xref: /linux/drivers/mtd/spi-nor/core.c (revision 08df80a3c51674ab73ae770885a383ca553fbbbf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/math64.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/spi-nor.h>
18 #include <linux/mutex.h>
19 #include <linux/of_platform.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sizes.h>
22 #include <linux/slab.h>
23 #include <linux/spi/flash.h>
24 
25 #include "core.h"
26 
27 /* Define max times to check status register before we give up. */
28 
29 /*
30  * For everything but full-chip erase; probably could be much smaller, but kept
31  * around for safety for now
32  */
33 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
34 
35 /*
36  * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37  * for larger flash
38  */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
40 
41 #define SPI_NOR_MAX_ADDR_NBYTES	4
42 
43 #define SPI_NOR_SRST_SLEEP_MIN 200
44 #define SPI_NOR_SRST_SLEEP_MAX 400
45 
46 /**
47  * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
48  *			   extension type.
49  * @nor:		pointer to a 'struct spi_nor'
50  * @op:			pointer to the 'struct spi_mem_op' whose properties
51  *			need to be initialized.
52  *
53  * Right now, only "repeat" and "invert" are supported.
54  *
55  * Return: The opcode extension.
56  */
57 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
58 			      const struct spi_mem_op *op)
59 {
60 	switch (nor->cmd_ext_type) {
61 	case SPI_NOR_EXT_INVERT:
62 		return ~op->cmd.opcode;
63 
64 	case SPI_NOR_EXT_REPEAT:
65 		return op->cmd.opcode;
66 
67 	default:
68 		dev_err(nor->dev, "Unknown command extension type\n");
69 		return 0;
70 	}
71 }
72 
73 /**
74  * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
75  * @nor:		pointer to a 'struct spi_nor'
76  * @op:			pointer to the 'struct spi_mem_op' whose properties
77  *			need to be initialized.
78  * @proto:		the protocol from which the properties need to be set.
79  */
80 void spi_nor_spimem_setup_op(const struct spi_nor *nor,
81 			     struct spi_mem_op *op,
82 			     const enum spi_nor_protocol proto)
83 {
84 	u8 ext;
85 
86 	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
87 
88 	if (op->addr.nbytes)
89 		op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
90 
91 	if (op->dummy.nbytes)
92 		op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
93 
94 	if (op->data.nbytes)
95 		op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
96 
97 	if (spi_nor_protocol_is_dtr(proto)) {
98 		/*
99 		 * SPIMEM supports mixed DTR modes, but right now we can only
100 		 * have all phases either DTR or STR. IOW, SPIMEM can have
101 		 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
102 		 * phases to either DTR or STR.
103 		 */
104 		op->cmd.dtr = true;
105 		op->addr.dtr = true;
106 		op->dummy.dtr = true;
107 		op->data.dtr = true;
108 
109 		/* 2 bytes per clock cycle in DTR mode. */
110 		op->dummy.nbytes *= 2;
111 
112 		ext = spi_nor_get_cmd_ext(nor, op);
113 		op->cmd.opcode = (op->cmd.opcode << 8) | ext;
114 		op->cmd.nbytes = 2;
115 	}
116 }
117 
118 /**
119  * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
120  *                           transfer
121  * @nor:        pointer to 'struct spi_nor'
122  * @op:         pointer to 'struct spi_mem_op' template for transfer
123  *
124  * If we have to use the bounce buffer, the data field in @op will be updated.
125  *
126  * Return: true if the bounce buffer is needed, false if not
127  */
128 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
129 {
130 	/* op->data.buf.in occupies the same memory as op->data.buf.out */
131 	if (object_is_on_stack(op->data.buf.in) ||
132 	    !virt_addr_valid(op->data.buf.in)) {
133 		if (op->data.nbytes > nor->bouncebuf_size)
134 			op->data.nbytes = nor->bouncebuf_size;
135 		op->data.buf.in = nor->bouncebuf;
136 		return true;
137 	}
138 
139 	return false;
140 }
141 
142 /**
143  * spi_nor_spimem_exec_op() - execute a memory operation
144  * @nor:        pointer to 'struct spi_nor'
145  * @op:         pointer to 'struct spi_mem_op' template for transfer
146  *
147  * Return: 0 on success, -error otherwise.
148  */
149 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
150 {
151 	int error;
152 
153 	error = spi_mem_adjust_op_size(nor->spimem, op);
154 	if (error)
155 		return error;
156 
157 	return spi_mem_exec_op(nor->spimem, op);
158 }
159 
160 int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
161 				    u8 *buf, size_t len)
162 {
163 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
164 		return -EOPNOTSUPP;
165 
166 	return nor->controller_ops->read_reg(nor, opcode, buf, len);
167 }
168 
169 int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
170 				     const u8 *buf, size_t len)
171 {
172 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
173 		return -EOPNOTSUPP;
174 
175 	return nor->controller_ops->write_reg(nor, opcode, buf, len);
176 }
177 
178 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
179 {
180 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
181 		return -EOPNOTSUPP;
182 
183 	return nor->controller_ops->erase(nor, offs);
184 }
185 
186 /**
187  * spi_nor_spimem_read_data() - read data from flash's memory region via
188  *                              spi-mem
189  * @nor:        pointer to 'struct spi_nor'
190  * @from:       offset to read from
191  * @len:        number of bytes to read
192  * @buf:        pointer to dst buffer
193  *
194  * Return: number of bytes read successfully, -errno otherwise
195  */
196 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
197 					size_t len, u8 *buf)
198 {
199 	struct spi_mem_op op =
200 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
201 			   SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0),
202 			   SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
203 			   SPI_MEM_OP_DATA_IN(len, buf, 0));
204 	bool usebouncebuf;
205 	ssize_t nbytes;
206 	int error;
207 
208 	spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
209 
210 	/* convert the dummy cycles to the number of bytes */
211 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
212 	if (spi_nor_protocol_is_dtr(nor->read_proto))
213 		op.dummy.nbytes *= 2;
214 
215 	usebouncebuf = spi_nor_spimem_bounce(nor, &op);
216 
217 	if (nor->dirmap.rdesc) {
218 		nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
219 					     op.data.nbytes, op.data.buf.in);
220 	} else {
221 		error = spi_nor_spimem_exec_op(nor, &op);
222 		if (error)
223 			return error;
224 		nbytes = op.data.nbytes;
225 	}
226 
227 	if (usebouncebuf && nbytes > 0)
228 		memcpy(buf, op.data.buf.in, nbytes);
229 
230 	return nbytes;
231 }
232 
233 /**
234  * spi_nor_read_data() - read data from flash memory
235  * @nor:        pointer to 'struct spi_nor'
236  * @from:       offset to read from
237  * @len:        number of bytes to read
238  * @buf:        pointer to dst buffer
239  *
240  * Return: number of bytes read successfully, -errno otherwise
241  */
242 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
243 {
244 	if (nor->spimem)
245 		return spi_nor_spimem_read_data(nor, from, len, buf);
246 
247 	return nor->controller_ops->read(nor, from, len, buf);
248 }
249 
250 /**
251  * spi_nor_spimem_write_data() - write data to flash memory via
252  *                               spi-mem
253  * @nor:        pointer to 'struct spi_nor'
254  * @to:         offset to write to
255  * @len:        number of bytes to write
256  * @buf:        pointer to src buffer
257  *
258  * Return: number of bytes written successfully, -errno otherwise
259  */
260 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
261 					 size_t len, const u8 *buf)
262 {
263 	struct spi_mem_op op =
264 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
265 			   SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0),
266 			   SPI_MEM_OP_NO_DUMMY,
267 			   SPI_MEM_OP_DATA_OUT(len, buf, 0));
268 	ssize_t nbytes;
269 	int error;
270 
271 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
272 		op.addr.nbytes = 0;
273 
274 	spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
275 
276 	if (spi_nor_spimem_bounce(nor, &op))
277 		memcpy(nor->bouncebuf, buf, op.data.nbytes);
278 
279 	if (nor->dirmap.wdesc) {
280 		nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
281 					      op.data.nbytes, op.data.buf.out);
282 	} else {
283 		error = spi_nor_spimem_exec_op(nor, &op);
284 		if (error)
285 			return error;
286 		nbytes = op.data.nbytes;
287 	}
288 
289 	return nbytes;
290 }
291 
292 /**
293  * spi_nor_write_data() - write data to flash memory
294  * @nor:        pointer to 'struct spi_nor'
295  * @to:         offset to write to
296  * @len:        number of bytes to write
297  * @buf:        pointer to src buffer
298  *
299  * Return: number of bytes written successfully, -errno otherwise
300  */
301 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
302 			   const u8 *buf)
303 {
304 	if (nor->spimem)
305 		return spi_nor_spimem_write_data(nor, to, len, buf);
306 
307 	return nor->controller_ops->write(nor, to, len, buf);
308 }
309 
310 /**
311  * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or
312  * volatile.
313  * @nor:        pointer to 'struct spi_nor'.
314  * @op:		SPI memory operation. op->data.buf must be DMA-able.
315  * @proto:	SPI protocol to use for the register operation.
316  *
317  * Return: zero on success, -errno otherwise
318  */
319 int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op,
320 			 enum spi_nor_protocol proto)
321 {
322 	if (!nor->spimem)
323 		return -EOPNOTSUPP;
324 
325 	spi_nor_spimem_setup_op(nor, op, proto);
326 	return spi_nor_spimem_exec_op(nor, op);
327 }
328 
329 /**
330  * spi_nor_write_any_volatile_reg() - write any volatile register to flash
331  * memory.
332  * @nor:        pointer to 'struct spi_nor'
333  * @op:		SPI memory operation. op->data.buf must be DMA-able.
334  * @proto:	SPI protocol to use for the register operation.
335  *
336  * Writing volatile registers are instant according to some manufacturers
337  * (Cypress, Micron) and do not need any status polling.
338  *
339  * Return: zero on success, -errno otherwise
340  */
341 int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op,
342 				   enum spi_nor_protocol proto)
343 {
344 	int ret;
345 
346 	if (!nor->spimem)
347 		return -EOPNOTSUPP;
348 
349 	ret = spi_nor_write_enable(nor);
350 	if (ret)
351 		return ret;
352 	spi_nor_spimem_setup_op(nor, op, proto);
353 	return spi_nor_spimem_exec_op(nor, op);
354 }
355 
356 /**
357  * spi_nor_write_enable() - Set write enable latch with Write Enable command.
358  * @nor:	pointer to 'struct spi_nor'.
359  *
360  * Return: 0 on success, -errno otherwise.
361  */
362 int spi_nor_write_enable(struct spi_nor *nor)
363 {
364 	int ret;
365 
366 	if (nor->spimem) {
367 		struct spi_mem_op op = SPI_NOR_WREN_OP;
368 
369 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
370 
371 		ret = spi_mem_exec_op(nor->spimem, &op);
372 	} else {
373 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
374 						       NULL, 0);
375 	}
376 
377 	if (ret)
378 		dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
379 
380 	return ret;
381 }
382 
383 /**
384  * spi_nor_write_disable() - Send Write Disable instruction to the chip.
385  * @nor:	pointer to 'struct spi_nor'.
386  *
387  * Return: 0 on success, -errno otherwise.
388  */
389 int spi_nor_write_disable(struct spi_nor *nor)
390 {
391 	int ret;
392 
393 	if (nor->spimem) {
394 		struct spi_mem_op op = SPI_NOR_WRDI_OP;
395 
396 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
397 
398 		ret = spi_mem_exec_op(nor->spimem, &op);
399 	} else {
400 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
401 						       NULL, 0);
402 	}
403 
404 	if (ret)
405 		dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
406 
407 	return ret;
408 }
409 
410 /**
411  * spi_nor_read_id() - Read the JEDEC ID.
412  * @nor:	pointer to 'struct spi_nor'.
413  * @naddr:	number of address bytes to send. Can be zero if the operation
414  *		does not need to send an address.
415  * @ndummy:	number of dummy bytes to send after an opcode or address. Can
416  *		be zero if the operation does not require dummy bytes.
417  * @id:		pointer to a DMA-able buffer where the value of the JEDEC ID
418  *		will be written.
419  * @proto:	the SPI protocol for register operation.
420  *
421  * Return: 0 on success, -errno otherwise.
422  */
423 int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id,
424 		    enum spi_nor_protocol proto)
425 {
426 	int ret;
427 
428 	if (nor->spimem) {
429 		struct spi_mem_op op =
430 			SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN);
431 
432 		spi_nor_spimem_setup_op(nor, &op, proto);
433 		ret = spi_mem_exec_op(nor->spimem, &op);
434 	} else {
435 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
436 						    SPI_NOR_MAX_ID_LEN);
437 	}
438 	return ret;
439 }
440 
441 /**
442  * spi_nor_read_sr() - Read the Status Register.
443  * @nor:	pointer to 'struct spi_nor'.
444  * @sr:		pointer to a DMA-able buffer where the value of the
445  *              Status Register will be written. Should be at least 2 bytes.
446  *
447  * Return: 0 on success, -errno otherwise.
448  */
449 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
450 {
451 	int ret;
452 
453 	if (nor->spimem) {
454 		struct spi_mem_op op = SPI_NOR_RDSR_OP(sr);
455 
456 		if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
457 			op.addr.nbytes = nor->params->rdsr_addr_nbytes;
458 			op.dummy.nbytes = nor->params->rdsr_dummy;
459 			/*
460 			 * We don't want to read only one byte in DTR mode. So,
461 			 * read 2 and then discard the second byte.
462 			 */
463 			op.data.nbytes = 2;
464 		}
465 
466 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
467 
468 		ret = spi_mem_exec_op(nor->spimem, &op);
469 	} else {
470 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
471 						      1);
472 	}
473 
474 	if (ret)
475 		dev_dbg(nor->dev, "error %d reading SR\n", ret);
476 
477 	return ret;
478 }
479 
480 /**
481  * spi_nor_read_cr() - Read the Configuration Register using the
482  * SPINOR_OP_RDCR (35h) command.
483  * @nor:	pointer to 'struct spi_nor'
484  * @cr:		pointer to a DMA-able buffer where the value of the
485  *              Configuration Register will be written.
486  *
487  * Return: 0 on success, -errno otherwise.
488  */
489 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
490 {
491 	int ret;
492 
493 	if (nor->spimem) {
494 		struct spi_mem_op op = SPI_NOR_RDCR_OP(cr);
495 
496 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
497 
498 		ret = spi_mem_exec_op(nor->spimem, &op);
499 	} else {
500 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
501 						      1);
502 	}
503 
504 	if (ret)
505 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
506 
507 	return ret;
508 }
509 
510 /**
511  * spi_nor_set_4byte_addr_mode_en4b_ex4b() - Enter/Exit 4-byte address mode
512  *			using SPINOR_OP_EN4B/SPINOR_OP_EX4B. Typically used by
513  *			Winbond and Macronix.
514  * @nor:	pointer to 'struct spi_nor'.
515  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
516  *		address mode.
517  *
518  * Return: 0 on success, -errno otherwise.
