1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 7 * Boris Brezillon <boris.brezillon@bootlin.com> 8 */ 9 10 #define pr_fmt(fmt) "spi-nand: " fmt 11 12 #include <linux/device.h> 13 #include <linux/jiffies.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/mtd/spinand.h> 17 #include <linux/of.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/spi/spi.h> 21 #include <linux/spi/spi-mem.h> 22 23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val) 24 { 25 struct spi_mem_op op = SPINAND_GET_FEATURE_1S_1S_1S_OP(reg, 26 spinand->scratchbuf); 27 int ret; 28 29 ret = spi_mem_exec_op(spinand->spimem, &op); 30 if (ret) 31 return ret; 32 33 *val = *spinand->scratchbuf; 34 return 0; 35 } 36 37 int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val) 38 { 39 struct spi_mem_op op = SPINAND_SET_FEATURE_1S_1S_1S_OP(reg, 40 spinand->scratchbuf); 41 42 *spinand->scratchbuf = val; 43 return spi_mem_exec_op(spinand->spimem, &op); 44 } 45 46 static int spinand_read_status(struct spinand_device *spinand, u8 *status) 47 { 48 return spinand_read_reg_op(spinand, REG_STATUS, status); 49 } 50 51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg) 52 { 53 struct nand_device *nand = spinand_to_nand(spinand); 54 55 if (WARN_ON(spinand->cur_target < 0 || 56 spinand->cur_target >= nand->memorg.ntargets)) 57 return -EINVAL; 58 59 *cfg = spinand->cfg_cache[spinand->cur_target]; 60 return 0; 61 } 62 63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg) 64 { 65 struct nand_device *nand = spinand_to_nand(spinand); 66 int ret; 67 68 if (WARN_ON(spinand->cur_target < 0 || 69 spinand->cur_target >= nand->memorg.ntargets)) 70 return -EINVAL; 71 72 if (spinand->cfg_cache[spinand->cur_target] == cfg) 73 return 0; 74 75 ret = spinand_write_reg_op(spinand, REG_CFG, cfg); 76 if (ret) 77 return ret; 78 79 spinand->cfg_cache[spinand->cur_target] = cfg; 80 return 0; 81 } 82 83 /** 84 * spinand_upd_cfg() - Update the configuration register 85 * @spinand: the spinand device 86 * @mask: the mask encoding the bits to update in the config reg 87 * @val: the new value to apply 88 * 89 * Update the configuration register. 90 * 91 * Return: 0 on success, a negative error code otherwise. 92 */ 93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val) 94 { 95 int ret; 96 u8 cfg; 97 98 ret = spinand_get_cfg(spinand, &cfg); 99 if (ret) 100 return ret; 101 102 cfg &= ~mask; 103 cfg |= val; 104 105 return spinand_set_cfg(spinand, cfg); 106 } 107 108 /** 109 * spinand_select_target() - Select a specific NAND target/die 110 * @spinand: the spinand device 111 * @target: the target/die to select 112 * 113 * Select a new target/die. If chip only has one die, this function is a NOOP. 114 * 115 * Return: 0 on success, a negative error code otherwise. 116 */ 117 int spinand_select_target(struct spinand_device *spinand, unsigned int target) 118 { 119 struct nand_device *nand = spinand_to_nand(spinand); 120 int ret; 121 122 if (WARN_ON(target >= nand->memorg.ntargets)) 123 return -EINVAL; 124 125 if (spinand->cur_target == target) 126 return 0; 127 128 if (nand->memorg.ntargets == 1) { 129 spinand->cur_target = target; 130 return 0; 131 } 132 133 ret = spinand->select_target(spinand, target); 134 if (ret) 135 return ret; 136 137 spinand->cur_target = target; 138 return 0; 139 } 140 141 static int spinand_read_cfg(struct spinand_device *spinand) 142 { 143 struct nand_device *nand = spinand_to_nand(spinand); 144 unsigned int target; 145 int ret; 146 147 for (target = 0; target < nand->memorg.ntargets; target++) { 148 ret = spinand_select_target(spinand, target); 149 if (ret) 150 return ret; 151 152 /* 153 * We use spinand_read_reg_op() instead of spinand_get_cfg() 154 * here to bypass the config cache. 155 */ 156 ret = spinand_read_reg_op(spinand, REG_CFG, 157 &spinand->cfg_cache[target]); 158 if (ret) 159 return ret; 160 } 161 162 return 0; 163 } 164 165 static int spinand_init_cfg_cache(struct spinand_device *spinand) 166 { 167 struct nand_device *nand = spinand_to_nand(spinand); 168 struct device *dev = &spinand->spimem->spi->dev; 169 170 spinand->cfg_cache = devm_kcalloc(dev, 171 nand->memorg.ntargets, 172 sizeof(*spinand->cfg_cache), 173 GFP_KERNEL); 174 if (!spinand->cfg_cache) 175 return -ENOMEM; 176 177 return 0; 178 } 179 180 static int spinand_init_quad_enable(struct spinand_device *spinand) 181 { 182 bool enable = false; 183 184 if (!(spinand->flags & SPINAND_HAS_QE_BIT)) 185 return 0; 186 187 if (spinand->op_templates.read_cache->data.buswidth == 4 || 188 spinand->op_templates.write_cache->data.buswidth == 4 || 189 spinand->op_templates.update_cache->data.buswidth == 4) 190 enable = true; 191 192 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE, 193 enable ? CFG_QUAD_ENABLE : 0); 194 } 195 196 static int spinand_ecc_enable(struct spinand_device *spinand, 197 bool enable) 198 { 199 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE, 200 enable ? CFG_ECC_ENABLE : 0); 201 } 202 203 static int spinand_cont_read_enable(struct spinand_device *spinand, 204 bool enable) 205 { 206 return spinand->set_cont_read(spinand, enable); 207 } 208 209 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status) 210 { 211 struct nand_device *nand = spinand_to_nand(spinand); 212 213 if (spinand->eccinfo.get_status) 214 return spinand->eccinfo.get_status(spinand, status); 215 216 switch (status & STATUS_ECC_MASK) { 217 case STATUS_ECC_NO_BITFLIPS: 218 return 0; 219 220 case STATUS_ECC_HAS_BITFLIPS: 221 /* 222 * We have no way to know exactly how many bitflips have been 223 * fixed, so let's return the maximum possible value so that 224 * wear-leveling layers move the data immediately. 