xref: /linux/drivers/mtd/nftlmount.c (revision e7bfb3fdbde3bfeeeb64e2d73ac6babe59519c9e)
1 /*
2  * NFTL mount code with extensive checks
3  *
4  * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
5  * Copyright © 2000 Netgem S.A.
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/kernel.h>
24 #include <asm/errno.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/nftl.h>
30 
31 #define SECTORSIZE 512
32 
33 /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
34  *	various device information of the NFTL partition and Bad Unit Table. Update
35  *	the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[]
36  *	is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
37  */
38 static int find_boot_record(struct NFTLrecord *nftl)
39 {
40 	struct nftl_uci1 h1;
41 	unsigned int block, boot_record_count = 0;
42 	size_t retlen;
43 	u8 buf[SECTORSIZE];
44 	struct NFTLMediaHeader *mh = &nftl->MediaHdr;
45 	struct mtd_info *mtd = nftl->mbd.mtd;
46 	unsigned int i;
47 
48         /* Assume logical EraseSize == physical erasesize for starting the scan.
49 	   We'll sort it out later if we find a MediaHeader which says otherwise */
50 	/* Actually, we won't.  The new DiskOnChip driver has already scanned
51 	   the MediaHeader and adjusted the virtual erasesize it presents in
52 	   the mtd device accordingly.  We could even get rid of
53 	   nftl->EraseSize if there were any point in doing so. */
54 	nftl->EraseSize = nftl->mbd.mtd->erasesize;
55         nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
56 
57 	nftl->MediaUnit = BLOCK_NIL;
58 	nftl->SpareMediaUnit = BLOCK_NIL;
59 
60 	/* search for a valid boot record */
61 	for (block = 0; block < nftl->nb_blocks; block++) {
62 		int ret;
63 
64 		/* Check for ANAND header first. Then can whinge if it's found but later
65 		   checks fail */
66 		ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE,
67 			       &retlen, buf);
68 		/* We ignore ret in case the ECC of the MediaHeader is invalid
69 		   (which is apparently acceptable) */
70 		if (retlen != SECTORSIZE) {
71 			static int warncount = 5;
72 
73 			if (warncount) {
74 				printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n",
75 				       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
76 				if (!--warncount)
77 					printk(KERN_WARNING "Further failures for this block will not be printed\n");
78 			}
79 			continue;
80 		}
81 
82 		if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
83 			/* ANAND\0 not found. Continue */
84 #if 0
85 			printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n",
86 			       block * nftl->EraseSize, nftl->mbd.mtd->index);
87 #endif
88 			continue;
89 		}
90 
91 		/* To be safer with BIOS, also use erase mark as discriminant */
92 		ret = nftl_read_oob(mtd, block * nftl->EraseSize +
93 					 SECTORSIZE + 8, 8, &retlen,
94 					 (char *)&h1);
95 		if (ret < 0) {
96 			printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
97 			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
98 			continue;
99 		}
100 
101 #if 0 /* Some people seem to have devices without ECC or erase marks
102 	 on the Media Header blocks. There are enough other sanity
103 	 checks in here that we can probably do without it.
104       */
105 		if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
106 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
107 			       block * nftl->EraseSize, nftl->mbd.mtd->index,
108 			       le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1));
109 			continue;
110 		}
111 
112 		/* Finally reread to check ECC */
113 		ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
114 				&retlen, buf);
115 		if (ret < 0) {
116 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
117 			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
118 			continue;
119 		}
120 
121 		/* Paranoia. Check the ANAND header is still there after the ECC read */
122 		if (memcmp(buf, "ANAND", 6)) {
123 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
124 			       block * nftl->EraseSize, nftl->mbd.mtd->index);
125 			printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n",
126 			       buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
127 			continue;
128 		}
129 #endif
130 		/* OK, we like it. */
131 
132 		if (boot_record_count) {
133 			/* We've already processed one. So we just check if
134 			   this one is the same as the first one we found */
135 			if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
136 				printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n",
137 				       nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
138 				/* if (debug) Print both side by side */
139 				if (boot_record_count < 2) {
140 					/* We haven't yet seen two real ones */
141 					return -1;
142 				}
143 				continue;
144 			}
145 			if (boot_record_count == 1)
146 				nftl->SpareMediaUnit = block;
147 
148 			/* Mark this boot record (NFTL MediaHeader) block as reserved */
149 			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
150 
151 
152 			boot_record_count++;
153 			continue;
154 		}
155 
156 		/* This is the first we've seen. Copy the media header structure into place */
157 		memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
158 
159 		/* Do some sanity checks on it */
160 #if 0
161 The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual
162 erasesize based on UnitSizeFactor.  So the erasesize we read from the mtd
163 device is already correct.