519  */
520 int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable)
521 {
522 	int ret;
523 
524 	if (nor->spimem) {
525 		struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable);
526 
527 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
528 
529 		ret = spi_mem_exec_op(nor->spimem, &op);
530 	} else {
531 		ret = spi_nor_controller_ops_write_reg(nor,
532 						       enable ? SPINOR_OP_EN4B :
533 								SPINOR_OP_EX4B,
534 						       NULL, 0);
535 	}
536 
537 	if (ret)
538 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
539 
540 	return ret;
541 }
542 
543 /**
544  * spi_nor_set_4byte_addr_mode_wren_en4b_ex4b() - Set 4-byte address mode using
545  * SPINOR_OP_WREN followed by SPINOR_OP_EN4B or SPINOR_OP_EX4B. Typically used
546  * by ST and Micron flashes.
547  * @nor:	pointer to 'struct spi_nor'.
548  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
549  *		address mode.
550  *
551  * Return: 0 on success, -errno otherwise.
552  */
553 int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, bool enable)
554 {
555 	int ret;
556 
557 	ret = spi_nor_write_enable(nor);
558 	if (ret)
559 		return ret;
560 
561 	ret = spi_nor_set_4byte_addr_mode_en4b_ex4b(nor, enable);
562 	if (ret)
563 		return ret;
564 
565 	return spi_nor_write_disable(nor);
566 }
567 
568 /**
569  * spi_nor_set_4byte_addr_mode_brwr() - Set 4-byte address mode using
570  *			SPINOR_OP_BRWR. Typically used by Spansion flashes.
571  * @nor:	pointer to 'struct spi_nor'.
572  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
573  *		address mode.
574  *
575  * 8-bit volatile bank register used to define A[30:A24] bits. MSB (bit[7]) is
576  * used to enable/disable 4-byte address mode. When MSB is set to ‘1’, 4-byte
577  * address mode is active and A[30:24] bits are don’t care. Write instruction is
578  * SPINOR_OP_BRWR(17h) with 1 byte of data.
579  *
580  * Return: 0 on success, -errno otherwise.
581  */
582 int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable)
583 {
584 	int ret;
585 
586 	nor->bouncebuf[0] = enable << 7;
587 
588 	if (nor->spimem) {
589 		struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf);
590 
591 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
592 
593 		ret = spi_mem_exec_op(nor->spimem, &op);
594 	} else {
595 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
596 						       nor->bouncebuf, 1);
597 	}
598 
599 	if (ret)
600 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
601 
602 	return ret;
603 }
604 
605 /**
606  * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
607  * for new commands.
608  * @nor:	pointer to 'struct spi_nor'.
609  *
610  * Return: 1 if ready, 0 if not ready, -errno on errors.
611  */
612 int spi_nor_sr_ready(struct spi_nor *nor)
613 {
614 	int ret;
615 
616 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
617 	if (ret)
618 		return ret;
619 
620 	return !(nor->bouncebuf[0] & SR_WIP);
621 }
622 
623 /**
624  * spi_nor_use_parallel_locking() - Checks if RWW locking scheme shall be used
625  * @nor:	pointer to 'struct spi_nor'.
626  *
627  * Return: true if parallel locking is enabled, false otherwise.
628  */
629 static bool spi_nor_use_parallel_locking(struct spi_nor *nor)
630 {
631 	return nor->flags & SNOR_F_RWW;
632 }
633 
634 /* Locking helpers for status read operations */
635 static int spi_nor_rww_start_rdst(struct spi_nor *nor)
636 {
637 	struct spi_nor_rww *rww = &nor->rww;
638 	int ret = -EAGAIN;
639 
640 	mutex_lock(&nor->lock);
641 
642 	if (rww->ongoing_io || rww->ongoing_rd)
643 		goto busy;
644 
645 	rww->ongoing_io = true;
646 	rww->ongoing_rd = true;
647 	ret = 0;
648 
649 busy:
650 	mutex_unlock(&nor->lock);
651 	return ret;
652 }
653 
654 static void spi_nor_rww_end_rdst(struct spi_nor *nor)
655 {
656 	struct spi_nor_rww *rww = &nor->rww;
657 
658 	mutex_lock(&nor->lock);
659 
660 	rww->ongoing_io = false;
661 	rww->ongoing_rd = false;
662 
663 	mutex_unlock(&nor->lock);
664 }
665 
666 static int spi_nor_lock_rdst(struct spi_nor *nor)
667 {
668 	if (spi_nor_use_parallel_locking(nor))
669 		return spi_nor_rww_start_rdst(nor);
670 
671 	return 0;
672 }
673 
674 static void spi_nor_unlock_rdst(struct spi_nor *nor)
675 {
676 	if (spi_nor_use_parallel_locking(nor)) {
677 		spi_nor_rww_end_rdst(nor);
678 		wake_up(&nor->rww.wait);
679 	}
680 }
681 
682 /**
683  * spi_nor_ready() - Query the flash to see if it is ready for new commands.
684  * @nor:	pointer to 'struct spi_nor'.
685  *
686  * Return: 1 if ready, 0 if not ready, -errno on errors.
687  */
688 static int spi_nor_ready(struct spi_nor *nor)
689 {
690 	int ret;
691 
692 	ret = spi_nor_lock_rdst(nor);
693 	if (ret)
694 		return 0;
695 
696 	/* Flashes might override the standard routine. */
697 	if (nor->params->ready)
698 		ret = nor->params->ready(nor);
699 	else
700 		ret = spi_nor_sr_ready(nor);
701 
702 	spi_nor_unlock_rdst(nor);
703 
704 	return ret;
705 }
706 
707 /**
708  * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
709  * Status Register until ready, or timeout occurs.
710  * @nor:		pointer to "struct spi_nor".
711  * @timeout_jiffies:	jiffies to wait until timeout.
712  *
713  * Return: 0 on success, -errno otherwise.
714  */
715 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
716 						unsigned long timeout_jiffies)
717 {
718 	unsigned long deadline;
719 	int timeout = 0, ret;
720 
721 	deadline = jiffies + timeout_jiffies;
722 
723 	while (!timeout) {
724 		if (time_after_eq(jiffies, deadline))
725 			timeout = 1;
726 
727 		ret = spi_nor_ready(nor);
728 		if (ret < 0)
729 			return ret;
730 		if (ret)
731 			return 0;
732 
733 		cond_resched();
734 	}
735 
736 	dev_dbg(nor->dev, "flash operation timed out\n");
737 
738 	return -ETIMEDOUT;
739 }
740 
741 /**
742  * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
743  * flash to be ready, or timeout occurs.
744  * @nor:	pointer to "struct spi_nor".
745  *
746  * Return: 0 on success, -errno otherwise.
747  */
748 int spi_nor_wait_till_ready(struct spi_nor *nor)
749 {
750 	return spi_nor_wait_till_ready_with_timeout(nor,
751 						    DEFAULT_READY_WAIT_JIFFIES);
752 }
753 
754 /**
755  * spi_nor_global_block_unlock() - Unlock Global Block Protection.
756  * @nor:	pointer to 'struct spi_nor'.
757  *
758  * Return: 0 on success, -errno otherwise.
759  */
760 int spi_nor_global_block_unlock(struct spi_nor *nor)
761 {
762 	int ret;
763 
764 	ret = spi_nor_write_enable(nor);
765 	if (ret)
766 		return ret;
767 
768 	if (nor->spimem) {
769 		struct spi_mem_op op = SPI_NOR_GBULK_OP;
770 
771 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
772 
773 		ret = spi_mem_exec_op(nor->spimem, &op);
774 	} else {
775 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
776 						       NULL, 0);
777 	}
778 
779 	if (ret) {
780 		dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
781 		return ret;
782 	}
783 
784 	return spi_nor_wait_till_ready(nor);
785 }
786 
787 /**
788  * spi_nor_write_sr() - Write the Status Register.
789  * @nor:	pointer to 'struct spi_nor'.
790  * @sr:		pointer to DMA-able buffer to write to the Status Register.
791  * @len:	number of bytes to write to the Status Register.
792  *
793  * Return: 0 on success, -errno otherwise.
794  */
795 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
796 {
797 	int ret;
798 
799 	ret = spi_nor_write_enable(nor);
800 	if (ret)
801 		return ret;
802 
803 	if (nor->spimem) {
804 		struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len);
805 
806 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
807 
808 		ret = spi_mem_exec_op(nor->spimem, &op);
809 	} else {
810 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
811 						       len);
812 	}
813 
814 	if (ret) {
815 		dev_dbg(nor->dev, "error %d writing SR\n", ret);
816 		return ret;
817 	}
818 
819 	return spi_nor_wait_till_ready(nor);
820 }
821 
822 /**
823  * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
824  * ensure that the byte written match the received value.
825  * @nor:	pointer to a 'struct spi_nor'.
826  * @sr1:	byte value to be written to the Status Register.
827  *
828  * Return: 0 on success, -errno otherwise.
829  */
830 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
831 {
832 	int ret;
833 
834 	nor->bouncebuf[0] = sr1;
835 
836 	ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
837 	if (ret)
838 		return ret;
839 
840 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
841 	if (ret)
842 		return ret;
843 
844 	if (nor->bouncebuf[0] != sr1) {
845 		dev_dbg(nor->dev, "SR1: read back test failed\n");
846 		return -EIO;
847 	}
848 
849 	return 0;
850 }
851 
852 /**
853  * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
854  * Status Register 2 in one shot. Ensure that the byte written in the Status
855  * Register 1 match the received value, and that the 16-bit Write did not
856  * affect what was already in the Status Register 2.
857  * @nor:	pointer to a 'struct spi_nor'.
858  * @sr1:	byte value to be written to the Status Register 1.
859  *
860  * Return: 0 on success, -errno otherwise.
861  */
862 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
863 {
864 	int ret;
865 	u8 *sr_cr = nor->bouncebuf;
866 	u8 cr_written;
867 
868 	/* Make sure we don't overwrite the contents of Status Register 2. */
869 	if (!(nor->flags & SNOR_F_NO_READ_CR)) {
870 		ret = spi_nor_read_cr(nor, &sr_cr[1]);
871 		if (ret)
872 			return ret;
873 	} else if (spi_nor_get_protocol_width(nor->read_proto) == 4 &&
874 		   spi_nor_get_protocol_width(nor->write_proto) == 4 &&
875 		   nor->params->quad_enable) {
876 		/*
877 		 * If the Status Register 2 Read command (35h) is not
878 		 * supported, we should at least be sure we don't
879 		 * change the value of the SR2 Quad Enable bit.
880 		 *
881 		 * When the Quad Enable method is set and the buswidth is 4, we
882 		 * can safely assume that the value of the QE bit is one, as a
883 		 * consequence of the nor->params->quad_enable() call.
884 		 *
885 		 * According to the JESD216 revB standard, BFPT DWORDS[15],
886 		 * bits 22:20, the 16-bit Write Status (01h) command is
887 		 * available just for the cases in which the QE bit is
888 		 * described in SR2 at BIT(1).
889 		 */
890 		sr_cr[1] = SR2_QUAD_EN_BIT1;
891 	} else {
892 		sr_cr[1] = 0;
893 	}
894 
895 	sr_cr[0] = sr1;
896 
897 	ret = spi_nor_write_sr(nor, sr_cr, 2);
898 	if (ret)
899 		return ret;
900 
901 	ret = spi_nor_read_sr(nor, sr_cr);
902 	if (ret)
903 		return ret;
904 
905 	if (sr1 != sr_cr[0]) {
906 		dev_dbg(nor->dev, "SR: Read back test failed\n");
907 		return -EIO;
908 	}
909 
910 	if (nor->flags & SNOR_F_NO_READ_CR)
911 		return 0;
912 
913 	cr_written = sr_cr[1];
914 
915 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
916 	if (ret)
917 		return ret;
918 
919 	if (cr_written != sr_cr[1]) {
920 		dev_dbg(nor->dev, "CR: read back test failed\n");
921 		return -EIO;
922 	}
923 
924 	return 0;
925 }
926 
927 /**
928  * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
929  * Configuration Register in one shot. Ensure that the byte written in the
930  * Configuration Register match the received value, and that the 16-bit Write
931  * did not affect what was already in the Status Register 1.
932  * @nor:	pointer to a 'struct spi_nor'.
933  * @cr:		byte value to be written to the Configuration Register.
934  *
935  * Return: 0 on success, -errno otherwise.
936  */
937 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
938 {
939 	int ret;
940 	u8 *sr_cr = nor->bouncebuf;
941 	u8 sr_written;
942 
943 	/* Keep the current value of the Status Register 1. */
944 	ret = spi_nor_read_sr(nor, sr_cr);
945 	if (ret)
946 		return ret;
947 
948 	sr_cr[1] = cr;
949 
950 	ret = spi_nor_write_sr(nor, sr_cr, 2);
951 	if (ret)
952 		return ret;
953 
954 	sr_written = sr_cr[0];
955 
956 	ret = spi_nor_read_sr(nor, sr_cr);
957 	if (ret)
958 		return ret;
959 
960 	if (sr_written != sr_cr[0]) {
961 		dev_dbg(nor->dev, "SR: Read back test failed\n");
962 		return -EIO;
963 	}
964 
965 	if (nor->flags & SNOR_F_NO_READ_CR)
966 		return 0;
967 
968 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
969 	if (ret)
970 		return ret;
971 
972 	if (cr != sr_cr[1]) {
973 		dev_dbg(nor->dev, "CR: read back test failed\n");
974 		return -EIO;
975 	}
976 
977 	return 0;
978 }
979 
980 /**
981  * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
982  * the byte written match the received value without affecting other bits in the
983  * Status Register 1 and 2.
984  * @nor:	pointer to a 'struct spi_nor'.
985  * @sr1:	byte value to be written to the Status Register.
986  *
987  * Return: 0 on success, -errno otherwise.
988  */
989 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
990 {
991 	if (nor->flags & SNOR_F_HAS_16BIT_SR)
992 		return spi_nor_write_16bit_sr_and_check(nor, sr1);
993 
994 	return spi_nor_write_sr1_and_check(nor, sr1);
995 }
996 
997 /**
998  * spi_nor_write_sr2() - Write the Status Register 2 using the
999  * SPINOR_OP_WRSR2 (3eh) command.
1000  * @nor:	pointer to 'struct spi_nor'.
1001  * @sr2:	pointer to DMA-able buffer to write to the Status Register 2.
1002  *
1003  * Return: 0 on success, -errno otherwise.
1004  */
1005 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1006 {
1007 	int ret;
1008 
1009 	ret = spi_nor_write_enable(nor);
1010 	if (ret)
1011 		return ret;
1012 
1013 	if (nor->spimem) {
1014 		struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2);
1015 
1016 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1017 
1018 		ret = spi_mem_exec_op(nor->spimem, &op);
1019 	} else {
1020 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
1021 						       sr2, 1);
1022 	}
1023 
1024 	if (ret) {
1025 		dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1026 		return ret;
1027 	}
1028 
1029 	return spi_nor_wait_till_ready(nor);
1030 }
1031 
1032 /**
1033  * spi_nor_read_sr2() - Read the Status Register 2 using the
1034  * SPINOR_OP_RDSR2 (3fh) command.
1035  * @nor:	pointer to 'struct spi_nor'.
