xref: /linux/drivers/mtd/nand/spi/winbond.c (revision bb9ae1a66c85eeb626864efd812c62026e126ec0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017 exceet electronics GmbH
4  *
5  * Authors:
6  *	Frieder Schrempf <frieder.schrempf@exceet.de>
7  *	Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9 
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/mtd/spinand.h>
13 
14 #define SPINAND_MFR_WINBOND		0xEF
15 
16 #define WINBOND_CFG_BUF_READ		BIT(3)
17 
18 #define W25N04KV_STATUS_ECC_5_8_BITFLIPS	(3 << 4)
19 
20 static SPINAND_OP_VARIANTS(read_cache_variants,
21 		SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
22 		SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
23 		SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
24 		SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
25 		SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
26 		SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
27 
28 static SPINAND_OP_VARIANTS(write_cache_variants,
29 		SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
30 		SPINAND_PROG_LOAD(true, 0, NULL, 0));
31 
32 static SPINAND_OP_VARIANTS(update_cache_variants,
33 		SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
34 		SPINAND_PROG_LOAD(false, 0, NULL, 0));
35 
36 static int w25m02gv_ooblayout_ecc(struct mtd_info *mtd, int section,
37 				  struct mtd_oob_region *region)
38 {
39 	if (section > 3)
40 		return -ERANGE;
41 
42 	region->offset = (16 * section) + 8;
43 	region->length = 8;
44 
45 	return 0;
46 }
47 
48 static int w25m02gv_ooblayout_free(struct mtd_info *mtd, int section,
49 				   struct mtd_oob_region *region)
50 {
51 	if (section > 3)
52 		return -ERANGE;
53 
54 	region->offset = (16 * section) + 2;
55 	region->length = 6;
56 
57 	return 0;
58 }
59 
60 static const struct mtd_ooblayout_ops w25m02gv_ooblayout = {
61 	.ecc = w25m02gv_ooblayout_ecc,
62 	.free = w25m02gv_ooblayout_free,
63 };
64 
65 static int w25m02gv_select_target(struct spinand_device *spinand,
66 				  unsigned int target)
67 {
68 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(0xc2, 1),
69 					  SPI_MEM_OP_NO_ADDR,
70 					  SPI_MEM_OP_NO_DUMMY,
71 					  SPI_MEM_OP_DATA_OUT(1,
72 							spinand->scratchbuf,
73 							1));
74 
75 	*spinand->scratchbuf = target;
76 	return spi_mem_exec_op(spinand->spimem, &op);
77 }
78 
79 static int w25n01kv_ooblayout_ecc(struct mtd_info *mtd, int section,
80 				  struct mtd_oob_region *region)
81 {
82 	if (section > 3)
83 		return -ERANGE;
84 
85 	region->offset = 64 + (8 * section);
86 	region->length = 7;
87 
88 	return 0;
89 }
90 
91 static int w25n02kv_ooblayout_ecc(struct mtd_info *mtd, int section,
92 				  struct mtd_oob_region *region)
93 {
94 	if (section > 3)
95 		return -ERANGE;
96 
97 	region->offset = 64 + (16 * section);
98 	region->length = 13;
99 
100 	return 0;
101 }
102 
103 static int w25n02kv_ooblayout_free(struct mtd_info *mtd, int section,
104 				   struct mtd_oob_region *region)
105 {
106 	if (section > 3)
107 		return -ERANGE;
108 
109 	region->offset = (16 * section) + 2;
110 	region->length = 14;
111 
112 	return 0;
113 }
114 
115 static const struct mtd_ooblayout_ops w25n01kv_ooblayout = {
116 	.ecc = w25n01kv_ooblayout_ecc,
117 	.free = w25n02kv_ooblayout_free,
118 };
119 
120 static const struct mtd_ooblayout_ops w25n02kv_ooblayout = {
121 	.ecc = w25n02kv_ooblayout_ecc,
122 	.free = w25n02kv_ooblayout_free,
123 };
124 
125 static int w25n02kv_ecc_get_status(struct spinand_device *spinand,
126 				   u8 status)
127 {
128 	struct nand_device *nand = spinand_to_nand(spinand);
129 	u8 mbf = 0;
130 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(0x30, spinand->scratchbuf);
131 
132 	switch (status & STATUS_ECC_MASK) {
133 	case STATUS_ECC_NO_BITFLIPS:
134 		return 0;
135 
136 	case STATUS_ECC_UNCOR_ERROR:
137 		return -EBADMSG;
138 
139 	case STATUS_ECC_HAS_BITFLIPS:
140 	case W25N04KV_STATUS_ECC_5_8_BITFLIPS:
141 		/*
142 		 * Let's try to retrieve the real maximum number of bitflips
143 		 * in order to avoid forcing the wear-leveling layer to move
144 		 * data around if it's not necessary.
