1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NFTL mount code with extensive checks 4 * 5 * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 6 * Copyright © 2000 Netgem S.A. 7 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 8 */ 9 10 #include <linux/kernel.h> 11 #include <asm/errno.h> 12 #include <linux/delay.h> 13 #include <linux/slab.h> 14 #include <linux/mtd/mtd.h> 15 #include <linux/mtd/rawnand.h> 16 #include <linux/mtd/nftl.h> 17 18 #define SECTORSIZE 512 19 20 /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the 21 * various device information of the NFTL partition and Bad Unit Table. Update 22 * the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[] 23 * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c 24 */ 25 static int find_boot_record(struct NFTLrecord *nftl) 26 { 27 struct nftl_uci1 h1; 28 unsigned int block, boot_record_count = 0; 29 size_t retlen; 30 u8 buf[SECTORSIZE]; 31 struct NFTLMediaHeader *mh = &nftl->MediaHdr; 32 struct mtd_info *mtd = nftl->mbd.mtd; 33 unsigned int i; 34 35 /* Assume logical EraseSize == physical erasesize for starting the scan. 36 We'll sort it out later if we find a MediaHeader which says otherwise */ 37 /* Actually, we won't. The new DiskOnChip driver has already scanned 38 the MediaHeader and adjusted the virtual erasesize it presents in 39 the mtd device accordingly. We could even get rid of 40 nftl->EraseSize if there were any point in doing so. */ 41 nftl->EraseSize = nftl->mbd.mtd->erasesize; 42 nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize; 43 44 nftl->MediaUnit = BLOCK_NIL; 45 nftl->SpareMediaUnit = BLOCK_NIL; 46 47 /* search for a valid boot record */ 48 for (block = 0; block < nftl->nb_blocks; block++) { 49 int ret; 50 51 /* Check for ANAND header first. Then can whinge if it's found but later 52 checks fail */ 53 ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE, 54 &retlen, buf); 55 /* We ignore ret in case the ECC of the MediaHeader is invalid 56 (which is apparently acceptable) */ 57 if (retlen != SECTORSIZE) { 58 static int warncount = 5; 59 60 if (warncount) { 61 printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n", 62 block * nftl->EraseSize, nftl->mbd.mtd->index, ret); 63 if (!--warncount) 64 printk(KERN_WARNING "Further failures for this block will not be printed\n"); 65 } 66 continue; 67 } 68 69 if (retlen < 6 || memcmp(buf, "ANAND", 6)) { 70 /* ANAND\0 not found. Continue */ 71 #if 0 72 printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n", 73 block * nftl->EraseSize, nftl->mbd.mtd->index); 74 #endif 75 continue; 76 } 77 78 /* To be safer with BIOS, also use erase mark as discriminant */ 79 ret = nftl_read_oob(mtd, block * nftl->EraseSize + 80 SECTORSIZE + 8, 8, &retlen, 81 (char *)&h1); 82 if (ret < 0) { 83 printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n", 84 block * nftl->EraseSize, nftl->mbd.mtd->index, ret); 85 continue; 86 } 87 88 #if 0 /* Some people seem to have devices without ECC or erase marks 89 on the Media Header blocks. There are enough other sanity 90 checks in here that we can probably do without it. 91 */ 92 if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) { 93 printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n", 94 block * nftl->EraseSize, nftl->mbd.mtd->index, 95 le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1)); 96 continue; 97 } 98 99 /* Finally reread to check ECC */ 100 ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE, 101 &retlen, buf); 102 if (ret < 0) { 103 printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n", 104 block * nftl->EraseSize, nftl->mbd.mtd->index, ret); 105 continue; 106 } 107 108 /* Paranoia. Check the ANAND header is still there after the ECC read */ 109 if (memcmp(buf, "ANAND", 6)) { 110 printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n", 111 block * nftl->EraseSize, nftl->mbd.mtd->index); 112 printk(KERN_NOTICE "New data are: %6ph\n", buf); 113 continue; 114 } 115 #endif 116 /* OK, we like it. */ 117 118 if (boot_record_count) { 119 /* We've already processed one. So we just check if 120 this one is the same as the first one we found */ 121 if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { 122 printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n", 