164 		if (mh->UnitSizeFactor == 0) {
165 			printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
166 		} else if (mh->UnitSizeFactor < 0xfc) {
167 			printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n",
168 			       mh->UnitSizeFactor);
169 			return -1;
170 		} else if (mh->UnitSizeFactor != 0xff) {
171 			printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
172 			       mh->UnitSizeFactor);
173 			nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor);
174 			nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
175 		}
176 #endif
177 		nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
178 		if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
179 			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
180 			printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
181 			       nftl->nb_boot_blocks, nftl->nb_blocks);
182 			return -1;
183 		}
184 
185 		nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
186 		if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
187 			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
188 			printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
189 			       nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
190 			return -1;
191 		}
192 
193 		nftl->mbd.size  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
194 
195 		/* If we're not using the last sectors in the device for some reason,
196 		   reduce nb_blocks accordingly so we forget they're there */
197 		nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
198 
199 		/* XXX: will be suppressed */
200 		nftl->lastEUN = nftl->nb_blocks - 1;
201 
202 		/* memory alloc */
203 		nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
204 		if (!nftl->EUNtable) {
205 			printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n");
206 			return -ENOMEM;
207 		}
208 
209 		nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
210 		if (!nftl->ReplUnitTable) {
211 			kfree(nftl->EUNtable);
212 			printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n");
213 			return -ENOMEM;
214 		}
215 
216 		/* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
217 		for (i = 0; i < nftl->nb_boot_blocks; i++)
218 			nftl->ReplUnitTable[i] = BLOCK_RESERVED;
219 		/* mark all remaining blocks as potentially containing data */
220 		for (; i < nftl->nb_blocks; i++) {
221 			nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED;
222 		}
223 
224 		/* Mark this boot record (NFTL MediaHeader) block as reserved */
225 		nftl->ReplUnitTable[block] = BLOCK_RESERVED;
226 
227 		/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
228 		for (i = 0; i < nftl->nb_blocks; i++) {
229 #if 0
230 The new DiskOnChip driver already scanned the bad block table.  Just query it.
231 			if ((i & (SECTORSIZE - 1)) == 0) {
232 				/* read one sector for every SECTORSIZE of blocks */
233 				ret = mtd->read(nftl->mbd.mtd,
234 						block * nftl->EraseSize + i +
235 						SECTORSIZE, SECTORSIZE,
236 						&retlen, buf);
237 				if (ret < 0) {
238 					printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n",
239 					       ret);
240 					kfree(nftl->ReplUnitTable);
241 					kfree(nftl->EUNtable);
242 					return -1;
243 				}
244 			}
245 			/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
246 			if (buf[i & (SECTORSIZE - 1)] != 0xff)
247 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
248 #endif
249 			if (mtd_block_isbad(nftl->mbd.mtd,
250 					    i * nftl->EraseSize))
251 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
252 		}
253 
254 		nftl->MediaUnit = block;
255 		boot_record_count++;
256 
257 	} /* foreach (block) */
258 
259 	return boot_record_count?0:-1;
260 }
261 
262 static int memcmpb(void *a, int c, int n)
263 {
264 	int i;
265 	for (i = 0; i < n; i++) {
266 		if (c != ((unsigned char *)a)[i])
267 			return 1;
268 	}
269 	return 0;
270 }
271 
272 /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
273 static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len,
274 			      int check_oob)
275 {
276 	u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize];
277 	struct mtd_info *mtd = nftl->mbd.mtd;
278 	size_t retlen;
279 	int i;
280 
281 	for (i = 0; i < len; i += SECTORSIZE) {
282 		if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf))
283 			return -1;
284 		if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
285 			return -1;
286 
287 		if (check_oob) {
288 			if(nftl_read_oob(mtd, address, mtd->oobsize,
289 					 &retlen, &buf[SECTORSIZE]) < 0)
290 				return -1;
291 			if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
292 				return -1;
293 		}
294 		address += SECTORSIZE;
295 	}
296 
297 	return 0;
298 }
299 
300 /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
301  *              Update NFTL metadata. Each erase operation is checked with check_free_sectors
302  *
303  * Return: 0 when succeed, -1 on error.
