xref: /linux/drivers/mtd/nftlmount.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  * NFTL mount code with extensive checks
3  *
4  * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
5  * Copyright © 2000 Netgem S.A.
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/kernel.h>
24 #include <asm/errno.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/nftl.h>
30 
31 #define SECTORSIZE 512
32 
33 /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
34  *	various device information of the NFTL partition and Bad Unit Table. Update
35  *	the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[]
36  *	is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
37  */
38 static int find_boot_record(struct NFTLrecord *nftl)
39 {
40 	struct nftl_uci1 h1;
41 	unsigned int block, boot_record_count = 0;
42 	size_t retlen;
43 	u8 buf[SECTORSIZE];
44 	struct NFTLMediaHeader *mh = &nftl->MediaHdr;
45 	struct mtd_info *mtd = nftl->mbd.mtd;
46 	unsigned int i;
47 
48         /* Assume logical EraseSize == physical erasesize for starting the scan.
49 	   We'll sort it out later if we find a MediaHeader which says otherwise */
50 	/* Actually, we won't.  The new DiskOnChip driver has already scanned
51 	   the MediaHeader and adjusted the virtual erasesize it presents in
52 	   the mtd device accordingly.  We could even get rid of
53 	   nftl->EraseSize if there were any point in doing so. */
54 	nftl->EraseSize = nftl->mbd.mtd->erasesize;
55         nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
56 
57 	nftl->MediaUnit = BLOCK_NIL;
58 	nftl->SpareMediaUnit = BLOCK_NIL;
59 
60 	/* search for a valid boot record */
61 	for (block = 0; block < nftl->nb_blocks; block++) {
62 		int ret;
63 
64 		/* Check for ANAND header first. Then can whinge if it's found but later
65 		   checks fail */
66 		ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE,
67 			       &retlen, buf);
68 		/* We ignore ret in case the ECC of the MediaHeader is invalid
69 		   (which is apparently acceptable) */
70 		if (retlen != SECTORSIZE) {
71 			static int warncount = 5;
72 
73 			if (warncount) {
74 				printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n",
75 				       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
76 				if (!--warncount)
77 					printk(KERN_WARNING "Further failures for this block will not be printed\n");
78 			}
79 			continue;
80 		}
81 
82 		if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
83 			/* ANAND\0 not found. Continue */
84 #if 0
85 			printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n",
86 			       block * nftl->EraseSize, nftl->mbd.mtd->index);
87 #endif
88 			continue;
89 		}
90 
91 		/* To be safer with BIOS, also use erase mark as discriminant */
92 		ret = nftl_read_oob(mtd, block * nftl->EraseSize +
93 					 SECTORSIZE + 8, 8, &retlen,
94 					 (char *)&h1);
95 		if (ret < 0) {
96 			printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
97 			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
98 			continue;
99 		}
100 
101 #if 0 /* Some people seem to have devices without ECC or erase marks
102 	 on the Media Header blocks. There are enough other sanity
103 	 checks in here that we can probably do without it.
104       */
105 		if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
106 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
107 			       block * nftl->EraseSize, nftl->mbd.mtd->index,
108 			       le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1));
109 			continue;
110 		}
111 
112 		/* Finally reread to check ECC */
113 		ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
114 				&retlen, buf);
115 		if (ret < 0) {
116 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
117 			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
118 			continue;
119 		}
120 
121 		/* Paranoia. Check the ANAND header is still there after the ECC read */
122 		if (memcmp(buf, "ANAND", 6)) {
123 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
124 			       block * nftl->EraseSize, nftl->mbd.mtd->index);
125 			printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n",
126 			       buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
127 			continue;
128 		}
129 #endif
130 		/* OK, we like it. */
131 
132 		if (boot_record_count) {
133 			/* We've already processed one. So we just check if
134 			   this one is the same as the first one we found */
135 			if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
136 				printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n",
137 				       nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
138 				/* if (debug) Print both side by side */
139 				if (boot_record_count < 2) {
140 					/* We haven't yet seen two real ones */
141 					return -1;
142 				}
143 				continue;
144 			}
145 			if (boot_record_count == 1)
146 				nftl->SpareMediaUnit = block;
147 
148 			/* Mark this boot record (NFTL MediaHeader) block as reserved */
149 			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
150 
151 
152 			boot_record_count++;
153 			continue;
154 		}
155 
156 		/* This is the first we've seen. Copy the media header structure into place */
157 		memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
158 
159 		/* Do some sanity checks on it */
160 #if 0
161 The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual
162 erasesize based on UnitSizeFactor.  So the erasesize we read from the mtd
163 device is already correct.
