xref: /linux/drivers/mtd/nand/spi/core.c (revision 122333d6bd229af279cdb35d1b874b71b3b9ccfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  *	Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9 
10 #define pr_fmt(fmt)	"spi-nand: " fmt
11 
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 
23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
26 						      spinand->scratchbuf);
27 	int ret;
28 
29 	ret = spi_mem_exec_op(spinand->spimem, &op);
30 	if (ret)
31 		return ret;
32 
33 	*val = *spinand->scratchbuf;
34 	return 0;
35 }
36 
37 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
40 						      spinand->scratchbuf);
41 
42 	*spinand->scratchbuf = val;
43 	return spi_mem_exec_op(spinand->spimem, &op);
44 }
45 
46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 	return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50 
51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 	struct nand_device *nand = spinand_to_nand(spinand);
54 
55 	if (WARN_ON(spinand->cur_target < 0 ||
56 		    spinand->cur_target >= nand->memorg.ntargets))
57 		return -EINVAL;
58 
59 	*cfg = spinand->cfg_cache[spinand->cur_target];
60 	return 0;
61 }
62 
63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 	struct nand_device *nand = spinand_to_nand(spinand);
66 	int ret;
67 
68 	if (WARN_ON(spinand->cur_target < 0 ||
69 		    spinand->cur_target >= nand->memorg.ntargets))
70 		return -EINVAL;
71 
72 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 		return 0;
74 
75 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 	if (ret)
77 		return ret;
78 
79 	spinand->cfg_cache[spinand->cur_target] = cfg;
80 	return 0;
81 }
82 
83 /**
84  * spinand_upd_cfg() - Update the configuration register
85  * @spinand: the spinand device
86  * @mask: the mask encoding the bits to update in the config reg
87  * @val: the new value to apply
88  *
89  * Update the configuration register.
90  *
91  * Return: 0 on success, a negative error code otherwise.
92  */
93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 	int ret;
96 	u8 cfg;
97 
98 	ret = spinand_get_cfg(spinand, &cfg);
99 	if (ret)
100 		return ret;
101 
102 	cfg &= ~mask;
103 	cfg |= val;
104 
105 	return spinand_set_cfg(spinand, cfg);
106 }
107 
108 /**
109  * spinand_select_target() - Select a specific NAND target/die
110  * @spinand: the spinand device
111  * @target: the target/die to select
112  *
113  * Select a new target/die. If chip only has one die, this function is a NOOP.
114  *
115  * Return: 0 on success, a negative error code otherwise.
116  */
117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 	struct nand_device *nand = spinand_to_nand(spinand);
120 	int ret;
121 
122 	if (WARN_ON(target >= nand->memorg.ntargets))
123 		return -EINVAL;
124 
125 	if (spinand->cur_target == target)
126 		return 0;
127 
128 	if (nand->memorg.ntargets == 1) {
129 		spinand->cur_target = target;
130 		return 0;
131 	}
132 
133 	ret = spinand->select_target(spinand, target);
134 	if (ret)
135 		return ret;
136 
137 	spinand->cur_target = target;
138 	return 0;
139 }
140 
141 static int spinand_read_cfg(struct spinand_device *spinand)
142 {
143 	struct nand_device *nand = spinand_to_nand(spinand);
144 	unsigned int target;
145 	int ret;
146 
147 	for (target = 0; target < nand->memorg.ntargets; target++) {
148 		ret = spinand_select_target(spinand, target);
149 		if (ret)
150 			return ret;
151 
152 		/*
153 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
154 		 * here to bypass the config cache.
155 		 */
156 		ret = spinand_read_reg_op(spinand, REG_CFG,
157 					  &spinand->cfg_cache[target]);
158 		if (ret)
159 			return ret;
160 	}
161 
162 	return 0;
163 }
164 
165 static int spinand_init_cfg_cache(struct spinand_device *spinand)
166 {
167 	struct nand_device *nand = spinand_to_nand(spinand);
168 	struct device *dev = &spinand->spimem->spi->dev;
169 
170 	spinand->cfg_cache = devm_kcalloc(dev,
171 					  nand->memorg.ntargets,
172 					  sizeof(*spinand->cfg_cache),
173 					  GFP_KERNEL);
174 	if (!spinand->cfg_cache)
175 		return -ENOMEM;
176 
177 	return 0;
178 }
179 
180 static int spinand_init_quad_enable(struct spinand_device *spinand)
181 {
182 	bool enable = false;
183 
184 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
185 		return 0;
186 
187 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
188 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
189 	    spinand->op_templates.update_cache->data.buswidth == 4)
190 		enable = true;
191 
192 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
193 			       enable ? CFG_QUAD_ENABLE : 0);
194 }
195 
196 static int spinand_ecc_enable(struct spinand_device *spinand,
197 			      bool enable)
198 {
199 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
200 			       enable ? CFG_ECC_ENABLE : 0);
201 }
202 
203 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
204 {
205 	struct nand_device *nand = spinand_to_nand(spinand);
206 
207 	if (spinand->eccinfo.get_status)
208 		return spinand->eccinfo.get_status(spinand, status);
209 
210 	switch (status & STATUS_ECC_MASK) {
211 	case STATUS_ECC_NO_BITFLIPS:
212 		return 0;
213 
214 	case STATUS_ECC_HAS_BITFLIPS:
215 		/*
216 		 * We have no way to know exactly how many bitflips have been
217 		 * fixed, so let's return the maximum possible value so that
218 		 * wear-leveling layers move the data immediately.