304  *
305  *  ToDo: 1. Is it necessary to check_free_sector after erasing ??
306  */
307 int NFTL_formatblock(struct NFTLrecord *nftl, int block)
308 {
309 	size_t retlen;
310 	unsigned int nb_erases, erase_mark;
311 	struct nftl_uci1 uci;
312 	struct erase_info *instr = &nftl->instr;
313 	struct mtd_info *mtd = nftl->mbd.mtd;
314 
315 	/* Read the Unit Control Information #1 for Wear-Leveling */
316 	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8,
317 			  8, &retlen, (char *)&uci) < 0)
318 		goto default_uci1;
319 
320 	erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
321 	if (erase_mark != ERASE_MARK) {
322 	default_uci1:
323 		uci.EraseMark = cpu_to_le16(ERASE_MARK);
324 		uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
325 		uci.WearInfo = cpu_to_le32(0);
326 	}
327 
328 	memset(instr, 0, sizeof(struct erase_info));
329 
330 	/* XXX: use async erase interface, XXX: test return code */
331 	instr->addr = block * nftl->EraseSize;
332 	instr->len = nftl->EraseSize;
333 	if (mtd_erase(mtd, instr)) {
334 		printk("Error while formatting block %d\n", block);
335 		goto fail;
336 	}
337 
338 		/* increase and write Wear-Leveling info */
339 		nb_erases = le32_to_cpu(uci.WearInfo);
340 		nb_erases++;
341 
342 		/* wrap (almost impossible with current flash) or free block */
343 		if (nb_erases == 0)
344 			nb_erases = 1;
345 
346 		/* check the "freeness" of Erase Unit before updating metadata
347 		 * FixMe:  is this check really necessary ? since we have check the
348 		 *         return code after the erase operation. */
349 		if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
350 			goto fail;
351 
352 		uci.WearInfo = le32_to_cpu(nb_erases);
353 		if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE +
354 				   8, 8, &retlen, (char *)&uci) < 0)
355 			goto fail;
356 		return 0;
357 fail:
358 	/* could not format, update the bad block table (caller is responsible
359 	   for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
360 	mtd_block_markbad(nftl->mbd.mtd, instr->addr);
361 	return -1;
362 }
363 
364 /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
365  *	Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
366  *	was being folded when NFTL was interrupted.
367  *
368  *	The check_free_sectors in this function is necessary. There is a possible
369  *	situation that after writing the Data area, the Block Control Information is
370  *	not updated according (due to power failure or something) which leaves the block
371  *	in an inconsistent state. So we have to check if a block is really FREE in this
372  *	case. */
373 static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
374 {
375 	struct mtd_info *mtd = nftl->mbd.mtd;
376 	unsigned int block, i, status;
377 	struct nftl_bci bci;
378 	int sectors_per_block;
379 	size_t retlen;
380 
381 	sectors_per_block = nftl->EraseSize / SECTORSIZE;
382 	block = first_block;
383 	for (;;) {
384 		for (i = 0; i < sectors_per_block; i++) {
385 			if (nftl_read_oob(mtd,
386 					  block * nftl->EraseSize + i * SECTORSIZE,
387 					  8, &retlen, (char *)&bci) < 0)
388 				status = SECTOR_IGNORE;
389 			else
390 				status = bci.Status | bci.Status1;
391 
392 			switch(status) {
393 			case SECTOR_FREE:
394 				/* verify that the sector is really free. If not, mark
395 				   as ignore */
396 				if (memcmpb(&bci, 0xff, 8) != 0 ||
397 				    check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE,
398 						       SECTORSIZE, 0) != 0) {
399 					printk("Incorrect free sector %d in block %d: "
400 					       "marking it as ignored\n",
401 					       i, block);
402 
403 					/* sector not free actually : mark it as SECTOR_IGNORE  */
404 					bci.Status = SECTOR_IGNORE;
405 					bci.Status1 = SECTOR_IGNORE;
406 					nftl_write_oob(mtd, block *
407 						       nftl->EraseSize +
408 						       i * SECTORSIZE, 8,
409 						       &retlen, (char *)&bci);
410 				}
411 				break;
412 			default:
413 				break;
414 			}
415 		}
416 
417 		/* proceed to next Erase Unit on the chain */
418 		block = nftl->ReplUnitTable[block];
419 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
420 			printk("incorrect ReplUnitTable[] : %d\n", block);
421 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
422 			break;
423 	}
424 }
425 
426 /* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */
427 static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
428 {
429 	unsigned int length = 0, block = first_block;
430 
431 	for (;;) {
432 		length++;
433 		/* avoid infinite loops, although this is guaranteed not to
434 		   happen because of the previous checks */
435 		if (length >= nftl->nb_blocks) {
436 			printk("nftl: length too long %d !\n", length);
437 			break;
438 		}
439 
440 		block = nftl->ReplUnitTable[block];
441 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
442 			printk("incorrect ReplUnitTable[] : %d\n", block);
443 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
444 			break;
445 	}
446 	return length;
447 }
448 
449 /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
450  *	Virtual Unit Chain, i.e. all the units are disconnected.