1036  * @sr2:	pointer to DMA-able buffer where the value of the
1037  *		Status Register 2 will be written.
1038  *
1039  * Return: 0 on success, -errno otherwise.
1040  */
1041 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1042 {
1043 	int ret;
1044 
1045 	if (nor->spimem) {
1046 		struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2);
1047 
1048 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1049 
1050 		ret = spi_mem_exec_op(nor->spimem, &op);
1051 	} else {
1052 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
1053 						      1);
1054 	}
1055 
1056 	if (ret)
1057 		dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1058 
1059 	return ret;
1060 }
1061 
1062 /**
1063  * spi_nor_erase_die() - Erase the entire die.
1064  * @nor:	pointer to 'struct spi_nor'.
1065  * @addr:	address of the die.
1066  * @die_size:	size of the die.
1067  *
1068  * Return: 0 on success, -errno otherwise.
1069  */
1070 static int spi_nor_erase_die(struct spi_nor *nor, loff_t addr, size_t die_size)
1071 {
1072 	bool multi_die = nor->mtd.size != die_size;
1073 	int ret;
1074 
1075 	dev_dbg(nor->dev, " %lldKiB\n", (long long)(die_size >> 10));
1076 
1077 	if (nor->spimem) {
1078 		struct spi_mem_op op =
1079 			SPI_NOR_DIE_ERASE_OP(nor->params->die_erase_opcode,
1080 					     nor->addr_nbytes, addr, multi_die);
1081 
1082 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1083 
1084 		ret = spi_mem_exec_op(nor->spimem, &op);
1085 	} else {
1086 		if (multi_die)
1087 			return -EOPNOTSUPP;
1088 
1089 		ret = spi_nor_controller_ops_write_reg(nor,
1090 						       SPINOR_OP_CHIP_ERASE,
1091 						       NULL, 0);
1092 	}
1093 
1094 	if (ret)
1095 		dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1096 
1097 	return ret;
1098 }
1099 
1100 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1101 {
1102 	size_t i;
1103 
1104 	for (i = 0; i < size; i++)
1105 		if (table[i][0] == opcode)
1106 			return table[i][1];
1107 
1108 	/* No conversion found, keep input op code. */
1109 	return opcode;
1110 }
1111 
1112 u8 spi_nor_convert_3to4_read(u8 opcode)
1113 {
1114 	static const u8 spi_nor_3to4_read[][2] = {
1115 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
1116 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
1117 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
1118 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
1119 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
1120 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
1121 		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
1122 		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
1123 
1124 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
1125 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
1126 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
1127 	};
1128 
1129 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1130 				      ARRAY_SIZE(spi_nor_3to4_read));
1131 }
1132 
1133 static u8 spi_nor_convert_3to4_program(u8 opcode)
1134 {
1135 	static const u8 spi_nor_3to4_program[][2] = {
1136 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
1137 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
1138 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
1139 		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
1140 		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
1141 	};
1142 
1143 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1144 				      ARRAY_SIZE(spi_nor_3to4_program));
1145 }
1146 
1147 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1148 {
1149 	static const u8 spi_nor_3to4_erase[][2] = {
1150 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
1151 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
1152 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
1153 	};
1154 
1155 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1156 				      ARRAY_SIZE(spi_nor_3to4_erase));
1157 }
1158 
1159 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1160 {
1161 	return !!nor->params->erase_map.uniform_erase_type;
1162 }
1163 
1164 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1165 {
1166 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1167 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1168 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1169 
1170 	if (!spi_nor_has_uniform_erase(nor)) {
1171 		struct spi_nor_erase_map *map = &nor->params->erase_map;
1172 		struct spi_nor_erase_type *erase;
1173 		int i;
1174 
1175 		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1176 			erase = &map->erase_type[i];
1177 			erase->opcode =
1178 				spi_nor_convert_3to4_erase(erase->opcode);
1179 		}
1180 	}
1181 }
1182 
1183 static int spi_nor_prep(struct spi_nor *nor)
1184 {
1185 	int ret = 0;
1186 
1187 	if (nor->controller_ops && nor->controller_ops->prepare)
1188 		ret = nor->controller_ops->prepare(nor);
1189 
1190 	return ret;
1191 }
1192 
1193 static void spi_nor_unprep(struct spi_nor *nor)
1194 {
1195 	if (nor->controller_ops && nor->controller_ops->unprepare)
1196 		nor->controller_ops->unprepare(nor);
1197 }
1198 
1199 static void spi_nor_offset_to_banks(u64 bank_size, loff_t start, size_t len,
1200 				    u8 *first, u8 *last)
1201 {
1202 	/* This is currently safe, the number of banks being very small */
1203 	*first = DIV_ROUND_DOWN_ULL(start, bank_size);
1204 	*last = DIV_ROUND_DOWN_ULL(start + len - 1, bank_size);
1205 }
1206 
1207 /* Generic helpers for internal locking and serialization */
1208 static bool spi_nor_rww_start_io(struct spi_nor *nor)
1209 {
1210 	struct spi_nor_rww *rww = &nor->rww;
1211 	bool start = false;
1212 
1213 	mutex_lock(&nor->lock);
1214 
1215 	if (rww->ongoing_io)
1216 		goto busy;
1217 
1218 	rww->ongoing_io = true;
1219 	start = true;
1220 
1221 busy:
1222 	mutex_unlock(&nor->lock);
1223 	return start;
1224 }
1225 
1226 static void spi_nor_rww_end_io(struct spi_nor *nor)
1227 {
1228 	mutex_lock(&nor->lock);
1229 	nor->rww.ongoing_io = false;
1230 	mutex_unlock(&nor->lock);
1231 }
1232 
1233 static int spi_nor_lock_device(struct spi_nor *nor)
1234 {
1235 	if (!spi_nor_use_parallel_locking(nor))
1236 		return 0;
1237 
1238 	return wait_event_killable(nor->rww.wait, spi_nor_rww_start_io(nor));
1239 }
1240 
1241 static void spi_nor_unlock_device(struct spi_nor *nor)
1242 {
1243 	if (spi_nor_use_parallel_locking(nor)) {
1244 		spi_nor_rww_end_io(nor);
1245 		wake_up(&nor->rww.wait);
1246 	}
1247 }
1248 
1249 /* Generic helpers for internal locking and serialization */
1250 static bool spi_nor_rww_start_exclusive(struct spi_nor *nor)
1251 {
1252 	struct spi_nor_rww *rww = &nor->rww;
1253 	bool start = false;
1254 
1255 	mutex_lock(&nor->lock);
1256 
1257 	if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1258 		goto busy;
1259 
1260 	rww->ongoing_io = true;
1261 	rww->ongoing_rd = true;
1262 	rww->ongoing_pe = true;
1263 	start = true;
1264 
1265 busy:
1266 	mutex_unlock(&nor->lock);
1267 	return start;
1268 }
1269 
1270 static void spi_nor_rww_end_exclusive(struct spi_nor *nor)
1271 {
1272 	struct spi_nor_rww *rww = &nor->rww;
1273 
1274 	mutex_lock(&nor->lock);
1275 	rww->ongoing_io = false;
1276 	rww->ongoing_rd = false;
1277 	rww->ongoing_pe = false;
1278 	mutex_unlock(&nor->lock);
1279 }
1280 
1281 int spi_nor_prep_and_lock(struct spi_nor *nor)
1282 {
1283 	int ret;
1284 
1285 	ret = spi_nor_prep(nor);
1286 	if (ret)
1287 		return ret;
1288 
1289 	if (!spi_nor_use_parallel_locking(nor))
1290 		mutex_lock(&nor->lock);
1291 	else
1292 		ret = wait_event_killable(nor->rww.wait,
1293 					  spi_nor_rww_start_exclusive(nor));
1294 
1295 	return ret;
1296 }
1297 
1298 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1299 {
1300 	if (!spi_nor_use_parallel_locking(nor)) {
1301 		mutex_unlock(&nor->lock);
1302 	} else {
1303 		spi_nor_rww_end_exclusive(nor);
1304 		wake_up(&nor->rww.wait);
1305 	}
1306 
1307 	spi_nor_unprep(nor);
1308 }
1309 
1310 /* Internal locking helpers for program and erase operations */
1311 static bool spi_nor_rww_start_pe(struct spi_nor *nor, loff_t start, size_t len)
1312 {
1313 	struct spi_nor_rww *rww = &nor->rww;
1314 	unsigned int used_banks = 0;
1315 	bool started = false;
1316 	u8 first, last;
1317 	int bank;
1318 
1319 	mutex_lock(&nor->lock);
1320 
1321 	if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1322 		goto busy;
1323 
1324 	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1325 	for (bank = first; bank <= last; bank++) {
1326 		if (rww->used_banks & BIT(bank))
1327 			goto busy;
1328 
1329 		used_banks |= BIT(bank);
1330 	}
1331 
1332 	rww->used_banks |= used_banks;
1333 	rww->ongoing_pe = true;
1334 	started = true;
1335 
1336 busy:
1337 	mutex_unlock(&nor->lock);
1338 	return started;
1339 }
1340 
1341 static void spi_nor_rww_end_pe(struct spi_nor *nor, loff_t start, size_t len)
1342 {
1343 	struct spi_nor_rww *rww = &nor->rww;
1344 	u8 first, last;
1345 	int bank;
1346 
1347 	mutex_lock(&nor->lock);
1348 
1349 	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1350 	for (bank = first; bank <= last; bank++)
1351 		rww->used_banks &= ~BIT(bank);
1352 
1353 	rww->ongoing_pe = false;
1354 
1355 	mutex_unlock(&nor->lock);
1356 }
1357 
1358 static int spi_nor_prep_and_lock_pe(struct spi_nor *nor, loff_t start, size_t len)
1359 {
1360 	int ret;
1361 
1362 	ret = spi_nor_prep(nor);
1363 	if (ret)
1364 		return ret;
1365 
1366 	if (!spi_nor_use_parallel_locking(nor))
1367 		mutex_lock(&nor->lock);
1368 	else
1369 		ret = wait_event_killable(nor->rww.wait,
1370 					  spi_nor_rww_start_pe(nor, start, len));
1371 
1372 	return ret;
1373 }
1374 
1375 static void spi_nor_unlock_and_unprep_pe(struct spi_nor *nor, loff_t start, size_t len)
1376 {
1377 	if (!spi_nor_use_parallel_locking(nor)) {
1378 		mutex_unlock(&nor->lock);
1379 	} else {
1380 		spi_nor_rww_end_pe(nor, start, len);
1381 		wake_up(&nor->rww.wait);
1382 	}
1383 
1384 	spi_nor_unprep(nor);
1385 }
1386 
1387 /* Internal locking helpers for read operations */
1388 static bool spi_nor_rww_start_rd(struct spi_nor *nor, loff_t start, size_t len)
1389 {
1390 	struct spi_nor_rww *rww = &nor->rww;
1391 	unsigned int used_banks = 0;
1392 	bool started = false;
1393 	u8 first, last;
1394 	int bank;
1395 
1396 	mutex_lock(&nor->lock);
1397 
1398 	if (rww->ongoing_io || rww->ongoing_rd)
1399 		goto busy;
1400 
1401 	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1402 	for (bank = first; bank <= last; bank++) {
1403 		if (rww->used_banks & BIT(bank))
1404 			goto busy;
1405 
1406 		used_banks |= BIT(bank);
1407 	}
1408 
1409 	rww->used_banks |= used_banks;
1410 	rww->ongoing_io = true;
1411 	rww->ongoing_rd = true;
1412 	started = true;
1413 
1414 busy:
1415 	mutex_unlock(&nor->lock);
1416 	return started;
1417 }
1418 
1419 static void spi_nor_rww_end_rd(struct spi_nor *nor, loff_t start, size_t len)
1420 {
1421 	struct spi_nor_rww *rww = &nor->rww;
1422 	u8 first, last;
1423 	int bank;
1424 
1425 	mutex_lock(&nor->lock);
1426 
1427 	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1428 	for (bank = first; bank <= last; bank++)
1429 		nor->rww.used_banks &= ~BIT(bank);
1430 
1431 	rww->ongoing_io = false;
1432 	rww->ongoing_rd = false;
1433 
1434 	mutex_unlock(&nor->lock);
1435 }
1436 
1437 static int spi_nor_prep_and_lock_rd(struct spi_nor *nor, loff_t start, size_t len)
1438 {
1439 	int ret;
1440 
1441 	ret = spi_nor_prep(nor);
1442 	if (ret)
1443 		return ret;
1444 
1445 	if (!spi_nor_use_parallel_locking(nor))
1446 		mutex_lock(&nor->lock);
1447 	else
1448 		ret = wait_event_killable(nor->rww.wait,
1449 					  spi_nor_rww_start_rd(nor, start, len));
1450 
1451 	return ret;
1452 }
1453 
1454 static void spi_nor_unlock_and_unprep_rd(struct spi_nor *nor, loff_t start, size_t len)
1455 {
1456 	if (!spi_nor_use_parallel_locking(nor)) {
1457 		mutex_unlock(&nor->lock);
1458 	} else {
1459 		spi_nor_rww_end_rd(nor, start, len);
1460 		wake_up(&nor->rww.wait);
1461 	}
1462 
1463 	spi_nor_unprep(nor);
1464 }
1465 
1466 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1467 {
1468 	if (!nor->params->convert_addr)
1469 		return addr;
1470 
1471 	return nor->params->convert_addr(nor, addr);
1472 }
1473 
1474 /*
1475  * Initiate the erasure of a single sector
1476  */
1477 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1478 {
1479 	int i;
1480 
1481 	addr = spi_nor_convert_addr(nor, addr);
1482 
1483 	if (nor->spimem) {
1484 		struct spi_mem_op op =
1485 			SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode,
1486 						nor->addr_nbytes, addr);
1487 
1488 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1489 
1490 		return spi_mem_exec_op(nor->spimem, &op);
1491 	} else if (nor->controller_ops->erase) {
1492 		return spi_nor_controller_ops_erase(nor, addr);
1493 	}
1494 
1495 	/*
1496 	 * Default implementation, if driver doesn't have a specialized HW
1497 	 * control
1498 	 */
1499 	for (i = nor->addr_nbytes - 1; i >= 0; i--) {
1500 		nor->bouncebuf[i] = addr & 0xff;
1501 		addr >>= 8;
1502 	}
1503 
1504 	return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1505 						nor->bouncebuf, nor->addr_nbytes);
1506 }
1507 
1508 /**
1509  * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1510  * @erase:	pointer to a structure that describes a SPI NOR erase type
1511  * @dividend:	dividend value
1512  * @remainder:	pointer to u32 remainder (will be updated)
1513  *
1514  * Return: the result of the division
1515  */
1516 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1517 				     u64 dividend, u32 *remainder)
1518 {
1519 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1520 	*remainder = (u32)dividend & erase->size_mask;
1521 	return dividend >> erase->size_shift;
1522 }
1523 
1524 /**
1525  * spi_nor_find_best_erase_type() - find the best erase type for the given
1526  *				    offset in the serial flash memory and the
1527  *				    number of bytes to erase. The region in
1528  *				    which the address fits is expected to be
1529  *				    provided.