225 */ 226 return nanddev_get_ecc_conf(nand)->strength; 227 228 case STATUS_ECC_UNCOR_ERROR: 229 return -EBADMSG; 230 231 default: 232 break; 233 } 234 235 return -EINVAL; 236 } 237 238 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section, 239 struct mtd_oob_region *region) 240 { 241 return -ERANGE; 242 } 243 244 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section, 245 struct mtd_oob_region *region) 246 { 247 if (section) 248 return -ERANGE; 249 250 /* Reserve 2 bytes for the BBM. */ 251 region->offset = 2; 252 region->length = 62; 253 254 return 0; 255 } 256 257 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = { 258 .ecc = spinand_noecc_ooblayout_ecc, 259 .free = spinand_noecc_ooblayout_free, 260 }; 261 262 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand) 263 { 264 struct spinand_device *spinand = nand_to_spinand(nand); 265 struct mtd_info *mtd = nanddev_to_mtd(nand); 266 struct spinand_ondie_ecc_conf *engine_conf; 267 268 nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE; 269 nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size; 270 nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength; 271 272 engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL); 273 if (!engine_conf) 274 return -ENOMEM; 275 276 nand->ecc.ctx.priv = engine_conf; 277 278 if (spinand->eccinfo.ooblayout) 279 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout); 280 else 281 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout); 282 283 return 0; 284 } 285 286 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand) 287 { 288 kfree(nand->ecc.ctx.priv); 289 } 290 291 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand, 292 struct nand_page_io_req *req) 293 { 294 struct spinand_device *spinand = nand_to_spinand(nand); 295 bool enable = (req->mode != MTD_OPS_RAW); 296 297 if (!enable && spinand->flags & SPINAND_NO_RAW_ACCESS) 298 return -EOPNOTSUPP; 299 300 memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand)); 301 302 /* Only enable or disable the engine */ 303 return spinand_ecc_enable(spinand, enable); 304 } 305 306 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand, 307 struct nand_page_io_req *req) 308 { 309 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv; 310 struct spinand_device *spinand = nand_to_spinand(nand); 311 struct mtd_info *mtd = spinand_to_mtd(spinand); 312 int ret; 313 314 if (req->mode == MTD_OPS_RAW) 315 return 0; 316 317 /* Nothing to do when finishing a page write */ 318 if (req->type == NAND_PAGE_WRITE) 319 return 0; 320 321 /* Finish a page read: check the status, report errors/bitflips */ 322 ret = spinand_check_ecc_status(spinand, engine_conf->status); 323 if (ret == -EBADMSG) { 324 mtd->ecc_stats.failed++; 325 } else if (ret > 0) { 326 unsigned int pages; 327 328 /* 329 * Continuous reads don't allow us to get the detail, 330 * so we may exagerate the actual number of corrected bitflips. 331 */ 332 if (!req->continuous) 333 pages = 1; 334 else 335 pages = req->datalen / nanddev_page_size(nand); 336 337 mtd->ecc_stats.corrected += ret * pages; 338 } 339 340 return ret; 341 } 342 343 static const struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = { 344 .init_ctx = spinand_ondie_ecc_init_ctx, 345 .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx, 346 .prepare_io_req = spinand_ondie_ecc_prepare_io_req, 347 .finish_io_req = spinand_ondie_ecc_finish_io_req, 348 }; 349 350 static struct nand_ecc_engine spinand_ondie_ecc_engine = { 351 .ops = &spinand_ondie_ecc_engine_ops, 352 }; 353 354 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status) 355 { 356 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv; 357 358 if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE && 359 engine_conf) 360 engine_conf->status = status; 361 } 362 363 static int spinand_write_enable_op(struct spinand_device *spinand) 364 { 365 struct spi_mem_op op = SPINAND_WR_EN_DIS_1S_0_0_OP(true); 366 367 return spi_mem_exec_op(spinand->spimem, &op); 368 } 369 370 static int spinand_load_page_op(struct spinand_device *spinand, 371 const struct nand_page_io_req *req) 372 { 373 struct nand_device *nand = spinand_to_nand(spinand); 374 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 375 struct spi_mem_op op = SPINAND_PAGE_READ_1S_1S_0_OP(row); 376 377 return spi_mem_exec_op(spinand->spimem, &op); 378 } 379 380 static int spinand_read_from_cache_op(struct spinand_device *spinand, 381 const struct nand_page_io_req *req) 382 { 383 struct nand_device *nand = spinand_to_nand(spinand); 384 struct mtd_info *mtd = spinand_to_mtd(spinand); 385 struct spi_mem_dirmap_desc *rdesc; 386 unsigned int nbytes = 0; 387 void *buf = NULL; 388 u16 column = 0; 389 ssize_t ret; 390 391 if (req->datalen) { 392 buf = spinand->databuf; 393 if (!req->continuous) 394 nbytes = nanddev_page_size(nand); 395 else 396 nbytes = round_up(req->dataoffs + req->datalen, 397 nanddev_page_size(nand)); 398 column = 0; 399 } 400 401 if (req->ooblen) { 402 nbytes += nanddev_per_page_oobsize(nand); 403 if (!buf) { 404 buf = spinand->oobbuf; 405 column = nanddev_page_size(nand); 406 } 407 } 408 409 if (req->mode == MTD_OPS_RAW) 410 rdesc = spinand->dirmaps[req->pos.plane].rdesc; 411 else 412 rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc; 413 414 if (spinand->flags & SPINAND_HAS_READ_PLANE_SELECT_BIT) 415 column |= req->pos.plane << fls(nanddev_page_size(nand)); 416 417 while (nbytes) { 418 ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf); 419 if (ret < 0) 420 return ret; 421 422 if (!ret || ret > nbytes) 423 return -EIO; 424 425 nbytes -= ret; 426 column += ret; 427 buf += ret; 428 429 /* 430 * Dirmap accesses are allowed to toggle the CS. 431 * Toggling the CS during a continuous read is forbidden. 