123 nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); 124 /* if (debug) Print both side by side */ 125 if (boot_record_count < 2) { 126 /* We haven't yet seen two real ones */ 127 return -1; 128 } 129 continue; 130 } 131 if (boot_record_count == 1) 132 nftl->SpareMediaUnit = block; 133 134 /* Mark this boot record (NFTL MediaHeader) block as reserved */ 135 nftl->ReplUnitTable[block] = BLOCK_RESERVED; 136 137 138 boot_record_count++; 139 continue; 140 } 141 142 /* This is the first we've seen. Copy the media header structure into place */ 143 memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); 144 145 /* Do some sanity checks on it */ 146 #if 0 147 The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual 148 erasesize based on UnitSizeFactor. So the erasesize we read from the mtd 149 device is already correct. 150 if (mh->UnitSizeFactor == 0) { 151 printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n"); 152 } else if (mh->UnitSizeFactor < 0xfc) { 153 printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n", 154 mh->UnitSizeFactor); 155 return -1; 156 } else if (mh->UnitSizeFactor != 0xff) { 157 printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n", 158 mh->UnitSizeFactor); 159 nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor); 160 nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize; 161 } 162 #endif 163 nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); 164 if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { 165 printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); 166 printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", 167 nftl->nb_boot_blocks, nftl->nb_blocks); 168 return -1; 169 } 170 171 nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; 172 if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { 173 printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); 174 printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", 175 nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks); 176 return -1; 177 } 178 179 nftl->mbd.size = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); 180 181 /* If we're not using the last sectors in the device for some reason, 182 reduce nb_blocks accordingly so we forget they're there */ 183 nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); 184 185 /* XXX: will be suppressed */ 186 nftl->lastEUN = nftl->nb_blocks - 1; 187 188 /* memory alloc */ 189 nftl->EUNtable = kmalloc_array(nftl->nb_blocks, sizeof(u16), 190 GFP_KERNEL); 191 if (!nftl->EUNtable) { 192 printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n"); 193 return -ENOMEM; 194 } 195 196 nftl->ReplUnitTable = kmalloc_array(nftl->nb_blocks, 197 sizeof(u16), 198 GFP_KERNEL); 199 if (!nftl->ReplUnitTable) { 200 kfree(nftl->EUNtable); 201 printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n"); 202 return -ENOMEM; 203 } 204 205 /* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */ 206 for (i = 0; i < nftl->nb_boot_blocks; i++) 207 nftl->ReplUnitTable[i] = BLOCK_RESERVED; 208 /* mark all remaining blocks as potentially containing data */ 209 for (; i < nftl->nb_blocks; i++) { 210 nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED; 211 } 212 213 /* Mark this boot record (NFTL MediaHeader) block as reserved */ 214 nftl->ReplUnitTable[block] = BLOCK_RESERVED; 215 216 /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ 217 for (i = 0; i < nftl->nb_blocks; i++) { 218 #if 0 219 The new DiskOnChip driver already scanned the bad block table. Just query it. 220 if ((i & (SECTORSIZE - 1)) == 0) { 221 /* read one sector for every SECTORSIZE of blocks */ 222 ret = mtd->read(nftl->mbd.mtd, 223 block * nftl->EraseSize + i + 224 SECTORSIZE, SECTORSIZE, 225 &retlen, buf); 226 if (ret < 0) { 227 printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n", 228 ret); 229 kfree(nftl->ReplUnitTable); 230 kfree(nftl->EUNtable); 231 return -1; 232 } 233 } 234 /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ 235 if (buf[i & (SECTORSIZE - 1)] != 0xff) 236 nftl->ReplUnitTable[i] = BLOCK_RESERVED; 237 #endif 238 if (mtd_block_isbad(nftl->mbd.mtd, 239 i * nftl->EraseSize)) 240 nftl->ReplUnitTable[i] = BLOCK_RESERVED; 241 } 242 243 nftl->MediaUnit = block; 244 boot_record_count++; 245 