1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2018 exceet electronics GmbH 4 * Copyright (c) 2018 Kontron Electronics GmbH 5 * 6 * Author: Frieder Schrempf <frieder.schrempf@kontron.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/kernel.h> 11 #include <linux/mtd/spinand.h> 12 13 /* Kioxia is new name of Toshiba memory. */ 14 #define SPINAND_MFR_TOSHIBA 0x98 15 #define TOSH_STATUS_ECC_HAS_BITFLIPS_T (3 << 4) 16 17 static SPINAND_OP_VARIANTS(read_cache_variants, 18 SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), 19 SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), 20 SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), 21 SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); 22 23 static SPINAND_OP_VARIANTS(write_cache_x4_variants, 24 SPINAND_PROG_LOAD_X4(true, 0, NULL, 0), 25 SPINAND_PROG_LOAD(true, 0, NULL, 0)); 26 27 static SPINAND_OP_VARIANTS(update_cache_x4_variants, 28 SPINAND_PROG_LOAD_X4(false, 0, NULL, 0), 29 SPINAND_PROG_LOAD(false, 0, NULL, 0)); 30 31 /* 32 * Backward compatibility for 1st generation Serial NAND devices 33 * which don't support Quad Program Load operation. 34 */ 35 static SPINAND_OP_VARIANTS(write_cache_variants, 36 SPINAND_PROG_LOAD(true, 0, NULL, 0)); 37 38 static SPINAND_OP_VARIANTS(update_cache_variants, 39 SPINAND_PROG_LOAD(false, 0, NULL, 0)); 40 41 static int tx58cxgxsxraix_ooblayout_ecc(struct mtd_info *mtd, int section, 42 struct mtd_oob_region *region) 43 { 44 if (section > 0) 45 return -ERANGE; 46 47 region->offset = mtd->oobsize / 2; 48 region->length = mtd->oobsize / 2; 49 50 return 0; 51 } 52 53 static int tx58cxgxsxraix_ooblayout_free(struct mtd_info *mtd, int section, 54 struct mtd_oob_region *region) 55 { 56 if (section > 0) 57 return -ERANGE; 58 59 /* 2 bytes reserved for BBM */ 60 region->offset = 2; 61 region->length = (mtd->oobsize / 2) - 2; 62 63 return 0; 64 } 65 66 static const struct mtd_ooblayout_ops tx58cxgxsxraix_ooblayout = { 67 .ecc = tx58cxgxsxraix_ooblayout_ecc, 68 .free = tx58cxgxsxraix_ooblayout_free, 69 }; 70 71 static int tx58cxgxsxraix_ecc_get_status(struct spinand_device *spinand, 72 u8 status) 73 { 74 struct nand_device *nand = spinand_to_nand(spinand); 75 u8 mbf = 0; 76 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(0x30, spinand->scratchbuf); 77 78 switch (status & STATUS_ECC_MASK) { 79 case STATUS_ECC_NO_BITFLIPS: 80 return 0; 81 82 case STATUS_ECC_UNCOR_ERROR: 83 return -EBADMSG; 84 85 case STATUS_ECC_HAS_BITFLIPS: 86 case TOSH_STATUS_ECC_HAS_BITFLIPS_T: 87 /* 88 * Let's try to retrieve the real maximum number of bitflips 89 * in order to avoid forcing the wear-leveling layer to move 90 * data around if it's not necessary. 91 */ 92 if (spi_mem_exec_op(spinand->spimem, &op)) 93 return nanddev_get_ecc_conf(nand)->strength; 94 95 mbf = *(spinand->scratchbuf) >> 4; 96 97 if (WARN_ON(mbf > nanddev_get_ecc_conf(nand)->strength || !mbf)) 98 return nanddev_get_ecc_conf(nand)->strength; 99 100 return mbf; 101 102 default: 103 break; 104 } 105 106 return -EINVAL; 107 } 108 109 static const struct spinand_info toshiba_spinand_table[] = { 110 /* 3.3V 1Gb (1st generation) */ 111 SPINAND_INFO("TC58CVG0S3HRAIG", 112 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xC2), 113 NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), 114 NAND_ECCREQ(8, 512), 115 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 116 &write_cache_variants, 117 &update_cache_variants), 118 0, 119 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 120 tx58cxgxsxraix_ecc_get_status)), 121 /* 3.3V 2Gb (1st generation) */ 122 SPINAND_INFO("TC58CVG1S3HRAIG", 123 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xCB), 124 NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), 125 NAND_ECCREQ(8, 512), 126 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 127 &write_cache_variants, 128 &update_cache_variants), 129 0, 130 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 131 tx58cxgxsxraix_ecc_get_status)), 132 /* 3.3V 4Gb (1st generation) */ 133 SPINAND_INFO("TC58CVG2S0HRAIG", 134 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xCD), 135 NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), 136 NAND_ECCREQ(8, 512), 137 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 138 &write_cache_variants, 139 &update_cache_variants), 140 0, 141 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 142 tx58cxgxsxraix_ecc_get_status)), 143 /* 1.8V 1Gb (1st generation) */ 144 SPINAND_INFO("TC58CYG0S3HRAIG", 145 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xB2), 146 NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), 147 NAND_ECCREQ(8, 512), 148 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 149 &write_cache_variants, 150 &update_cache_variants), 151 0, 152 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 153 tx58cxgxsxraix_ecc_get_status)), 154 /* 1.8V 2Gb (1st generation) */ 155 SPINAND_INFO("TC58CYG1S3HRAIG", 156 