451  *
452  *	It is not strictly correct to begin from the first block of the chain because
453  *	if we stop the code, we may see again a valid chain if there was a first_block
454  *	flag in a block inside it. But is it really a problem ?
455  *
456  * FixMe: Figure out what the last statement means. What if power failure when we are
457  *	in the for (;;) loop formatting blocks ??
458  */
459 static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
460 {
461 	unsigned int block = first_block, block1;
462 
463 	printk("Formatting chain at block %d\n", first_block);
464 
465 	for (;;) {
466 		block1 = nftl->ReplUnitTable[block];
467 
468 		printk("Formatting block %d\n", block);
469 		if (NFTL_formatblock(nftl, block) < 0) {
470 			/* cannot format !!!! Mark it as Bad Unit */
471 			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
472 		} else {
473 			nftl->ReplUnitTable[block] = BLOCK_FREE;
474 		}
475 
476 		/* goto next block on the chain */
477 		block = block1;
478 
479 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
480 			printk("incorrect ReplUnitTable[] : %d\n", block);
481 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
482 			break;
483 	}
484 }
485 
486 /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
487  *	totally free (only 0xff).
488  *
489  * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
490  *	following criteria:
491  *	1. */
492 static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
493 {
494 	struct mtd_info *mtd = nftl->mbd.mtd;
495 	struct nftl_uci1 h1;
496 	unsigned int erase_mark;
497 	size_t retlen;
498 
499 	/* check erase mark. */
500 	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
501 			  &retlen, (char *)&h1) < 0)
502 		return -1;
503 
504 	erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
505 	if (erase_mark != ERASE_MARK) {
506 		/* if no erase mark, the block must be totally free. This is
507 		   possible in two cases : empty filesystem or interrupted erase (very unlikely) */
508 		if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
509 			return -1;
510 
511 		/* free block : write erase mark */
512 		h1.EraseMark = cpu_to_le16(ERASE_MARK);
513 		h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
514 		h1.WearInfo = cpu_to_le32(0);
515 		if (nftl_write_oob(mtd,
516 				   block * nftl->EraseSize + SECTORSIZE + 8, 8,
517 				   &retlen, (char *)&h1) < 0)
518 			return -1;
519 	} else {
520 #if 0
521 		/* if erase mark present, need to skip it when doing check */
522 		for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
523 			/* check free sector */
524 			if (check_free_sectors (nftl, block * nftl->EraseSize + i,
525 						SECTORSIZE, 0) != 0)
526 				return -1;
527 
528 			if (nftl_read_oob(mtd, block * nftl->EraseSize + i,
529 					  16, &retlen, buf) < 0)
530 				return -1;
531 			if (i == SECTORSIZE) {
532 				/* skip erase mark */
533 				if (memcmpb(buf, 0xff, 8))
534 					return -1;
535 			} else {
536 				if (memcmpb(buf, 0xff, 16))
537 					return -1;
538 			}
539 		}
540 #endif
541 	}
542 
543 	return 0;
544 }
545 
546 /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
547  *	to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
548  *	is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
549  *	for some reason. A clean up/check of the VUC is necessary in this case.