246 } /* foreach (block) */ 247 248 return boot_record_count?0:-1; 249 } 250 251 static int memcmpb(void *a, int c, int n) 252 { 253 int i; 254 for (i = 0; i < n; i++) { 255 if (c != ((unsigned char *)a)[i]) 256 return 1; 257 } 258 return 0; 259 } 260 261 /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */ 262 static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len, 263 int check_oob) 264 { 265 struct mtd_info *mtd = nftl->mbd.mtd; 266 size_t retlen; 267 int i, ret; 268 u8 *buf; 269 270 buf = kmalloc(SECTORSIZE + mtd->oobsize, GFP_KERNEL); 271 if (!buf) 272 return -1; 273 274 ret = -1; 275 for (i = 0; i < len; i += SECTORSIZE) { 276 if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf)) 277 goto out; 278 if (memcmpb(buf, 0xff, SECTORSIZE) != 0) 279 goto out; 280 281 if (check_oob) { 282 if(nftl_read_oob(mtd, address, mtd->oobsize, 283 &retlen, &buf[SECTORSIZE]) < 0) 284 goto out; 285 if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0) 286 goto out; 287 } 288 address += SECTORSIZE; 289 } 290 291 ret = 0; 292 293 out: 294 kfree(buf); 295 return ret; 296 } 297 298 /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and 299 * Update NFTL metadata. Each erase operation is checked with check_free_sectors 300 * 301 * Return: 0 when succeed, -1 on error. 302 * 303 * ToDo: 1. Is it necessary to check_free_sector after erasing ?? 304 */ 305 int NFTL_formatblock(struct NFTLrecord *nftl, int block) 306 { 307 size_t retlen; 308 unsigned int nb_erases, erase_mark; 309 struct nftl_uci1 uci; 310 struct erase_info *instr = &nftl->instr; 311 struct mtd_info *mtd = nftl->mbd.mtd; 312 313 /* Read the Unit Control Information #1 for Wear-Leveling */ 314 if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 315 8, &retlen, (char *)&uci) < 0) 316 goto default_uci1; 317 318 erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1)); 319 if (erase_mark != ERASE_MARK) { 320 default_uci1: 321 uci.EraseMark = cpu_to_le16(ERASE_MARK); 322 uci.EraseMark1 = cpu_to_le16(ERASE_MARK); 323 uci.WearInfo = cpu_to_le32(0); 324 } 325 326 memset(instr, 0, sizeof(struct erase_info)); 327 328 /* XXX: use async erase interface, XXX: test return code */ 329 instr->addr = block * nftl->EraseSize; 330 instr->len = nftl->EraseSize; 331 if (mtd_erase(mtd, instr)) { 332 printk("Error while formatting block %d\n", block); 333 goto fail; 334 } 335 336 /* increase and write Wear-Leveling info */ 337 nb_erases = le32_to_cpu(uci.WearInfo); 338 nb_erases++; 339 340 /* wrap (almost impossible with current flash) or free block */ 341 if (nb_erases == 0) 342 nb_erases = 1; 343 344 /* check the "freeness" of Erase Unit before updating metadata 345 * FixMe: is this check really necessary ? since we have check the 346 * return code after the erase operation. 347 */ 348 if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0) 349 goto fail; 350 351 uci.WearInfo = le32_to_cpu(nb_erases); 352 if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 353 8, 8, &retlen, (char *)&uci) < 0) 354 goto fail; 355 return 0; 356 fail: 357 /* could not format, update the bad block table (caller is responsible 358 for setting the ReplUnitTable to BLOCK_RESERVED on failure) */ 359 mtd_block_markbad(nftl->mbd.mtd, instr->addr); 360 return -1; 361 } 362 363 /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct. 364 * Mark as 'IGNORE' each incorrect sector. This check is only done if the chain 365 * was being folded when NFTL was interrupted. 366 * 367 * The check_free_sectors in this function is necessary. There is a possible 368 * situation that after writing the Data area, the Block Control Information is 369 * not updated according (due to power failure or something) which leaves the block 370 * in an inconsistent state. So we have to check if a block is really FREE in this 371 * case. */ 372 static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block) 373 { 374 struct mtd_info *mtd = nftl->mbd.mtd; 375 unsigned int block, i, status; 376 struct nftl_bci bci; 377 int sectors_per_block; 378 size_t retlen; 379 380 sectors_per_block = nftl->EraseSize / SECTORSIZE; 381 block = first_block; 382 for (;;) { 383 for (i = 0; i < sectors_per_block; i++) { 384 if (nftl_read_oob(mtd, 385 block * nftl->EraseSize + i * SECTORSIZE, 