432 */ 433 if (nbytes && req->continuous) 434 return -EIO; 435 } 436 437 if (req->datalen) 438 memcpy(req->databuf.in, spinand->databuf + req->dataoffs, 439 req->datalen); 440 441 if (req->ooblen) { 442 if (req->mode == MTD_OPS_AUTO_OOB) 443 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in, 444 spinand->oobbuf, 445 req->ooboffs, 446 req->ooblen); 447 else 448 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs, 449 req->ooblen); 450 } 451 452 return 0; 453 } 454 455 static int spinand_write_to_cache_op(struct spinand_device *spinand, 456 const struct nand_page_io_req *req) 457 { 458 struct nand_device *nand = spinand_to_nand(spinand); 459 struct mtd_info *mtd = spinand_to_mtd(spinand); 460 struct spi_mem_dirmap_desc *wdesc; 461 unsigned int nbytes, column = 0; 462 void *buf = spinand->databuf; 463 ssize_t ret; 464 465 /* 466 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset 467 * the cache content to 0xFF (depends on vendor implementation), so we 468 * must fill the page cache entirely even if we only want to program 469 * the data portion of the page, otherwise we might corrupt the BBM or 470 * user data previously programmed in OOB area. 471 * 472 * Only reset the data buffer manually, the OOB buffer is prepared by 473 * ECC engines ->prepare_io_req() callback. 474 */ 475 nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand); 476 memset(spinand->databuf, 0xff, nanddev_page_size(nand)); 477 478 if (req->datalen) 479 memcpy(spinand->databuf + req->dataoffs, req->databuf.out, 480 req->datalen); 481 482 if (req->ooblen) { 483 if (req->mode == MTD_OPS_AUTO_OOB) 484 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out, 485 spinand->oobbuf, 486 req->ooboffs, 487 req->ooblen); 488 else 489 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out, 490 req->ooblen); 491 } 492 493 if (req->mode == MTD_OPS_RAW) 494 wdesc = spinand->dirmaps[req->pos.plane].wdesc; 495 else 496 wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc; 497 498 if (spinand->flags & SPINAND_HAS_PROG_PLANE_SELECT_BIT) 499 column |= req->pos.plane << fls(nanddev_page_size(nand)); 500 501 while (nbytes) { 502 ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf); 503 if (ret < 0) 504 return ret; 505 506 if (!ret || ret > nbytes) 507 return -EIO; 508 509 nbytes -= ret; 510 column += ret; 511 buf += ret; 512 } 513 514 return 0; 515 } 516 517 static int spinand_program_op(struct spinand_device *spinand, 518 const struct nand_page_io_req *req) 519 { 520 struct nand_device *nand = spinand_to_nand(spinand); 521 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 522 struct spi_mem_op op = SPINAND_PROG_EXEC_1S_1S_0_OP(row); 523 524 return spi_mem_exec_op(spinand->spimem, &op); 525 } 526 527 static int spinand_erase_op(struct spinand_device *spinand, 528 const struct nand_pos *pos) 529 { 530 struct nand_device *nand = spinand_to_nand(spinand); 531 unsigned int row = nanddev_pos_to_row(nand, pos); 532 struct spi_mem_op op = SPINAND_BLK_ERASE_1S_1S_0_OP(row); 533 534 return spi_mem_exec_op(spinand->spimem, &op); 535 } 536 537 /** 538 * spinand_wait() - Poll memory device status 539 * @spinand: the spinand device 540 * @initial_delay_us: delay in us before starting to poll 541 * @poll_delay_us: time to sleep between reads in us 542 * @s: the pointer to variable to store the value of REG_STATUS 543 * 544 * This function polls a status register (REG_STATUS) and returns when 545 * the STATUS_READY bit is 0 or when the timeout has expired. 546 * 547 * Return: 0 on success, a negative error code otherwise. 548 */ 549 int spinand_wait(struct spinand_device *spinand, unsigned long initial_delay_us, 550 unsigned long poll_delay_us, u8 *s) 551 { 552 struct spi_mem_op op = SPINAND_GET_FEATURE_1S_1S_1S_OP(REG_STATUS, 553 spinand->scratchbuf); 554 u8 status; 555 int ret; 556 557 ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0, 558 initial_delay_us, 559 poll_delay_us, 560 SPINAND_WAITRDY_TIMEOUT_MS); 561 if (ret) 562 return ret; 563 564 status = *spinand->scratchbuf; 565 if (!(status & STATUS_BUSY)) 566 goto out; 567 568 /* 569 * Extra read, just in case the STATUS_READY bit has changed 570 * since our last check 571 */ 572 ret = spinand_read_status(spinand, &status); 573 if (ret) 574 return ret; 575 576 out: 577 if (s) 578 *s = status; 579 580 return status & STATUS_BUSY ? -ETIMEDOUT : 0; 581 } 582 583 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr, 584 u8 ndummy, u8 *buf) 585 { 586 struct spi_mem_op op = SPINAND_READID_1S_1S_1S_OP( 587 naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN); 588 int ret; 589 590 ret = spi_mem_exec_op(spinand->spimem, &op); 591 if (!ret) 592 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN); 593 594 return ret; 595 } 596 597 static int spinand_reset_op(struct spinand_device *spinand) 598 { 599 struct spi_mem_op op = SPINAND_RESET_1S_0_0_OP; 600 int ret; 601 602 ret = spi_mem_exec_op(spinand->spimem, &op); 603 if (ret) 604 return ret; 605 606 return spinand_wait(spinand, 607 SPINAND_RESET_INITIAL_DELAY_US, 608 SPINAND_RESET_POLL_DELAY_US, 609 NULL); 610 } 611 612 static int spinand_lock_block(struct spinand_device *spinand, u8 lock) 613 { 614 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock); 615 } 616 617 /** 618 * spinand_read_page() - Read a page 619 * @spinand: the spinand device 620 * @req: the I/O request 621 * 622 * Return: 0 or a positive number of bitflips corrected on success. 623 * A negative error code otherwise. 