219 		 */
220 		return nanddev_get_ecc_conf(nand)->strength;
221 
222 	case STATUS_ECC_UNCOR_ERROR:
223 		return -EBADMSG;
224 
225 	default:
226 		break;
227 	}
228 
229 	return -EINVAL;
230 }
231 
232 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
233 				       struct mtd_oob_region *region)
234 {
235 	return -ERANGE;
236 }
237 
238 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
239 					struct mtd_oob_region *region)
240 {
241 	if (section)
242 		return -ERANGE;
243 
244 	/* Reserve 2 bytes for the BBM. */
245 	region->offset = 2;
246 	region->length = 62;
247 
248 	return 0;
249 }
250 
251 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
252 	.ecc = spinand_noecc_ooblayout_ecc,
253 	.free = spinand_noecc_ooblayout_free,
254 };
255 
256 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
257 {
258 	struct spinand_device *spinand = nand_to_spinand(nand);
259 	struct mtd_info *mtd = nanddev_to_mtd(nand);
260 	struct spinand_ondie_ecc_conf *engine_conf;
261 
262 	nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
263 	nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
264 	nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
265 
266 	engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
267 	if (!engine_conf)
268 		return -ENOMEM;
269 
270 	nand->ecc.ctx.priv = engine_conf;
271 
272 	if (spinand->eccinfo.ooblayout)
273 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
274 	else
275 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
276 
277 	return 0;
278 }
279 
280 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
281 {
282 	kfree(nand->ecc.ctx.priv);
283 }
284 
285 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
286 					    struct nand_page_io_req *req)
287 {
288 	struct spinand_device *spinand = nand_to_spinand(nand);
289 	bool enable = (req->mode != MTD_OPS_RAW);
290 
291 	memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
292 
293 	/* Only enable or disable the engine */
294 	return spinand_ecc_enable(spinand, enable);
295 }
296 
297 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
298 					   struct nand_page_io_req *req)
299 {
300 	struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
301 	struct spinand_device *spinand = nand_to_spinand(nand);
302 	struct mtd_info *mtd = spinand_to_mtd(spinand);
303 	int ret;
304 
305 	if (req->mode == MTD_OPS_RAW)
306 		return 0;
307 
308 	/* Nothing to do when finishing a page write */
309 	if (req->type == NAND_PAGE_WRITE)
310 		return 0;
311 
312 	/* Finish a page read: check the status, report errors/bitflips */
313 	ret = spinand_check_ecc_status(spinand, engine_conf->status);
314 	if (ret == -EBADMSG)
315 		mtd->ecc_stats.failed++;
316 	else if (ret > 0)
317 		mtd->ecc_stats.corrected += ret;
318 
319 	return ret;
320 }
321 
322 static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
323 	.init_ctx = spinand_ondie_ecc_init_ctx,
324 	.cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
325 	.prepare_io_req = spinand_ondie_ecc_prepare_io_req,
326 	.finish_io_req = spinand_ondie_ecc_finish_io_req,
327 };
328 
329 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
330 	.ops = &spinand_ondie_ecc_engine_ops,
331 };
332 
333 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
334 {
335 	struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
336 
337 	if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
338 	    engine_conf)
339 		engine_conf->status = status;
340 }
341 
342 static int spinand_write_enable_op(struct spinand_device *spinand)
343 {
344 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
345 
346 	return spi_mem_exec_op(spinand->spimem, &op);
347 }
348 
349 static int spinand_load_page_op(struct spinand_device *spinand,
350 				const struct nand_page_io_req *req)
351 {
352 	struct nand_device *nand = spinand_to_nand(spinand);
353 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
354 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
355 
356 	return spi_mem_exec_op(spinand->spimem, &op);
357 }
358 
359 static int spinand_read_from_cache_op(struct spinand_device *spinand,
360 				      const struct nand_page_io_req *req)
361 {
362 	struct nand_device *nand = spinand_to_nand(spinand);
363 	struct mtd_info *mtd = spinand_to_mtd(spinand);
364 	struct spi_mem_dirmap_desc *rdesc;