386 8, &retlen, (char *)&bci) < 0) 387 status = SECTOR_IGNORE; 388 else 389 status = bci.Status | bci.Status1; 390 391 switch(status) { 392 case SECTOR_FREE: 393 /* verify that the sector is really free. If not, mark 394 as ignore */ 395 if (memcmpb(&bci, 0xff, 8) != 0 || 396 check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE, 397 SECTORSIZE, 0) != 0) { 398 printk("Incorrect free sector %d in block %d: " 399 "marking it as ignored\n", 400 i, block); 401 402 /* sector not free actually : mark it as SECTOR_IGNORE */ 403 bci.Status = SECTOR_IGNORE; 404 bci.Status1 = SECTOR_IGNORE; 405 nftl_write_oob(mtd, block * 406 nftl->EraseSize + 407 i * SECTORSIZE, 8, 408 &retlen, (char *)&bci); 409 } 410 break; 411 default: 412 break; 413 } 414 } 415 416 /* proceed to next Erase Unit on the chain */ 417 block = nftl->ReplUnitTable[block]; 418 if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) 419 printk("incorrect ReplUnitTable[] : %d\n", block); 420 if (block == BLOCK_NIL || block >= nftl->nb_blocks) 421 break; 422 } 423 } 424 425 /* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */ 426 static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block) 427 { 428 unsigned int length = 0, block = first_block; 429 430 for (;;) { 431 length++; 432 /* avoid infinite loops, although this is guaranteed not to 433 happen because of the previous checks */ 434 if (length >= nftl->nb_blocks) { 435 printk("nftl: length too long %d !\n", length); 436 break; 437 } 438 439 block = nftl->ReplUnitTable[block]; 440 if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) 441 printk("incorrect ReplUnitTable[] : %d\n", block); 442 if (block == BLOCK_NIL || block >= nftl->nb_blocks) 443 break; 444 } 445 return length; 446 } 447 448 /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a 449 * Virtual Unit Chain, i.e. all the units are disconnected. 450 * 451 * It is not strictly correct to begin from the first block of the chain because 452 * if we stop the code, we may see again a valid chain if there was a first_block 453 * flag in a block inside it. But is it really a problem ? 454 * 455 * FixMe: Figure out what the last statement means. What if power failure when we are 456 * in the for (;;) loop formatting blocks ?? 457 */ 458 static void format_chain(struct NFTLrecord *nftl, unsigned int first_block) 459 { 460 unsigned int block = first_block, block1; 461 462 printk("Formatting chain at block %d\n", first_block); 463 464 for (;;) { 465 block1 = nftl->ReplUnitTable[block]; 466 467 printk("Formatting block %d\n", block); 468 if (NFTL_formatblock(nftl, block) < 0) { 469 /* cannot format !!!! Mark it as Bad Unit */ 470 nftl->ReplUnitTable[block] = BLOCK_RESERVED; 471 } else { 472 nftl->ReplUnitTable[block] = BLOCK_FREE; 473 } 474 475 /* goto next block on the chain */ 476 block = block1; 477 478 if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) 479 printk("incorrect ReplUnitTable[] : %d\n", block); 480 if (block == BLOCK_NIL || block >= nftl->nb_blocks) 481 break; 482 } 483 } 484 485 /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or 486 * totally free (only 0xff). 487 * 488 * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the 489 * following criteria: 490 * 1. */ 491 static int check_and_mark_free_block(struct NFTLrecord *nftl, int block) 492 { 493 struct mtd_info *mtd = nftl->mbd.mtd; 494 struct nftl_uci1 h1; 495 unsigned int erase_mark; 496 size_t retlen; 497 498 /* check erase mark. */ 499 if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, 500 &retlen, (char *)&h1) < 0) 501 return -1; 502 503 erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); 504 if (erase_mark != ERASE_MARK) { 505 /* if no erase mark, the block must be totally free. This is 506 possible in two cases : empty filesystem or interrupted erase (very unlikely) */ 507 if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0) 508 return -1; 509 510 /* free block : write erase mark */ 511 h1.EraseMark = cpu_to_le16(ERASE_MARK); 512 h1.EraseMark1 = cpu_to_le16(ERASE_MARK); 513 h1.WearInfo = cpu_to_le32(0); 514 if (nftl_write_oob(mtd, 515 block * nftl->EraseSize + SECTORSIZE + 8, 8, 516 &retlen, (char *)&h1) < 0) 517 return -1; 518 } else { 519 #if 0 520 /* if erase mark present, need to skip it when