624 */ 625 int spinand_read_page(struct spinand_device *spinand, 626 const struct nand_page_io_req *req) 627 { 628 struct nand_device *nand = spinand_to_nand(spinand); 629 u8 status; 630 int ret; 631 632 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req); 633 if (ret) 634 return ret; 635 636 ret = spinand_load_page_op(spinand, req); 637 if (ret) 638 return ret; 639 640 ret = spinand_wait(spinand, 641 SPINAND_READ_INITIAL_DELAY_US, 642 SPINAND_READ_POLL_DELAY_US, 643 &status); 644 if (ret < 0) 645 return ret; 646 647 spinand_ondie_ecc_save_status(nand, status); 648 649 ret = spinand_read_from_cache_op(spinand, req); 650 if (ret) 651 return ret; 652 653 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req); 654 } 655 656 /** 657 * spinand_write_page() - Write a page 658 * @spinand: the spinand device 659 * @req: the I/O request 660 * 661 * Return: 0 or a positive number of bitflips corrected on success. 662 * A negative error code otherwise. 663 */ 664 int spinand_write_page(struct spinand_device *spinand, 665 const struct nand_page_io_req *req) 666 { 667 struct nand_device *nand = spinand_to_nand(spinand); 668 u8 status; 669 int ret; 670 671 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req); 672 if (ret) 673 return ret; 674 675 ret = spinand_write_enable_op(spinand); 676 if (ret) 677 return ret; 678 679 ret = spinand_write_to_cache_op(spinand, req); 680 if (ret) 681 return ret; 682 683 ret = spinand_program_op(spinand, req); 684 if (ret) 685 return ret; 686 687 ret = spinand_wait(spinand, 688 SPINAND_WRITE_INITIAL_DELAY_US, 689 SPINAND_WRITE_POLL_DELAY_US, 690 &status); 691 if (!ret && (status & STATUS_PROG_FAILED)) 692 return -EIO; 693 694 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req); 695 } 696 697 static int spinand_mtd_regular_page_read(struct mtd_info *mtd, loff_t from, 698 struct mtd_oob_ops *ops, 699 unsigned int *max_bitflips) 700 { 701 struct spinand_device *spinand = mtd_to_spinand(mtd); 702 struct nand_device *nand = mtd_to_nanddev(mtd); 703 struct mtd_ecc_stats old_stats; 704 struct nand_io_iter iter; 705 bool disable_ecc = false; 706 bool ecc_failed = false; 707 unsigned int retry_mode = 0; 708 int ret; 709 710 old_stats = mtd->ecc_stats; 711 712 if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout) 713 disable_ecc = true; 714 715 nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) { 716 if (disable_ecc) 717 iter.req.mode = MTD_OPS_RAW; 718 719 ret = spinand_select_target(spinand, iter.req.pos.target); 720 if (ret) 721 break; 722 723 read_retry: 724 ret = spinand_read_page(spinand, &iter.req); 725 if (ret < 0 && ret != -EBADMSG) 726 break; 727 728 if (ret == -EBADMSG && spinand->set_read_retry) { 729 if (spinand->read_retries && (++retry_mode <= spinand->read_retries)) { 730 ret = spinand->set_read_retry(spinand, retry_mode); 731 if (ret < 0) { 732 spinand->set_read_retry(spinand, 0); 733 return ret; 734 } 735 736 /* Reset ecc_stats; retry */ 737 mtd->ecc_stats = old_stats; 738 goto read_retry; 739 } else { 740 /* No more retry modes; real failure */ 741 ecc_failed = true; 742 } 743 } else if (ret == -EBADMSG) { 744 ecc_failed = true; 745 } else { 746 *max_bitflips = max_t(unsigned int, *max_bitflips, ret); 747 } 748 749 ret = 0; 750 ops->retlen += iter.req.datalen; 751 ops->oobretlen += iter.req.ooblen; 752 753 /* Reset to retry mode 0 */ 754 if (retry_mode) { 755 retry_mode = 0; 756 ret = spinand->set_read_retry(spinand, retry_mode); 757 if (ret < 0) 758 return ret; 759 } 760 } 761 762 if (ecc_failed && !ret) 763 ret = -EBADMSG; 764 765 return ret; 766 } 767 768 static int spinand_mtd_continuous_page_read(struct mtd_info *mtd, loff_t from, 769 struct mtd_oob_ops *ops, 770 unsigned int *max_bitflips) 771 { 772 struct spinand_device *spinand = mtd_to_spinand(mtd); 773 struct nand_device *nand = mtd_to_nanddev(mtd); 774 struct nand_io_iter iter; 775 u8 status; 776 int ret; 777 778 ret = spinand_cont_read_enable(spinand, true); 779 if (ret) 780 return ret; 781 782 /* 783 * The cache is divided into two halves. While one half of the cache has 784 * the requested data, the other half is loaded with the next chunk of data. 785 * Therefore, the host can read out the data continuously from page to page. 786 * Each data read must be a multiple of 4-bytes and full pages should be read; 787 * otherwise, the data output might get out of sequence from one read command 788 * to another. 789 */ 790 nanddev_io_for_each_block(nand, NAND_PAGE_READ, from, ops, &iter) { 791 ret = spinand_select_target(spinand, iter.req.pos.target); 792 if (ret) 793 goto end_cont_read; 794 795 ret = nand_ecc_prepare_io_req(nand, &iter.req); 796 if (ret) 797 goto end_cont_read; 798 799 ret = spinand_load_page_op(spinand, &iter.req); 800 if (ret) 801 goto end_cont_read; 802 803 ret = spinand_wait(spinand, SPINAND_READ_INITIAL_DELAY_US, 804 SPINAND_READ_POLL_DELAY_US, NULL); 805 if (ret < 0) 806 goto end_cont_read; 807 808 ret = spinand_read_from_cache_op(spinand, &iter.req); 809 if (ret) 810 goto end_cont_read; 811 812 ops->retlen += iter.req.datalen; 813 814 ret = spinand_read_status(spinand, &status); 815 if (ret) 816 goto end_cont_read; 817 818 spinand_ondie_ecc_save_status(nand, status); 819 820 ret = nand_ecc_finish_io_req(nand, &iter.req); 821 if (ret < 0) 822 goto end_cont_read; 823 824 *max_bitflips = max_t(unsigned int, *max_bitflips, ret); 825 ret = 0; 826 } 827 828 end_cont_read: 829 /* 830 * Once all the data has been read out, the host can either pull CS# 831 * high and wait for tRST or manually clear the bit in the configuration 832 * register to terminate the continuous read operation. We have no 833 * guarantee the SPI controller drivers will effectively deassert the CS 834 * when we expect them to, so take the register based approach. 