1530  * @map:	the erase map of the SPI NOR
1531  * @region:	pointer to a structure that describes a SPI NOR erase region
1532  * @addr:	offset in the serial flash memory
1533  * @len:	number of bytes to erase
1534  *
1535  * Return: a pointer to the best fitted erase type, NULL otherwise.
1536  */
1537 static const struct spi_nor_erase_type *
1538 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1539 			     const struct spi_nor_erase_region *region,
1540 			     u64 addr, u32 len)
1541 {
1542 	const struct spi_nor_erase_type *erase;
1543 	u32 rem;
1544 	int i;
1545 	u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1546 
1547 	/*
1548 	 * Erase types are ordered by size, with the smallest erase type at
1549 	 * index 0.
1550 	 */
1551 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1552 		/* Does the erase region support the tested erase type? */
1553 		if (!(erase_mask & BIT(i)))
1554 			continue;
1555 
1556 		erase = &map->erase_type[i];
1557 		if (!erase->size)
1558 			continue;
1559 
1560 		/* Alignment is not mandatory for overlaid regions */
1561 		if (region->offset & SNOR_OVERLAID_REGION &&
1562 		    region->size <= len)
1563 			return erase;
1564 
1565 		/* Don't erase more than what the user has asked for. */
1566 		if (erase->size > len)
1567 			continue;
1568 
1569 		spi_nor_div_by_erase_size(erase, addr, &rem);
1570 		if (!rem)
1571 			return erase;
1572 	}
1573 
1574 	return NULL;
1575 }
1576 
1577 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1578 {
1579 	return region->offset & SNOR_LAST_REGION;
1580 }
1581 
1582 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1583 {
1584 	return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1585 }
1586 
1587 /**
1588  * spi_nor_region_next() - get the next spi nor region
1589  * @region:	pointer to a structure that describes a SPI NOR erase region
1590  *
1591  * Return: the next spi nor region or NULL if last region.
1592  */
1593 struct spi_nor_erase_region *
1594 spi_nor_region_next(struct spi_nor_erase_region *region)
1595 {
1596 	if (spi_nor_region_is_last(region))
1597 		return NULL;
1598 	region++;
1599 	return region;
1600 }
1601 
1602 /**
1603  * spi_nor_find_erase_region() - find the region of the serial flash memory in
1604  *				 which the offset fits
1605  * @map:	the erase map of the SPI NOR
1606  * @addr:	offset in the serial flash memory
1607  *
1608  * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1609  *	   otherwise.
1610  */
1611 static struct spi_nor_erase_region *
1612 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1613 {
1614 	struct spi_nor_erase_region *region = map->regions;
1615 	u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1616 	u64 region_end = region_start + region->size;
1617 
1618 	while (addr < region_start || addr >= region_end) {
1619 		region = spi_nor_region_next(region);
1620 		if (!region)
1621 			return ERR_PTR(-EINVAL);
1622 
1623 		region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1624 		region_end = region_start + region->size;
1625 	}
1626 
1627 	return region;
1628 }
1629 
1630 /**
1631  * spi_nor_init_erase_cmd() - initialize an erase command
1632  * @region:	pointer to a structure that describes a SPI NOR erase region
1633  * @erase:	pointer to a structure that describes a SPI NOR erase type
1634  *
1635  * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1636  *	   otherwise.
1637  */
1638 static struct spi_nor_erase_command *
1639 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1640 		       const struct spi_nor_erase_type *erase)
1641 {
1642 	struct spi_nor_erase_command *cmd;
1643 
1644 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1645 	if (!cmd)
1646 		return ERR_PTR(-ENOMEM);
1647 
1648 	INIT_LIST_HEAD(&cmd->list);
1649 	cmd->opcode = erase->opcode;
1650 	cmd->count = 1;
1651 
1652 	if (region->offset & SNOR_OVERLAID_REGION)
1653 		cmd->size = region->size;
1654 	else
1655 		cmd->size = erase->size;
1656 
1657 	return cmd;
1658 }
1659 
1660 /**
1661  * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1662  * @erase_list:	list of erase commands
1663  */
1664 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1665 {
1666 	struct spi_nor_erase_command *cmd, *next;
1667 
1668 	list_for_each_entry_safe(cmd, next, erase_list, list) {
1669 		list_del(&cmd->list);
1670 		kfree(cmd);
1671 	}
1672 }
1673 
1674 /**
1675  * spi_nor_init_erase_cmd_list() - initialize erase command list
1676  * @nor:	pointer to a 'struct spi_nor'
1677  * @erase_list:	list of erase commands to be executed once we validate that the
1678  *		erase can be performed
1679  * @addr:	offset in the serial flash memory
1680  * @len:	number of bytes to erase
1681  *
1682  * Builds the list of best fitted erase commands and verifies if the erase can
1683  * be performed.
1684  *
1685  * Return: 0 on success, -errno otherwise.
1686  */
1687 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1688 				       struct list_head *erase_list,
1689 				       u64 addr, u32 len)
1690 {
1691 	const struct spi_nor_erase_map *map = &nor->params->erase_map;
1692 	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1693 	struct spi_nor_erase_region *region;
1694 	struct spi_nor_erase_command *cmd = NULL;
1695 	u64 region_end;
1696 	int ret = -EINVAL;
1697 
1698 	region = spi_nor_find_erase_region(map, addr);
1699 	if (IS_ERR(region))
1700 		return PTR_ERR(region);
1701 
1702 	region_end = spi_nor_region_end(region);
1703 
1704 	while (len) {
1705 		erase = spi_nor_find_best_erase_type(map, region, addr, len);
1706 		if (!erase)
1707 			goto destroy_erase_cmd_list;
1708 
1709 		if (prev_erase != erase ||
1710 		    erase->size != cmd->size ||
1711 		    region->offset & SNOR_OVERLAID_REGION) {
1712 			cmd = spi_nor_init_erase_cmd(region, erase);
1713 			if (IS_ERR(cmd)) {
1714 				ret = PTR_ERR(cmd);
1715 				goto destroy_erase_cmd_list;
1716 			}
1717 
1718 			list_add_tail(&cmd->list, erase_list);
1719 		} else {
1720 			cmd->count++;
1721 		}
1722 
1723 		addr += cmd->size;
1724 		len -= cmd->size;
1725 
1726 		if (len && addr >= region_end) {
1727 			region = spi_nor_region_next(region);
1728 			if (!region)
1729 				goto destroy_erase_cmd_list;
1730 			region_end = spi_nor_region_end(region);
1731 		}
1732 
1733 		prev_erase = erase;
1734 	}
1735 
1736 	return 0;
1737 
1738 destroy_erase_cmd_list:
1739 	spi_nor_destroy_erase_cmd_list(erase_list);
1740 	return ret;
1741 }
1742 
1743 /**
1744  * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1745  * @nor:	pointer to a 'struct spi_nor'
1746  * @addr:	offset in the serial flash memory
1747  * @len:	number of bytes to erase
1748  *
1749  * Build a list of best fitted erase commands and execute it once we validate
1750  * that the erase can be performed.
1751  *
1752  * Return: 0 on success, -errno otherwise.
1753  */
1754 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1755 {
1756 	LIST_HEAD(erase_list);
1757 	struct spi_nor_erase_command *cmd, *next;
1758 	int ret;
1759 
1760 	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1761 	if (ret)
1762 		return ret;
1763 
1764 	list_for_each_entry_safe(cmd, next, &erase_list, list) {
1765 		nor->erase_opcode = cmd->opcode;
1766 		while (cmd->count) {
1767 			dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
1768 				 cmd->size, cmd->opcode, cmd->count);
1769 
1770 			ret = spi_nor_lock_device(nor);
1771 			if (ret)
1772 				goto destroy_erase_cmd_list;
1773 
1774 			ret = spi_nor_write_enable(nor);
1775 			if (ret) {
1776 				spi_nor_unlock_device(nor);
1777 				goto destroy_erase_cmd_list;
1778 			}
1779 
1780 			ret = spi_nor_erase_sector(nor, addr);
1781 			spi_nor_unlock_device(nor);
1782 			if (ret)
1783 				goto destroy_erase_cmd_list;
1784 
1785 			ret = spi_nor_wait_till_ready(nor);
1786 			if (ret)
1787 				goto destroy_erase_cmd_list;
1788 
1789 			addr += cmd->size;
1790 			cmd->count--;
1791 		}
1792 		list_del(&cmd->list);
1793 		kfree(cmd);
1794 	}
1795 
1796 	return 0;
1797 
1798 destroy_erase_cmd_list:
1799 	spi_nor_destroy_erase_cmd_list(&erase_list);
1800 	return ret;
1801 }
1802 
1803 static int spi_nor_erase_dice(struct spi_nor *nor, loff_t addr,
1804 			      size_t len, size_t die_size)
1805 {
1806 	unsigned long timeout;
1807 	int ret;
1808 
1809 	/*
1810 	 * Scale the timeout linearly with the size of the flash, with
1811 	 * a minimum calibrated to an old 2MB flash. We could try to
1812 	 * pull these from CFI/SFDP, but these values should be good
1813 	 * enough for now.
1814 	 */
1815 	timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1816 		      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1817 		      (unsigned long)(nor->mtd.size / SZ_2M));
1818 
1819 	do {
1820 		ret = spi_nor_lock_device(nor);
1821 		if (ret)
1822 			return ret;
1823 
1824 		ret = spi_nor_write_enable(nor);
1825 		if (ret) {
1826 			spi_nor_unlock_device(nor);
1827 			return ret;
1828 		}
1829 
1830 		ret = spi_nor_erase_die(nor, addr, die_size);
1831 
1832 		spi_nor_unlock_device(nor);
1833 		if (ret)
1834 			return ret;
1835 
1836 		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1837 		if (ret)
1838 			return ret;
1839 
1840 		addr += die_size;
1841 		len -= die_size;
1842 
1843 	} while (len);
1844 
1845 	return 0;
1846 }
1847 
1848 /*
1849  * Erase an address range on the nor chip.  The address range may extend
1850  * one or more erase sectors. Return an error if there is a problem erasing.
1851  */
1852 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1853 {
1854 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1855 	u8 n_dice = nor->params->n_dice;
1856 	bool multi_die_erase = false;
1857 	u32 addr, len, rem;
1858 	size_t die_size;
1859 	int ret;
1860 
1861 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1862 			(long long)instr->len);
1863 
1864 	if (spi_nor_has_uniform_erase(nor)) {
1865 		div_u64_rem(instr->len, mtd->erasesize, &rem);
1866 		if (rem)
1867 			return -EINVAL;
1868 	}
1869 
1870 	addr = instr->addr;
1871 	len = instr->len;
1872 
1873 	if (n_dice) {
1874 		die_size = div_u64(mtd->size, n_dice);
1875 		if (!(len & (die_size - 1)) && !(addr & (die_size - 1)))
1876 			multi_die_erase = true;
1877 	} else {
1878 		die_size = mtd->size;
1879 	}
1880 
1881 	ret = spi_nor_prep_and_lock_pe(nor, instr->addr, instr->len);
1882 	if (ret)
1883 		return ret;
1884 
1885 	/* chip (die) erase? */
1886 	if ((len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) ||
1887 	    multi_die_erase) {
1888 		ret = spi_nor_erase_dice(nor, addr, len, die_size);
1889 		if (ret)
1890 			goto erase_err;
1891 
1892 	/* REVISIT in some cases we could speed up erasing large regions
1893 	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1894 	 * to use "small sector erase", but that's not always optimal.
1895 	 */
1896 
1897 	/* "sector"-at-a-time erase */
1898 	} else if (spi_nor_has_uniform_erase(nor)) {
1899 		while (len) {
1900 			ret = spi_nor_lock_device(nor);
1901 			if (ret)
1902 				goto erase_err;
1903 
1904 			ret = spi_nor_write_enable(nor);
1905 			if (ret) {
1906 				spi_nor_unlock_device(nor);
1907 				goto erase_err;
1908 			}
1909 
1910 			ret = spi_nor_erase_sector(nor, addr);
1911 			spi_nor_unlock_device(nor);
1912 			if (ret)
1913 				goto erase_err;
1914 
1915 			ret = spi_nor_wait_till_ready(nor);
1916 			if (ret)
1917 				goto erase_err;
1918 
1919 			addr += mtd->erasesize;
1920 			len -= mtd->erasesize;
1921 		}
1922 
1923 	/* erase multiple sectors */
1924 	} else {
1925 		ret = spi_nor_erase_multi_sectors(nor, addr, len);
1926 		if (ret)
1927 			goto erase_err;
1928 	}
1929 
1930 	ret = spi_nor_write_disable(nor);
1931 
1932 erase_err:
1933 	spi_nor_unlock_and_unprep_pe(nor, instr->addr, instr->len);
1934 
1935 	return ret;
1936 }
1937 
1938 /**
1939  * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1940  * Register 1.
1941  * @nor:	pointer to a 'struct spi_nor'
1942  *
1943  * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1944  *
1945  * Return: 0 on success, -errno otherwise.
1946  */
1947 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1948 {
1949 	int ret;
1950 
1951 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1952 	if (ret)
1953 		return ret;
1954 
1955 	if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1956 		return 0;
1957 
1958 	nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1959 
1960 	return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1961 }
1962 
1963 /**
1964  * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1965  * Register 2.
1966  * @nor:       pointer to a 'struct spi_nor'.
1967  *
1968  * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1969  *
1970  * Return: 0 on success, -errno otherwise.
1971  */
1972 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1973 {
1974 	int ret;
1975 
1976 	if (nor->flags & SNOR_F_NO_READ_CR)
1977 		return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1978 
1979 	ret = spi_nor_read_cr(nor, nor->bouncebuf);
1980 	if (ret)
1981 		return ret;
1982 
1983 	if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1984 		return 0;
1985 
1986 	nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1987 
1988 	return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1989 }
1990 
1991 /**
1992  * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1993  * @nor:	pointer to a 'struct spi_nor'
1994  *
1995  * Set the Quad Enable (QE) bit in the Status Register 2.
1996  *
1997  * This is one of the procedures to set the QE bit described in the SFDP
1998  * (JESD216 rev B) specification but no manufacturer using this procedure has
1999  * been identified yet, hence the name of the function.
2000  *
2001  * Return: 0 on success, -errno otherwise.