164 		if (mh->UnitSizeFactor == 0) {
165 			printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
166 		} else if (mh->UnitSizeFactor < 0xfc) {
167 			printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n",
168 			       mh->UnitSizeFactor);
169 			return -1;
170 		} else if (mh->UnitSizeFactor != 0xff) {
171 			printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
172 			       mh->UnitSizeFactor);
173 			nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor);
174 			nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
175 		}
176 #endif
177 		nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
178 		if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
179 			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
180 			printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
181 			       nftl->nb_boot_blocks, nftl->nb_blocks);
182 			return -1;
183 		}
184 
185 		nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
186 		if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
187 			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
188 			printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
189 			       nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
190 			return -1;
191 		}
192 
193 		nftl->mbd.size  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
194 
195 		/* If we're not using the last sectors in the device for some reason,
196 		   reduce nb_blocks accordingly so we forget they're there */
197 		nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
198 
199 		/* XXX: will be suppressed */
200 		nftl->lastEUN = nftl->nb_blocks - 1;
201 
202 		/* memory alloc */
203 		nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
204 		if (!nftl->EUNtable) {
205 			printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n");
206 			return -ENOMEM;
207 		}
208 
209 		nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
210 		if (!nftl->ReplUnitTable) {
211 			kfree(nftl->EUNtable);
212 			printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n");
213 			return -ENOMEM;
214 		}
215 
216 		/* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
217 		for (i = 0; i < nftl->nb_boot_blocks; i++)
218 			nftl->ReplUnitTable[i] = BLOCK_RESERVED;
219 		/* mark all remaining blocks as potentially containing data */
220 		for (; i < nftl->nb_blocks; i++) {
221 			nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED;
222 		}
223 
224 		/* Mark this boot record (NFTL MediaHeader) block as reserved */
225 		nftl->ReplUnitTable[block] = BLOCK_RESERVED;
226 
227 		/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
228 		for (i = 0; i < nftl->nb_blocks; i++) {
229 #if 0
230 The new DiskOnChip driver already scanned the bad block table.  Just query it.
231 			if ((i & (SECTORSIZE - 1)) == 0) {
232 				/* read one sector for every SECTORSIZE of blocks */
233 				ret = mtd->read(nftl->mbd.mtd,
234 						block * nftl->EraseSize + i +
235 						SECTORSIZE, SECTORSIZE,
236 						&retlen, buf);
237 				if (ret < 0) {
238 					printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n",
239 					       ret);
240 					kfree(nftl->ReplUnitTable);
241 					kfree(nftl->EUNtable);
242 					return -1;
243 				}
244 			}
245 			/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
246 			if (buf[i & (SECTORSIZE - 1)] != 0xff)
247 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
248 #endif
249 			if (mtd_block_isbad(nftl->mbd.mtd,
250 					    i * nftl->EraseSize))
251 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
252 		}
253 
254 		nftl->MediaUnit = block;
255 		boot_record_count++;
256 
257 	} /* foreach (block) */
258 
259 	return boot_record_count?0:-1;
260 }
261 
262 static int memcmpb(void *a, int c, int n)
263 {
264 	int i;
265 	for (i = 0; i < n; i++) {
266 		if (c != ((unsigned char *)a)[i])
267 			return 1;
268 	}
269 	return 0;
270 }
271 
272 /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
273 static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len,
274 			      int check_oob)
275 {
276 	u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize];
277 	struct mtd_info *mtd = nftl->mbd.mtd;
278 	size_t retlen;
279 	int i;
280 
281 	for (i = 0; i < len; i += SECTORSIZE) {
282 		if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf))
283 			return -1;
284 		if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
285 			return -1;
286 
287 		if (check_oob) {
288 			if(nftl_read_oob(mtd, address, mtd->oobsize,
289 					 &retlen, &buf[SECTORSIZE]) < 0)
290 				return -1;
291 			if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
292 				return -1;
293 		}
294 		address += SECTORSIZE;
295 	}
296 
297 	return 0;
298 }
299 
300 /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
301  *              Update NFTL metadata. Each erase operation is checked with check_free_sectors
302  *
303  * Return: 0 when succeed, -1 on error.