835 */ 836 spinand_cont_read_enable(spinand, false); 837 838 return ret; 839 } 840 841 static void spinand_cont_read_init(struct spinand_device *spinand) 842 { 843 struct nand_device *nand = spinand_to_nand(spinand); 844 enum nand_ecc_engine_type engine_type = nand->ecc.ctx.conf.engine_type; 845 846 /* OOBs cannot be retrieved so external/on-host ECC engine won't work */ 847 if (spinand->set_cont_read && 848 (engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE || 849 engine_type == NAND_ECC_ENGINE_TYPE_NONE)) { 850 spinand->cont_read_possible = true; 851 } 852 } 853 854 static bool spinand_use_cont_read(struct mtd_info *mtd, loff_t from, 855 struct mtd_oob_ops *ops) 856 { 857 struct nand_device *nand = mtd_to_nanddev(mtd); 858 struct spinand_device *spinand = nand_to_spinand(nand); 859 struct nand_pos start_pos, end_pos; 860 861 if (!spinand->cont_read_possible) 862 return false; 863 864 /* OOBs won't be retrieved */ 865 if (ops->ooblen || ops->oobbuf) 866 return false; 867 868 nanddev_offs_to_pos(nand, from, &start_pos); 869 nanddev_offs_to_pos(nand, from + ops->len - 1, &end_pos); 870 871 /* 872 * Continuous reads never cross LUN boundaries. Some devices don't 873 * support crossing planes boundaries. Some devices don't even support 874 * crossing blocks boundaries. The common case being to read through UBI, 875 * we will very rarely read two consequent blocks or more, so it is safer 876 * and easier (can be improved) to only enable continuous reads when 877 * reading within the same erase block. 878 */ 879 if (start_pos.target != end_pos.target || 880 start_pos.plane != end_pos.plane || 881 start_pos.eraseblock != end_pos.eraseblock) 882 return false; 883 884 return start_pos.page < end_pos.page; 885 } 886 887 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from, 888 struct mtd_oob_ops *ops) 889 { 890 struct spinand_device *spinand = mtd_to_spinand(mtd); 891 struct mtd_ecc_stats old_stats; 892 unsigned int max_bitflips = 0; 893 int ret; 894 895 mutex_lock(&spinand->lock); 896 897 old_stats = mtd->ecc_stats; 898 899 if (spinand_use_cont_read(mtd, from, ops)) 900 ret = spinand_mtd_continuous_page_read(mtd, from, ops, &max_bitflips); 901 else 902 ret = spinand_mtd_regular_page_read(mtd, from, ops, &max_bitflips); 903 904 if (ops->stats) { 905 ops->stats->uncorrectable_errors += 906 mtd->ecc_stats.failed - old_stats.failed; 907 ops->stats->corrected_bitflips += 908 mtd->ecc_stats.corrected - old_stats.corrected; 909 } 910 911 mutex_unlock(&spinand->lock); 912 913 return ret ? ret : max_bitflips; 914 } 915 916 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to, 917 struct mtd_oob_ops *ops) 918 { 919 struct spinand_device *spinand = mtd_to_spinand(mtd); 920 struct nand_device *nand = mtd_to_nanddev(mtd); 921 struct nand_io_iter iter; 922 bool disable_ecc = false; 923 int ret = 0; 924 925 if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout) 926 disable_ecc = true; 927 928 mutex_lock(&spinand->lock); 929 930 nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) { 931 if (disable_ecc) 932 iter.req.mode = MTD_OPS_RAW; 933 934 ret = spinand_select_target(spinand, iter.req.pos.target); 935 if (ret) 936 break; 937 938 ret = spinand_write_page(spinand, &iter.req); 939 if (ret) 940 break; 941 942 ops->retlen += iter.req.datalen; 943 ops->oobretlen += iter.req.ooblen; 944 } 945 946 mutex_unlock(&spinand->lock); 947 948 return ret; 949 } 950 951 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos) 952 { 953 struct spinand_device *spinand = nand_to_spinand(nand); 954 u8 marker[2] = { }; 955 struct nand_page_io_req req = { 956 .pos = *pos, 957 .ooblen = sizeof(marker), 958 .ooboffs = 0, 959 .oobbuf.in = marker, 960 .mode = MTD_OPS_RAW, 961 }; 962 int ret; 963 964 spinand_select_target(spinand, pos->target); 965 966 ret = spinand_read_page(spinand, &req); 967 if (ret == -EOPNOTSUPP) { 968 /* Retry with ECC in case raw access is not supported */ 969 req.mode = MTD_OPS_PLACE_OOB; 970 spinand_read_page(spinand, &req); 971 } 972 973 if (marker[0] != 0xff || marker[1] != 0xff) 974 return true; 975 976 return false; 977 } 978 979 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs) 980 { 981 struct nand_device *nand = mtd_to_nanddev(mtd); 982 struct spinand_device *spinand = nand_to_spinand(nand); 983 struct nand_pos pos; 984 int ret; 985 986 nanddev_offs_to_pos(nand, offs, &pos); 987 mutex_lock(&spinand->lock); 988 ret = nanddev_isbad(nand, &pos); 989 mutex_unlock(&spinand->lock); 990 991 return ret; 992 } 993 994 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos) 995 { 996 struct spinand_device *spinand = nand_to_spinand(nand); 997 u8 marker[2] = { }; 998 struct nand_page_io_req req = { 999 .pos = *pos, 1000 .ooboffs = 0, 1001 .ooblen = sizeof(marker), 1002 .oobbuf.out = marker, 1003 .mode = MTD_OPS_RAW, 1004 }; 1005 int ret; 1006 1007 ret = spinand_select_target(spinand, pos->target); 1008 if (ret) 1009 return ret; 1010 1011 ret = spinand_write_page(spinand, &req); 1012 if (ret == -EOPNOTSUPP) { 1013 /* Retry with ECC in case raw access is not supported */ 1014 req.mode = MTD_OPS_PLACE_OOB; 1015 ret = spinand_write_page(spinand, &req); 1016 } 1017 1018 return ret; 1019 } 1020 1021 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs) 1022 { 1023 struct nand_device *nand = mtd_to_nanddev(mtd); 1024 struct spinand_device *spinand = nand_to_spinand(nand); 1025 struct nand_pos pos; 1026 int ret; 1027 1028 nanddev_offs_to_pos(nand, offs, &pos); 1029 mutex_lock(&spinand->lock); 1030 ret = nanddev_markbad(nand, &pos); 1031 mutex_unlock(&spinand->lock); 1032 1033 return ret; 1034 } 1035 1036 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos) 1037 { 1038 struct spinand_device *spinand = nand_to_spinand(nand); 1039 u8 status; 1040 int ret; 1041 1042 ret = spinand_select_target(spinand, pos->target); 1043 if (ret) 1044 return ret; 1045 1046 ret = spinand_write_enable_op(spinand); 1047 if (ret) 1048 return ret; 1049 1050 ret = spinand_erase_op(spinand, pos); 1051 if (ret) 1052 return ret; 1053 1054 ret = spinand_wait(spinand, 1055 SPINAND_ERASE_INITIAL_DELAY_US, 1056 SPINAND_ERASE_POLL_DELAY_US, 1057 &status); 1058 1059 if (!ret && (status & STATUS_ERASE_FAILED)) 1060 ret = -EIO; 1061 1062 return ret; 1063 } 1064 1065 static int spinand_mtd_erase(struct mtd_info *mtd, 1066 struct erase_info *einfo) 1067 { 1068 struct spinand_device *spinand = mtd_to_spinand(mtd); 1069 int ret; 1070 1071 mutex_lock(&spinand->lock); 1072 ret = nanddev_mtd_erase(mtd, einfo); 1073 mutex_unlock(&spinand->lock); 1074 1075 return ret; 1076 } 1077 1078 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs) 1079 { 1080 struct spinand_device *spinand = mtd_to_spinand(mtd); 1081 struct nand_device *nand = mtd_to_nanddev(mtd); 1082 struct nand_pos pos; 1083 int ret; 1084 1085 nanddev_offs_to_pos(nand, offs, &pos); 1086 mutex_lock(&spinand->lock); 1087 ret = nanddev_isreserved(nand, &pos); 1088 mutex_unlock(&spinand->lock); 1089 1090 return ret; 1091 } 1092 1093 static int spinand_create_dirmap(struct spinand_device *spinand, 1094 unsigned int plane) 1095 { 1096 struct nand_device *nand = spinand_to_nand(spinand); 1097 struct spi_mem_dirmap_info info = { 1098 .length = nanddev_page_size(nand) + 1099 nanddev_per_page_oobsize(nand), 1100 }; 1101 struct spi_mem_dirmap_desc *desc; 1102 1103 if (spinand->cont_read_possible) 1104 info.length = nanddev_eraseblock_size(nand); 1105 1106 /* The plane number is passed in MSB just above the column address */ 1107 info.offset = plane << fls(nand->memorg.pagesize); 1108 1109 info.op_tmpl = *spinand->op_templates.update_cache; 1110 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, 1111 spinand->spimem, &info); 1112 if (IS_ERR(desc)) 1113 return PTR_ERR(desc); 1114 1115 spinand->dirmaps[plane].wdesc = desc; 1116 1117 info.op_tmpl = *spinand->op_templates.read_cache; 1118 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, 1119 spinand->spimem, &info); 1120 if (IS_ERR(desc)) 1121 return PTR_ERR(desc); 1122 1123 spinand->dirmaps[plane].rdesc = desc; 1124 1125 if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) { 1126 spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc; 1127 spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc; 1128 1129 return 0; 1130 } 1131 1132 info.op_tmpl = *spinand->op_templates.update_cache; 1133 info.op_tmpl.data.ecc = true; 1134 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, 1135 spinand->spimem, &info); 1136 if (IS_ERR(desc)) 1137 return PTR_ERR(desc); 1138 1139 spinand->dirmaps[plane].wdesc_ecc = desc; 1140 1141 info.op_tmpl = *spinand->op_templates.read_cache; 1142 info.op_tmpl.data.ecc = true; 1143 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, 1144 spinand->spimem, &info); 1145 if (IS_ERR(desc)) 1146 return PTR_ERR(desc); 1147 1148 spinand->dirmaps[plane].rdesc_ecc = desc; 1149 1150 return 0; 1151 } 1152 1153 static int spinand_create_dirmaps(struct spinand_device *spinand) 1154 { 1155 struct nand_device *nand = spinand_to_nand(spinand); 1156 int i, ret; 1157 1158 spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev, 1159 sizeof(*spinand->dirmaps) * 1160 nand->memorg.planes_per_lun, 1161 GFP_KERNEL); 1162 if (!spinand->dirmaps) 1163 return -ENOMEM; 1164 1165 for (i = 0; i < nand->memorg.planes_per_lun; i++) { 1166 ret = spinand_create_dirmap(spinand, i); 1167 if (ret) 1168 return ret; 1169 } 1170 1171 return 0; 1172 } 1173 1174 static const struct nand_ops spinand_ops = { 1175 .erase = spinand_erase, 1176 .markbad = spinand_markbad, 1177 .isbad = spinand_isbad, 1178 }; 1179 1180 static const struct spinand_manufacturer *spinand_manufacturers[] = { 1181 &alliancememory_spinand_manufacturer, 1182 &ato_spinand_manufacturer, 1183 &esmt_c8_spinand_manufacturer, 1184 &foresee_spinand_manufacturer, 1185 &gigadevice_spinand_manufacturer, 1186 ¯onix_spinand_manufacturer, 1187 µn_spinand_manufacturer, 1188 ¶gon_spinand_manufacturer, 1189 &skyhigh_spinand_manufacturer, 1190 &toshiba_spinand_manufacturer, 1191 &winbond_spinand_manufacturer, 1192 &xtx_spinand_manufacturer, 1193 }; 1194 1195 static int spinand_manufacturer_match(struct spinand_device *spinand, 1196 enum spinand_readid_method rdid_method) 1197 { 1198 u8 *id = spinand->id.data; 1199 unsigned int i; 1200 int ret; 1201 1202 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) { 1203 const struct spinand_manufacturer *manufacturer = 1204 spinand_manufacturers[i]; 1205 1206 if (id[0] != manufacturer->id) 1207 continue; 1208 1209 ret = spinand_match_and_init(spinand, 1210 manufacturer->chips, 1211 manufacturer->nchips, 1212 rdid_method); 1213 if (ret < 0) 1214 continue; 1215 1216 spinand->manufacturer = manufacturer; 1217 return 0; 1218 } 1219 return -EOPNOTSUPP; 1220 } 1221 1222 static int spinand_id_detect(struct spinand_device *spinand) 1223 { 1224 u8 *id = spinand->id.data; 1225 int ret; 1226 1227 ret = spinand_read_id_op(spinand, 0, 0, id); 1228 if (ret) 1229 return ret; 1230 ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE); 1231 if (!ret) 1232 return 0; 1233 1234 ret = spinand_read_id_op(spinand, 1, 0, id); 1235 if (ret) 1236 return ret; 1237 ret = spinand_manufacturer_match(spinand, 1238 SPINAND_READID_METHOD_OPCODE_ADDR); 1239 if (!ret) 1240 return 0; 1241 1242 ret = spinand_read_id_op(spinand, 0, 1, id); 1243 if (ret) 1244 return ret; 1245 ret = spinand_manufacturer_match(spinand, 1246 SPINAND_READID_METHOD_OPCODE_DUMMY); 1247 1248 return ret; 1249 } 1250 1251 static int spinand_manufacturer_init(struct spinand_device *spinand) 1252 { 1253 if (spinand->manufacturer->ops->init) 1254 return spinand->manufacturer->ops->init(spinand); 1255 1256 return 0; 1257 } 1258 1259 static void spinand_manufacturer_cleanup(struct spinand_device *spinand) 1260 { 1261 /* Release manufacturer private data */ 1262 if (spinand->manufacturer->ops->cleanup) 1263 return spinand->manufacturer->ops->cleanup(spinand); 1264 } 