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xBB), 157 NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), 158 NAND_ECCREQ(8, 512), 159 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 160 &write_cache_variants, 161 &update_cache_variants), 162 0, 163 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 164 tx58cxgxsxraix_ecc_get_status)), 165 /* 1.8V 4Gb (1st generation) */ 166 SPINAND_INFO("TC58CYG2S0HRAIG", 167 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xBD), 168 NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), 169 NAND_ECCREQ(8, 512), 170 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 171 &write_cache_variants, 172 &update_cache_variants), 173 0, 174 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 175 tx58cxgxsxraix_ecc_get_status)), 176 177 /* 178 * 2nd generation serial nand has HOLD_D which is equivalent to 179 * QE_BIT. 180 */ 181 /* 3.3V 1Gb (2nd generation) */ 182 SPINAND_INFO("TC58CVG0S3HRAIJ", 183 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xE2), 184 NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), 185 NAND_ECCREQ(8, 512), 186 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 187 &write_cache_x4_variants, 188 &update_cache_x4_variants), 189 SPINAND_HAS_QE_BIT, 190 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 191 tx58cxgxsxraix_ecc_get_status)), 192 /* 3.3V 2Gb (2nd generation) */ 193 SPINAND_INFO("TC58CVG1S3HRAIJ", 194 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xEB), 195 NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), 196 NAND_ECCREQ(8, 512), 197 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 198 &write_cache_x4_variants, 199 &update_cache_x4_variants), 200 SPINAND_HAS_QE_BIT, 201 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 202 tx58cxgxsxraix_ecc_get_status)), 203 /* 3.3V 4Gb (2nd generation) */ 204 SPINAND_INFO("TC58CVG2S0HRAIJ", 205 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xED), 206 NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), 207 NAND_ECCREQ(8, 512), 208 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 209 &write_cache_x4_variants, 210 &update_cache_x4_variants), 211 SPINAND_HAS_QE_BIT, 212 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 213 tx58cxgxsxraix_ecc_get_status)), 214 /* 3.3V 8Gb (2nd generation) */ 215 SPINAND_INFO("TH58CVG3S0HRAIJ", 216 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xE4), 217 NAND_MEMORG(1, 4096, 256, 64, 4096, 80, 1, 1, 1), 218 NAND_ECCREQ(8, 512), 219 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 220 &write_cache_x4_variants, 221 &update_cache_x4_variants), 222 SPINAND_HAS_QE_BIT, 223 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 224 tx58cxgxsxraix_ecc_get_status)), 225 /* 1.8V 1Gb (2nd generation) */ 226 SPINAND_INFO("TC58CYG0S3HRAIJ", 227 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xD2), 228 NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), 229 NAND_ECCREQ(8, 512), 230 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 231 &write_cache_x4_variants, 232 &update_cache_x4_variants), 233 SPINAND_HAS_QE_BIT, 234 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 235 tx58cxgxsxraix_ecc_get_status)), 236 /* 1.8V 2Gb (2nd generation) */ 237 SPINAND_INFO("TC58CYG1S3HRAIJ", 238 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xDB), 239 NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), 240 NAND_ECCREQ(8, 512), 241 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 242 &write_cache_x4_variants, 243 &update_cache_x4_variants), 244 SPINAND_HAS_QE_BIT, 245 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 246 tx58cxgxsxraix_ecc_get_status)), 247 /* 1.8V 4Gb (2nd generation) */ 248 SPINAND_INFO("TC58CYG2S0HRAIJ", 249 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xDD), 250 NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), 251 NAND_ECCREQ(8, 512), 252 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 253 &write_cache_x4_variants, 254 &update_cache_x4_variants), 255 SPINAND_HAS_QE_BIT, 256 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 257 tx58cxgxsxraix_ecc_get_status)), 258 /* 1.8V 8Gb (2nd generation) */ 259 SPINAND_INFO("TH58CYG3S0HRAIJ", 260 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xD4), 261 NAND_MEMORG(1, 4096, 256, 64, 4096, 80, 1, 1, 1), 262 NAND_ECCREQ(8, 512), 263 SPINAND_INFO_OP_VARIANTS(&read_cache_variants, 264 &write_cache_x4_variants, 265 &update_cache_x4_variants), 266 SPINAND_HAS_QE_BIT, 267 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, 268 tx58cxgxsxraix_ecc_get_status)), 269 }; 270 271 static const struct spinand_manufacturer_ops toshiba_spinand_manuf_ops = { 272 }; 273 274 const struct spinand_manufacturer toshiba_spinand_manufacturer = { 275 .id = SPINAND_MFR_TOSHIBA, 276 .name = "Toshiba", 277 .chips = toshiba_spinand_table, 278 .nchips = ARRAY_SIZE(toshiba_spinand_table), 279 .ops = &toshiba_spinand_manuf_ops, 280 }; 281