2002  */
2003 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
2004 {
2005 	u8 *sr2 = nor->bouncebuf;
2006 	int ret;
2007 	u8 sr2_written;
2008 
2009 	/* Check current Quad Enable bit value. */
2010 	ret = spi_nor_read_sr2(nor, sr2);
2011 	if (ret)
2012 		return ret;
2013 	if (*sr2 & SR2_QUAD_EN_BIT7)
2014 		return 0;
2015 
2016 	/* Update the Quad Enable bit. */
2017 	*sr2 |= SR2_QUAD_EN_BIT7;
2018 
2019 	ret = spi_nor_write_sr2(nor, sr2);
2020 	if (ret)
2021 		return ret;
2022 
2023 	sr2_written = *sr2;
2024 
2025 	/* Read back and check it. */
2026 	ret = spi_nor_read_sr2(nor, sr2);
2027 	if (ret)
2028 		return ret;
2029 
2030 	if (*sr2 != sr2_written) {
2031 		dev_dbg(nor->dev, "SR2: Read back test failed\n");
2032 		return -EIO;
2033 	}
2034 
2035 	return 0;
2036 }
2037 
2038 static const struct spi_nor_manufacturer *manufacturers[] = {
2039 	&spi_nor_atmel,
2040 	&spi_nor_eon,
2041 	&spi_nor_esmt,
2042 	&spi_nor_everspin,
2043 	&spi_nor_gigadevice,
2044 	&spi_nor_intel,
2045 	&spi_nor_issi,
2046 	&spi_nor_macronix,
2047 	&spi_nor_micron,
2048 	&spi_nor_st,
2049 	&spi_nor_spansion,
2050 	&spi_nor_sst,
2051 	&spi_nor_winbond,
2052 	&spi_nor_xilinx,
2053 	&spi_nor_xmc,
2054 };
2055 
2056 static const struct flash_info spi_nor_generic_flash = {
2057 	.name = "spi-nor-generic",
2058 };
2059 
2060 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
2061 						 const u8 *id)
2062 {
2063 	const struct flash_info *part;
2064 	unsigned int i, j;
2065 
2066 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2067 		for (j = 0; j < manufacturers[i]->nparts; j++) {
2068 			part = &manufacturers[i]->parts[j];
2069 			if (part->id &&
2070 			    !memcmp(part->id->bytes, id, part->id->len)) {
2071 				nor->manufacturer = manufacturers[i];
2072 				return part;
2073 			}
2074 		}
2075 	}
2076 
2077 	return NULL;
2078 }
2079 
2080 static const struct flash_info *spi_nor_detect(struct spi_nor *nor)
2081 {
2082 	const struct flash_info *info;
2083 	u8 *id = nor->bouncebuf;
2084 	int ret;
2085 
2086 	ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto);
2087 	if (ret) {
2088 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2089 		return ERR_PTR(ret);
2090 	}
2091 
2092 	/* Cache the complete flash ID. */
2093 	nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL);
2094 	if (!nor->id)
2095 		return ERR_PTR(-ENOMEM);
2096 
2097 	info = spi_nor_match_id(nor, id);
2098 
2099 	/* Fallback to a generic flash described only by its SFDP data. */
2100 	if (!info) {
2101 		ret = spi_nor_check_sfdp_signature(nor);
2102 		if (!ret)
2103 			info = &spi_nor_generic_flash;
2104 	}
2105 
2106 	if (!info) {
2107 		dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2108 			SPI_NOR_MAX_ID_LEN, id);
2109 		return ERR_PTR(-ENODEV);
2110 	}
2111 	return info;
2112 }
2113 
2114 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2115 			size_t *retlen, u_char *buf)
2116 {
2117 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2118 	loff_t from_lock = from;
2119 	size_t len_lock = len;
2120 	ssize_t ret;
2121 
2122 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2123 
2124 	ret = spi_nor_prep_and_lock_rd(nor, from_lock, len_lock);
2125 	if (ret)
2126 		return ret;
2127 
2128 	while (len) {
2129 		loff_t addr = from;
2130 
2131 		addr = spi_nor_convert_addr(nor, addr);
2132 
2133 		ret = spi_nor_read_data(nor, addr, len, buf);
2134 		if (ret == 0) {
2135 			/* We shouldn't see 0-length reads */
2136 			ret = -EIO;
2137 			goto read_err;
2138 		}
2139 		if (ret < 0)
2140 			goto read_err;
2141 
2142 		WARN_ON(ret > len);
2143 		*retlen += ret;
2144 		buf += ret;
2145 		from += ret;
2146 		len -= ret;
2147 	}
2148 	ret = 0;
2149 
2150 read_err:
2151 	spi_nor_unlock_and_unprep_rd(nor, from_lock, len_lock);
2152 
2153 	return ret;
2154 }
2155 
2156 /*
2157  * Write an address range to the nor chip.  Data must be written in
2158  * FLASH_PAGESIZE chunks.  The address range may be any size provided
2159  * it is within the physical boundaries.
2160  */
2161 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2162 	size_t *retlen, const u_char *buf)
2163 {
2164 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2165 	size_t page_offset, page_remain, i;
2166 	ssize_t ret;
2167 	u32 page_size = nor->params->page_size;
2168 
2169 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2170 
2171 	ret = spi_nor_prep_and_lock_pe(nor, to, len);
2172 	if (ret)
2173 		return ret;
2174 
2175 	for (i = 0; i < len; ) {
2176 		ssize_t written;
2177 		loff_t addr = to + i;
2178 
2179 		/*
2180 		 * If page_size is a power of two, the offset can be quickly
2181 		 * calculated with an AND operation. On the other cases we
2182 		 * need to do a modulus operation (more expensive).
2183 		 */
2184 		if (is_power_of_2(page_size)) {
2185 			page_offset = addr & (page_size - 1);
2186 		} else {
2187 			u64 aux = addr;
2188 
2189 			page_offset = do_div(aux, page_size);
2190 		}
2191 		/* the size of data remaining on the first page */
2192 		page_remain = min_t(size_t, page_size - page_offset, len - i);
2193 
2194 		addr = spi_nor_convert_addr(nor, addr);
2195 
2196 		ret = spi_nor_lock_device(nor);
2197 		if (ret)
2198 			goto write_err;
2199 
2200 		ret = spi_nor_write_enable(nor);
2201 		if (ret) {
2202 			spi_nor_unlock_device(nor);
2203 			goto write_err;
2204 		}
2205 
2206 		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2207 		spi_nor_unlock_device(nor);
2208 		if (ret < 0)
2209 			goto write_err;
2210 		written = ret;
2211 
2212 		ret = spi_nor_wait_till_ready(nor);
2213 		if (ret)
2214 			goto write_err;
2215 		*retlen += written;
2216 		i += written;
2217 	}
2218 
2219 write_err:
2220 	spi_nor_unlock_and_unprep_pe(nor, to, len);
2221 
2222 	return ret;
2223 }
2224 
2225 static int spi_nor_check(struct spi_nor *nor)
2226 {
2227 	if (!nor->dev ||
2228 	    (!nor->spimem && !nor->controller_ops) ||
2229 	    (!nor->spimem && nor->controller_ops &&
2230 	    (!nor->controller_ops->read ||
2231 	     !nor->controller_ops->write ||
2232 	     !nor->controller_ops->read_reg ||
2233 	     !nor->controller_ops->write_reg))) {
2234 		pr_err("spi-nor: please fill all the necessary fields!\n");
2235 		return -EINVAL;
2236 	}
2237 
2238 	if (nor->spimem && nor->controller_ops) {
2239 		dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2240 		return -EINVAL;
2241 	}
2242 
2243 	return 0;
2244 }
2245 
2246 void
2247 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2248 			  u8 num_mode_clocks,
2249 			  u8 num_wait_states,
2250 			  u8 opcode,
2251 			  enum spi_nor_protocol proto)
2252 {
2253 	read->num_mode_clocks = num_mode_clocks;
2254 	read->num_wait_states = num_wait_states;
2255 	read->opcode = opcode;
2256 	read->proto = proto;
2257 }
2258 
2259 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2260 			     enum spi_nor_protocol proto)
2261 {
2262 	pp->opcode = opcode;
2263 	pp->proto = proto;
2264 }
2265 
2266 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2267 {
2268 	size_t i;
2269 
2270 	for (i = 0; i < size; i++)
2271 		if (table[i][0] == (int)hwcaps)
2272 			return table[i][1];
2273 
2274 	return -EINVAL;
2275 }
2276 
2277 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2278 {
2279 	static const int hwcaps_read2cmd[][2] = {
2280 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2281 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2282 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2283 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2284 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2285 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2286 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2287 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2288 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2289 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2290 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2291 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2292 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2293 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2294 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2295 		{ SNOR_HWCAPS_READ_8_8_8_DTR,	SNOR_CMD_READ_8_8_8_DTR },
2296 	};
2297 
2298 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2299 				  ARRAY_SIZE(hwcaps_read2cmd));
2300 }
2301 
2302 int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2303 {
2304 	static const int hwcaps_pp2cmd[][2] = {
2305 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2306 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2307 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2308 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2309 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2310 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2311 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2312 		{ SNOR_HWCAPS_PP_8_8_8_DTR,	SNOR_CMD_PP_8_8_8_DTR },
2313 	};
2314 
2315 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2316 				  ARRAY_SIZE(hwcaps_pp2cmd));
2317 }
2318 
2319 /**
2320  * spi_nor_spimem_check_op - check if the operation is supported
2321  *                           by controller
2322  *@nor:        pointer to a 'struct spi_nor'
2323  *@op:         pointer to op template to be checked
2324  *
2325  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2326  */
2327 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2328 				   struct spi_mem_op *op)
2329 {
2330 	/*
2331 	 * First test with 4 address bytes. The opcode itself might
2332 	 * be a 3B addressing opcode but we don't care, because
2333 	 * SPI controller implementation should not check the opcode,
2334 	 * but just the sequence.
2335 	 */
2336 	op->addr.nbytes = 4;
2337 	if (!spi_mem_supports_op(nor->spimem, op)) {
2338 		if (nor->params->size > SZ_16M)
2339 			return -EOPNOTSUPP;
2340 
2341 		/* If flash size <= 16MB, 3 address bytes are sufficient */
2342 		op->addr.nbytes = 3;
2343 		if (!spi_mem_supports_op(nor->spimem, op))
2344 			return -EOPNOTSUPP;
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 /**
2351  * spi_nor_spimem_check_readop - check if the read op is supported
2352  *                               by controller
2353  *@nor:         pointer to a 'struct spi_nor'
2354  *@read:        pointer to op template to be checked
2355  *
2356  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2357  */
2358 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2359 				       const struct spi_nor_read_command *read)
2360 {
2361 	struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode);
2362 
2363 	spi_nor_spimem_setup_op(nor, &op, read->proto);
2364 
2365 	/* convert the dummy cycles to the number of bytes */
2366 	op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2367 			  op.dummy.buswidth / 8;
2368 	if (spi_nor_protocol_is_dtr(nor->read_proto))
2369 		op.dummy.nbytes *= 2;
2370 
2371 	return spi_nor_spimem_check_op(nor, &op);
2372 }
2373 
2374 /**
2375  * spi_nor_spimem_check_pp - check if the page program op is supported
2376  *                           by controller
2377  *@nor:         pointer to a 'struct spi_nor'
2378  *@pp:          pointer to op template to be checked
2379  *
2380  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2381  */
2382 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2383 				   const struct spi_nor_pp_command *pp)
2384 {
2385 	struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode);
2386 
2387 	spi_nor_spimem_setup_op(nor, &op, pp->proto);
2388 
2389 	return spi_nor_spimem_check_op(nor, &op);
2390 }
2391 
2392 /**
2393  * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2394  *                                based on SPI controller capabilities
2395  * @nor:        pointer to a 'struct spi_nor'
2396  * @hwcaps:     pointer to resulting capabilities after adjusting
2397  *              according to controller and flash's capability
2398  */
2399 static void
2400 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2401 {
2402 	struct spi_nor_flash_parameter *params = nor->params;
2403 	unsigned int cap;
2404 
2405 	/* X-X-X modes are not supported yet, mask them all. */
2406 	*hwcaps &= ~SNOR_HWCAPS_X_X_X;
2407 
2408 	/*
2409 	 * If the reset line is broken, we do not want to enter a stateful
2410 	 * mode.
2411 	 */
2412 	if (nor->flags & SNOR_F_BROKEN_RESET)
2413 		*hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
2414 
2415 	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2416 		int rdidx, ppidx;
2417 
2418 		if (!(*hwcaps & BIT(cap)))
2419 			continue;
2420 
2421 		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2422 		if (rdidx >= 0 &&
2423 		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
2424 			*hwcaps &= ~BIT(cap);
2425 
2426 		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2427 		if (ppidx < 0)
2428 			continue;
2429 
2430 		if (spi_nor_spimem_check_pp(nor,
2431 					    &params->page_programs[ppidx]))
2432 			*hwcaps &= ~BIT(cap);
2433 	}
2434 }
2435 
2436 /**
2437  * spi_nor_set_erase_type() - set a SPI NOR erase type
2438  * @erase:	pointer to a structure that describes a SPI NOR erase type
2439  * @size:	the size of the sector/block erased by the erase type
2440  * @opcode:	the SPI command op code to erase the sector/block
2441  */
2442 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2443 			    u8 opcode)
2444 {
2445 	erase->size = size;
2446 	erase->opcode = opcode;
2447 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2448 	erase->size_shift = ffs(erase->size) - 1;
2449 	erase->size_mask = (1 << erase->size_shift) - 1;
2450 }
2451 
2452 /**
2453  * spi_nor_mask_erase_type() - mask out a SPI NOR erase type
2454  * @erase:	pointer to a structure that describes a SPI NOR erase type
2455  */
2456 void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase)
2457 {
2458 	erase->size = 0;
2459 }
2460 
2461 /**
2462  * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2463  * @map:		the erase map of the SPI NOR
2464  * @erase_mask:		bitmask encoding erase types that can erase the entire
2465  *			flash memory
2466  * @flash_size:		the spi nor flash memory size
2467  */
2468 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2469 				    u8 erase_mask, u64 flash_size)
2470 {
2471 	/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2472 	map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2473 				     SNOR_LAST_REGION;
2474 	map->uniform_region.size = flash_size;
2475 	map->regions = &map->uniform_region;
2476 	map->uniform_erase_type = erase_mask;
2477 }
2478 
2479 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2480 			     const struct sfdp_parameter_header *bfpt_header,
2481 			     const struct sfdp_bfpt *bfpt)
2482 {
2483 	int ret;
2484 
2485 	if (nor->manufacturer && nor->manufacturer->fixups &&
2486 	    nor->manufacturer->fixups->post_bfpt) {
2487 		ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2488 							   bfpt);
2489 		if (ret)
2490 			return ret;
2491 	}
2492 
2493 	if (nor->info->fixups && nor->info->fixups->post_bfpt)
2494 		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
2495 
2496 	return 0;
2497 }
2498 
2499 static int spi_nor_select_read(struct spi_nor *nor,
2500 			       u32 shared_hwcaps)
2501 {
2502 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2503 	const struct spi_nor_read_command *read;
2504 
2505 	if (best_match < 0)
2506 		return -EINVAL;
2507 
2508 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2509 	if (cmd < 0)
2510 		return -EINVAL;
2511 
2512 	read = &nor->params->reads[cmd];
2513 	nor->read_opcode = read->opcode;
2514 	nor->read_proto = read->proto;
2515 
2516 	/*
2517 	 * In the SPI NOR framework, we don't need to make the difference
2518 	 * between mode clock cycles and wait state clock cycles.
2519 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2520 	 * flash memory to know whether it should enter or leave its 0-4-4
2521 	 * (Continuous Read / XIP) mode.
2522 	 * eXecution In Place is out of the scope of the mtd sub-system.
2523 	 * Hence we choose to merge both mode and wait state clock cycles
2524 	 * into the so called dummy clock cycles.