1265 1266 static const struct spi_mem_op * 1267 spinand_select_op_variant(struct spinand_device *spinand, 1268 const struct spinand_op_variants *variants) 1269 { 1270 struct nand_device *nand = spinand_to_nand(spinand); 1271 const struct spi_mem_op *best_variant = NULL; 1272 u64 best_op_duration_ns = ULLONG_MAX; 1273 unsigned int i; 1274 1275 for (i = 0; i < variants->nops; i++) { 1276 struct spi_mem_op op = variants->ops[i]; 1277 u64 op_duration_ns = 0; 1278 unsigned int nbytes; 1279 int ret; 1280 1281 nbytes = nanddev_per_page_oobsize(nand) + 1282 nanddev_page_size(nand); 1283 1284 while (nbytes) { 1285 op.data.nbytes = nbytes; 1286 ret = spi_mem_adjust_op_size(spinand->spimem, &op); 1287 if (ret) 1288 break; 1289 1290 spi_mem_adjust_op_freq(spinand->spimem, &op); 1291 1292 if (!spi_mem_supports_op(spinand->spimem, &op)) 1293 break; 1294 1295 nbytes -= op.data.nbytes; 1296 1297 op_duration_ns += spi_mem_calc_op_duration(&op); 1298 } 1299 1300 if (!nbytes && op_duration_ns < best_op_duration_ns) { 1301 best_op_duration_ns = op_duration_ns; 1302 best_variant = &variants->ops[i]; 1303 } 1304 } 1305 1306 return best_variant; 1307 } 1308 1309 /** 1310 * spinand_match_and_init() - Try to find a match between a device ID and an 1311 * entry in a spinand_info table 1312 * @spinand: SPI NAND object 1313 * @table: SPI NAND device description table 1314 * @table_size: size of the device description table 1315 * @rdid_method: read id method to match 1316 * 1317 * Match between a device ID retrieved through the READ_ID command and an 1318 * entry in the SPI NAND description table. If a match is found, the spinand 1319 * object will be initialized with information provided by the matching 1320 * spinand_info entry. 1321 * 1322 * Return: 0 on success, a negative error code otherwise. 1323 */ 1324 int spinand_match_and_init(struct spinand_device *spinand, 1325 const struct spinand_info *table, 1326 unsigned int table_size, 1327 enum spinand_readid_method rdid_method) 1328 { 1329 u8 *id = spinand->id.data; 1330 struct nand_device *nand = spinand_to_nand(spinand); 1331 unsigned int i; 1332 1333 for (i = 0; i < table_size; i++) { 1334 const struct spinand_info *info = &table[i]; 1335 const struct spi_mem_op *op; 1336 1337 if (rdid_method != info->devid.method) 1338 continue; 1339 1340 if (memcmp(id + 1, info->devid.id, info->devid.len)) 1341 continue; 1342 1343 nand->memorg = table[i].memorg; 1344 nanddev_set_ecc_requirements(nand, &table[i].eccreq); 1345 spinand->eccinfo = table[i].eccinfo; 1346 spinand->flags = table[i].flags; 1347 spinand->id.len = 1 + table[i].devid.len; 1348 spinand->select_target = table[i].select_target; 1349 spinand->set_cont_read = table[i].set_cont_read; 1350 spinand->fact_otp = &table[i].fact_otp; 1351 spinand->user_otp = &table[i].user_otp; 1352 spinand->read_retries = table[i].read_retries; 1353 spinand->set_read_retry = table[i].set_read_retry; 1354 1355 op = spinand_select_op_variant(spinand, 1356 info->op_variants.read_cache); 1357 if (!op) 1358 return -ENOTSUPP; 1359 1360 spinand->op_templates.read_cache = op; 1361 1362 op = spinand_select_op_variant(spinand, 1363 info->op_variants.write_cache); 1364 if (!op) 1365 return -ENOTSUPP; 1366 1367 spinand->op_templates.write_cache = op; 1368 1369 op = spinand_select_op_variant(spinand, 1370 info->op_variants.update_cache); 1371 spinand->op_templates.update_cache = op; 1372 1373 return 0; 1374 } 1375 1376 return -ENOTSUPP; 1377 } 1378 1379 static int spinand_detect(struct spinand_device *spinand) 1380 { 1381 struct device *dev = &spinand->spimem->spi->dev; 1382 struct nand_device *nand = spinand_to_nand(spinand); 1383 int ret; 1384 1385 ret = spinand_reset_op(spinand); 1386 if (ret) 1387 return ret; 1388 1389 ret = spinand_id_detect(spinand); 1390 if (ret) { 1391 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN, 1392 spinand->id.data); 1393 return ret; 1394 } 1395 1396 if (nand->memorg.ntargets > 1 && !spinand->select_target) { 1397 dev_err(dev, 1398 "SPI NANDs with more than one die must implement ->select_target()\n"); 1399 return -EINVAL; 1400 } 1401 1402 dev_info(&spinand->spimem->spi->dev, 1403 "%s SPI NAND was found.\n", spinand->manufacturer->name); 1404 dev_info(&spinand->spimem->spi->dev, 1405 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n", 1406 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10, 1407 nanddev_page_size(nand), nanddev_per_page_oobsize(nand)); 1408 1409 return 0; 1410 } 1411 1412 static int spinand_init_flash(struct spinand_device *spinand) 1413 { 1414 struct device *dev = &spinand->spimem->spi->dev; 1415 struct nand_device *nand = spinand_to_nand(spinand); 1416 int ret, i; 1417 1418 ret = spinand_read_cfg(spinand); 1419 if (ret) 1420 return ret; 1421 1422 ret = spinand_init_quad_enable(spinand); 1423 if (ret) 1424 return ret; 1425 1426 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0); 1427 if (ret) 1428 return ret; 1429 1430 ret = spinand_manufacturer_init(spinand); 1431 if (ret) { 1432 dev_err(dev, 1433 "Failed to initialize the SPI NAND chip (err = %d)\n", 1434 ret); 1435 return ret; 1436 } 1437 1438 /* After power up, all blocks are locked, so unlock them here. */ 1439 for (i = 0; i < nand->memorg.ntargets; i++) { 1440 ret = spinand_select_target(spinand, i); 1441 if (ret) 1442 break; 1443 1444 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED); 1445 if (ret) 1446 break; 1447 } 1448 1449 if (ret) 1450 spinand_manufacturer_cleanup(spinand); 1451 1452 return ret; 1453 } 1454 1455 static void spinand_mtd_resume(struct mtd_info *mtd) 1456 { 1457 struct spinand_device *spinand = mtd_to_spinand(mtd); 1458 int ret; 1459 1460 ret = spinand_reset_op(spinand); 1461 if (ret) 1462 return; 1463 1464 ret = spinand_init_flash(spinand); 1465 if (ret) 1466 return; 1467 1468 spinand_ecc_enable(spinand, false); 1469 } 1470 1471 static int spinand_init(struct spinand_device *spinand) 1472 { 1473 struct device *dev = &spinand->spimem->spi->dev; 1474 struct mtd_info *mtd = spinand_to_mtd(spinand); 1475 struct nand_device *nand = mtd_to_nanddev(mtd); 1476 int ret; 1477 1478 /* 1479 * We need a scratch buffer because the spi_mem interface requires that 1480 * buf passed in spi_mem_op->data.buf be DMA-able. 1481 */ 1482 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL); 1483 if (!spinand->scratchbuf) 1484 return -ENOMEM; 1485 1486 ret = spinand_detect(spinand); 1487 if (ret) 1488 goto err_free_bufs; 1489 1490 /* 1491 * Use kzalloc() instead of devm_kzalloc() here, because some drivers 1492 * may use this buffer for DMA access. 