doing check */ 521 for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) { 522 /* check free sector */ 523 if (check_free_sectors (nftl, block * nftl->EraseSize + i, 524 SECTORSIZE, 0) != 0) 525 return -1; 526 527 if (nftl_read_oob(mtd, block * nftl->EraseSize + i, 528 16, &retlen, buf) < 0) 529 return -1; 530 if (i == SECTORSIZE) { 531 /* skip erase mark */ 532 if (memcmpb(buf, 0xff, 8)) 533 return -1; 534 } else { 535 if (memcmpb(buf, 0xff, 16)) 536 return -1; 537 } 538 } 539 #endif 540 } 541 542 return 0; 543 } 544 545 /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS 546 * to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2 547 * is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted 548 * for some reason. A clean up/check of the VUC is necessary in this case. 549 * 550 * WARNING: return 0 if read error 551 */ 552 static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block) 553 { 554 struct mtd_info *mtd = nftl->mbd.mtd; 555 struct nftl_uci2 uci; 556 size_t retlen; 557 558 if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8, 559 8, &retlen, (char *)&uci) < 0) 560 return 0; 561 562 return le16_to_cpu((uci.FoldMark | uci.FoldMark1)); 563 } 564 565 int NFTL_mount(struct NFTLrecord *s) 566 { 567 int i; 568 unsigned int first_logical_block, logical_block, rep_block, erase_mark; 569 unsigned int block, first_block, is_first_block; 570 int chain_length, do_format_chain; 571 struct nftl_uci0 h0; 572 struct nftl_uci1 h1; 573 struct mtd_info *mtd = s->mbd.mtd; 574 size_t retlen; 575 576 /* search for NFTL MediaHeader and Spare NFTL Media Header */ 577 if (find_boot_record(s) < 0) { 578 printk("Could not find valid boot record\n"); 579 return -1; 580 } 581 582 /* init the logical to physical table */ 583 for (i = 0; i < s->nb_blocks; i++) { 584 s->EUNtable[i] = BLOCK_NIL; 585 } 586 587 /* first pass : explore each block chain */ 588 first_logical_block = 0; 589 for (first_block = 0; first_block < s->nb_blocks; first_block++) { 590 /* if the block was not already explored, we can look at it */ 591 if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) { 592 block = first_block; 593 chain_length = 0; 594 do_format_chain = 0; 595 596 for (;;) { 597 /* read the block header. If error, we format the chain */ 598 if (nftl_read_oob(mtd, 599 block * s->EraseSize + 8, 8, 600 &retlen, (char *)&h0) < 0 || 601 nftl_read_oob(mtd, 602 block * s->EraseSize + 603 SECTORSIZE + 8, 8, 604 &retlen, (char *)&h1) < 0) { 605 s->ReplUnitTable[block] = BLOCK_NIL; 606 do_format_chain = 1; 607 break; 608 } 609 610 logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum)); 611 rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum)); 612 erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); 613 614 is_first_block = !(logical_block >> 15); 615 logical_block = logical_block & 0x7fff; 616 617 /* invalid/free block test */ 618 if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) { 619 if (chain_length == 0) { 620 /* if not currently in a chain, we can handle it safely */ 621 if (check_and_mark_free_block(s, block) < 0) { 622 /* not really free: format it */ 623 printk("Formatting block %d\n", block); 624 if (NFTL_formatblock(s, block) < 0) { 625 /* could not format: reserve the block */ 626 s->ReplUnitTable[block] = BLOCK_RESERVED; 627 } else { 628 s->ReplUnitTable[block] = BLOCK_FREE; 629 } 630 } else { 631 /* free block: mark it */ 632 s->ReplUnitTable[block] = BLOCK_FREE; 633 } 634 /* directly examine the next block. */ 635 goto examine_ReplUnitTable; 636 } else { 637 /* the block was in a chain : this is bad. We 638 must format all the chain */ 639 printk("Block %d: free but referenced in chain %d\n", 640 block, first_block); 641 s->ReplUnitTable[block] = BLOCK_NIL; 642 do_format_chain = 1; 643 break; 644 } 645 } 646 647 /* we accept only first blocks here */ 648 if (chain_length == 0) { 649 /* this block is not the first block in chain : 650 ignore it, it will be included in a chain 651 later, or marked as not explored */ 652 if (!is_first_block) 653 goto examine_ReplUnitTable; 654 first_logical_block = logical_block; 655 } else { 656 if (logical_block != first_logical_block) { 657 printk("Block %d: incorrect logical block: %d expected: %d\n", 658 