
1839 
1840 			ret = spi_nor_erase_sector(nor, addr);
1841 			spi_nor_unlock_device(nor);
1842 			if (ret)
1843 				goto erase_err;
1844 
1845 			ret = spi_nor_wait_till_ready(nor);
1846 			if (ret)
1847 				goto erase_err;
1848 
1849 			addr += mtd->erasesize;
1850 			len -= mtd->erasesize;
1851 		}
1852 
1853 	/* erase multiple sectors */
1854 	} else {
1855 		ret = spi_nor_erase_multi_sectors(nor, addr, len);
1856 		if (ret)
1857 			goto erase_err;
1858 	}
1859 
1860 	ret = spi_nor_write_disable(nor);
1861 
1862 erase_err:
1863 	spi_nor_unlock_and_unprep_pe(nor, instr->addr, instr->len);
1864 
1865 	return ret;
1866 }
1867 
1868 /**
1869  * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1870  * Register 1.
1871  * @nor:	pointer to a 'struct spi_nor'
1872  *
1873  * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1874  *
1875  * Return: 0 on success, -errno otherwise.
1876  */
1877 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1878 {
1879 	int ret;
1880 
1881 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1882 	if (ret)
1883 		return ret;
1884 
1885 	if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1886 		return 0;
1887 
1888 	nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1889 
1890 	return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1891 }
1892 
1893 /**
1894  * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1895  * Register 2.
1896  * @nor:       pointer to a 'struct spi_nor'.
1897  *
1898  * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1899  *
1900  * Return: 0 on success, -errno otherwise.
1901  */
1902 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1903 {
1904 	int ret;
1905 
1906 	if (nor->flags & SNOR_F_NO_READ_CR)
1907 		return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1908 
1909 	ret = spi_nor_read_cr(nor, nor->bouncebuf);
1910 	if (ret)
1911 		return ret;
1912 
1913 	if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1914 		return 0;
1915 
1916 	nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1917 
1918 	return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1919 }
1920 
1921 /**
1922  * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1923  * @nor:	pointer to a 'struct spi_nor'
1924  *
1925  * Set the Quad Enable (QE) bit in the Status Register 2.
1926  *
1927  * This is one of the procedures to set the QE bit described in the SFDP
1928  * (JESD216 rev B) specification but no manufacturer using this procedure has
1929  * been identified yet, hence the name of the function.
1930  *
1931  * Return: 0 on success, -errno otherwise.
1932  */
1933 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1934 {
1935 	u8 *sr2 = nor->bouncebuf;
1936 	int ret;
1937 	u8 sr2_written;
1938 
1939 	/* Check current Quad Enable bit value. */
1940 	ret = spi_nor_read_sr2(nor, sr2);
1941 	if (ret)
1942 		return ret;
1943 	if (*sr2 & SR2_QUAD_EN_BIT7)
1944 		return 0;
1945 
1946 	/* Update the Quad Enable bit. */
1947 	*sr2 |= SR2_QUAD_EN_BIT7;
1948 
1949 	ret = spi_nor_write_sr2(nor, sr2);
1950 	if (ret)
1951 		return ret;
1952 
1953 	sr2_written = *sr2;
1954 
1955 	/* Read back and check it. */
1956 	ret = spi_nor_read_sr2(nor, sr2);
1957 	if (ret)
1958 		return ret;
1959 
1960 	if (*sr2 != sr2_written) {
1961 		dev_dbg(nor->dev, "SR2: Read back test failed\n");
1962 		return -EIO;
1963 	}
1964 
1965 	return 0;
1966 }
1967 
1968 static const struct spi_nor_manufacturer *manufacturers[] = {
1969 	&spi_nor_atmel,
1970 	&spi_nor_eon,
1971 	&spi_nor_esmt,
1972 	&spi_nor_everspin,
1973 	&spi_nor_gigadevice,
1974 	&spi_nor_intel,
1975 	&spi_nor_issi,
1976 	&spi_nor_macronix,
1977 	&spi_nor_micron,
1978 	&spi_nor_st,
1979 	&spi_nor_spansion,
1980 	&spi_nor_sst,
1981 	&spi_nor_winbond,
1982 	&spi_nor_xmc,
1983 };
1984 
1985 static const struct flash_info spi_nor_generic_flash = {
1986 	.name = "spi-nor-generic",
1987 };
1988 
1989 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
1990 						 const u8 *id)
1991 {
1992 	const struct flash_info *part;
1993 	unsigned int i, j;
1994 
1995 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
1996 		for (j = 0; j < manufacturers[i]->nparts; j++) {
1997 			part = &manufacturers[i]->parts[j];
1998 			if (part->id &&
1999 			    !memcmp(part->id->bytes, id, part->id->len)) {
2000 				nor->manufacturer = manufacturers[i];
2001 				return part;
2002 			}
2003 		}
2004 	}
2005 
2006 	return NULL;
2007 }
2008 
2009 static const struct flash_info *spi_nor_detect(struct spi_nor *nor)
2010 {
2011 	const struct flash_info *info;
2012 	u8 *id = nor->bouncebuf;
2013 	int ret;
2014 
2015 	ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto);
2016 	if (ret) {
2017 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2018 		return ERR_PTR(ret);
2019 	}
2020 
2021 	/* Cache the complete flash ID. */
2022 	nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL);
2023 	if (!nor->id)
2024 		return ERR_PTR(-ENOMEM);
2025 
2026 	info = spi_nor_match_id(nor, id);
2027 
2028 	/* Fallback to a generic flash described only by its SFDP data. */
2029 	if (!info) {
2030 		ret = spi_nor_check_sfdp_signature(nor);
2031 		if (!ret)
2032 			info = &spi_nor_generic_flash;
2033 	}
2034 
2035 	if (!info) {
2036 		dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2037 			SPI_NOR_MAX_ID_LEN, id);
2038 		return ERR_PTR(-ENODEV);
2039 	}
2040 	return info;
2041 }
2042 
2043 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2044 			size_t *retlen, u_char *buf)
2045 {
2046 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2047 	loff_t from_lock = from;
2048 	size_t len_lock = len;
2049 	ssize_t ret;
2050 
2051 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2052 
2053 	ret = spi_nor_prep_and_lock_rd(nor, from_lock, len_lock);
2054 	if (ret)
2055 		return ret;
2056 
2057 	while (len) {
2058 		loff_t addr = from;
2059 
2060 		ret = spi_nor_read_data(nor, addr, len, buf);
2061 		if (ret == 0) {
2062 			/* We shouldn't see 0-length reads */
2063 			ret = -EIO;
2064 			goto read_err;
2065 		}
2066 		if (ret < 0)
2067 			goto read_err;
2068 
2069 		WARN_ON(ret > len);
2070 		*retlen += ret;
2071 		buf += ret;
2072 		from += ret;
2073 		len -= ret;
2074 	}
2075 	ret = 0;
2076 
2077 read_err:
2078 	spi_nor_unlock_and_unprep_rd(nor, from_lock, len_lock);
2079 
2080 	return ret;
2081 }
2082 
2083 /*
2084  * Write an address range to the nor chip.  Data must be written in
2085  * FLASH_PAGESIZE chunks.  The address range may be any size provided
2086  * it is within the physical boundaries.