2525 	 */
2526 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2527 	return 0;
2528 }
2529 
2530 static int spi_nor_select_pp(struct spi_nor *nor,
2531 			     u32 shared_hwcaps)
2532 {
2533 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2534 	const struct spi_nor_pp_command *pp;
2535 
2536 	if (best_match < 0)
2537 		return -EINVAL;
2538 
2539 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2540 	if (cmd < 0)
2541 		return -EINVAL;
2542 
2543 	pp = &nor->params->page_programs[cmd];
2544 	nor->program_opcode = pp->opcode;
2545 	nor->write_proto = pp->proto;
2546 	return 0;
2547 }
2548 
2549 /**
2550  * spi_nor_select_uniform_erase() - select optimum uniform erase type
2551  * @map:		the erase map of the SPI NOR
2552  *
2553  * Once the optimum uniform sector erase command is found, disable all the
2554  * other.
2555  *
2556  * Return: pointer to erase type on success, NULL otherwise.
2557  */
2558 static const struct spi_nor_erase_type *
2559 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map)
2560 {
2561 	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2562 	int i;
2563 	u8 uniform_erase_type = map->uniform_erase_type;
2564 
2565 	/*
2566 	 * Search for the biggest erase size, except for when compiled
2567 	 * to use 4k erases.
2568 	 */
2569 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2570 		if (!(uniform_erase_type & BIT(i)))
2571 			continue;
2572 
2573 		tested_erase = &map->erase_type[i];
2574 
2575 		/* Skip masked erase types. */
2576 		if (!tested_erase->size)
2577 			continue;
2578 
2579 		/*
2580 		 * If the current erase size is the 4k one, stop here,
2581 		 * we have found the right uniform Sector Erase command.
2582 		 */
2583 		if (IS_ENABLED(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS) &&
2584 		    tested_erase->size == SZ_4K) {
2585 			erase = tested_erase;
2586 			break;
2587 		}
2588 
2589 		/*
2590 		 * Otherwise, the current erase size is still a valid candidate.
2591 		 * Select the biggest valid candidate.
2592 		 */
2593 		if (!erase && tested_erase->size)
2594 			erase = tested_erase;
2595 			/* keep iterating to find the wanted_size */
2596 	}
2597 
2598 	if (!erase)
2599 		return NULL;
2600 
2601 	/* Disable all other Sector Erase commands. */
2602 	map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2603 	map->uniform_erase_type |= BIT(erase - map->erase_type);
2604 	return erase;
2605 }
2606 
2607 static int spi_nor_select_erase(struct spi_nor *nor)
2608 {
2609 	struct spi_nor_erase_map *map = &nor->params->erase_map;
2610 	const struct spi_nor_erase_type *erase = NULL;
2611 	struct mtd_info *mtd = &nor->mtd;
2612 	int i;
2613 
2614 	/*
2615 	 * The previous implementation handling Sector Erase commands assumed
2616 	 * that the SPI flash memory has an uniform layout then used only one
2617 	 * of the supported erase sizes for all Sector Erase commands.
2618 	 * So to be backward compatible, the new implementation also tries to
2619 	 * manage the SPI flash memory as uniform with a single erase sector
2620 	 * size, when possible.
2621 	 */
2622 	if (spi_nor_has_uniform_erase(nor)) {
2623 		erase = spi_nor_select_uniform_erase(map);
2624 		if (!erase)
2625 			return -EINVAL;
2626 		nor->erase_opcode = erase->opcode;
2627 		mtd->erasesize = erase->size;
2628 		return 0;
2629 	}
2630 
2631 	/*
2632 	 * For non-uniform SPI flash memory, set mtd->erasesize to the
2633 	 * maximum erase sector size. No need to set nor->erase_opcode.
2634 	 */
2635 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2636 		if (map->erase_type[i].size) {
2637 			erase = &map->erase_type[i];
2638 			break;
2639 		}
2640 	}
2641 
2642 	if (!erase)
2643 		return -EINVAL;
2644 
2645 	mtd->erasesize = erase->size;
2646 	return 0;
2647 }
2648 
2649 static int spi_nor_default_setup(struct spi_nor *nor,
2650 				 const struct spi_nor_hwcaps *hwcaps)
2651 {
2652 	struct spi_nor_flash_parameter *params = nor->params;
2653 	u32 ignored_mask, shared_mask;
2654 	int err;
2655 
2656 	/*
2657 	 * Keep only the hardware capabilities supported by both the SPI
2658 	 * controller and the SPI flash memory.
2659 	 */
2660 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2661 
2662 	if (nor->spimem) {
2663 		/*
2664 		 * When called from spi_nor_probe(), all caps are set and we
2665 		 * need to discard some of them based on what the SPI
2666 		 * controller actually supports (using spi_mem_supports_op()).
2667 		 */
2668 		spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2669 	} else {
2670 		/*
2671 		 * SPI n-n-n protocols are not supported when the SPI
2672 		 * controller directly implements the spi_nor interface.
2673 		 * Yet another reason to switch to spi-mem.
2674 		 */
2675 		ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2676 		if (shared_mask & ignored_mask) {
2677 			dev_dbg(nor->dev,
2678 				"SPI n-n-n protocols are not supported.\n");
2679 			shared_mask &= ~ignored_mask;
2680 		}
2681 	}
2682 
2683 	/* Select the (Fast) Read command. */
2684 	err = spi_nor_select_read(nor, shared_mask);
2685 	if (err) {
2686 		dev_dbg(nor->dev,
2687 			"can't select read settings supported by both the SPI controller and memory.\n");
2688 		return err;
2689 	}
2690 
2691 	/* Select the Page Program command. */
2692 	err = spi_nor_select_pp(nor, shared_mask);
2693 	if (err) {
2694 		dev_dbg(nor->dev,
2695 			"can't select write settings supported by both the SPI controller and memory.\n");
2696 		return err;
2697 	}
2698 
2699 	/* Select the Sector Erase command. */
2700 	err = spi_nor_select_erase(nor);
2701 	if (err) {
2702 		dev_dbg(nor->dev,
2703 			"can't select erase settings supported by both the SPI controller and memory.\n");
2704 		return err;
2705 	}
2706 
2707 	return 0;
2708 }
2709 
2710 static int spi_nor_set_addr_nbytes(struct spi_nor *nor)
2711 {
2712 	if (nor->params->addr_nbytes) {
2713 		nor->addr_nbytes = nor->params->addr_nbytes;
2714 	} else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
2715 		/*
2716 		 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
2717 		 * in this protocol an odd addr_nbytes cannot be used because
2718 		 * then the address phase would only span a cycle and a half.
2719 		 * Half a cycle would be left over. We would then have to start
2720 		 * the dummy phase in the middle of a cycle and so too the data
2721 		 * phase, and we will end the transaction with half a cycle left
2722 		 * over.
2723 		 *
2724 		 * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to
2725 		 * avoid this situation.
2726 		 */
2727 		nor->addr_nbytes = 4;
2728 	} else if (nor->info->addr_nbytes) {
2729 		nor->addr_nbytes = nor->info->addr_nbytes;
2730 	} else {
2731 		nor->addr_nbytes = 3;
2732 	}
2733 
2734 	if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) {
2735 		/* enable 4-byte addressing if the device exceeds 16MiB */
2736 		nor->addr_nbytes = 4;
2737 	}
2738 
2739 	if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) {
2740 		dev_dbg(nor->dev, "The number of address bytes is too large: %u\n",
2741 			nor->addr_nbytes);
2742 		return -EINVAL;
2743 	}
2744 
2745 	/* Set 4byte opcodes when possible. */
2746 	if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES &&
2747 	    !(nor->flags & SNOR_F_HAS_4BAIT))
2748 		spi_nor_set_4byte_opcodes(nor);
2749 
2750 	return 0;
2751 }
2752 
2753 static int spi_nor_setup(struct spi_nor *nor,
2754 			 const struct spi_nor_hwcaps *hwcaps)
2755 {
2756 	int ret;
2757 
2758 	if (nor->params->setup)
2759 		ret = nor->params->setup(nor, hwcaps);
2760 	else
2761 		ret = spi_nor_default_setup(nor, hwcaps);
2762 	if (ret)
2763 		return ret;
2764 
2765 	return spi_nor_set_addr_nbytes(nor);
2766 }
2767 
2768 /**
2769  * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2770  * settings based on MFR register and ->default_init() hook.
2771  * @nor:	pointer to a 'struct spi_nor'.
2772  */
2773 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2774 {
2775 	if (nor->manufacturer && nor->manufacturer->fixups &&
2776 	    nor->manufacturer->fixups->default_init)
2777 		nor->manufacturer->fixups->default_init(nor);
2778 
2779 	if (nor->info->fixups && nor->info->fixups->default_init)
2780 		nor->info->fixups->default_init(nor);
2781 }
2782 
2783 /**
2784  * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and
2785  * settings based on nor->info->sfdp_flags. This method should be called only by
2786  * flashes that do not define SFDP tables. If the flash supports SFDP but the
2787  * information is wrong and the settings from this function can not be retrieved
2788  * by parsing SFDP, one should instead use the fixup hooks and update the wrong
2789  * bits.
2790  * @nor:	pointer to a 'struct spi_nor'.
2791  */
2792 static void spi_nor_no_sfdp_init_params(struct spi_nor *nor)
2793 {
2794 	struct spi_nor_flash_parameter *params = nor->params;
2795 	struct spi_nor_erase_map *map = &params->erase_map;
2796 	const struct flash_info *info = nor->info;
2797 	const u8 no_sfdp_flags = info->no_sfdp_flags;
2798 	u8 i, erase_mask;
2799 
2800 	if (no_sfdp_flags & SPI_NOR_DUAL_READ) {
2801 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2802 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2803 					  0, 8, SPINOR_OP_READ_1_1_2,
2804 					  SNOR_PROTO_1_1_2);
2805 	}
2806 
2807 	if (no_sfdp_flags & SPI_NOR_QUAD_READ) {
2808 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2809 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2810 					  0, 8, SPINOR_OP_READ_1_1_4,
2811 					  SNOR_PROTO_1_1_4);
2812 	}
2813 
2814 	if (no_sfdp_flags & SPI_NOR_OCTAL_READ) {
2815 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2816 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2817 					  0, 8, SPINOR_OP_READ_1_1_8,
2818 					  SNOR_PROTO_1_1_8);
2819 	}
2820 
2821 	if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) {
2822 		params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2823 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
2824 					  0, 20, SPINOR_OP_READ_FAST,
2825 					  SNOR_PROTO_8_8_8_DTR);
2826 	}
2827 
2828 	if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) {
2829 		params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2830 		/*
2831 		 * Since xSPI Page Program opcode is backward compatible with
2832 		 * Legacy SPI, use Legacy SPI opcode there as well.
2833 		 */
2834 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2835 					SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2836 	}
2837 
2838 	/*
2839 	 * Sector Erase settings. Sort Erase Types in ascending order, with the
2840 	 * smallest erase size starting at BIT(0).
2841 	 */
2842 	erase_mask = 0;
2843 	i = 0;
2844 	if (no_sfdp_flags & SECT_4K) {
2845 		erase_mask |= BIT(i);
2846 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2847 				       SPINOR_OP_BE_4K);
2848 		i++;
2849 	}
2850 	erase_mask |= BIT(i);
2851 	spi_nor_set_erase_type(&map->erase_type[i],
2852 			       info->sector_size ?: SPI_NOR_DEFAULT_SECTOR_SIZE,
2853 			       SPINOR_OP_SE);
2854 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2855 }
2856 
2857 /**
2858  * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined
2859  * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP.
2860  * @nor:	pointer to a 'struct spi_nor'
2861  */
2862 static void spi_nor_init_flags(struct spi_nor *nor)
2863 {
2864 	struct device_node *np = spi_nor_get_flash_node(nor);
2865 	const u16 flags = nor->info->flags;
2866 
2867 	if (of_property_read_bool(np, "broken-flash-reset"))
2868 		nor->flags |= SNOR_F_BROKEN_RESET;
2869 
2870 	if (of_property_read_bool(np, "no-wp"))
2871 		nor->flags |= SNOR_F_NO_WP;
2872 
2873 	if (flags & SPI_NOR_SWP_IS_VOLATILE)
2874 		nor->flags |= SNOR_F_SWP_IS_VOLATILE;
2875 
2876 	if (flags & SPI_NOR_HAS_LOCK)
2877 		nor->flags |= SNOR_F_HAS_LOCK;
2878 
2879 	if (flags & SPI_NOR_HAS_TB) {
2880 		nor->flags |= SNOR_F_HAS_SR_TB;
2881 		if (flags & SPI_NOR_TB_SR_BIT6)
2882 			nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
2883 	}
2884 
2885 	if (flags & SPI_NOR_4BIT_BP) {
2886 		nor->flags |= SNOR_F_HAS_4BIT_BP;
2887 		if (flags & SPI_NOR_BP3_SR_BIT6)
2888 			nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
2889 	}
2890 
2891 	if (flags & SPI_NOR_RWW && nor->params->n_banks > 1 &&
2892 	    !nor->controller_ops)
2893 		nor->flags |= SNOR_F_RWW;
2894 }
2895 
2896 /**
2897  * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not
2898  * be discovered by SFDP for this particular flash because the SFDP table that
2899  * indicates this support is not defined in the flash. In case the table for
2900  * this support is defined but has wrong values, one should instead use a
2901  * post_sfdp() hook to set the SNOR_F equivalent flag.
2902  * @nor:       pointer to a 'struct spi_nor'
2903  */
2904 static void spi_nor_init_fixup_flags(struct spi_nor *nor)
2905 {
2906 	const u8 fixup_flags = nor->info->fixup_flags;
2907 
2908 	if (fixup_flags & SPI_NOR_4B_OPCODES)
2909 		nor->flags |= SNOR_F_4B_OPCODES;
2910 
2911 	if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE)
2912 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
2913 }
2914 
2915 /**
2916  * spi_nor_late_init_params() - Late initialization of default flash parameters.
2917  * @nor:	pointer to a 'struct spi_nor'
2918  *
2919  * Used to initialize flash parameters that are not declared in the JESD216
2920  * SFDP standard, or where SFDP tables are not defined at all.
2921  * Will replace the spi_nor_manufacturer_init_params() method.
2922  */
2923 static int spi_nor_late_init_params(struct spi_nor *nor)
2924 {
2925 	struct spi_nor_flash_parameter *params = nor->params;
2926 	int ret;
2927 
2928 	if (nor->manufacturer && nor->manufacturer->fixups &&
2929 	    nor->manufacturer->fixups->late_init) {
2930 		ret = nor->manufacturer->fixups->late_init(nor);
2931 		if (ret)
2932 			return ret;
2933 	}
2934 
2935 	/* Needed by some flashes late_init hooks. */
2936 	spi_nor_init_flags(nor);
2937 
2938 	if (nor->info->fixups && nor->info->fixups->late_init) {
2939 		ret = nor->info->fixups->late_init(nor);
2940 		if (ret)
2941 			return ret;
2942 	}
2943 
2944 	if (!nor->params->die_erase_opcode)
2945 		nor->params->die_erase_opcode = SPINOR_OP_CHIP_ERASE;
2946 
2947 	/* Default method kept for backward compatibility. */
2948 	if (!params->set_4byte_addr_mode)
2949 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
2950 
2951 	spi_nor_init_fixup_flags(nor);
2952 
2953 	/*
2954 	 * NOR protection support. When locking_ops are not provided, we pick
2955 	 * the default ones.