365 	unsigned int nbytes = 0;
366 	void *buf = NULL;
367 	u16 column = 0;
368 	ssize_t ret;
369 
370 	if (req->datalen) {
371 		buf = spinand->databuf;
372 		nbytes = nanddev_page_size(nand);
373 		column = 0;
374 	}
375 
376 	if (req->ooblen) {
377 		nbytes += nanddev_per_page_oobsize(nand);
378 		if (!buf) {
379 			buf = spinand->oobbuf;
380 			column = nanddev_page_size(nand);
381 		}
382 	}
383 
384 	if (req->mode == MTD_OPS_RAW)
385 		rdesc = spinand->dirmaps[req->pos.plane].rdesc;
386 	else
387 		rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc;
388 
389 	while (nbytes) {
390 		ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
391 		if (ret < 0)
392 			return ret;
393 
394 		if (!ret || ret > nbytes)
395 			return -EIO;
396 
397 		nbytes -= ret;
398 		column += ret;
399 		buf += ret;
400 	}
401 
402 	if (req->datalen)
403 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
404 		       req->datalen);
405 
406 	if (req->ooblen) {
407 		if (req->mode == MTD_OPS_AUTO_OOB)
408 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
409 						    spinand->oobbuf,
410 						    req->ooboffs,
411 						    req->ooblen);
412 		else
413 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
414 			       req->ooblen);
415 	}
416 
417 	return 0;
418 }
419 
420 static int spinand_write_to_cache_op(struct spinand_device *spinand,
421 				     const struct nand_page_io_req *req)
422 {
423 	struct nand_device *nand = spinand_to_nand(spinand);
424 	struct mtd_info *mtd = spinand_to_mtd(spinand);
425 	struct spi_mem_dirmap_desc *wdesc;
426 	unsigned int nbytes, column = 0;
427 	void *buf = spinand->databuf;
428 	ssize_t ret;
429 
430 	/*
431 	 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
432 	 * the cache content to 0xFF (depends on vendor implementation), so we
433 	 * must fill the page cache entirely even if we only want to program
434 	 * the data portion of the page, otherwise we might corrupt the BBM or
435 	 * user data previously programmed in OOB area.
436 	 *
437 	 * Only reset the data buffer manually, the OOB buffer is prepared by
438 	 * ECC engines ->prepare_io_req() callback.
439 	 */
440 	nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
441 	memset(spinand->databuf, 0xff, nanddev_page_size(nand));
442 
443 	if (req->datalen)
444 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
445 		       req->datalen);
446 
447 	if (req->ooblen) {
448 		if (req->mode == MTD_OPS_AUTO_OOB)
449 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
450 						    spinand->oobbuf,
451 						    req->ooboffs,
452 						    req->ooblen);
453 		else
454 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
455 			       req->ooblen);
456 	}
457 
458 	if (req->mode == MTD_OPS_RAW)
459 		wdesc = spinand->dirmaps[req->pos.plane].wdesc;
460 	else
461 		wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc;
462 
463 	while (nbytes) {
464 		ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
465 		if (ret < 0)
466 			return ret;
467 
468 		if (!ret || ret > nbytes)
469 			return -EIO;
470 
471 		nbytes -= ret;
472 		column += ret;
473 		buf += ret;
474 	}
475 
476 	return 0;
477 }
478 
479 static int spinand_program_op(struct spinand_device *spinand,
480 			      const struct nand_page_io_req *req)
481 {
482 	struct nand_device *nand = spinand_to_nand(spinand);
483 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
484 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
485 
486 	return spi_mem_exec_op(spinand->spimem, &op);
487 }
488 
489 static int spinand_erase_op(struct spinand_device *spinand,
490 			    const struct nand_pos *pos)
491 {
492 	struct nand_device *nand = spinand_to_nand(spinand);
493 	unsigned int row = nanddev_pos_to_row(nand, pos);
494 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
495 
496 	return spi_mem_exec_op(spinand->spimem, &op);
497 }
498 
499 static int spinand_wait(struct spinand_device *spinand,
500 			unsigned long initial_delay_us,
501 			unsigned long poll_delay_us,
502 			u8 *s)
503 {
504 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
505 						      spinand->scratchbuf);
506 	u8 status;
507 	int ret;
508 
509 	ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
510 				  initial_delay_us,
511 				  poll_delay_us,
512 				  SPINAND_WAITRDY_TIMEOUT_MS);