304  *
305  *  ToDo: 1. Is it necessary to check_free_sector after erasing ??
306  */
307 int NFTL_formatblock(struct NFTLrecord *nftl, int block)
308 {
309 	size_t retlen;
310 	unsigned int nb_erases, erase_mark;
311 	struct nftl_uci1 uci;
312 	struct erase_info *instr = &nftl->instr;
313 	struct mtd_info *mtd = nftl->mbd.mtd;
314 
315 	/* Read the Unit Control Information #1 for Wear-Leveling */
316 	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8,
317 			  8, &retlen, (char *)&uci) < 0)
318 		goto default_uci1;
319 
320 	erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
321 	if (erase_mark != ERASE_MARK) {
322 	default_uci1:
323 		uci.EraseMark = cpu_to_le16(ERASE_MARK);
324 		uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
325 		uci.WearInfo = cpu_to_le32(0);
326 	}
327 
328 	memset(instr, 0, sizeof(struct erase_info));
329 
330 	/* XXX: use async erase interface, XXX: test return code */
331 	instr->mtd = nftl->mbd.mtd;
332 	instr->addr = block * nftl->EraseSize;
333 	instr->len = nftl->EraseSize;
334 	mtd_erase(mtd, instr);
335 
336 	if (instr->state == MTD_ERASE_FAILED) {
337 		printk("Error while formatting block %d\n", block);
338 		goto fail;
339 	}
340 
341 		/* increase and write Wear-Leveling info */
342 		nb_erases = le32_to_cpu(uci.WearInfo);
343 		nb_erases++;
344 
345 		/* wrap (almost impossible with current flash) or free block */
346 		if (nb_erases == 0)
347 			nb_erases = 1;
348 
349 		/* check the "freeness" of Erase Unit before updating metadata
350 		 * FixMe:  is this check really necessary ? since we have check the
351 		 *         return code after the erase operation. */
352 		if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
353 			goto fail;
354 
355 		uci.WearInfo = le32_to_cpu(nb_erases);
356 		if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE +
357 				   8, 8, &retlen, (char *)&uci) < 0)
358 			goto fail;
359 		return 0;
360 fail:
361 	/* could not format, update the bad block table (caller is responsible
362 	   for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
363 	mtd_block_markbad(nftl->mbd.mtd, instr->addr);
364 	return -1;
365 }
366 
367 /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
368  *	Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
369  *	was being folded when NFTL was interrupted.
370  *
371  *	The check_free_sectors in this function is necessary. There is a possible
372  *	situation that after writing the Data area, the Block Control Information is
373  *	not updated according (due to power failure or something) which leaves the block
374  *	in an inconsistent state. So we have to check if a block is really FREE in this
375  *	case. */
376 static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
377 {
378 	struct mtd_info *mtd = nftl->mbd.mtd;
379 	unsigned int block, i, status;
380 	struct nftl_bci bci;
381 	int sectors_per_block;
382 	size_t retlen;
383 
384 	sectors_per_block = nftl->EraseSize / SECTORSIZE;
385 	block = first_block;
386 	for (;;) {
387 		for (i = 0; i < sectors_per_block; i++) {
388 			if (nftl_read_oob(mtd,
389 					  block * nftl->EraseSize + i * SECTORSIZE,
390 					  8, &retlen, (char *)&bci) < 0)
391 				status = SECTOR_IGNORE;
392 			else
393 				status = bci.Status | bci.Status1;
394 
395 			switch(status) {
396 			case SECTOR_FREE:
397 				/* verify that the sector is really free. If not, mark
398 				   as ignore */
399 				if (memcmpb(&bci, 0xff, 8) != 0 ||
400 				    check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE,
401 						       SECTORSIZE, 0) != 0) {
402 					printk("Incorrect free sector %d in block %d: "
403 					       "marking it as ignored\n",
404 					       i, block);
405 
406 					/* sector not free actually : mark it as SECTOR_IGNORE  */
407 					bci.Status = SECTOR_IGNORE;
408 					bci.Status1 = SECTOR_IGNORE;
409 					nftl_write_oob(mtd, block *
410 						       nftl->EraseSize +
411 						       i * SECTORSIZE, 8,
412 						       &retlen, (char *)&bci);
413 				}
414 				break;
415 			default:
416 				break;
417 			}
418 		}
419 
420 		/* proceed to next Erase Unit on the chain */
421 		block = nftl->ReplUnitTable[block];
422 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
423 			printk("incorrect ReplUnitTable[] : %d\n", block);
424 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
425 			break;
426 	}
427 }
428 
429 /* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */
430 static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
431 {
432 	unsigned int length = 0, block = first_block;
433 
434 	for (;;) {
435 		length++;
436 		/* avoid infinite loops, although this is guaranteed not to
437 		   happen because of the previous checks */
438 		if (length >= nftl->nb_blocks) {
439 			printk("nftl: length too long %d !\n", length);
440 			break;
441 		}
442 
443 		block = nftl->ReplUnitTable[block];
444 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
445 			printk("incorrect ReplUnitTable[] : %d\n", block);
446 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
447 			break;
448 	}
449 	return length;
450 }
451 
452 /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
453  *	Virtual Unit Chain, i.e. all the units are disconnected.