2087  */
2088 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2089 	size_t *retlen, const u_char *buf)
2090 {
2091 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2092 	size_t i;
2093 	ssize_t ret;
2094 	u32 page_size = nor->params->page_size;
2095 
2096 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2097 
2098 	ret = spi_nor_prep_and_lock_pe(nor, to, len);
2099 	if (ret)
2100 		return ret;
2101 
2102 	for (i = 0; i < len; ) {
2103 		ssize_t written;
2104 		loff_t addr = to + i;
2105 		size_t page_offset = addr & (page_size - 1);
2106 		/* the size of data remaining on the first page */
2107 		size_t page_remain = min_t(size_t, page_size - page_offset, len - i);
2108 
2109 		ret = spi_nor_lock_device(nor);
2110 		if (ret)
2111 			goto write_err;
2112 
2113 		ret = spi_nor_write_enable(nor);
2114 		if (ret) {
2115 			spi_nor_unlock_device(nor);
2116 			goto write_err;
2117 		}
2118 
2119 		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2120 		spi_nor_unlock_device(nor);
2121 		if (ret < 0)
2122 			goto write_err;
2123 		written = ret;
2124 
2125 		ret = spi_nor_wait_till_ready(nor);
2126 		if (ret)
2127 			goto write_err;
2128 		*retlen += written;
2129 		i += written;
2130 	}
2131 
2132 write_err:
2133 	spi_nor_unlock_and_unprep_pe(nor, to, len);
2134 
2135 	return ret;
2136 }
2137 
2138 static int spi_nor_check(struct spi_nor *nor)
2139 {
2140 	if (!nor->dev ||
2141 	    (!nor->spimem && !nor->controller_ops) ||
2142 	    (!nor->spimem && nor->controller_ops &&
2143 	    (!nor->controller_ops->read ||
2144 	     !nor->controller_ops->write ||
2145 	     !nor->controller_ops->read_reg ||
2146 	     !nor->controller_ops->write_reg))) {
2147 		pr_err("spi-nor: please fill all the necessary fields!\n");
2148 		return -EINVAL;
2149 	}
2150 
2151 	if (nor->spimem && nor->controller_ops) {
2152 		dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2153 		return -EINVAL;
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 void
2160 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2161 			  u8 num_mode_clocks,
2162 			  u8 num_wait_states,
2163 			  u8 opcode,
2164 			  enum spi_nor_protocol proto)
2165 {
2166 	read->num_mode_clocks = num_mode_clocks;
2167 	read->num_wait_states = num_wait_states;
2168 	read->opcode = opcode;
2169 	read->proto = proto;
2170 }
2171 
2172 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2173 			     enum spi_nor_protocol proto)
2174 {
2175 	pp->opcode = opcode;
2176 	pp->proto = proto;
2177 }
2178 
2179 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2180 {
2181 	size_t i;
2182 
2183 	for (i = 0; i < size; i++)
2184 		if (table[i][0] == (int)hwcaps)
2185 			return table[i][1];
2186 
2187 	return -EINVAL;
2188 }
2189 
2190 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2191 {
2192 	static const int hwcaps_read2cmd[][2] = {
2193 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2194 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2195 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2196 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2197 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2198 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2199 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2200 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2201 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2202 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2203 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2204 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2205 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2206 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2207 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2208 		{ SNOR_HWCAPS_READ_8_8_8_DTR,	SNOR_CMD_READ_8_8_8_DTR },
2209 	};
2210 
2211 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2212 				  ARRAY_SIZE(hwcaps_read2cmd));
2213 }
2214 
2215 int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2216 {
2217 	static const int hwcaps_pp2cmd[][2] = {
2218 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2219 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2220 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2221 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2222 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2223 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2224 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2225 		{ SNOR_HWCAPS_PP_8_8_8_DTR,	SNOR_CMD_PP_8_8_8_DTR },
2226 	};
2227 
2228 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2229 				  ARRAY_SIZE(hwcaps_pp2cmd));
2230 }
2231 
2232 /**
2233  * spi_nor_spimem_check_op - check if the operation is supported
2234  *                           by controller
2235  *@nor:        pointer to a 'struct spi_nor'
2236  *@op:         pointer to op template to be checked
2237  *
2238  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2239  */
2240 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2241 				   struct spi_mem_op *op)
2242 {
2243 	/*
2244 	 * First test with 4 address bytes. The opcode itself might
2245 	 * be a 3B addressing opcode but we don't care, because
2246 	 * SPI controller implementation should not check the opcode,
2247 	 * but just the sequence.
2248 	 */
2249 	op->addr.nbytes = 4;
2250 	if (!spi_mem_supports_op(nor->spimem, op)) {
2251 		if (nor->params->size > SZ_16M)
2252 			return -EOPNOTSUPP;
2253 
2254 		/* If flash size <= 16MB, 3 address bytes are sufficient */
2255 		op->addr.nbytes = 3;
2256 		if (!spi_mem_supports_op(nor->spimem, op))
2257 			return -EOPNOTSUPP;
2258 	}
2259 
2260 	return 0;
2261 }
2262 
2263 /**
2264  * spi_nor_spimem_check_readop - check if the read op is supported
2265  *                               by controller
2266  *@nor:         pointer to a 'struct spi_nor'
2267  *@read:        pointer to op template to be checked
2268  *
2269  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2270  */
2271 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2272 				       const struct spi_nor_read_command *read)
2273 {
2274 	struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode);
2275 
2276 	spi_nor_spimem_setup_op(nor, &op, read->proto);
2277 
2278 	/* convert the dummy cycles to the number of bytes */
2279 	op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2280 			  op.dummy.buswidth / 8;
2281 	if (spi_nor_protocol_is_dtr(nor->read_proto))
2282 		op.dummy.nbytes *= 2;
2283 
2284 	return spi_nor_spimem_check_op(nor, &op);
2285 }
2286 
2287 /**
2288  * spi_nor_spimem_check_pp - check if the page program op is supported
2289  *                           by controller
2290  *@nor:         pointer to a 'struct spi_nor'
2291  *@pp:          pointer to op template to be checked
2292  *
2293  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2294  */
2295 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2296 				   const struct spi_nor_pp_command *pp)
2297 {
2298 	struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode);
2299 
2300 	spi_nor_spimem_setup_op(nor, &op, pp->proto);
2301 
2302 	return spi_nor_spimem_check_op(nor, &op);
2303 }
2304 
2305 /**
2306  * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2307  *                                based on SPI controller capabilities
2308  * @nor:        pointer to a 'struct spi_nor'
2309  * @hwcaps:     pointer to resulting capabilities after adjusting
2310  *              according to controller and flash's capability
2311  */
2312 static void
2313 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2314 {
2315 	struct spi_nor_flash_parameter *params = nor->params;
2316 	unsigned int cap;
2317 
2318 	/* X-X-X modes are not supported yet, mask them all. */
2319 	*hwcaps &= ~SNOR_HWCAPS_X_X_X;
2320 
2321 	/*
2322 	 * If the reset line is broken, we do not want to enter a stateful
2323 	 * mode.
2324 	 */
2325 	if (nor->flags & SNOR_F_BROKEN_RESET)
2326 		*hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
2327 
2328 	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2329 		int rdidx, ppidx;
2330 
2331 		if (!(*hwcaps & BIT(cap)))
2332 			continue;
2333 
2334 		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2335 		if (rdidx >= 0 &&
2336 		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
2337 			*hwcaps &= ~BIT(cap);
2338 
2339 		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2340 		if (ppidx < 0)
2341 			continue;
2342 
2343 		if (spi_nor_spimem_check_pp(nor,
2344 					    &params->page_programs[ppidx]))
2345 			*hwcaps &= ~BIT(cap);
2346 	}
2347 }
2348 
2349 /**
2350  * spi_nor_set_erase_type() - set a SPI NOR erase type
2351  * @erase:	pointer to a structure that describes a SPI NOR erase type
2352  * @size:	the size of the sector/block erased by the erase type
2353  * @opcode:	the SPI command op code to erase the sector/block
2354  */
2355 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2356 			    u8 opcode)
2357 {
2358 	erase->size = size;
2359 	erase->opcode = opcode;
2360 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2361 	erase->size_shift = ffs(erase->size) - 1;
2362 	erase->size_mask = (1 << erase->size_shift) - 1;
2363 }
2364 
2365 /**
2366  * spi_nor_mask_erase_type() - mask out a SPI NOR erase type
2367  * @erase:	pointer to a structure that describes a SPI NOR erase type
2368  */
2369 void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase)
2370 {
2371 	erase->size = 0;
2372 }
2373 
2374 /**
2375  * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2376  * @map:		the erase map of the SPI NOR
2377  * @erase_mask:		bitmask encoding erase types that can erase the entire
2378  *			flash memory
2379  * @flash_size:		the spi nor flash memory size
2380  */
2381 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2382 				    u8 erase_mask, u64 flash_size)
2383 {
2384 	map->uniform_region.offset = 0;
2385 	map->uniform_region.size = flash_size;
2386 	map->uniform_region.erase_mask = erase_mask;
2387 	map->regions = &map->uniform_region;
2388 	map->n_regions = 1;
2389 }
2390 
2391 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2392 			     const struct sfdp_parameter_header *bfpt_header,
2393 			     const struct sfdp_bfpt *bfpt)
2394 {
2395 	int ret;
2396 
2397 	if (nor->manufacturer && nor->manufacturer->fixups &&
2398 	    nor->manufacturer->fixups->post_bfpt) {
2399 		ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2400 							   bfpt);
2401 		if (ret)
2402 			return ret;
2403 	}
2404 
2405 	if (nor->info->fixups && nor->info->fixups->post_bfpt)
2406 		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
2407 
2408 	return 0;
2409 }
2410 
2411 static int spi_nor_select_read(struct spi_nor *nor,
2412 			       u32 shared_hwcaps)
2413 {
2414 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2415 	const struct spi_nor_read_command *read;
2416 
2417 	if (best_match < 0)
2418 		return -EINVAL;
2419 
2420 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2421 	if (cmd < 0)
2422 		return -EINVAL;
2423 
2424 	read = &nor->params->reads[cmd];
2425 	nor->read_opcode = read->opcode;
2426 	nor->read_proto = read->proto;
2427 
2428 	/*
2429 	 * In the SPI NOR framework, we don't need to make the difference
2430 	 * between mode clock cycles and wait state clock cycles.