513 	if (ret)
514 		return ret;
515 
516 	status = *spinand->scratchbuf;
517 	if (!(status & STATUS_BUSY))
518 		goto out;
519 
520 	/*
521 	 * Extra read, just in case the STATUS_READY bit has changed
522 	 * since our last check
523 	 */
524 	ret = spinand_read_status(spinand, &status);
525 	if (ret)
526 		return ret;
527 
528 out:
529 	if (s)
530 		*s = status;
531 
532 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
533 }
534 
535 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
536 			      u8 ndummy, u8 *buf)
537 {
538 	struct spi_mem_op op = SPINAND_READID_OP(
539 		naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
540 	int ret;
541 
542 	ret = spi_mem_exec_op(spinand->spimem, &op);
543 	if (!ret)
544 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
545 
546 	return ret;
547 }
548 
549 static int spinand_reset_op(struct spinand_device *spinand)
550 {
551 	struct spi_mem_op op = SPINAND_RESET_OP;
552 	int ret;
553 
554 	ret = spi_mem_exec_op(spinand->spimem, &op);
555 	if (ret)
556 		return ret;
557 
558 	return spinand_wait(spinand,
559 			    SPINAND_RESET_INITIAL_DELAY_US,
560 			    SPINAND_RESET_POLL_DELAY_US,
561 			    NULL);
562 }
563 
564 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
565 {
566 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
567 }
568 
569 static int spinand_read_page(struct spinand_device *spinand,
570 			     const struct nand_page_io_req *req)
571 {
572 	struct nand_device *nand = spinand_to_nand(spinand);
573 	u8 status;
574 	int ret;
575 
576 	ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
577 	if (ret)
578 		return ret;
579 
580 	ret = spinand_load_page_op(spinand, req);
581 	if (ret)
582 		return ret;
583 
584 	ret = spinand_wait(spinand,
585 			   SPINAND_READ_INITIAL_DELAY_US,
586 			   SPINAND_READ_POLL_DELAY_US,
587 			   &status);
588 	if (ret < 0)
589 		return ret;
590 
591 	spinand_ondie_ecc_save_status(nand, status);
592 
593 	ret = spinand_read_from_cache_op(spinand, req);
594 	if (ret)
595 		return ret;
596 
597 	return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
598 }
599 
600 static int spinand_write_page(struct spinand_device *spinand,
601 			      const struct nand_page_io_req *req)
602 {
603 	struct nand_device *nand = spinand_to_nand(spinand);
604 	u8 status;
605 	int ret;
606 
607 	ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
608 	if (ret)
609 		return ret;
610 
611 	ret = spinand_write_enable_op(spinand);
612 	if (ret)
613 		return ret;
614 
615 	ret = spinand_write_to_cache_op(spinand, req);
616 	if (ret)
617 		return ret;
618 
619 	ret = spinand_program_op(spinand, req);
620 	if (ret)
621 		return ret;
622 
623 	ret = spinand_wait(spinand,
624 			   SPINAND_WRITE_INITIAL_DELAY_US,
625 			   SPINAND_WRITE_POLL_DELAY_US,
626 			   &status);
627 	if (!ret && (status & STATUS_PROG_FAILED))
628 		return -EIO;
629 
630 	return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
631 }
632 
633 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
634 			    struct mtd_oob_ops *ops)
635 {
636 	struct spinand_device *spinand = mtd_to_spinand(mtd);
637 	struct nand_device *nand = mtd_to_nanddev(mtd);
638 	struct mtd_ecc_stats old_stats;
639 	unsigned int max_bitflips = 0;
640 	struct nand_io_iter iter;
641 	bool disable_ecc = false;
642 	bool ecc_failed = false;
643 	int ret = 0;
644 
645 	if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
646 		disable_ecc = true;
647 
648 	mutex_lock(&spinand->lock);
649 
650 	old_stats = mtd->ecc_stats;
651 
652 	nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
653 		if (disable_ecc)
654 			iter.req.mode = MTD_OPS_RAW;
655 
656 		ret = spinand_select_target(spinand, iter.req.pos.target);
657 		if (ret)
658 			break;
659 
660 		ret = spinand_read_page(spinand, &iter.req);
661 		if (ret < 0 && ret != -EBADMSG)
662 			break;
663 
664 		if (ret == -EBADMSG)
665 			ecc_failed = true;
666 		else
667 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
668 
669 		ret = 0;
670 		ops->retlen += iter.req.datalen;
671 		ops->oobretlen += iter.req.ooblen;
672 	}
673 
674 	if (ops->stats) {
675 		ops->stats->uncorrectable_errors +=
676 			mtd->ecc_stats.failed - old_stats.failed;
677 		ops->stats->corrected_bitflips +=
678 			mtd->ecc_stats.corrected - old_stats.corrected;