2956 	 */
2957 	if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2958 		spi_nor_init_default_locking_ops(nor);
2959 
2960 	if (params->n_banks > 1)
2961 		params->bank_size = div64_u64(params->size, params->n_banks);
2962 
2963 	return 0;
2964 }
2965 
2966 /**
2967  * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash
2968  * parameters and settings based on JESD216 SFDP standard.
2969  * @nor:	pointer to a 'struct spi_nor'.
2970  *
2971  * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2972  * legacy flash parameters and settings will be restored.
2973  */
2974 static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor)
2975 {
2976 	struct spi_nor_flash_parameter sfdp_params;
2977 
2978 	memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2979 
2980 	if (spi_nor_parse_sfdp(nor)) {
2981 		memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2982 		nor->flags &= ~SNOR_F_4B_OPCODES;
2983 	}
2984 }
2985 
2986 /**
2987  * spi_nor_init_params_deprecated() - Deprecated way of initializing flash
2988  * parameters and settings.
2989  * @nor:	pointer to a 'struct spi_nor'.
2990  *
2991  * The method assumes that flash doesn't support SFDP so it initializes flash
2992  * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten
2993  * when parsing SFDP, if supported.
2994  */
2995 static void spi_nor_init_params_deprecated(struct spi_nor *nor)
2996 {
2997 	spi_nor_no_sfdp_init_params(nor);
2998 
2999 	spi_nor_manufacturer_init_params(nor);
3000 
3001 	if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ |
3002 					SPI_NOR_QUAD_READ |
3003 					SPI_NOR_OCTAL_READ |
3004 					SPI_NOR_OCTAL_DTR_READ))
3005 		spi_nor_sfdp_init_params_deprecated(nor);
3006 }
3007 
3008 /**
3009  * spi_nor_init_default_params() - Default initialization of flash parameters
3010  * and settings. Done for all flashes, regardless is they define SFDP tables
3011  * or not.
3012  * @nor:	pointer to a 'struct spi_nor'.
3013  */
3014 static void spi_nor_init_default_params(struct spi_nor *nor)
3015 {
3016 	struct spi_nor_flash_parameter *params = nor->params;
3017 	const struct flash_info *info = nor->info;
3018 	struct device_node *np = spi_nor_get_flash_node(nor);
3019 
3020 	params->quad_enable = spi_nor_sr2_bit1_quad_enable;
3021 	params->otp.org = info->otp;
3022 
3023 	/* Default to 16-bit Write Status (01h) Command */
3024 	nor->flags |= SNOR_F_HAS_16BIT_SR;
3025 
3026 	/* Set SPI NOR sizes. */
3027 	params->writesize = 1;
3028 	params->size = info->size;
3029 	params->bank_size = params->size;
3030 	params->page_size = info->page_size ?: SPI_NOR_DEFAULT_PAGE_SIZE;
3031 	params->n_banks = info->n_banks ?: SPI_NOR_DEFAULT_N_BANKS;
3032 
3033 	if (!(info->flags & SPI_NOR_NO_FR)) {
3034 		/* Default to Fast Read for DT and non-DT platform devices. */
3035 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
3036 
3037 		/* Mask out Fast Read if not requested at DT instantiation. */
3038 		if (np && !of_property_read_bool(np, "m25p,fast-read"))
3039 			params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
3040 	}
3041 
3042 	/* (Fast) Read settings. */
3043 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
3044 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
3045 				  0, 0, SPINOR_OP_READ,
3046 				  SNOR_PROTO_1_1_1);
3047 
3048 	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
3049 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
3050 					  0, 8, SPINOR_OP_READ_FAST,
3051 					  SNOR_PROTO_1_1_1);
3052 	/* Page Program settings. */
3053 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
3054 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
3055 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
3056 
3057 	if (info->flags & SPI_NOR_QUAD_PP) {
3058 		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
3059 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
3060 					SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
3061 	}
3062 }
3063 
3064 /**
3065  * spi_nor_init_params() - Initialize the flash's parameters and settings.
3066  * @nor:	pointer to a 'struct spi_nor'.
3067  *
3068  * The flash parameters and settings are initialized based on a sequence of
3069  * calls that are ordered by priority:
3070  *
3071  * 1/ Default flash parameters initialization. The initializations are done
3072  *    based on nor->info data:
3073  *		spi_nor_info_init_params()
3074  *
3075  * which can be overwritten by:
3076  * 2/ Manufacturer flash parameters initialization. The initializations are
3077  *    done based on MFR register, or when the decisions can not be done solely
3078  *    based on MFR, by using specific flash_info tweeks, ->default_init():
3079  *		spi_nor_manufacturer_init_params()
3080  *
3081  * which can be overwritten by:
3082  * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
3083  *    should be more accurate that the above.
3084  *		spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params()
3085  *
3086  *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
3087  *    the flash parameters and settings immediately after parsing the Basic
3088  *    Flash Parameter Table.
3089  *    spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed.
3090  *    It is used to tweak various flash parameters when information provided
3091  *    by the SFDP tables are wrong.
3092  *
3093  * which can be overwritten by:
3094  * 4/ Late flash parameters initialization, used to initialize flash
3095  * parameters that are not declared in the JESD216 SFDP standard, or where SFDP
3096  * tables are not defined at all.
3097  *		spi_nor_late_init_params()
3098  *
3099  * Return: 0 on success, -errno otherwise.
3100  */
3101 static int spi_nor_init_params(struct spi_nor *nor)
3102 {
3103 	int ret;
3104 
3105 	nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
3106 	if (!nor->params)
3107 		return -ENOMEM;
3108 
3109 	spi_nor_init_default_params(nor);
3110 
3111 	if (spi_nor_needs_sfdp(nor)) {
3112 		ret = spi_nor_parse_sfdp(nor);
3113 		if (ret) {
3114 			dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n");
3115 			return ret;
3116 		}
3117 	} else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) {
3118 		spi_nor_no_sfdp_init_params(nor);
3119 	} else {
3120 		spi_nor_init_params_deprecated(nor);
3121 	}
3122 
3123 	return spi_nor_late_init_params(nor);
3124 }
3125 
3126 /** spi_nor_set_octal_dtr() - enable or disable Octal DTR I/O.
3127  * @nor:                 pointer to a 'struct spi_nor'
3128  * @enable:              whether to enable or disable Octal DTR
3129  *
3130  * Return: 0 on success, -errno otherwise.
3131  */
3132 static int spi_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
3133 {
3134 	int ret;
3135 
3136 	if (!nor->params->set_octal_dtr)
3137 		return 0;
3138 
3139 	if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
3140 	      nor->write_proto == SNOR_PROTO_8_8_8_DTR))
3141 		return 0;
3142 
3143 	if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
3144 		return 0;
3145 
3146 	ret = nor->params->set_octal_dtr(nor, enable);
3147 	if (ret)
3148 		return ret;
3149 
3150 	if (enable)
3151 		nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
3152 	else
3153 		nor->reg_proto = SNOR_PROTO_1_1_1;
3154 
3155 	return 0;
3156 }
3157 
3158 /**
3159  * spi_nor_quad_enable() - enable Quad I/O if needed.
3160  * @nor:                pointer to a 'struct spi_nor'
3161  *
3162  * Return: 0 on success, -errno otherwise.
3163  */
3164 static int spi_nor_quad_enable(struct spi_nor *nor)
3165 {
3166 	if (!nor->params->quad_enable)
3167 		return 0;
3168 
3169 	if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
3170 	      spi_nor_get_protocol_width(nor->write_proto) == 4))
3171 		return 0;
3172 
3173 	return nor->params->quad_enable(nor);
3174 }
3175 
3176 /**
3177  * spi_nor_set_4byte_addr_mode() - Set address mode.
3178  * @nor:                pointer to a 'struct spi_nor'.
3179  * @enable:             enable/disable 4 byte address mode.
3180  *
3181  * Return: 0 on success, -errno otherwise.
3182  */
3183 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
3184 {
3185 	struct spi_nor_flash_parameter *params = nor->params;
3186 	int ret;
3187 
3188 	if (enable) {
3189 		/*
3190 		 * If the RESET# pin isn't hooked up properly, or the system
3191 		 * otherwise doesn't perform a reset command in the boot
3192 		 * sequence, it's impossible to 100% protect against unexpected
3193 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
3194 		 * designer) that this is bad.
3195 		 */
3196 		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
3197 			  "enabling reset hack; may not recover from unexpected reboots\n");
3198 	}
3199 
3200 	ret = params->set_4byte_addr_mode(nor, enable);
3201 	if (ret && ret != -EOPNOTSUPP)
3202 		return ret;
3203 
3204 	if (enable) {
3205 		params->addr_nbytes = 4;
3206 		params->addr_mode_nbytes = 4;
3207 	} else {
3208 		params->addr_nbytes = 3;
3209 		params->addr_mode_nbytes = 3;
3210 	}
3211 
3212 	return 0;
3213 }
3214 
3215 static int spi_nor_init(struct spi_nor *nor)
3216 {
3217 	int err;
3218 
3219 	err = spi_nor_set_octal_dtr(nor, true);
3220 	if (err) {
3221 		dev_dbg(nor->dev, "octal mode not supported\n");
3222 		return err;
3223 	}
3224 
3225 	err = spi_nor_quad_enable(nor);
3226 	if (err) {
3227 		dev_dbg(nor->dev, "quad mode not supported\n");
3228 		return err;
3229 	}
3230 
3231 	/*
3232 	 * Some SPI NOR flashes are write protected by default after a power-on
3233 	 * reset cycle, in order to avoid inadvertent writes during power-up.
3234 	 * Backward compatibility imposes to unlock the entire flash memory
3235 	 * array at power-up by default. Depending on the kernel configuration
3236 	 * (1) do nothing, (2) always unlock the entire flash array or (3)
3237 	 * unlock the entire flash array only when the software write
3238 	 * protection bits are volatile. The latter is indicated by
3239 	 * SNOR_F_SWP_IS_VOLATILE.
3240 	 */
3241 	if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
3242 	    (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
3243 	     nor->flags & SNOR_F_SWP_IS_VOLATILE))
3244 		spi_nor_try_unlock_all(nor);
3245 
3246 	if (nor->addr_nbytes == 4 &&
3247 	    nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
3248 	    !(nor->flags & SNOR_F_4B_OPCODES))
3249 		return spi_nor_set_4byte_addr_mode(nor, true);
3250 
3251 	return 0;
3252 }
3253 
3254 /**
3255  * spi_nor_soft_reset() - Perform a software reset
3256  * @nor:	pointer to 'struct spi_nor'
3257  *
3258  * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
3259  * the device to its power-on-reset state. This is useful when the software has
3260  * made some changes to device (volatile) registers and needs to reset it before
3261  * shutting down, for example.
3262  *
3263  * Not every flash supports this sequence. The same set of opcodes might be used
3264  * for some other operation on a flash that does not support this. Support for
3265  * this sequence can be discovered via SFDP in the BFPT table.
3266  *
3267  * Return: 0 on success, -errno otherwise.
3268  */
3269 static void spi_nor_soft_reset(struct spi_nor *nor)
3270 {
3271 	struct spi_mem_op op;
3272 	int ret;
3273 
3274 	op = (struct spi_mem_op)SPINOR_SRSTEN_OP;
3275 
3276 	spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3277 
3278 	ret = spi_mem_exec_op(nor->spimem, &op);
3279 	if (ret) {
3280 		if (ret != -EOPNOTSUPP)
3281 			dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3282 		return;
3283 	}
3284 
3285 	op = (struct spi_mem_op)SPINOR_SRST_OP;
3286 
3287 	spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3288 
3289 	ret = spi_mem_exec_op(nor->spimem, &op);
3290 	if (ret) {
3291 		dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3292 		return;
3293 	}
3294 
3295 	/*
3296 	 * Software Reset is not instant, and the delay varies from flash to
3297 	 * flash. Looking at a few flashes, most range somewhere below 100
3298 	 * microseconds. So, sleep for a range of 200-400 us.
3299 	 */
3300 	usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
3301 }
3302 
3303 /* mtd suspend handler */
3304 static int spi_nor_suspend(struct mtd_info *mtd)
3305 {
3306 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
3307 	int ret;
3308 
3309 	/* Disable octal DTR mode if we enabled it. */
3310 	ret = spi_nor_set_octal_dtr(nor, false);
3311 	if (ret)
3312 		dev_err(nor->dev, "suspend() failed\n");
3313 
3314 	return ret;
3315 }
3316 
3317 /* mtd resume handler */
3318 static void spi_nor_resume(struct mtd_info *mtd)
3319 {
3320 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
3321 	struct device *dev = nor->dev;
3322 	int ret;
3323 
3324 	/* re-initialize the nor chip */
3325 	ret = spi_nor_init(nor);
3326 	if (ret)
3327 		dev_err(dev, "resume() failed\n");
3328 }
3329 
3330 static int spi_nor_get_device(struct mtd_info *mtd)
3331 {
3332 	struct mtd_info *master = mtd_get_master(mtd);
3333 	struct spi_nor *nor = mtd_to_spi_nor(master);
3334 	struct device *dev;
3335 
3336 	if (nor->spimem)
3337 		dev = nor->spimem->spi->controller->dev.parent;
3338 	else
3339 		dev = nor->dev;
3340 
3341 	if (!try_module_get(dev->driver->owner))
3342 		return -ENODEV;
3343 
3344 	return 0;
3345 }
3346 
3347 static void spi_nor_put_device(struct mtd_info *mtd)
3348 {
3349 	struct mtd_info *master = mtd_get_master(mtd);
3350 	struct spi_nor *nor = mtd_to_spi_nor(master);
3351 	struct device *dev;
3352 
3353 	if (nor->spimem)
3354 		dev = nor->spimem->spi->controller->dev.parent;
3355 	else
3356 		dev = nor->dev;
3357 
3358 	module_put(dev->driver->owner);
3359 }
3360 
3361 static void spi_nor_restore(struct spi_nor *nor)
3362 {
3363 	int ret;
3364 
3365 	/* restore the addressing mode */
3366 	if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3367 	    nor->flags & SNOR_F_BROKEN_RESET) {
3368 		ret = spi_nor_set_4byte_addr_mode(nor, false);
3369 		if (ret)
3370 			/*
3371 			 * Do not stop the execution in the hope that the flash
3372 			 * will default to the 3-byte address mode after the
3373 			 * software reset.