454  *
455  *	It is not strictly correct to begin from the first block of the chain because
456  *	if we stop the code, we may see again a valid chain if there was a first_block
457  *	flag in a block inside it. But is it really a problem ?
458  *
459  * FixMe: Figure out what the last statement means. What if power failure when we are
460  *	in the for (;;) loop formatting blocks ??
461  */
462 static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
463 {
464 	unsigned int block = first_block, block1;
465 
466 	printk("Formatting chain at block %d\n", first_block);
467 
468 	for (;;) {
469 		block1 = nftl->ReplUnitTable[block];
470 
471 		printk("Formatting block %d\n", block);
472 		if (NFTL_formatblock(nftl, block) < 0) {
473 			/* cannot format !!!! Mark it as Bad Unit */
474 			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
475 		} else {
476 			nftl->ReplUnitTable[block] = BLOCK_FREE;
477 		}
478 
479 		/* goto next block on the chain */
480 		block = block1;
481 
482 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
483 			printk("incorrect ReplUnitTable[] : %d\n", block);
484 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
485 			break;
486 	}
487 }
488 
489 /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
490  *	totally free (only 0xff).
491  *
492  * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
493  *	following criteria:
494  *	1. */
495 static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
496 {
497 	struct mtd_info *mtd = nftl->mbd.mtd;
498 	struct nftl_uci1 h1;
499 	unsigned int erase_mark;
500 	size_t retlen;
501 
502 	/* check erase mark. */
503 	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
504 			  &retlen, (char *)&h1) < 0)
505 		return -1;
506 
507 	erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
508 	if (erase_mark != ERASE_MARK) {
509 		/* if no erase mark, the block must be totally free. This is
510 		   possible in two cases : empty filesystem or interrupted erase (very unlikely) */
511 		if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
512 			return -1;
513 
514 		/* free block : write erase mark */
515 		h1.EraseMark = cpu_to_le16(ERASE_MARK);
516 		h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
517 		h1.WearInfo = cpu_to_le32(0);
518 		if (nftl_write_oob(mtd,
519 				   block * nftl->EraseSize + SECTORSIZE + 8, 8,
520 				   &retlen, (char *)&h1) < 0)
521 			return -1;
522 	} else {
523 #if 0
524 		/* if erase mark present, need to skip it when doing check */
525 		for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
526 			/* check free sector */
527 			if (check_free_sectors (nftl, block * nftl->EraseSize + i,
528 						SECTORSIZE, 0) != 0)
529 				return -1;
530 
531 			if (nftl_read_oob(mtd, block * nftl->EraseSize + i,
532 					  16, &retlen, buf) < 0)
533 				return -1;
534 			if (i == SECTORSIZE) {
535 				/* skip erase mark */
536 				if (memcmpb(buf, 0xff, 8))
537 					return -1;
538 			} else {
539 				if (memcmpb(buf, 0xff, 16))
540 					return -1;
541 			}
542 		}
543 #endif
544 	}
545 
546 	return 0;
547 }
548 
549 /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
550  *	to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
551  *	is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
552  *	for some reason. A clean up/check of the VUC is necessary in this case.