679 	}
680 
681 	mutex_unlock(&spinand->lock);
682 
683 	if (ecc_failed && !ret)
684 		ret = -EBADMSG;
685 
686 	return ret ? ret : max_bitflips;
687 }
688 
689 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
690 			     struct mtd_oob_ops *ops)
691 {
692 	struct spinand_device *spinand = mtd_to_spinand(mtd);
693 	struct nand_device *nand = mtd_to_nanddev(mtd);
694 	struct nand_io_iter iter;
695 	bool disable_ecc = false;
696 	int ret = 0;
697 
698 	if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
699 		disable_ecc = true;
700 
701 	mutex_lock(&spinand->lock);
702 
703 	nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
704 		if (disable_ecc)
705 			iter.req.mode = MTD_OPS_RAW;
706 
707 		ret = spinand_select_target(spinand, iter.req.pos.target);
708 		if (ret)
709 			break;
710 
711 		ret = spinand_write_page(spinand, &iter.req);
712 		if (ret)
713 			break;
714 
715 		ops->retlen += iter.req.datalen;
716 		ops->oobretlen += iter.req.ooblen;
717 	}
718 
719 	mutex_unlock(&spinand->lock);
720 
721 	return ret;
722 }
723 
724 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
725 {
726 	struct spinand_device *spinand = nand_to_spinand(nand);
727 	u8 marker[2] = { };
728 	struct nand_page_io_req req = {
729 		.pos = *pos,
730 		.ooblen = sizeof(marker),
731 		.ooboffs = 0,
732 		.oobbuf.in = marker,
733 		.mode = MTD_OPS_RAW,
734 	};
735 
736 	spinand_select_target(spinand, pos->target);
737 	spinand_read_page(spinand, &req);
738 	if (marker[0] != 0xff || marker[1] != 0xff)
739 		return true;
740 
741 	return false;
742 }
743 
744 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
745 {
746 	struct nand_device *nand = mtd_to_nanddev(mtd);
747 	struct spinand_device *spinand = nand_to_spinand(nand);
748 	struct nand_pos pos;
749 	int ret;
750 
751 	nanddev_offs_to_pos(nand, offs, &pos);
752 	mutex_lock(&spinand->lock);
753 	ret = nanddev_isbad(nand, &pos);
754 	mutex_unlock(&spinand->lock);
755 
756 	return ret;
757 }
758 
759 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
760 {
761 	struct spinand_device *spinand = nand_to_spinand(nand);
762 	u8 marker[2] = { };
763 	struct nand_page_io_req req = {
764 		.pos = *pos,
765 		.ooboffs = 0,
766 		.ooblen = sizeof(marker),
767 		.oobbuf.out = marker,
768 		.mode = MTD_OPS_RAW,
769 	};
770 	int ret;
771 
772 	ret = spinand_select_target(spinand, pos->target);
773 	if (ret)
774 		return ret;
775 
776 	ret = spinand_write_enable_op(spinand);
777 	if (ret)
778 		return ret;
779 
780 	return spinand_write_page(spinand, &req);
781 }
782 
783 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
784 {
785 	struct nand_device *nand = mtd_to_nanddev(mtd);
786 	struct spinand_device *spinand = nand_to_spinand(nand);
787 	struct nand_pos pos;
788 	int ret;
789 
790 	nanddev_offs_to_pos(nand, offs, &pos);
791 	mutex_lock(&spinand->lock);
792 	ret = nanddev_markbad(nand, &pos);
793 	mutex_unlock(&spinand->lock);
794 
795 	return ret;
796 }
797 
798 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
799 {
800 	struct spinand_device *spinand = nand_to_spinand(nand);
801 	u8 status;
802 	int ret;
803 
804 	ret = spinand_select_target(spinand, pos->target);
805 	if (ret)
806 		return ret;
807 
808 	ret = spinand_write_enable_op(spinand);
809 	if (ret)
810 		return ret;
811 
812 	ret = spinand_erase_op(spinand, pos);
813 	if (ret)
814 		return ret;
815 
816 	ret = spinand_wait(spinand,
817 			   SPINAND_ERASE_INITIAL_DELAY_US,
818 			   SPINAND_ERASE_POLL_DELAY_US,
819 			   &status);
820 
821 	if (!ret && (status & STATUS_ERASE_FAILED))
822 		ret = -EIO;
823 
824 	return ret;
825 }
826 
827 static int spinand_mtd_erase(struct mtd_info *mtd,
828 			     struct erase_info *einfo)
829 {
830 	struct spinand_device *spinand = mtd_to_spinand(mtd);
831 	int ret;
832 
833 	mutex_lock(&spinand->lock);
834 	ret = nanddev_mtd_erase(mtd, einfo);
835 	mutex_unlock(&spinand->lock);
836 
837 	return ret;
838 }
839 
840 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
841 {
842 	struct spinand_device *spinand = mtd_to_spinand(mtd);
843 	struct nand_device *nand = mtd_to_nanddev(mtd);
844 	struct nand_pos pos;
845 	int ret;
846 
847 	nanddev_offs_to_pos(nand, offs, &pos);
848 	mutex_lock(&spinand->lock);
849 	ret = nanddev_isreserved(nand, &pos);