3374 			 */
3375 			dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret);
3376 	}
3377 
3378 	if (nor->flags & SNOR_F_SOFT_RESET)
3379 		spi_nor_soft_reset(nor);
3380 }
3381 
3382 static const struct flash_info *spi_nor_match_name(struct spi_nor *nor,
3383 						   const char *name)
3384 {
3385 	unsigned int i, j;
3386 
3387 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3388 		for (j = 0; j < manufacturers[i]->nparts; j++) {
3389 			if (!strcmp(name, manufacturers[i]->parts[j].name)) {
3390 				nor->manufacturer = manufacturers[i];
3391 				return &manufacturers[i]->parts[j];
3392 			}
3393 		}
3394 	}
3395 
3396 	return NULL;
3397 }
3398 
3399 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3400 						       const char *name)
3401 {
3402 	const struct flash_info *info = NULL;
3403 
3404 	if (name)
3405 		info = spi_nor_match_name(nor, name);
3406 	/* Try to auto-detect if chip name wasn't specified or not found */
3407 	if (!info)
3408 		return spi_nor_detect(nor);
3409 
3410 	/*
3411 	 * If caller has specified name of flash model that can normally be
3412 	 * detected using JEDEC, let's verify it.
3413 	 */
3414 	if (name && info->id) {
3415 		const struct flash_info *jinfo;
3416 
3417 		jinfo = spi_nor_detect(nor);
3418 		if (IS_ERR(jinfo)) {
3419 			return jinfo;
3420 		} else if (jinfo != info) {
3421 			/*
3422 			 * JEDEC knows better, so overwrite platform ID. We
3423 			 * can't trust partitions any longer, but we'll let
3424 			 * mtd apply them anyway, since some partitions may be
3425 			 * marked read-only, and we don't want to loose that
3426 			 * information, even if it's not 100% accurate.
3427 			 */
3428 			dev_warn(nor->dev, "found %s, expected %s\n",
3429 				 jinfo->name, info->name);
3430 			info = jinfo;
3431 		}
3432 	}
3433 
3434 	return info;
3435 }
3436 
3437 static void spi_nor_set_mtd_info(struct spi_nor *nor)
3438 {
3439 	struct mtd_info *mtd = &nor->mtd;
3440 	struct device *dev = nor->dev;
3441 
3442 	spi_nor_set_mtd_locking_ops(nor);
3443 	spi_nor_set_mtd_otp_ops(nor);
3444 
3445 	mtd->dev.parent = dev;
3446 	if (!mtd->name)
3447 		mtd->name = dev_name(dev);
3448 	mtd->type = MTD_NORFLASH;
3449 	mtd->flags = MTD_CAP_NORFLASH;
3450 	/* Unset BIT_WRITEABLE to enable JFFS2 write buffer for ECC'd NOR */
3451 	if (nor->flags & SNOR_F_ECC)
3452 		mtd->flags &= ~MTD_BIT_WRITEABLE;
3453 	if (nor->info->flags & SPI_NOR_NO_ERASE)
3454 		mtd->flags |= MTD_NO_ERASE;
3455 	else
3456 		mtd->_erase = spi_nor_erase;
3457 	mtd->writesize = nor->params->writesize;
3458 	mtd->writebufsize = nor->params->page_size;
3459 	mtd->size = nor->params->size;
3460 	mtd->_read = spi_nor_read;
3461 	/* Might be already set by some SST flashes. */
3462 	if (!mtd->_write)
3463 		mtd->_write = spi_nor_write;
3464 	mtd->_suspend = spi_nor_suspend;
3465 	mtd->_resume = spi_nor_resume;
3466 	mtd->_get_device = spi_nor_get_device;
3467 	mtd->_put_device = spi_nor_put_device;
3468 }
3469 
3470 static int spi_nor_hw_reset(struct spi_nor *nor)
3471 {
3472 	struct gpio_desc *reset;
3473 
3474 	reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW);
3475 	if (IS_ERR_OR_NULL(reset))
3476 		return PTR_ERR_OR_ZERO(reset);
3477 
3478 	/*
3479 	 * Experimental delay values by looking at different flash device
3480 	 * vendors datasheets.
3481 	 */
3482 	usleep_range(1, 5);
3483 	gpiod_set_value_cansleep(reset, 1);
3484 	usleep_range(100, 150);
3485 	gpiod_set_value_cansleep(reset, 0);
3486 	usleep_range(1000, 1200);
3487 
3488 	return 0;
3489 }
3490 
3491 int spi_nor_scan(struct spi_nor *nor, const char *name,
3492 		 const struct spi_nor_hwcaps *hwcaps)
3493 {
3494 	const struct flash_info *info;
3495 	struct device *dev = nor->dev;
3496 	int ret;
3497 
3498 	ret = spi_nor_check(nor);
3499 	if (ret)
3500 		return ret;
3501 
3502 	/* Reset SPI protocol for all commands. */
3503 	nor->reg_proto = SNOR_PROTO_1_1_1;
3504 	nor->read_proto = SNOR_PROTO_1_1_1;
3505 	nor->write_proto = SNOR_PROTO_1_1_1;
3506 
3507 	/*
3508 	 * We need the bounce buffer early to read/write registers when going
3509 	 * through the spi-mem layer (buffers have to be DMA-able).
3510 	 * For spi-mem drivers, we'll reallocate a new buffer if
3511 	 * nor->params->page_size turns out to be greater than PAGE_SIZE (which
3512 	 * shouldn't happen before long since NOR pages are usually less
3513 	 * than 1KB) after spi_nor_scan() returns.
3514 	 */
3515 	nor->bouncebuf_size = PAGE_SIZE;
3516 	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3517 				      GFP_KERNEL);
3518 	if (!nor->bouncebuf)
3519 		return -ENOMEM;
3520 
3521 	ret = spi_nor_hw_reset(nor);
3522 	if (ret)
3523 		return ret;
3524 
3525 	info = spi_nor_get_flash_info(nor, name);
3526 	if (IS_ERR(info))
3527 		return PTR_ERR(info);
3528 
3529 	nor->info = info;
3530 
3531 	mutex_init(&nor->lock);
3532 
3533 	/* Init flash parameters based on flash_info struct and SFDP */
3534 	ret = spi_nor_init_params(nor);
3535 	if (ret)
3536 		return ret;
3537 
3538 	if (spi_nor_use_parallel_locking(nor))
3539 		init_waitqueue_head(&nor->rww.wait);
3540 
3541 	/*
3542 	 * Configure the SPI memory:
3543 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3544 	 * - set the number of dummy cycles (mode cycles + wait states).
3545 	 * - set the SPI protocols for register and memory accesses.
3546 	 * - set the number of address bytes.
3547 	 */
3548 	ret = spi_nor_setup(nor, hwcaps);
3549 	if (ret)
3550 		return ret;
3551 
3552 	/* Send all the required SPI flash commands to initialize device */
3553 	ret = spi_nor_init(nor);
3554 	if (ret)
3555 		return ret;
3556 
3557 	/* No mtd_info fields should be used up to this point. */
3558 	spi_nor_set_mtd_info(nor);
3559 
3560 	dev_dbg(dev, "Manufacturer and device ID: %*phN\n",
3561 		SPI_NOR_MAX_ID_LEN, nor->id);
3562 
3563 	return 0;
3564 }
3565 EXPORT_SYMBOL_GPL(spi_nor_scan);
3566 
3567 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3568 {
3569 	struct spi_mem_dirmap_info info = {
3570 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3571 				      SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3572 				      SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3573 				      SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3574 		.offset = 0,
3575 		.length = nor->params->size,
3576 	};
3577 	struct spi_mem_op *op = &info.op_tmpl;
3578 
3579 	spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3580 
3581 	/* convert the dummy cycles to the number of bytes */
3582 	op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3583 	if (spi_nor_protocol_is_dtr(nor->read_proto))
3584 		op->dummy.nbytes *= 2;
3585 
3586 	/*
3587 	 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3588 	 * of data bytes is non-zero, the data buswidth won't be set here. So,
3589 	 * do it explicitly.
3590 	 */
3591 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3592 
3593 	nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3594 						       &info);
3595 	return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3596 }
3597 
3598 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3599 {
3600 	struct spi_mem_dirmap_info info = {
3601 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3602 				      SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3603 				      SPI_MEM_OP_NO_DUMMY,
3604 				      SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3605 		.offset = 0,
3606 		.length = nor->params->size,
3607 	};
3608 	struct spi_mem_op *op = &info.op_tmpl;
3609 
3610 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3611 		op->addr.nbytes = 0;
3612 
3613 	spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3614 
3615 	/*
3616 	 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3617 	 * of data bytes is non-zero, the data buswidth won't be set here. So,
3618 	 * do it explicitly.
3619 	 */
3620 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3621 
3622 	nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3623 						       &info);
3624 	return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3625 }
3626 
3627 static int spi_nor_probe(struct spi_mem *spimem)
3628 {
3629 	struct spi_device *spi = spimem->spi;
3630 	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3631 	struct spi_nor *nor;
3632 	/*
3633 	 * Enable all caps by default. The core will mask them after
3634 	 * checking what's really supported using spi_mem_supports_op().
3635 	 */
3636 	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3637 	char *flash_name;
3638 	int ret;
3639 
3640 	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3641 	if (!nor)
3642 		return -ENOMEM;
3643 
3644 	nor->spimem = spimem;
3645 	nor->dev = &spi->dev;
3646 	spi_nor_set_flash_node(nor, spi->dev.of_node);
3647 
3648 	spi_mem_set_drvdata(spimem, nor);
3649 
3650 	if (data && data->name)
3651 		nor->mtd.name = data->name;
3652 
3653 	if (!nor->mtd.name)
3654 		nor->mtd.name = spi_mem_get_name(spimem);
3655 
3656 	/*
3657 	 * For some (historical?) reason many platforms provide two different
3658 	 * names in flash_platform_data: "name" and "type". Quite often name is
3659 	 * set to "m25p80" and then "type" provides a real chip name.
3660 	 * If that's the case, respect "type" and ignore a "name".
3661 	 */
3662 	if (data && data->type)
3663 		flash_name = data->type;
3664 	else if (!strcmp(spi->modalias, "spi-nor"))
3665 		flash_name = NULL; /* auto-detect */
3666 	else
3667 		flash_name = spi->modalias;
3668 
3669 	ret = spi_nor_scan(nor, flash_name, &hwcaps);
3670 	if (ret)
3671 		return ret;
3672 
3673 	spi_nor_debugfs_register(nor);
3674 
3675 	/*
3676 	 * None of the existing parts have > 512B pages, but let's play safe
3677 	 * and add this logic so that if anyone ever adds support for such
3678 	 * a NOR we don't end up with buffer overflows.
3679 	 */
3680 	if (nor->params->page_size > PAGE_SIZE) {
3681 		nor->bouncebuf_size = nor->params->page_size;
3682 		devm_kfree(nor->dev, nor->bouncebuf);
3683 		nor->bouncebuf = devm_kmalloc(nor->dev,
3684 					      nor->bouncebuf_size,
3685 					      GFP_KERNEL);
3686 		if (!nor->bouncebuf)
3687 			return -ENOMEM;
3688 	}
3689 
3690 	ret = spi_nor_create_read_dirmap(nor);
3691 	if (ret)
3692 		return ret;
3693 
3694 	ret = spi_nor_create_write_dirmap(nor);
3695 	if (ret)
3696 		return ret;
3697 
3698 	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3699 				   data ? data->nr_parts : 0);
3700 }
3701 
3702 static int spi_nor_remove(struct spi_mem *spimem)
3703 {
3704 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3705 
3706 	spi_nor_restore(nor);
3707 
3708 	/* Clean up MTD stuff. */
3709 	return mtd_device_unregister(&nor->mtd);
3710 }
3711 
3712 static void spi_nor_shutdown(struct spi_mem *spimem)
3713 {
3714 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3715 
3716 	spi_nor_restore(nor);
3717 }
3718 
3719 /*
3720  * Do NOT add to this array without reading the following:
3721  *
3722  * Historically, many flash devices are bound to this driver by their name. But
3723  * since most of these flash are compatible to some extent, and their
3724  * differences can often be differentiated by the JEDEC read-ID command, we
3725  * encourage new users to add support to the spi-nor library, and simply bind
3726  * against a generic string here (e.g., "jedec,spi-nor").
3727  *
3728  * Many flash names are kept here in this list to keep them available
3729  * as module aliases for existing platforms.
3730  */
3731 static const struct spi_device_id spi_nor_dev_ids[] = {
3732 	/*
3733 	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3734 	 * hack around the fact that the SPI core does not provide uevent
3735 	 * matching for .of_match_table
3736 	 */
3737 	{"spi-nor"},
3738 
3739 	/*
3740 	 * Entries not used in DTs that should be safe to drop after replacing
3741 	 * them with "spi-nor" in platform data.
3742 	 */
3743 	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},
3744 
3745 	/*
3746 	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3747 	 * should be kept for backward compatibility.
3748 	 */
3749 	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
3750 	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
3751 	{"mx25l25635e"},{"mx66l51235l"},
3752 	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
3753 	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
3754 	{"s25fl064k"},
3755 	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3756 	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
3757 	{"m25p64"},	{"m25p128"},
3758 	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
3759 	{"w25q80bl"},	{"w25q128"},	{"w25q256"},
3760 
3761 	/* Flashes that can't be detected using JEDEC */
3762 	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
3763 	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
3764 	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},
3765 
3766 	/* Everspin MRAMs (non-JEDEC) */
3767 	{ "mr25h128" }, /* 128 Kib, 40 MHz */
3768 	{ "mr25h256" }, /* 256 Kib, 40 MHz */
3769 	{ "mr25h10" },  /*   1 Mib, 40 MHz */
3770 	{ "mr25h40" },  /*   4 Mib, 40 MHz */
3771 
3772 	{ },
3773 };
3774 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3775 
3776 static const struct of_device_id spi_nor_of_table[] = {
3777 	/*
3778 	 * Generic compatibility for SPI NOR that can be identified by the
3779 	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3780 	 */
3781 	{ .compatible = "jedec,spi-nor" },
3782 	{ /* sentinel */ },
3783 };
3784 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3785 
3786 /*
3787  * REVISIT: many of these chips have deep power-down modes, which
3788  * should clearly be entered on suspend() to minimize power use.
3789  * And also when they're otherwise idle...
3790  */
3791 static struct spi_mem_driver spi_nor_driver = {
3792 	.spidrv = {
3793 		.driver = {
3794 			.name = "spi-nor",
3795 			.of_match_table = spi_nor_of_table,
3796 			.dev_groups = spi_nor_sysfs_groups,
3797 		},
3798 		.id_table = spi_nor_dev_ids,
3799 	},
3800 	.probe = spi_nor_probe,
3801 	.remove = spi_nor_remove,
3802 	.shutdown = spi_nor_shutdown,
3803 };
3804 
3805 static int __init spi_nor_module_init(void)
3806 {
3807 	return spi_mem_driver_register(&spi_nor_driver);
3808 }
3809 module_init(spi_nor_module_init);
3810 
3811 static void __exit spi_nor_module_exit(void)
3812 {
3813 	spi_mem_driver_unregister(&spi_nor_driver);
3814 	spi_nor_debugfs_shutdown();
3815 }
3816 module_exit(spi_nor_module_exit);
3817 
3818 MODULE_LICENSE("GPL v2");
3819 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3820 MODULE_AUTHOR("Mike Lavender");
3821 MODULE_DESCRIPTION("framework for SPI NOR");
3822