2431 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2432 	 * flash memory to know whether it should enter or leave its 0-4-4
2433 	 * (Continuous Read / XIP) mode.
2434 	 * eXecution In Place is out of the scope of the mtd sub-system.
2435 	 * Hence we choose to merge both mode and wait state clock cycles
2436 	 * into the so called dummy clock cycles.
2437 	 */
2438 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2439 	return 0;
2440 }
2441 
2442 static int spi_nor_select_pp(struct spi_nor *nor,
2443 			     u32 shared_hwcaps)
2444 {
2445 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2446 	const struct spi_nor_pp_command *pp;
2447 
2448 	if (best_match < 0)
2449 		return -EINVAL;
2450 
2451 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2452 	if (cmd < 0)
2453 		return -EINVAL;
2454 
2455 	pp = &nor->params->page_programs[cmd];
2456 	nor->program_opcode = pp->opcode;
2457 	nor->write_proto = pp->proto;
2458 	return 0;
2459 }
2460 
2461 /**
2462  * spi_nor_select_uniform_erase() - select optimum uniform erase type
2463  * @map:		the erase map of the SPI NOR
2464  *
2465  * Once the optimum uniform sector erase command is found, disable all the
2466  * other.
2467  *
2468  * Return: pointer to erase type on success, NULL otherwise.
2469  */
2470 static const struct spi_nor_erase_type *
2471 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map)
2472 {
2473 	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2474 	int i;
2475 	u8 uniform_erase_type = map->uniform_region.erase_mask;
2476 
2477 	/*
2478 	 * Search for the biggest erase size, except for when compiled
2479 	 * to use 4k erases.
2480 	 */
2481 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2482 		if (!(uniform_erase_type & BIT(i)))
2483 			continue;
2484 
2485 		tested_erase = &map->erase_type[i];
2486 
2487 		/* Skip masked erase types. */
2488 		if (!tested_erase->size)
2489 			continue;
2490 
2491 		/*
2492 		 * If the current erase size is the 4k one, stop here,
2493 		 * we have found the right uniform Sector Erase command.
2494 		 */
2495 		if (IS_ENABLED(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS) &&
2496 		    tested_erase->size == SZ_4K) {
2497 			erase = tested_erase;
2498 			break;
2499 		}
2500 
2501 		/*
2502 		 * Otherwise, the current erase size is still a valid candidate.
2503 		 * Select the biggest valid candidate.
2504 		 */
2505 		if (!erase && tested_erase->size)
2506 			erase = tested_erase;
2507 			/* keep iterating to find the wanted_size */
2508 	}
2509 
2510 	if (!erase)
2511 		return NULL;
2512 
2513 	/* Disable all other Sector Erase commands. */
2514 	map->uniform_region.erase_mask = BIT(erase - map->erase_type);
2515 	return erase;
2516 }
2517 
2518 static int spi_nor_select_erase(struct spi_nor *nor)
2519 {
2520 	struct spi_nor_erase_map *map = &nor->params->erase_map;
2521 	const struct spi_nor_erase_type *erase = NULL;
2522 	struct mtd_info *mtd = &nor->mtd;
2523 	int i;
2524 
2525 	/*
2526 	 * The previous implementation handling Sector Erase commands assumed
2527 	 * that the SPI flash memory has an uniform layout then used only one
2528 	 * of the supported erase sizes for all Sector Erase commands.
2529 	 * So to be backward compatible, the new implementation also tries to
2530 	 * manage the SPI flash memory as uniform with a single erase sector
2531 	 * size, when possible.
2532 	 */
2533 	if (spi_nor_has_uniform_erase(nor)) {
2534 		erase = spi_nor_select_uniform_erase(map);
2535 		if (!erase)
2536 			return -EINVAL;
2537 		nor->erase_opcode = erase->opcode;
2538 		mtd->erasesize = erase->size;
2539 		return 0;
2540 	}
2541 
2542 	/*
2543 	 * For non-uniform SPI flash memory, set mtd->erasesize to the
2544 	 * maximum erase sector size. No need to set nor->erase_opcode.
2545 	 */
2546 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2547 		if (map->erase_type[i].size) {
2548 			erase = &map->erase_type[i];
2549 			break;
2550 		}
2551 	}
2552 
2553 	if (!erase)
2554 		return -EINVAL;
2555 
2556 	mtd->erasesize = erase->size;
2557 	return 0;
2558 }
2559 
2560 static int spi_nor_set_addr_nbytes(struct spi_nor *nor)
2561 {
2562 	if (nor->params->addr_nbytes) {
2563 		nor->addr_nbytes = nor->params->addr_nbytes;
2564 	} else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
2565 		/*
2566 		 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
2567 		 * in this protocol an odd addr_nbytes cannot be used because
2568 		 * then the address phase would only span a cycle and a half.
2569 		 * Half a cycle would be left over. We would then have to start
2570 		 * the dummy phase in the middle of a cycle and so too the data
2571 		 * phase, and we will end the transaction with half a cycle left
2572 		 * over.
2573 		 *
2574 		 * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to
2575 		 * avoid this situation.
2576 		 */
2577 		nor->addr_nbytes = 4;
2578 	} else if (nor->info->addr_nbytes) {
2579 		nor->addr_nbytes = nor->info->addr_nbytes;
2580 	} else {
2581 		nor->addr_nbytes = 3;
2582 	}
2583 
2584 	if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) {
2585 		/* enable 4-byte addressing if the device exceeds 16MiB */
2586 		nor->addr_nbytes = 4;
2587 	}
2588 
2589 	if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) {
2590 		dev_dbg(nor->dev, "The number of address bytes is too large: %u\n",
2591 			nor->addr_nbytes);
2592 		return -EINVAL;
2593 	}
2594 
2595 	/* Set 4byte opcodes when possible. */
2596 	if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES &&
2597 	    !(nor->flags & SNOR_F_HAS_4BAIT))
2598 		spi_nor_set_4byte_opcodes(nor);
2599 
2600 	return 0;
2601 }
2602 
2603 static int spi_nor_setup(struct spi_nor *nor,
2604 			 const struct spi_nor_hwcaps *hwcaps)
2605 {
2606 	struct spi_nor_flash_parameter *params = nor->params;
2607 	u32 ignored_mask, shared_mask;
2608 	int err;
2609 
2610 	/*
2611 	 * Keep only the hardware capabilities supported by both the SPI
2612 	 * controller and the SPI flash memory.
2613 	 */
2614 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2615 
2616 	if (nor->spimem) {
2617 		/*
2618 		 * When called from spi_nor_probe(), all caps are set and we
2619 		 * need to discard some of them based on what the SPI
2620 		 * controller actually supports (using spi_mem_supports_op()).
2621 		 */
2622 		spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2623 	} else {
2624 		/*
2625 		 * SPI n-n-n protocols are not supported when the SPI
2626 		 * controller directly implements the spi_nor interface.