550  *
551  * WARNING: return 0 if read error
552  */
553 static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
554 {
555 	struct mtd_info *mtd = nftl->mbd.mtd;
556 	struct nftl_uci2 uci;
557 	size_t retlen;
558 
559 	if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
560 			  8, &retlen, (char *)&uci) < 0)
561 		return 0;
562 
563 	return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
564 }
565 
566 int NFTL_mount(struct NFTLrecord *s)
567 {
568 	int i;
569 	unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark;
570 	unsigned int block, first_block, is_first_block;
571 	int chain_length, do_format_chain;
572 	struct nftl_uci0 h0;
573 	struct nftl_uci1 h1;
574 	struct mtd_info *mtd = s->mbd.mtd;
575 	size_t retlen;
576 
577 	/* search for NFTL MediaHeader and Spare NFTL Media Header */
578 	if (find_boot_record(s) < 0) {
579 		printk("Could not find valid boot record\n");
580 		return -1;
581 	}
582 
583 	/* init the logical to physical table */
584 	for (i = 0; i < s->nb_blocks; i++) {
585 		s->EUNtable[i] = BLOCK_NIL;
586 	}
587 
588 	/* first pass : explore each block chain */
589 	first_logical_block = 0;
590 	for (first_block = 0; first_block < s->nb_blocks; first_block++) {
591 		/* if the block was not already explored, we can look at it */
592 		if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
593 			block = first_block;
594 			chain_length = 0;
595 			do_format_chain = 0;
596 
597 			for (;;) {
598 				/* read the block header. If error, we format the chain */
599 				if (nftl_read_oob(mtd,
600 						  block * s->EraseSize + 8, 8,
601 						  &retlen, (char *)&h0) < 0 ||
602 				    nftl_read_oob(mtd,
603 						  block * s->EraseSize +
604 						  SECTORSIZE + 8, 8,
605 						  &retlen, (char *)&h1) < 0) {
606 					s->ReplUnitTable[block] = BLOCK_NIL;
607 					do_format_chain = 1;
608 					break;
609 				}
610 
611 				logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
612 				rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
613 				nb_erases = le32_to_cpu (h1.WearInfo);
614 				erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
615 
616 				is_first_block = !(logical_block >> 15);
617 				logical_block = logical_block & 0x7fff;
618 
619 				/* invalid/free block test */
620 				if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
621 					if (chain_length == 0) {
622 						/* if not currently in a chain, we can handle it safely */
623 						if (check_and_mark_free_block(s, block) < 0) {
624 							/* not really free: format it */
625 							printk("Formatting block %d\n", block);
626 							if (NFTL_formatblock(s, block) < 0) {
627 								/* could not format: reserve the block */
628 								s->ReplUnitTable[block] = BLOCK_RESERVED;
629 							} else {
630 								s->ReplUnitTable[block] = BLOCK_FREE;
631 							}
632 						} else {
633 							/* free block: mark it */
634 							s->ReplUnitTable[block] = BLOCK_FREE;
635 						}
636 						/* directly examine the next block. */
637 						goto examine_ReplUnitTable;
638 					} else {
639 						/* the block was in a chain : this is bad. We
640 						   must format all the chain */
641 						printk("Block %d: free but referenced in chain %d\n",
642 						       block, first_block);
643 						s->ReplUnitTable[block] = BLOCK_NIL;
644 						do_format_chain = 1;
645 						break;
646 					}
647 				}
648 
649 				/* we accept only first blocks here */
650 				if (chain_length == 0) {
651 					/* this block is not the first block in chain :
652 					   ignore it, it will be included in a chain
653 					   later, or marked as not explored */
654 					if (!is_first_block)
655 						goto examine_ReplUnitTable;
656 					first_logical_block = logical_block;
657 				} else {
658 					if (logical_block != first_logical_block) {
659 						printk("Block %d: incorrect logical block: %d expected: %d\n",
660 						       block, logical_block, first_logical_block);
661 						/* the chain is incorrect : we must format it,
662 						   but we need to read it completely */
663 						do_format_chain = 1;
664 					}
665 					if (is_first_block) {
666 						/* we accept that a block is marked as first
667 						   block while being last block in a chain
668 						   only if the chain is being folded */
669 						if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
670 						    rep_block != 0xffff) {