850 	mutex_unlock(&spinand->lock);
851 
852 	return ret;
853 }
854 
855 static int spinand_create_dirmap(struct spinand_device *spinand,
856 				 unsigned int plane)
857 {
858 	struct nand_device *nand = spinand_to_nand(spinand);
859 	struct spi_mem_dirmap_info info = {
860 		.length = nanddev_page_size(nand) +
861 			  nanddev_per_page_oobsize(nand),
862 	};
863 	struct spi_mem_dirmap_desc *desc;
864 
865 	/* The plane number is passed in MSB just above the column address */
866 	info.offset = plane << fls(nand->memorg.pagesize);
867 
868 	info.op_tmpl = *spinand->op_templates.update_cache;
869 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
870 					  spinand->spimem, &info);
871 	if (IS_ERR(desc))
872 		return PTR_ERR(desc);
873 
874 	spinand->dirmaps[plane].wdesc = desc;
875 
876 	info.op_tmpl = *spinand->op_templates.read_cache;
877 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
878 					  spinand->spimem, &info);
879 	if (IS_ERR(desc))
880 		return PTR_ERR(desc);
881 
882 	spinand->dirmaps[plane].rdesc = desc;
883 
884 	if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) {
885 		spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc;
886 		spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc;
887 
888 		return 0;
889 	}
890 
891 	info.op_tmpl = *spinand->op_templates.update_cache;
892 	info.op_tmpl.data.ecc = true;
893 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
894 					  spinand->spimem, &info);
895 	if (IS_ERR(desc))
896 		return PTR_ERR(desc);
897 
898 	spinand->dirmaps[plane].wdesc_ecc = desc;
899 
900 	info.op_tmpl = *spinand->op_templates.read_cache;
901 	info.op_tmpl.data.ecc = true;
902 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
903 					  spinand->spimem, &info);
904 	if (IS_ERR(desc))
905 		return PTR_ERR(desc);
906 
907 	spinand->dirmaps[plane].rdesc_ecc = desc;
908 
909 	return 0;
910 }
911 
912 static int spinand_create_dirmaps(struct spinand_device *spinand)
913 {
914 	struct nand_device *nand = spinand_to_nand(spinand);
915 	int i, ret;
916 
917 	spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
918 					sizeof(*spinand->dirmaps) *
919 					nand->memorg.planes_per_lun,
920 					GFP_KERNEL);
921 	if (!spinand->dirmaps)
922 		return -ENOMEM;
923 
924 	for (i = 0; i < nand->memorg.planes_per_lun; i++) {
925 		ret = spinand_create_dirmap(spinand, i);
926 		if (ret)
927 			return ret;
928 	}
929 
930 	return 0;
931 }
932 
933 static const struct nand_ops spinand_ops = {
934 	.erase = spinand_erase,
935 	.markbad = spinand_markbad,
936 	.isbad = spinand_isbad,
937 };
938 
939 static const struct spinand_manufacturer *spinand_manufacturers[] = {
940 	&alliancememory_spinand_manufacturer,
941 	&ato_spinand_manufacturer,
942 	&esmt_c8_spinand_manufacturer,
943 	&gigadevice_spinand_manufacturer,
944 	&macronix_spinand_manufacturer,
945 	&micron_spinand_manufacturer,
946 	&paragon_spinand_manufacturer,
947 	&toshiba_spinand_manufacturer,
948 	&winbond_spinand_manufacturer,
949 	&xtx_spinand_manufacturer,
950 };
951 
952 static int spinand_manufacturer_match(struct spinand_device *spinand,
953 				      enum spinand_readid_method rdid_method)
954 {
955 	u8 *id = spinand->id.data;
956 	unsigned int i;
957 	int ret;
958 
959 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
960 		const struct spinand_manufacturer *manufacturer =
961 			spinand_manufacturers[i];
962 
963 		if (id[0] != manufacturer->id)
964 			continue;
965 
966 		ret = spinand_match_and_init(spinand,
967 					     manufacturer->chips,
968 					     manufacturer->nchips,
969 					     rdid_method);
970 		if (ret < 0)
971 			continue;
972 
973 		spinand->manufacturer = manufacturer;
974 		return 0;
975 	}
976 	return -ENOTSUPP;
977 }
978 
979 static int spinand_id_detect(struct spinand_device *spinand)
980 {
981 	u8 *id = spinand->id.data;
982 	int ret;
983 
984 	ret = spinand_read_id_op(spinand, 0, 0, id);
985 	if (ret)
986 		return ret;
987 	ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
988 	if (!ret)
989 		return 0;
990 
991 	ret = spinand_read_id_op(spinand, 1, 0, id);
992 	if (ret)
993 		return ret;
994 	ret = spinand_manufacturer_match(spinand,
995 					 SPINAND_READID_METHOD_OPCODE_ADDR);
996 	if (!ret)
997 		return 0;
998 
999 	ret = spinand_read_id_op(spinand, 0, 1, id);