1493 * Memory allocated by devm_ does not guarantee DMA-safe alignment. 1494 */ 1495 spinand->databuf = kzalloc(nanddev_eraseblock_size(nand), 1496 GFP_KERNEL); 1497 if (!spinand->databuf) { 1498 ret = -ENOMEM; 1499 goto err_free_bufs; 1500 } 1501 1502 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand); 1503 1504 ret = spinand_init_cfg_cache(spinand); 1505 if (ret) 1506 goto err_free_bufs; 1507 1508 ret = spinand_init_flash(spinand); 1509 if (ret) 1510 goto err_free_bufs; 1511 1512 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE); 1513 if (ret) 1514 goto err_manuf_cleanup; 1515 1516 /* SPI-NAND default ECC engine is on-die */ 1517 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE; 1518 nand->ecc.ondie_engine = &spinand_ondie_ecc_engine; 1519 1520 spinand_ecc_enable(spinand, false); 1521 ret = nanddev_ecc_engine_init(nand); 1522 if (ret) 1523 goto err_cleanup_nanddev; 1524 1525 /* 1526 * Continuous read can only be enabled with an on-die ECC engine, so the 1527 * ECC initialization must have happened previously. 1528 */ 1529 spinand_cont_read_init(spinand); 1530 1531 mtd->_read_oob = spinand_mtd_read; 1532 mtd->_write_oob = spinand_mtd_write; 1533 mtd->_block_isbad = spinand_mtd_block_isbad; 1534 mtd->_block_markbad = spinand_mtd_block_markbad; 1535 mtd->_block_isreserved = spinand_mtd_block_isreserved; 1536 mtd->_erase = spinand_mtd_erase; 1537 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; 1538 mtd->_resume = spinand_mtd_resume; 1539 1540 if (spinand_user_otp_size(spinand) || spinand_fact_otp_size(spinand)) { 1541 ret = spinand_set_mtd_otp_ops(spinand); 1542 if (ret) 1543 goto err_cleanup_ecc_engine; 1544 } 1545 1546 if (nand->ecc.engine) { 1547 ret = mtd_ooblayout_count_freebytes(mtd); 1548 if (ret < 0) 1549 goto err_cleanup_ecc_engine; 1550 } 1551 1552 mtd->oobavail = ret; 1553 1554 /* Propagate ECC information to mtd_info */ 1555 mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength; 1556 mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size; 1557 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 1558 1559 ret = spinand_create_dirmaps(spinand); 1560 if (ret) { 1561 dev_err(dev, 1562 "Failed to create direct mappings for read/write operations (err = %d)\n", 1563 ret); 1564 goto err_cleanup_ecc_engine; 1565 } 1566 1567 return 0; 1568 1569 err_cleanup_ecc_engine: 1570 nanddev_ecc_engine_cleanup(nand); 1571 1572 err_cleanup_nanddev: 1573 nanddev_cleanup(nand); 1574 1575 err_manuf_cleanup: 1576 spinand_manufacturer_cleanup(spinand); 1577 1578 err_free_bufs: 1579 kfree(spinand->databuf); 1580 kfree(spinand->scratchbuf); 1581 return ret; 1582 } 1583 1584 static void spinand_cleanup(struct spinand_device *spinand) 1585 { 1586 struct nand_device *nand = spinand_to_nand(spinand); 1587 1588 nanddev_ecc_engine_cleanup(nand); 1589 nanddev_cleanup(nand); 1590 spinand_manufacturer_cleanup(spinand); 1591 kfree(spinand->databuf); 1592 kfree(spinand->scratchbuf); 1593 } 1594 1595 static int spinand_probe(struct spi_mem *mem) 1596 { 1597 struct spinand_device *spinand; 1598 struct mtd_info *mtd; 1599 int ret; 1600 1601 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand), 1602 GFP_KERNEL); 1603 if (!spinand) 1604 return -ENOMEM; 1605 1606 spinand->spimem = mem; 1607 spi_mem_set_drvdata(mem, spinand); 1608 spinand_set_of_node(spinand, mem->spi->dev.of_node); 1609 mutex_init(&spinand->lock); 1610 mtd = spinand_to_mtd(spinand); 1611 mtd->dev.parent = &mem->spi->dev; 1612 1613 ret = spinand_init(spinand); 1614 if (ret) 1615 return ret; 1616 1617 ret = mtd_device_register(mtd, NULL, 0); 1618 if (ret) 1619 goto err_spinand_cleanup; 1620 1621 return 0; 1622 1623 err_spinand_cleanup: 1624 spinand_cleanup(spinand); 1625 1626 return ret; 1627 } 1628 1629 static int spinand_remove(struct spi_mem *mem) 1630 { 1631 struct spinand_device *spinand; 1632 struct mtd_info *mtd; 1633 int ret; 1634 1635 spinand = spi_mem_get_drvdata(mem); 1636 mtd = spinand_to_mtd(spinand); 1637 1638 ret = mtd_device_unregister(mtd); 1639 if (ret) 1640 return ret; 1641 1642 spinand_cleanup(spinand); 1643 1644 return 0; 1645 } 1646 1647 static const struct spi_device_id spinand_ids[] = { 1648 { .name = "spi-nand" }, 1649 { /* sentinel */ }, 1650 }; 1651 MODULE_DEVICE_TABLE(spi, spinand_ids); 1652 1653 #ifdef CONFIG_OF 1654 static const struct of_device_id spinand_of_ids[] = { 1655 { .compatible = "spi-nand" }, 1656 { /* sentinel */ }, 1657 }; 1658 MODULE_DEVICE_TABLE(of, spinand_of_ids); 1659 #endif 1660 1661 static struct spi_mem_driver spinand_drv = { 1662 .spidrv = { 1663 .id_table = spinand_ids, 1664 .driver = { 1665 .name = "spi-nand", 1666 .of_match_table = of_match_ptr(spinand_of_ids), 1667 }, 1668 }, 1669 .probe = spinand_probe, 1670 .remove = spinand_remove, 1671 }; 1672 module_spi_mem_driver(spinand_drv); 1673 1674 MODULE_DESCRIPTION("SPI NAND framework"); 1675 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>"); 1676 MODULE_LICENSE("GPL v2"); 1677