671 							printk("Block %d: incorrectly marked as first block in chain\n",
672 							       block);
673 							/* the chain is incorrect : we must format it,
674 							   but we need to read it completely */
675 							do_format_chain = 1;
676 						} else {
677 							printk("Block %d: folding in progress - ignoring first block flag\n",
678 							       block);
679 						}
680 					}
681 				}
682 				chain_length++;
683 				if (rep_block == 0xffff) {
684 					/* no more blocks after */
685 					s->ReplUnitTable[block] = BLOCK_NIL;
686 					break;
687 				} else if (rep_block >= s->nb_blocks) {
688 					printk("Block %d: referencing invalid block %d\n",
689 					       block, rep_block);
690 					do_format_chain = 1;
691 					s->ReplUnitTable[block] = BLOCK_NIL;
692 					break;
693 				} else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
694 					/* same problem as previous 'is_first_block' test:
695 					   we accept that the last block of a chain has
696 					   the first_block flag set if folding is in
697 					   progress. We handle here the case where the
698 					   last block appeared first */
699 					if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
700 					    s->EUNtable[first_logical_block] == rep_block &&
701 					    get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
702 						/* EUNtable[] will be set after */
703 						printk("Block %d: folding in progress - ignoring first block flag\n",
704 						       rep_block);
705 						s->ReplUnitTable[block] = rep_block;
706 						s->EUNtable[first_logical_block] = BLOCK_NIL;
707 					} else {
708 						printk("Block %d: referencing block %d already in another chain\n",
709 						       block, rep_block);
710 						/* XXX: should handle correctly fold in progress chains */
711 						do_format_chain = 1;
712 						s->ReplUnitTable[block] = BLOCK_NIL;
713 					}
714 					break;
715 				} else {
716 					/* this is OK */
717 					s->ReplUnitTable[block] = rep_block;
718 					block = rep_block;
719 				}
720 			}
721 
722 			/* the chain was completely explored. Now we can decide
723 			   what to do with it */
724 			if (do_format_chain) {
725 				/* invalid chain : format it */
726 				format_chain(s, first_block);
727 			} else {
728 				unsigned int first_block1, chain_to_format, chain_length1;
729 				int fold_mark;
730 
731 				/* valid chain : get foldmark */
732 				fold_mark = get_fold_mark(s, first_block);
733 				if (fold_mark == 0) {
734 					/* cannot get foldmark : format the chain */
735 					printk("Could read foldmark at block %d\n", first_block);
736 					format_chain(s, first_block);
737 				} else {
738 					if (fold_mark == FOLD_MARK_IN_PROGRESS)
739 						check_sectors_in_chain(s, first_block);
740 
741 					/* now handle the case where we find two chains at the
742 					   same virtual address : we select the longer one,
743 					   because the shorter one is the one which was being
744 					   folded if the folding was not done in place */
745 					first_block1 = s->EUNtable[first_logical_block];
746 					if (first_block1 != BLOCK_NIL) {
747 						/* XXX: what to do if same length ? */
748 						chain_length1 = calc_chain_length(s, first_block1);
749 						printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
750 						       first_block1, chain_length1, first_block, chain_length);
751 
752 						if (chain_length >= chain_length1) {
753 							chain_to_format = first_block1;
754 							s->EUNtable[first_logical_block] = first_block;
755 						} else {
756 							chain_to_format = first_block;
757 						}
758 						format_chain(s, chain_to_format);
759 					} else {
760 						s->EUNtable[first_logical_block] = first_block;
761 					}
762 				}
763 			}
764 		}
765 	examine_ReplUnitTable:;
766 	}
767 
768 	/* second pass to format unreferenced blocks  and init free block count */
769 	s->numfreeEUNs = 0;
770 	s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN);
771 
772 	for (block = 0; block < s->nb_blocks; block++) {
773 		if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
774 			printk("Unreferenced block %d, formatting it\n", block);
775 			if (NFTL_formatblock(s, block) < 0)
776 				s->ReplUnitTable[block] = BLOCK_RESERVED;
777 			else
778 				s->ReplUnitTable[block] = BLOCK_FREE;
779 		}
780 		if (s->ReplUnitTable[block] == BLOCK_FREE) {
781 			s->numfreeEUNs++;
782 			s->LastFreeEUN = block;
783 		}
784 	}
785 
786 	return 0;
787 }
788