145 		 */
146 		if (spi_mem_exec_op(spinand->spimem, &op))
147 			return nanddev_get_ecc_conf(nand)->strength;
148 
149 		mbf = *(spinand->scratchbuf) >> 4;
150 
151 		if (WARN_ON(mbf > nanddev_get_ecc_conf(nand)->strength || !mbf))
152 			return nanddev_get_ecc_conf(nand)->strength;
153 
154 		return mbf;
155 
156 	default:
157 		break;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 static const struct spinand_info winbond_spinand_table[] = {
164 	SPINAND_INFO("W25M02GV",
165 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xab, 0x21),
166 		     NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 2),
167 		     NAND_ECCREQ(1, 512),
168 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
169 					      &write_cache_variants,
170 					      &update_cache_variants),
171 		     0,
172 		     SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL),
173 		     SPINAND_SELECT_TARGET(w25m02gv_select_target)),
174 	SPINAND_INFO("W25N01GV",
175 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa, 0x21),
176 		     NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
177 		     NAND_ECCREQ(1, 512),
178 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
179 					      &write_cache_variants,
180 					      &update_cache_variants),
181 		     0,
182 		     SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL)),
183 	SPINAND_INFO("W25N01KV",
184 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xae, 0x21),
185 		     NAND_MEMORG(1, 2048, 96, 64, 1024, 20, 1, 1, 1),
186 		     NAND_ECCREQ(4, 512),
187 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
188 					      &write_cache_variants,
189 					      &update_cache_variants),
190 		     0,
191 		     SPINAND_ECCINFO(&w25n01kv_ooblayout, w25n02kv_ecc_get_status)),
192 	SPINAND_INFO("W25N02KV",
193 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa, 0x22),
194 		     NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
195 		     NAND_ECCREQ(8, 512),
196 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
197 					      &write_cache_variants,
198 					      &update_cache_variants),
199 		     0,
200 		     SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
201 	SPINAND_INFO("W25N01JW",
202 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xbc, 0x21),
203 		     NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
204 		     NAND_ECCREQ(4, 512),
205 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
206 					      &write_cache_variants,
207 					      &update_cache_variants),
208 		     0,
209 		     SPINAND_ECCINFO(&w25m02gv_ooblayout, w25n02kv_ecc_get_status)),
210 	SPINAND_INFO("W25N02JWZEIF",
211 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xbf, 0x22),
212 		     NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 2, 1),
213 		     NAND_ECCREQ(4, 512),
214 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
215 					      &write_cache_variants,
216 					      &update_cache_variants),
217 		     0,
218 		     SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
219 	SPINAND_INFO("W25N512GW",
220 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xba, 0x20),
221 		     NAND_MEMORG(1, 2048, 64, 64, 512, 10, 1, 1, 1),
222 		     NAND_ECCREQ(4, 512),
223 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
224 					      &write_cache_variants,
225 					      &update_cache_variants),
226 		     0,
227 		     SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
228 	SPINAND_INFO("W25N02KWZEIR",
229 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xba, 0x22),
230 		     NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
231 		     NAND_ECCREQ(8, 512),
232 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
233 					      &write_cache_variants,
234 					      &update_cache_variants),
235 		     0,
236 		     SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
237 	SPINAND_INFO("W25N01GWZEIG",
238 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xba, 0x21),
239 		     NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
240 		     NAND_ECCREQ(4, 512),
241 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
242 					      &write_cache_variants,
243 					      &update_cache_variants),
244 		     0,
245 		     SPINAND_ECCINFO(&w25m02gv_ooblayout, w25n02kv_ecc_get_status)),
246 	SPINAND_INFO("W25N04KV",
247 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa, 0x23),
248 		     NAND_MEMORG(1, 2048, 128, 64, 4096, 40, 2, 1, 1),
249 		     NAND_ECCREQ(8, 512),
250 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
251 					      &write_cache_variants,
252 					      &update_cache_variants),
253 		     0,
254 		     SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
255 };
256 
257 static int winbond_spinand_init(struct spinand_device *spinand)
258 {
259 	struct nand_device *nand = spinand_to_nand(spinand);
260 	unsigned int i;
261 
262 	/*
263 	 * Make sure all dies are in buffer read mode and not continuous read
264 	 * mode.
265 	 */
266 	for (i = 0; i < nand->memorg.ntargets; i++) {
267 		spinand_select_target(spinand, i);
268 		spinand_upd_cfg(spinand, WINBOND_CFG_BUF_READ,
269 				WINBOND_CFG_BUF_READ);
270 	}
271 
272 	return 0;
273 }
274 
275 static const struct spinand_manufacturer_ops winbond_spinand_manuf_ops = {
276 	.init = winbond_spinand_init,
277 };
278 
279 const struct spinand_manufacturer winbond_spinand_manufacturer = {
280 	.id = SPINAND_MFR_WINBOND,
281 	.name = "Winbond",
282 	.chips = winbond_spinand_table,
283 	.nchips = ARRAY_SIZE(winbond_spinand_table),
284 	.ops = &winbond_spinand_manuf_ops,
285 };
286