2627 		 * Yet another reason to switch to spi-mem.
2628 		 */
2629 		ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2630 		if (shared_mask & ignored_mask) {
2631 			dev_dbg(nor->dev,
2632 				"SPI n-n-n protocols are not supported.\n");
2633 			shared_mask &= ~ignored_mask;
2634 		}
2635 	}
2636 
2637 	/* Select the (Fast) Read command. */
2638 	err = spi_nor_select_read(nor, shared_mask);
2639 	if (err) {
2640 		dev_dbg(nor->dev,
2641 			"can't select read settings supported by both the SPI controller and memory.\n");
2642 		return err;
2643 	}
2644 
2645 	/* Select the Page Program command. */
2646 	err = spi_nor_select_pp(nor, shared_mask);
2647 	if (err) {
2648 		dev_dbg(nor->dev,
2649 			"can't select write settings supported by both the SPI controller and memory.\n");
2650 		return err;
2651 	}
2652 
2653 	/* Select the Sector Erase command. */
2654 	err = spi_nor_select_erase(nor);
2655 	if (err) {
2656 		dev_dbg(nor->dev,
2657 			"can't select erase settings supported by both the SPI controller and memory.\n");
2658 		return err;
2659 	}
2660 
2661 	return spi_nor_set_addr_nbytes(nor);
2662 }
2663 
2664 /**
2665  * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2666  * settings based on MFR register and ->default_init() hook.
2667  * @nor:	pointer to a 'struct spi_nor'.
2668  */
2669 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2670 {
2671 	if (nor->manufacturer && nor->manufacturer->fixups &&
2672 	    nor->manufacturer->fixups->default_init)
2673 		nor->manufacturer->fixups->default_init(nor);
2674 
2675 	if (nor->info->fixups && nor->info->fixups->default_init)
2676 		nor->info->fixups->default_init(nor);
2677 }
2678 
2679 /**
2680  * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and
2681  * settings based on nor->info->sfdp_flags. This method should be called only by
2682  * flashes that do not define SFDP tables. If the flash supports SFDP but the
2683  * information is wrong and the settings from this function can not be retrieved
2684  * by parsing SFDP, one should instead use the fixup hooks and update the wrong
2685  * bits.
2686  * @nor:	pointer to a 'struct spi_nor'.
2687  */
2688 static void spi_nor_no_sfdp_init_params(struct spi_nor *nor)
2689 {
2690 	struct spi_nor_flash_parameter *params = nor->params;
2691 	struct spi_nor_erase_map *map = &params->erase_map;
2692 	const struct flash_info *info = nor->info;
2693 	const u8 no_sfdp_flags = info->no_sfdp_flags;
2694 	u8 i, erase_mask;
2695 
2696 	if (no_sfdp_flags & SPI_NOR_DUAL_READ) {
2697 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2698 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2699 					  0, 8, SPINOR_OP_READ_1_1_2,
2700 					  SNOR_PROTO_1_1_2);
2701 	}
2702 
2703 	if (no_sfdp_flags & SPI_NOR_QUAD_READ) {
2704 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2705 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2706 					  0, 8, SPINOR_OP_READ_1_1_4,
2707 					  SNOR_PROTO_1_1_4);
2708 	}
2709 
2710 	if (no_sfdp_flags & SPI_NOR_OCTAL_READ) {
2711 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2712 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2713 					  0, 8, SPINOR_OP_READ_1_1_8,
2714 					  SNOR_PROTO_1_1_8);
2715 	}
2716 
2717 	if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) {
2718 		params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2719 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
2720 					  0, 20, SPINOR_OP_READ_FAST,
2721 					  SNOR_PROTO_8_8_8_DTR);
2722 	}
2723 
2724 	if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) {
2725 		params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2726 		/*
2727 		 * Since xSPI Page Program opcode is backward compatible with
2728 		 * Legacy SPI, use Legacy SPI opcode there as well.
2729 		 */
2730 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2731 					SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2732 	}
2733 
2734 	/*
2735 	 * Sector Erase settings. Sort Erase Types in ascending order, with the
2736 	 * smallest erase size starting at BIT(0).
2737 	 */
2738 	erase_mask = 0;
2739 	i = 0;
2740 	if (no_sfdp_flags & SECT_4K) {
2741 		erase_mask |= BIT(i);
2742 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2743 				       SPINOR_OP_BE_4K);
2744 		i++;
2745 	}
2746 	erase_mask |= BIT(i);
2747 	spi_nor_set_erase_type(&map->erase_type[i],
2748 			       info->sector_size ?: SPI_NOR_DEFAULT_SECTOR_SIZE,
2749 			       SPINOR_OP_SE);
2750 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2751 }
2752 
2753 /**
2754  * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined
2755  * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP.
2756  * @nor:	pointer to a 'struct spi_nor'
2757  */
2758 static void spi_nor_init_flags(struct spi_nor *nor)
2759 {
2760 	struct device_node *np = spi_nor_get_flash_node(nor);
2761 	const u16 flags = nor->info->flags;
2762 
2763 	if (of_property_read_bool(np, "broken-flash-reset"))
2764 		nor->flags |= SNOR_F_BROKEN_RESET;
2765 
2766 	if (of_property_read_bool(np, "no-wp"))
2767 		nor->flags |= SNOR_F_NO_WP;
2768 
2769 	if (flags & SPI_NOR_SWP_IS_VOLATILE)
2770 		nor->flags |= SNOR_F_SWP_IS_VOLATILE;
2771 
2772 	if (flags & SPI_NOR_HAS_LOCK)
2773 		nor->flags |= SNOR_F_HAS_LOCK;
2774 
2775 	if (flags & SPI_NOR_HAS_TB) {
2776 		nor->flags |= SNOR_F_HAS_SR_TB;
2777 		if (flags & SPI_NOR_TB_SR_BIT6)
2778 			nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
2779 	}
2780 
2781 	if (flags & SPI_NOR_4BIT_BP) {
2782 		nor->flags |= SNOR_F_HAS_4BIT_BP;
2783 		if (flags & SPI_NOR_BP3_SR_BIT6)
2784 			nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
2785 	}
2786 
2787 	if (flags & SPI_NOR_RWW && nor->params->n_banks > 1 &&
2788 	    !nor->controller_ops)
2789 		nor->flags |= SNOR_F_RWW;
2790 }
2791 
2792 /**
2793  * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not
2794  * be discovered by SFDP for this particular flash because the SFDP table that
2795  * indicates this support is not defined in the flash. In case the table for
2796  * this support is defined but has wrong values, one should instead use a
2797  * post_sfdp() hook to set the SNOR_F equivalent flag.
2798  * @nor:       pointer to a 'struct spi_nor'
2799  */
2800 static void spi_nor_init_fixup_flags(struct spi_nor *nor)
2801 {
2802 	const u8 fixup_flags = nor->info->fixup_flags;
2803 
2804 	if (fixup_flags & SPI_NOR_4B_OPCODES)
2805 		nor->flags |= SNOR_F_4B_OPCODES;
2806 
2807 	if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE)
2808 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
2809 }
2810 
2811 /**
2812  * spi_nor_late_init_params() - Late initialization of default flash parameters.
2813  * @nor:	pointer to a 'struct spi_nor'
2814  *
2815  * Used to initialize flash parameters that are not declared in the JESD216
2816  * SFDP standard, or where SFDP tables are not defined at all.
2817  * Will replace the spi_nor_manufacturer_init_params() method.
2818  */
2819 static int spi_nor_late_init_params(struct spi_nor *nor)
2820 {
2821 	struct spi_nor_flash_parameter *params = nor->params;
2822 	int ret;
2823 
2824 	if (nor->manufacturer && nor->manufacturer->fixups &&
2825 	    nor->manufacturer->fixups->late_init) {
2826 		ret = nor->manufacturer->fixups->late_init(nor);
2827 		if (ret)
2828 			return ret;
2829 	}
2830 
2831 	/* Needed by some flashes late_init hooks. */
2832 	spi_nor_init_flags(nor);
2833 
2834 	if (nor->info->fixups && nor->info->fixups->late_init) {
2835 		ret = nor->info->fixups->late_init(nor);
2836 		if (ret)
2837 			return ret;
2838 	}
2839 
2840 	if (!nor->params->die_erase_opcode)
2841 		nor->params->die_erase_opcode = SPINOR_OP_CHIP_ERASE;
2842 
2843 	/* Default method kept for backward compatibility. */
2844 	if (!params->set_4byte_addr_mode)
2845 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
2846 
2847 	spi_nor_init_fixup_flags(nor);
2848 
2849 	/*
2850 	 * NOR protection support. When locking_ops are not provided, we pick
2851 	 * the default ones.