1000 	if (ret)
1001 		return ret;
1002 	ret = spinand_manufacturer_match(spinand,
1003 					 SPINAND_READID_METHOD_OPCODE_DUMMY);
1004 
1005 	return ret;
1006 }
1007 
1008 static int spinand_manufacturer_init(struct spinand_device *spinand)
1009 {
1010 	if (spinand->manufacturer->ops->init)
1011 		return spinand->manufacturer->ops->init(spinand);
1012 
1013 	return 0;
1014 }
1015 
1016 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
1017 {
1018 	/* Release manufacturer private data */
1019 	if (spinand->manufacturer->ops->cleanup)
1020 		return spinand->manufacturer->ops->cleanup(spinand);
1021 }
1022 
1023 static const struct spi_mem_op *
1024 spinand_select_op_variant(struct spinand_device *spinand,
1025 			  const struct spinand_op_variants *variants)
1026 {
1027 	struct nand_device *nand = spinand_to_nand(spinand);
1028 	unsigned int i;
1029 
1030 	for (i = 0; i < variants->nops; i++) {
1031 		struct spi_mem_op op = variants->ops[i];
1032 		unsigned int nbytes;
1033 		int ret;
1034 
1035 		nbytes = nanddev_per_page_oobsize(nand) +
1036 			 nanddev_page_size(nand);
1037 
1038 		while (nbytes) {
1039 			op.data.nbytes = nbytes;
1040 			ret = spi_mem_adjust_op_size(spinand->spimem, &op);
1041 			if (ret)
1042 				break;
1043 
1044 			if (!spi_mem_supports_op(spinand->spimem, &op))
1045 				break;
1046 
1047 			nbytes -= op.data.nbytes;
1048 		}
1049 
1050 		if (!nbytes)
1051 			return &variants->ops[i];
1052 	}
1053 
1054 	return NULL;
1055 }
1056 
1057 /**
1058  * spinand_match_and_init() - Try to find a match between a device ID and an
1059  *			      entry in a spinand_info table
1060  * @spinand: SPI NAND object
1061  * @table: SPI NAND device description table
1062  * @table_size: size of the device description table
1063  * @rdid_method: read id method to match
1064  *
1065  * Match between a device ID retrieved through the READ_ID command and an
1066  * entry in the SPI NAND description table. If a match is found, the spinand
1067  * object will be initialized with information provided by the matching
1068  * spinand_info entry.
1069  *
1070  * Return: 0 on success, a negative error code otherwise.
1071  */
1072 int spinand_match_and_init(struct spinand_device *spinand,
1073 			   const struct spinand_info *table,
1074 			   unsigned int table_size,
1075 			   enum spinand_readid_method rdid_method)
1076 {
1077 	u8 *id = spinand->id.data;
1078 	struct nand_device *nand = spinand_to_nand(spinand);
1079 	unsigned int i;
1080 
1081 	for (i = 0; i < table_size; i++) {
1082 		const struct spinand_info *info = &table[i];
1083 		const struct spi_mem_op *op;
1084 
1085 		if (rdid_method != info->devid.method)
1086 			continue;
1087 
1088 		if (memcmp(id + 1, info->devid.id, info->devid.len))
1089 			continue;
1090 
1091 		nand->memorg = table[i].memorg;
1092 		nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1093 		spinand->eccinfo = table[i].eccinfo;
1094 		spinand->flags = table[i].flags;
1095 		spinand->id.len = 1 + table[i].devid.len;
1096 		spinand->select_target = table[i].select_target;
1097 
1098 		op = spinand_select_op_variant(spinand,
1099 					       info->op_variants.read_cache);
1100 		if (!op)
1101 			return -ENOTSUPP;
1102 
1103 		spinand->op_templates.read_cache = op;
1104 
1105 		op = spinand_select_op_variant(spinand,
1106 					       info->op_variants.write_cache);
1107 		if (!op)
1108 			return -ENOTSUPP;
1109 
1110 		spinand->op_templates.write_cache = op;
1111 
1112 		op = spinand_select_op_variant(spinand,
1113 					       info->op_variants.update_cache);
1114 		spinand->op_templates.update_cache = op;
1115 
1116 		return 0;
1117 	}
1118 
1119 	return -ENOTSUPP;
1120 }
1121 
1122 static int spinand_detect(struct spinand_device *spinand)
1123 {
1124 	struct device *dev = &spinand->spimem->spi->dev;
1125 	struct nand_device *nand = spinand_to_nand(spinand);
1126 	int ret;
1127 
1128 	ret = spinand_reset_op(spinand);
1129 	if (ret)
1130 		return ret;
1131 
1132 	ret = spinand_id_detect(spinand);
1133 	if (ret) {
1134 		dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1135 			spinand->id.data);
1136 		return ret;
1137 	}
1138 
1139 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1140 		dev_err(dev,
1141 			"SPI NANDs with more than one die must implement ->select_target()\n");