553  *
554  * WARNING: return 0 if read error
555  */
556 static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
557 {
558 	struct mtd_info *mtd = nftl->mbd.mtd;
559 	struct nftl_uci2 uci;
560 	size_t retlen;
561 
562 	if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
563 			  8, &retlen, (char *)&uci) < 0)
564 		return 0;
565 
566 	return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
567 }
568 
569 int NFTL_mount(struct NFTLrecord *s)
570 {
571 	int i;
572 	unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark;
573 	unsigned int block, first_block, is_first_block;
574 	int chain_length, do_format_chain;
575 	struct nftl_uci0 h0;
576 	struct nftl_uci1 h1;
577 	struct mtd_info *mtd = s->mbd.mtd;
578 	size_t retlen;
579 
580 	/* search for NFTL MediaHeader and Spare NFTL Media Header */
581 	if (find_boot_record(s) < 0) {
582 		printk("Could not find valid boot record\n");
583 		return -1;
584 	}
585 
586 	/* init the logical to physical table */
587 	for (i = 0; i < s->nb_blocks; i++) {
588 		s->EUNtable[i] = BLOCK_NIL;
589 	}
590 
591 	/* first pass : explore each block chain */
592 	first_logical_block = 0;
593 	for (first_block = 0; first_block < s->nb_blocks; first_block++) {
594 		/* if the block was not already explored, we can look at it */
595 		if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
596 			block = first_block;
597 			chain_length = 0;
598 			do_format_chain = 0;
599 
600 			for (;;) {
601 				/* read the block header. If error, we format the chain */
602 				if (nftl_read_oob(mtd,
603 						  block * s->EraseSize + 8, 8,
604 						  &retlen, (char *)&h0) < 0 ||
605 				    nftl_read_oob(mtd,
606 						  block * s->EraseSize +
607 						  SECTORSIZE + 8, 8,
608 						  &retlen, (char *)&h1) < 0) {
609 					s->ReplUnitTable[block] = BLOCK_NIL;
610 					do_format_chain = 1;
611 					break;
612 				}
613 
614 				logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
615 				rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
616 				nb_erases = le32_to_cpu (h1.WearInfo);
617 				erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
618 
619 				is_first_block = !(logical_block >> 15);
620 				logical_block = logical_block & 0x7fff;
621 
622 				/* invalid/free block test */
623 				if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
624 					if (chain_length == 0) {
625 						/* if not currently in a chain, we can handle it safely */
626 						if (check_and_mark_free_block(s, block) < 0) {
627 							/* not really free: format it */
628 							printk("Formatting block %d\n", block);
629 							if (NFTL_formatblock(s, block) < 0) {
630 								/* could not format: reserve the block */
631 								s->ReplUnitTable[block] = BLOCK_RESERVED;
632 							} else {
633 								s->ReplUnitTable[block] = BLOCK_FREE;
634 							}
635 						} else {
636 							/* free block: mark it */
637 							s->ReplUnitTable[block] = BLOCK_FREE;
638 						}
639 						/* directly examine the next block. */
640 						goto examine_ReplUnitTable;
641 					} else {
642 						/* the block was in a chain : this is bad. We
643 						   must format all the chain */
644 						printk("Block %d: free but referenced in chain %d\n",
645 						       block, first_block);
646 						s->ReplUnitTable[block] = BLOCK_NIL;
647 						do_format_chain = 1;
648 						break;
649 					}
650 				}
651 
652 				/* we accept only first blocks here */
653 				if (chain_length == 0) {
654 					/* this block is not the first block in chain :
655 					   ignore it, it will be included in a chain
656 					   later, or marked as not explored */
657 					if (!is_first_block)
658 						goto examine_ReplUnitTable;
659 					first_logical_block = logical_block;
660 				} else {
661 					if (logical_block != first_logical_block) {
662 						printk("Block %d: incorrect logical block: %d expected: %d\n",
663 						       block, logical_block, first_logical_block);
664 						/* the chain is incorrect : we must format it,
665 						   but we need to read it completely */
666 						do_format_chain = 1;
667 					}
668 					if (is_first_block) {
669 						/* we accept that a block is marked as first
670 						   block while being last block in a chain
671 						   only if the chain is being folded */
672 						if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
673 						    rep_block != 0xffff) {