2852 	 */
2853 	if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2854 		spi_nor_init_default_locking_ops(nor);
2855 
2856 	if (params->n_banks > 1)
2857 		params->bank_size = div_u64(params->size, params->n_banks);
2858 
2859 	return 0;
2860 }
2861 
2862 /**
2863  * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash
2864  * parameters and settings based on JESD216 SFDP standard.
2865  * @nor:	pointer to a 'struct spi_nor'.
2866  *
2867  * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2868  * legacy flash parameters and settings will be restored.
2869  */
2870 static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor)
2871 {
2872 	struct spi_nor_flash_parameter sfdp_params;
2873 
2874 	memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2875 
2876 	if (spi_nor_parse_sfdp(nor)) {
2877 		memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2878 		nor->flags &= ~SNOR_F_4B_OPCODES;
2879 	}
2880 }
2881 
2882 /**
2883  * spi_nor_init_params_deprecated() - Deprecated way of initializing flash
2884  * parameters and settings.
2885  * @nor:	pointer to a 'struct spi_nor'.
2886  *
2887  * The method assumes that flash doesn't support SFDP so it initializes flash
2888  * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten
2889  * when parsing SFDP, if supported.
2890  */
2891 static void spi_nor_init_params_deprecated(struct spi_nor *nor)
2892 {
2893 	spi_nor_no_sfdp_init_params(nor);
2894 
2895 	spi_nor_manufacturer_init_params(nor);
2896 
2897 	if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ |
2898 					SPI_NOR_QUAD_READ |
2899 					SPI_NOR_OCTAL_READ |
2900 					SPI_NOR_OCTAL_DTR_READ))
2901 		spi_nor_sfdp_init_params_deprecated(nor);
2902 }
2903 
2904 /**
2905  * spi_nor_init_default_params() - Default initialization of flash parameters
2906  * and settings. Done for all flashes, regardless is they define SFDP tables
2907  * or not.
2908  * @nor:	pointer to a 'struct spi_nor'.
2909  */
2910 static void spi_nor_init_default_params(struct spi_nor *nor)
2911 {
2912 	struct spi_nor_flash_parameter *params = nor->params;
2913 	const struct flash_info *info = nor->info;
2914 	struct device_node *np = spi_nor_get_flash_node(nor);
2915 
2916 	params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2917 	params->otp.org = info->otp;
2918 
2919 	/* Default to 16-bit Write Status (01h) Command */
2920 	nor->flags |= SNOR_F_HAS_16BIT_SR;
2921 
2922 	/* Set SPI NOR sizes. */
2923 	params->writesize = 1;
2924 	params->size = info->size;
2925 	params->bank_size = params->size;
2926 	params->page_size = info->page_size ?: SPI_NOR_DEFAULT_PAGE_SIZE;
2927 	params->n_banks = info->n_banks ?: SPI_NOR_DEFAULT_N_BANKS;
2928 
2929 	/* Default to Fast Read for non-DT and enable it if requested by DT. */
2930 	if (!np || of_property_read_bool(np, "m25p,fast-read"))
2931 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2932 
2933 	/* (Fast) Read settings. */
2934 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
2935 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2936 				  0, 0, SPINOR_OP_READ,
2937 				  SNOR_PROTO_1_1_1);
2938 
2939 	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2940 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2941 					  0, 8, SPINOR_OP_READ_FAST,
2942 					  SNOR_PROTO_1_1_1);
2943 	/* Page Program settings. */
2944 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
2945 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2946 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2947 
2948 	if (info->flags & SPI_NOR_QUAD_PP) {
2949 		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
2950 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
2951 					SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
2952 	}
2953 }
2954 
2955 /**
2956  * spi_nor_init_params() - Initialize the flash's parameters and settings.
2957  * @nor:	pointer to a 'struct spi_nor'.
2958  *
2959  * The flash parameters and settings are initialized based on a sequence of
2960  * calls that are ordered by priority:
2961  *
2962  * 1/ Default flash parameters initialization. The initializations are done
2963  *    based on nor->info data:
2964  *		spi_nor_info_init_params()
2965  *
2966  * which can be overwritten by:
2967  * 2/ Manufacturer flash parameters initialization. The initializations are
2968  *    done based on MFR register, or when the decisions can not be done solely
2969  *    based on MFR, by using specific flash_info tweeks, ->default_init():
2970  *		spi_nor_manufacturer_init_params()
2971  *
2972  * which can be overwritten by:
2973  * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2974  *    should be more accurate that the above.
2975  *		spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params()
2976  *
2977  *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
2978  *    the flash parameters and settings immediately after parsing the Basic
2979  *    Flash Parameter Table.
2980  *    spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed.
2981  *    It is used to tweak various flash parameters when information provided
2982  *    by the SFDP tables are wrong.
2983  *
2984  * which can be overwritten by:
2985  * 4/ Late flash parameters initialization, used to initialize flash
2986  * parameters that are not declared in the JESD216 SFDP standard, or where SFDP
2987  * tables are not defined at all.
2988  *		spi_nor_late_init_params()
2989  *
2990  * Return: 0 on success, -errno otherwise.
2991  */
2992 static int spi_nor_init_params(struct spi_nor *nor)
2993 {
2994 	int ret;
2995 
2996 	nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2997 	if (!nor->params)
2998 		return -ENOMEM;
2999 
3000 	spi_nor_init_default_params(nor);
3001 
3002 	if (spi_nor_needs_sfdp(nor)) {
3003 		ret = spi_nor_parse_sfdp(nor);
3004 		if (ret) {
3005 			dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n");
3006 			return ret;
3007 		}
3008 	} else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) {
3009 		spi_nor_no_sfdp_init_params(nor);
3010 	} else {
3011 		spi_nor_init_params_deprecated(nor);
3012 	}
3013 
3014 	ret = spi_nor_late_init_params(nor);
3015 	if (ret)
3016 		return ret;
3017 
3018 	if (WARN_ON(!is_power_of_2(nor->params->page_size)))
3019 		return -EINVAL;
3020 
3021 	return 0;
3022 }
3023 
3024 /** spi_nor_set_octal_dtr() - enable or disable Octal DTR I/O.
3025  * @nor:                 pointer to a 'struct spi_nor'
3026  * @enable:              whether to enable or disable Octal DTR
3027  *
3028  * Return: 0 on success, -errno otherwise.
3029  */
3030 static int spi_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
3031 {
3032 	int ret;
3033 
3034 	if (!nor->params->set_octal_dtr)
3035 		return 0;
3036 
3037 	if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
3038 	      nor->write_proto == SNOR_PROTO_8_8_8_DTR))
3039 		return 0;
3040 
3041 	if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
3042 		return 0;
3043 
3044 	ret = nor->params->set_octal_dtr(nor, enable);
3045 	if (ret)
3046 		return ret;
3047 
3048 	if (enable)
3049 		nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
3050 	else
3051 		nor->reg_proto = SNOR_PROTO_1_1_1;
3052 
3053 	return 0;
3054 }
3055 
3056 /**
3057  * spi_nor_quad_enable() - enable Quad I/O if needed.
3058  * @nor:                pointer to a 'struct spi_nor'
3059  *
3060  * Return: 0 on success, -errno otherwise.
3061  */
3062 static int spi_nor_quad_enable(struct spi_nor *nor)
3063 {
3064 	if (!nor->params->quad_enable)
3065 		return 0;
3066 
3067 	if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
3068 	      spi_nor_get_protocol_width(nor->write_proto) == 4))
3069 		return 0;
3070 
3071 	return nor->params->quad_enable(nor);
3072 }
3073 
3074 /**
3075  * spi_nor_set_4byte_addr_mode() - Set address mode.