block, logical_block, first_logical_block); 659 /* the chain is incorrect : we must format it, 660 but we need to read it completely */ 661 do_format_chain = 1; 662 } 663 if (is_first_block) { 664 /* we accept that a block is marked as first 665 block while being last block in a chain 666 only if the chain is being folded */ 667 if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS || 668 rep_block != 0xffff) { 669 printk("Block %d: incorrectly marked as first block in chain\n", 670 block); 671 /* the chain is incorrect : we must format it, 672 but we need to read it completely */ 673 do_format_chain = 1; 674 } else { 675 printk("Block %d: folding in progress - ignoring first block flag\n", 676 block); 677 } 678 } 679 } 680 chain_length++; 681 if (rep_block == 0xffff) { 682 /* no more blocks after */ 683 s->ReplUnitTable[block] = BLOCK_NIL; 684 break; 685 } else if (rep_block >= s->nb_blocks) { 686 printk("Block %d: referencing invalid block %d\n", 687 block, rep_block); 688 do_format_chain = 1; 689 s->ReplUnitTable[block] = BLOCK_NIL; 690 break; 691 } else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) { 692 /* same problem as previous 'is_first_block' test: 693 we accept that the last block of a chain has 694 the first_block flag set if folding is in 695 progress. We handle here the case where the 696 last block appeared first */ 697 if (s->ReplUnitTable[rep_block] == BLOCK_NIL && 698 s->EUNtable[first_logical_block] == rep_block && 699 get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) { 700 /* EUNtable[] will be set after */ 701 printk("Block %d: folding in progress - ignoring first block flag\n", 702 rep_block); 703 s->ReplUnitTable[block] = rep_block; 704 s->EUNtable[first_logical_block] = BLOCK_NIL; 705 } else { 706 printk("Block %d: referencing block %d already in another chain\n", 707 block, rep_block); 708 /* XXX: should handle correctly fold in progress chains */ 709 do_format_chain = 1; 710 s->ReplUnitTable[block] = BLOCK_NIL; 711 } 712 break; 713 } else { 714 /* this is OK */ 715 s->ReplUnitTable[block] = rep_block; 716 block = rep_block; 717 } 718 } 719 720 /* the chain was completely explored. Now we can decide 721 what to do with it */ 722 if (do_format_chain) { 723 /* invalid chain : format it */ 724 format_chain(s, first_block); 725 } else { 726 unsigned int first_block1, chain_to_format, chain_length1; 727 int fold_mark; 728 729 /* valid chain : get foldmark */ 730 fold_mark = get_fold_mark(s, first_block); 731 if (fold_mark == 0) { 732 /* cannot get foldmark : format the chain */ 733 printk("Could read foldmark at block %d\n", first_block); 734 format_chain(s, first_block); 735 } else { 736 if (fold_mark == FOLD_MARK_IN_PROGRESS) 737 check_sectors_in_chain(s, first_block); 738 739 /* now handle the case where we find two chains at the 740 same virtual address : we select the longer one, 741 because the shorter one is the one which was being 742 folded if the folding was not done in place */ 743 first_block1 = s->EUNtable[first_logical_block]; 744 if (first_block1 != BLOCK_NIL) { 745 /* XXX: what to do if same length ? */ 746 chain_length1 = calc_chain_length(s, first_block1); 747 printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n", 748 first_block1, chain_length1, first_block, chain_length); 749 750 if (chain_length >= chain_length1) { 751 chain_to_format = first_block1; 752 s->EUNtable[first_logical_block] = first_block; 753 } else { 754 chain_to_format = first_block; 755 } 756 format_chain(s, chain_to_format); 757 } else { 758 s->EUNtable[first_logical_block] = first_block; 759 } 760 } 761 } 762 } 763 examine_ReplUnitTable:; 764 } 765 766 /* second pass to format unreferenced blocks and init free block count */ 767 s->numfreeEUNs = 0; 768 s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN); 769 770 for (block = 0; block < s->nb_blocks; block++) { 771 if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) { 772 printk("Unreferenced block %d, formatting it\n", block); 773 if (NFTL_formatblock(s, block) < 0) 774 s->ReplUnitTable[block] = BLOCK_RESERVED; 775 else 776 s->ReplUnitTable[block] = BLOCK_FREE; 777 } 778 if (s->ReplUnitTable[block] == BLOCK_FREE) { 779 s->numfreeEUNs++; 780 s->LastFreeEUN = block; 781 } 782 } 783 784 return 0; 785 } 786