674 							printk("Block %d: incorrectly marked as first block in chain\n",
675 							       block);
676 							/* the chain is incorrect : we must format it,
677 							   but we need to read it completely */
678 							do_format_chain = 1;
679 						} else {
680 							printk("Block %d: folding in progress - ignoring first block flag\n",
681 							       block);
682 						}
683 					}
684 				}
685 				chain_length++;
686 				if (rep_block == 0xffff) {
687 					/* no more blocks after */
688 					s->ReplUnitTable[block] = BLOCK_NIL;
689 					break;
690 				} else if (rep_block >= s->nb_blocks) {
691 					printk("Block %d: referencing invalid block %d\n",
692 					       block, rep_block);
693 					do_format_chain = 1;
694 					s->ReplUnitTable[block] = BLOCK_NIL;
695 					break;
696 				} else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
697 					/* same problem as previous 'is_first_block' test:
698 					   we accept that the last block of a chain has
699 					   the first_block flag set if folding is in
700 					   progress. We handle here the case where the
701 					   last block appeared first */
702 					if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
703 					    s->EUNtable[first_logical_block] == rep_block &&
704 					    get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
705 						/* EUNtable[] will be set after */
706 						printk("Block %d: folding in progress - ignoring first block flag\n",
707 						       rep_block);
708 						s->ReplUnitTable[block] = rep_block;
709 						s->EUNtable[first_logical_block] = BLOCK_NIL;
710 					} else {
711 						printk("Block %d: referencing block %d already in another chain\n",
712 						       block, rep_block);
713 						/* XXX: should handle correctly fold in progress chains */
714 						do_format_chain = 1;
715 						s->ReplUnitTable[block] = BLOCK_NIL;
716 					}
717 					break;
718 				} else {
719 					/* this is OK */
720 					s->ReplUnitTable[block] = rep_block;
721 					block = rep_block;
722 				}
723 			}
724 
725 			/* the chain was completely explored. Now we can decide
726 			   what to do with it */
727 			if (do_format_chain) {
728 				/* invalid chain : format it */
729 				format_chain(s, first_block);
730 			} else {
731 				unsigned int first_block1, chain_to_format, chain_length1;
732 				int fold_mark;
733 
734 				/* valid chain : get foldmark */
735 				fold_mark = get_fold_mark(s, first_block);
736 				if (fold_mark == 0) {
737 					/* cannot get foldmark : format the chain */
738 					printk("Could read foldmark at block %d\n", first_block);
739 					format_chain(s, first_block);
740 				} else {
741 					if (fold_mark == FOLD_MARK_IN_PROGRESS)
742 						check_sectors_in_chain(s, first_block);
743 
744 					/* now handle the case where we find two chains at the
745 					   same virtual address : we select the longer one,
746 					   because the shorter one is the one which was being
747 					   folded if the folding was not done in place */
748 					first_block1 = s->EUNtable[first_logical_block];
749 					if (first_block1 != BLOCK_NIL) {
750 						/* XXX: what to do if same length ? */
751 						chain_length1 = calc_chain_length(s, first_block1);
752 						printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
753 						       first_block1, chain_length1, first_block, chain_length);
754 
755 						if (chain_length >= chain_length1) {
756 							chain_to_format = first_block1;
757 							s->EUNtable[first_logical_block] = first_block;
758 						} else {
759 							chain_to_format = first_block;
760 						}
761 						format_chain(s, chain_to_format);
762 					} else {
763 						s->EUNtable[first_logical_block] = first_block;
764 					}
765 				}
766 			}
767 		}
768 	examine_ReplUnitTable:;
769 	}
770 
771 	/* second pass to format unreferenced blocks  and init free block count */
772 	s->numfreeEUNs = 0;
773 	s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN);
774 
775 	for (block = 0; block < s->nb_blocks; block++) {
776 		if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
777 			printk("Unreferenced block %d, formatting it\n", block);
778 			if (NFTL_formatblock(s, block) < 0)
779 				s->ReplUnitTable[block] = BLOCK_RESERVED;
780 			else
781 				s->ReplUnitTable[block] = BLOCK_FREE;
782 		}
783 		if (s->ReplUnitTable[block] == BLOCK_FREE) {
784 			s->numfreeEUNs++;
785 			s->LastFreeEUN = block;
786 		}
787 	}
788 
789 	return 0;
790 }
791