3076  * @nor:                pointer to a 'struct spi_nor'.
3077  * @enable:             enable/disable 4 byte address mode.
3078  *
3079  * Return: 0 on success, -errno otherwise.
3080  */
3081 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
3082 {
3083 	struct spi_nor_flash_parameter *params = nor->params;
3084 	int ret;
3085 
3086 	if (enable) {
3087 		/*
3088 		 * If the RESET# pin isn't hooked up properly, or the system
3089 		 * otherwise doesn't perform a reset command in the boot
3090 		 * sequence, it's impossible to 100% protect against unexpected
3091 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
3092 		 * designer) that this is bad.
3093 		 */
3094 		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
3095 			  "enabling reset hack; may not recover from unexpected reboots\n");
3096 	}
3097 
3098 	ret = params->set_4byte_addr_mode(nor, enable);
3099 	if (ret && ret != -EOPNOTSUPP)
3100 		return ret;
3101 
3102 	if (enable) {
3103 		params->addr_nbytes = 4;
3104 		params->addr_mode_nbytes = 4;
3105 	} else {
3106 		params->addr_nbytes = 3;
3107 		params->addr_mode_nbytes = 3;
3108 	}
3109 
3110 	return 0;
3111 }
3112 
3113 static int spi_nor_init(struct spi_nor *nor)
3114 {
3115 	int err;
3116 
3117 	err = spi_nor_set_octal_dtr(nor, true);
3118 	if (err) {
3119 		dev_dbg(nor->dev, "octal mode not supported\n");
3120 		return err;
3121 	}
3122 
3123 	err = spi_nor_quad_enable(nor);
3124 	if (err) {
3125 		dev_dbg(nor->dev, "quad mode not supported\n");
3126 		return err;
3127 	}
3128 
3129 	/*
3130 	 * Some SPI NOR flashes are write protected by default after a power-on
3131 	 * reset cycle, in order to avoid inadvertent writes during power-up.
3132 	 * Backward compatibility imposes to unlock the entire flash memory
3133 	 * array at power-up by default. Depending on the kernel configuration
3134 	 * (1) do nothing, (2) always unlock the entire flash array or (3)
3135 	 * unlock the entire flash array only when the software write
3136 	 * protection bits are volatile. The latter is indicated by
3137 	 * SNOR_F_SWP_IS_VOLATILE.
3138 	 */
3139 	if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
3140 	    (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
3141 	     nor->flags & SNOR_F_SWP_IS_VOLATILE))
3142 		spi_nor_try_unlock_all(nor);
3143 
3144 	if (nor->addr_nbytes == 4 &&
3145 	    nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
3146 	    !(nor->flags & SNOR_F_4B_OPCODES))
3147 		return spi_nor_set_4byte_addr_mode(nor, true);
3148 
3149 	return 0;
3150 }
3151 
3152 /**
3153  * spi_nor_soft_reset() - Perform a software reset
3154  * @nor:	pointer to 'struct spi_nor'
3155  *
3156  * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
3157  * the device to its power-on-reset state. This is useful when the software has
3158  * made some changes to device (volatile) registers and needs to reset it before
3159  * shutting down, for example.
3160  *
3161  * Not every flash supports this sequence. The same set of opcodes might be used
3162  * for some other operation on a flash that does not support this. Support for
3163  * this sequence can be discovered via SFDP in the BFPT table.
3164  *
3165  * Return: 0 on success, -errno otherwise.
3166  */
3167 static void spi_nor_soft_reset(struct spi_nor *nor)
3168 {
3169 	struct spi_mem_op op;
3170 	int ret;
3171 
3172 	op = (struct spi_mem_op)SPINOR_SRSTEN_OP;
3173 
3174 	spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3175 
3176 	ret = spi_mem_exec_op(nor->spimem, &op);
3177 	if (ret) {
3178 		if (ret != -EOPNOTSUPP)
3179 			dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3180 		return;
3181 	}
3182 
3183 	op = (struct spi_mem_op)SPINOR_SRST_OP;
3184 
3185 	spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3186 
3187 	ret = spi_mem_exec_op(nor->spimem, &op);
3188 	if (ret) {
3189 		dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3190 		return;
3191 	}
3192 
3193 	/*
3194 	 * Software Reset is not instant, and the delay varies from flash to
3195 	 * flash. Looking at a few flashes, most range somewhere below 100
3196 	 * microseconds. So, sleep for a range of 200-400 us.
3197 	 */
3198 	usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
3199 }
3200 
3201 /* mtd suspend handler */
3202 static int spi_nor_suspend(struct mtd_info *mtd)
3203 {
3204 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
3205 	int ret;
3206 
3207 	/* Disable octal DTR mode if we enabled it. */
3208 	ret = spi_nor_set_octal_dtr(nor, false);
3209 	if (ret)
3210 		dev_err(nor->dev, "suspend() failed\n");
3211 
3212 	return ret;
3213 }
3214 
3215 /* mtd resume handler */
3216 static void spi_nor_resume(struct mtd_info *mtd)
3217 {
3218 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
3219 	struct device *dev = nor->dev;
3220 	int ret;
3221 
3222 	/* re-initialize the nor chip */
3223 	ret = spi_nor_init(nor);
3224 	if (ret)
3225 		dev_err(dev, "resume() failed\n");
3226 }
3227 
3228 static int spi_nor_get_device(struct mtd_info *mtd)
3229 {
3230 	struct mtd_info *master = mtd_get_master(mtd);
3231 	struct spi_nor *nor = mtd_to_spi_nor(master);
3232 	struct device *dev;
3233 
3234 	if (nor->spimem)
3235 		dev = nor->spimem->spi->controller->dev.parent;
3236 	else
3237 		dev = nor->dev;
3238 
3239 	if (!try_module_get(dev->driver->owner))
3240 		return -ENODEV;
3241 
3242 	return 0;
3243 }
3244 
3245 static void spi_nor_put_device(struct mtd_info *mtd)
3246 {
3247 	struct mtd_info *master = mtd_get_master(mtd);
3248 	struct spi_nor *nor = mtd_to_spi_nor(master);
3249 	struct device *dev;
3250 
3251 	if (nor->spimem)
3252 		dev = nor->spimem->spi->controller->dev.parent;
3253 	else
3254 		dev = nor->dev;
3255 
3256 	module_put(dev->driver->owner);
3257 }
3258 
3259 static void spi_nor_restore(struct spi_nor *nor)
3260 {
3261 	int ret;
3262 
3263 	/* restore the addressing mode */
3264 	if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3265 	    nor->flags & SNOR_F_BROKEN_RESET) {
3266 		ret = spi_nor_set_4byte_addr_mode(nor, false);
3267 		if (ret)
3268 			/*
3269 			 * Do not stop the execution in the hope that the flash
3270 			 * will default to the 3-byte address mode after the
3271 			 * software reset.
3272 			 */
3273 			dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret);
3274 	}
3275 
3276 	if (nor->flags & SNOR_F_SOFT_RESET)
3277 		spi_nor_soft_reset(nor);
3278 }
3279 
3280 static const struct flash_info *spi_nor_match_name(struct spi_nor *nor,
3281 						   const char *name)
3282 {
3283 	unsigned int i, j;
3284 
3285 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3286 		for (j = 0; j < manufacturers[i]->nparts; j++) {
3287 			if (manufacturers[i]->parts[j].name &&
3288 			    !strcmp(name, manufacturers[i]->parts[j].name)) {
3289 				nor->manufacturer = manufacturers[i];
3290 				return &manufacturers[i]->parts[j];
3291 			}
3292 		}
3293 	}
3294 
3295 	return NULL;
3296 }
3297 
3298 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3299 						       const char *name)
3300 {
3301 	const struct flash_info *info = NULL;
3302 
3303 	if (name)
3304 		info = spi_nor_match_name(nor, name);
3305 	/*
3306 	 * Auto-detect if chip name wasn't specified or not found, or the chip
3307 	 * has an ID. If the chip supposedly has an ID, we also do an
3308 	 * auto-detection to compare it later.
3309 	 */
3310 	if (!info || info->id) {
3311 		const struct flash_info *jinfo;
3312 
3313 		jinfo = spi_nor_detect(nor);
3314 		if (IS_ERR(jinfo))
3315 			return jinfo;
3316 
3317 		/*
3318 		 * If caller has specified name of flash model that can normally
3319 		 * be detected using JEDEC, let's verify it.
3320 		 */
3321 		if (info && jinfo != info)
3322 			dev_warn(nor->dev, "found %s, expected %s\n",
3323 				 jinfo->name, info->name);
3324 
3325 		/* If info was set before, JEDEC knows better. */
3326 		info = jinfo;
3327 	}
3328 
3329 	return info;
3330 }
3331 
3332 static u32
3333 spi_nor_get_region_erasesize(const struct spi_nor_erase_region *region,
3334 			     const struct spi_nor_erase_type *erase_type)
3335 {
3336 	int i;
3337 
3338 	if (region->overlaid)
3339 		return region->size;
3340 
3341 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
3342 		if (region->erase_mask & BIT(i))
3343 			return erase_type[i].size;
3344 	}
3345 
3346 	return 0;
3347 }
3348 
3349 static int spi_nor_set_mtd_eraseregions(struct spi_nor *nor)
3350 {
3351 	const struct spi_nor_erase_map *map = &nor->params->erase_map;
3352 	const struct spi_nor_erase_region *region = map->regions;
3353 	struct mtd_erase_region_info *mtd_region;
3354 	struct mtd_info *mtd = &nor->mtd;
3355 	u32 erasesize, i;
3356 
3357 	mtd_region = devm_kcalloc(nor->dev, map->n_regions, sizeof(*mtd_region),
3358 				  GFP_KERNEL);
3359 	if (!mtd_region)
3360 		return -ENOMEM;
3361 
3362 	for (i = 0; i < map->n_regions; i++) {
3363 		erasesize = spi_nor_get_region_erasesize(&region[i],
3364 							 map->erase_type);
3365 		if (!erasesize)
3366 			return -EINVAL;
3367 
3368 		mtd_region[i].erasesize = erasesize;
3369 		mtd_region[i].numblocks = div_u64(region[i].size, erasesize);
3370 		mtd_region[i].offset = region[i].offset;
3371 	}
3372 
3373 	mtd->numeraseregions = map->n_regions;
3374 	mtd->eraseregions = mtd_region;
3375 
3376 	return 0;
3377 }
3378 
3379 static int spi_nor_set_mtd_info(struct spi_nor *nor)
3380 {
3381 	struct mtd_info *mtd = &nor->mtd;
3382 	struct device *dev = nor->dev;
3383 
3384 	spi_nor_set_mtd_locking_ops(nor);
3385 	spi_nor_set_mtd_otp_ops(nor);
3386 
3387 	mtd->dev.parent = dev;
3388 	if (!mtd->name)
3389 		mtd->name = dev_name(dev);
3390 	mtd->type = MTD_NORFLASH;
3391 	mtd->flags = MTD_CAP_NORFLASH;
3392 	/* Unset BIT_WRITEABLE to enable JFFS2 write buffer for ECC'd NOR */
3393 	if (nor->flags & SNOR_F_ECC)
3394 		mtd->flags &= ~MTD_BIT_WRITEABLE;
3395 	if (nor->info->flags & SPI_NOR_NO_ERASE)
3396 		mtd->flags |= MTD_NO_ERASE;
3397 	else
3398 		mtd->_erase = spi_nor_erase;
3399 	mtd->writesize = nor->params->writesize;
3400 	mtd->writebufsize = nor->params->page_size;
3401 	mtd->size = nor->params->size;
3402 	mtd->_read = spi_nor_read;
3403 	/* Might be already set by some SST flashes. */
3404 	if (!mtd->_write)
3405 		mtd->_write = spi_nor_write;
3406 	mtd->_suspend = spi_nor_suspend;
3407 	mtd->_resume = spi_nor_resume;
3408 	mtd->_get_device = spi_nor_get_device;
3409 	mtd->_put_device = spi_nor_put_device;
3410 
3411 	if (!spi_nor_has_uniform_erase(nor))
3412 		return spi_nor_set_mtd_eraseregions(nor);
3413 
3414 	return 0;
3415 }
3416 
3417 static int spi_nor_hw_reset(struct spi_nor *nor)
3418 {
3419 	struct gpio_desc *reset;
3420 
3421 	reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW);
3422 	if (IS_ERR_OR_NULL(reset))
3423 		return PTR_ERR_OR_ZERO(reset);
3424 
3425 	/*
3426 	 * Experimental delay values by looking at different flash device
3427 	 * vendors datasheets.
3428 	 */
3429 	usleep_range(1, 5);
3430 	gpiod_set_value_cansleep(reset, 1);
3431 	usleep_range(100, 150);
3432 	gpiod_set_value_cansleep(reset, 0);
3433 	usleep_range(1000, 1200);
3434 
3435 	return 0;
3436 }
3437 
3438 int spi_nor_scan(struct spi_nor *nor, const char *name,
3439 		 const struct spi_nor_hwcaps *hwcaps)
3440 {
3441 	const struct flash_info *info;
3442 	struct device *dev = nor->dev;
3443 	int ret;
3444 
3445 	ret = spi_nor_check(nor);
3446 	if (ret)
3447 		return ret;
3448 
3449 	/* Reset SPI protocol for all commands. */
3450 	nor->reg_proto = SNOR_PROTO_1_1_1;
3451 	nor->read_proto = SNOR_PROTO_1_1_1;
3452 	nor->write_proto = SNOR_PROTO_1_1_1;
3453 
3454 	/*
3455 	 * We need the bounce buffer early to read/write registers when going
3456 	 * through the spi-mem layer (buffers have to be DMA-able).
3457 	 * For spi-mem drivers, we'll reallocate a new buffer if
3458 	 * nor->params->page_size turns out to be greater than PAGE_SIZE (which
3459 	 * shouldn't happen before long since NOR pages are usually less
3460 	 * than 1KB) after spi_nor_scan() returns.
3461 	 */
3462 	nor->bouncebuf_size = PAGE_SIZE;
3463 	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3464 				      GFP_KERNEL);
3465 	if (!nor->bouncebuf)
3466 		return -ENOMEM;
3467 
3468 	ret = spi_nor_hw_reset(nor);
3469 	if (ret)
3470 		return ret;
3471 
3472 	info = spi_nor_get_flash_info(nor, name);
3473 	if (IS_ERR(info))
3474 		return PTR_ERR(info);
3475 
3476 	nor->info = info;
3477 
3478 	mutex_init(&nor->lock);
3479 
3480 	/* Init flash parameters based on flash_info struct and SFDP */
3481 	ret = spi_nor_init_params(nor);
3482 	if (ret)
3483 		return ret;
3484 
3485 	if (spi_nor_use_parallel_locking(nor))
3486 		init_waitqueue_head(&nor->rww.wait);
3487 
3488 	/*
3489 	 * Configure the SPI memory:
3490 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3491 	 * - set the number of dummy cycles (mode cycles + wait states).
3492 	 * - set the SPI protocols for register and memory accesses.
3493 	 * - set the number of address bytes.
3494 	 */
3495 	ret = spi_nor_setup(nor, hwcaps);
3496 	if (ret)
3497 		return ret;
3498 
3499 	/* Send all the required SPI flash commands to initialize device */
3500 	ret = spi_nor_init(nor);
3501 	if (ret)
3502 		return ret;
3503 
3504 	/* No mtd_info fields should be used up to this point. */
3505 	ret = spi_nor_set_mtd_info(nor);
3506 	if (ret)
3507 		return ret;
3508 
3509 	dev_dbg(dev, "Manufacturer and device ID: %*phN\n",
3510 		SPI_NOR_MAX_ID_LEN, nor->id);
3511 
3512 	return 0;
3513 }
3514 EXPORT_SYMBOL_GPL(spi_nor_scan);
3515 
3516 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3517 {
3518 	struct spi_mem_dirmap_info info = {
3519 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3520 				      SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3521 				      SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3522 				      SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3523 		.offset = 0,
3524 		.length = nor->params->size,
3525 	};
3526 	struct spi_mem_op *op = &info.op_tmpl;
3527 
3528 	spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3529 
3530 	/* convert the dummy cycles to the number of bytes */
3531 	op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3532 	if (spi_nor_protocol_is_dtr(nor->read_proto))
3533 		op->dummy.nbytes *= 2;
3534 
3535 	/*
3536 	 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3537 	 * of data bytes is non-zero, the data buswidth won't be set here. So,
3538 	 * do it explicitly.
3539 	 */
3540 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3541 
3542 	nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3543 						       &info);
3544 	return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3545 }
3546 
3547 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3548 {
3549 	struct spi_mem_dirmap_info info = {
3550 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3551 				      SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3552 				      SPI_MEM_OP_NO_DUMMY,
3553 				      SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3554 		.offset = 0,
3555 		.length = nor->params->size,
3556 	};
3557 	struct spi_mem_op *op = &info.op_tmpl;
3558 
3559 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3560 		op->addr.nbytes = 0;
3561 
3562 	spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3563 
3564 	/*
3565 	 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3566 	 * of data bytes is non-zero, the data buswidth won't be set here. So,
3567 	 * do it explicitly.
3568 	 */
3569 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3570 
3571 	nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3572 						       &info);
3573 	return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3574 }
3575 
3576 static int spi_nor_probe(struct spi_mem *spimem)
3577 {
3578 	struct spi_device *spi = spimem->spi;
3579 	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3580 	struct spi_nor *nor;
3581 	/*
3582 	 * Enable all caps by default. The core will mask them after
3583 	 * checking what's really supported using spi_mem_supports_op().
3584 	 */
3585 	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3586 	char *flash_name;
3587 	int ret;
3588 
3589 	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3590 	if (!nor)
3591 		return -ENOMEM;
3592 
3593 	nor->spimem = spimem;
3594 	nor->dev = &spi->dev;
3595 	spi_nor_set_flash_node(nor, spi->dev.of_node);
3596 
3597 	spi_mem_set_drvdata(spimem, nor);
3598 
3599 	if (data && data->name)
3600 		nor->mtd.name = data->name;
3601 
3602 	if (!nor->mtd.name)
3603 		nor->mtd.name = spi_mem_get_name(spimem);
3604 
3605 	/*
3606 	 * For some (historical?) reason many platforms provide two different
3607 	 * names in flash_platform_data: "name" and "type". Quite often name is
3608 	 * set to "m25p80" and then "type" provides a real chip name.
3609 	 * If that's the case, respect "type" and ignore a "name".
3610 	 */
3611 	if (data && data->type)
3612 		flash_name = data->type;
3613 	else if (!strcmp(spi->modalias, "spi-nor"))
3614 		flash_name = NULL; /* auto-detect */
3615 	else
3616 		flash_name = spi->modalias;
3617 
3618 	ret = spi_nor_scan(nor, flash_name, &hwcaps);
3619 	if (ret)
3620 		return ret;
3621 
3622 	spi_nor_debugfs_register(nor);
3623 
3624 	/*
3625 	 * None of the existing parts have > 512B pages, but let's play safe
3626 	 * and add this logic so that if anyone ever adds support for such
3627 	 * a NOR we don't end up with buffer overflows.
3628 	 */
3629 	if (nor->params->page_size > PAGE_SIZE) {
3630 		nor->bouncebuf_size = nor->params->page_size;
3631 		devm_kfree(nor->dev, nor->bouncebuf);
3632 		nor->bouncebuf = devm_kmalloc(nor->dev,
3633 					      nor->bouncebuf_size,
3634 					      GFP_KERNEL);
3635 		if (!nor->bouncebuf)
3636 			return -ENOMEM;
3637 	}
3638 
3639 	ret = spi_nor_create_read_dirmap(nor);
3640 	if (ret)
3641 		return ret;
3642 
3643 	ret = spi_nor_create_write_dirmap(nor);
3644 	if (ret)
3645 		return ret;
3646 
3647 	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3648 				   data ? data->nr_parts : 0);
3649 }
3650 
3651 static int spi_nor_remove(struct spi_mem *spimem)
3652 {
3653 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3654 
3655 	spi_nor_restore(nor);
3656 
3657 	/* Clean up MTD stuff. */
3658 	return mtd_device_unregister(&nor->mtd);
3659 }
3660 
3661 static void spi_nor_shutdown(struct spi_mem *spimem)
3662 {
3663 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3664 
3665 	spi_nor_restore(nor);
3666 }
3667 
3668 /*
3669  * Do NOT add to this array without reading the following:
3670  *
3671  * Historically, many flash devices are bound to this driver by their name. But
3672  * since most of these flash are compatible to some extent, and their
3673  * differences can often be differentiated by the JEDEC read-ID command, we
3674  * encourage new users to add support to the spi-nor library, and simply bind
3675  * against a generic string here (e.g., "jedec,spi-nor").
3676  *
3677  * Many flash names are kept here in this list to keep them available
3678  * as module aliases for existing platforms.
3679  */
3680 static const struct spi_device_id spi_nor_dev_ids[] = {
3681 	/*
3682 	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3683 	 * hack around the fact that the SPI core does not provide uevent
3684 	 * matching for .of_match_table
3685 	 */
3686 	{"spi-nor"},
3687 
3688 	/*
3689 	 * Entries not used in DTs that should be safe to drop after replacing
3690 	 * them with "spi-nor" in platform data.
3691 	 */
3692 	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},
3693 
3694 	/*
3695 	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3696 	 * should be kept for backward compatibility.
3697 	 */
3698 	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
3699 	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
3700 	{"mx25l25635e"},{"mx66l51235l"},
3701 	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
3702 	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
3703 	{"s25fl064k"},
3704 	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3705 	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
3706 	{"m25p64"},	{"m25p128"},
3707 	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
3708 	{"w25q80bl"},	{"w25q128"},	{"w25q256"},
3709 
3710 	/* Flashes that can't be detected using JEDEC */
3711 	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
3712 	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
3713 	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},
3714 
3715 	/* Everspin MRAMs (non-JEDEC) */
3716 	{ "mr25h128" }, /* 128 Kib, 40 MHz */
3717 	{ "mr25h256" }, /* 256 Kib, 40 MHz */
3718 	{ "mr25h10" },  /*   1 Mib, 40 MHz */
3719 	{ "mr25h40" },  /*   4 Mib, 40 MHz */
3720 
3721 	{ },
3722 };
3723 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3724 
3725 static const struct of_device_id spi_nor_of_table[] = {
3726 	/*
3727 	 * Generic compatibility for SPI NOR that can be identified by the
3728 	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3729 	 */
3730 	{ .compatible = "jedec,spi-nor" },
3731 	{ /* sentinel */ },
3732 };
3733 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3734 
3735 /*
3736  * REVISIT: many of these chips have deep power-down modes, which
3737  * should clearly be entered on suspend() to minimize power use.
3738  * And also when they're otherwise idle...
3739  */
3740 static struct spi_mem_driver spi_nor_driver = {
3741 	.spidrv = {
3742 		.driver = {
3743 			.name = "spi-nor",
3744 			.of_match_table = spi_nor_of_table,
3745 			.dev_groups = spi_nor_sysfs_groups,
3746 		},
3747 		.id_table = spi_nor_dev_ids,
3748 	},
3749 	.probe = spi_nor_probe,
3750 	.remove = spi_nor_remove,
3751 	.shutdown = spi_nor_shutdown,
3752 };
3753 
3754 static int __init spi_nor_module_init(void)
3755 {
3756 	return spi_mem_driver_register(&spi_nor_driver);
3757 }
3758 module_init(spi_nor_module_init);
3759 
3760 static void __exit spi_nor_module_exit(void)
3761 {
3762 	spi_mem_driver_unregister(&spi_nor_driver);
3763 	spi_nor_debugfs_shutdown();
3764 }
3765 module_exit(spi_nor_module_exit);
3766 
3767 MODULE_LICENSE("GPL v2");
3768 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3769 MODULE_AUTHOR("Mike Lavender");
3770 MODULE_DESCRIPTION("framework for SPI NOR");
3771