1142 		return -EINVAL;
1143 	}
1144 
1145 	dev_info(&spinand->spimem->spi->dev,
1146 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1147 	dev_info(&spinand->spimem->spi->dev,
1148 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1149 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1150 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1151 
1152 	return 0;
1153 }
1154 
1155 static int spinand_init_flash(struct spinand_device *spinand)
1156 {
1157 	struct device *dev = &spinand->spimem->spi->dev;
1158 	struct nand_device *nand = spinand_to_nand(spinand);
1159 	int ret, i;
1160 
1161 	ret = spinand_read_cfg(spinand);
1162 	if (ret)
1163 		return ret;
1164 
1165 	ret = spinand_init_quad_enable(spinand);
1166 	if (ret)
1167 		return ret;
1168 
1169 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1170 	if (ret)
1171 		return ret;
1172 
1173 	ret = spinand_manufacturer_init(spinand);
1174 	if (ret) {
1175 		dev_err(dev,
1176 		"Failed to initialize the SPI NAND chip (err = %d)\n",
1177 		ret);
1178 		return ret;
1179 	}
1180 
1181 	/* After power up, all blocks are locked, so unlock them here. */
1182 	for (i = 0; i < nand->memorg.ntargets; i++) {
1183 		ret = spinand_select_target(spinand, i);
1184 		if (ret)
1185 			break;
1186 
1187 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1188 		if (ret)
1189 			break;
1190 	}
1191 
1192 	if (ret)
1193 		spinand_manufacturer_cleanup(spinand);
1194 
1195 	return ret;
1196 }
1197 
1198 static void spinand_mtd_resume(struct mtd_info *mtd)
1199 {
1200 	struct spinand_device *spinand = mtd_to_spinand(mtd);
1201 	int ret;
1202 
1203 	ret = spinand_reset_op(spinand);
1204 	if (ret)
1205 		return;
1206 
1207 	ret = spinand_init_flash(spinand);
1208 	if (ret)
1209 		return;
1210 
1211 	spinand_ecc_enable(spinand, false);
1212 }
1213 
1214 static int spinand_init(struct spinand_device *spinand)
1215 {
1216 	struct device *dev = &spinand->spimem->spi->dev;
1217 	struct mtd_info *mtd = spinand_to_mtd(spinand);
1218 	struct nand_device *nand = mtd_to_nanddev(mtd);
1219 	int ret;
1220 
1221 	/*
1222 	 * We need a scratch buffer because the spi_mem interface requires that
1223 	 * buf passed in spi_mem_op->data.buf be DMA-able.
1224 	 */
1225 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1226 	if (!spinand->scratchbuf)
1227 		return -ENOMEM;
1228 
1229 	ret = spinand_detect(spinand);
1230 	if (ret)
1231 		goto err_free_bufs;
1232 
1233 	/*
1234 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1235 	 * may use this buffer for DMA access.
1236 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1237 	 */
1238 	spinand->databuf = kzalloc(nanddev_page_size(nand) +
1239 			       nanddev_per_page_oobsize(nand),
1240 			       GFP_KERNEL);
1241 	if (!spinand->databuf) {
1242 		ret = -ENOMEM;
1243 		goto err_free_bufs;
1244 	}
1245 
1246 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1247 
1248 	ret = spinand_init_cfg_cache(spinand);
1249 	if (ret)
1250 		goto err_free_bufs;
1251 
1252 	ret = spinand_init_flash(spinand);
1253 	if (ret)
1254 		goto err_free_bufs;
1255 
1256 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1257 	if (ret)
1258 		goto err_manuf_cleanup;
1259 
1260 	/* SPI-NAND default ECC engine is on-die */
1261 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1262 	nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1263 
1264 	spinand_ecc_enable(spinand, false);
1265 	ret = nanddev_ecc_engine_init(nand);
1266 	if (ret)
1267 		goto err_cleanup_nanddev;
1268 
1269 	mtd->_read_oob = spinand_mtd_read;
1270 	mtd->_write_oob = spinand_mtd_write;
1271 	mtd->_block_isbad = spinand_mtd_block_isbad;
1272 	mtd->_block_markbad = spinand_mtd_block_markbad;
1273 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
1274 	mtd->_erase = spinand_mtd_erase;
1275 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1276 	mtd->_resume = spinand_mtd_resume;
1277 
1278 	if (nand->ecc.engine) {
1279 		ret = mtd_ooblayout_count_freebytes(mtd);
1280 		if (ret < 0)
1281 			goto err_cleanup_ecc_engine;
1282 	}
1283 
1284 	mtd->oobavail = ret;
1285 
1286 	/* Propagate ECC information to mtd_info */
1287 	mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1288 	mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1289 
1290 	ret = spinand_create_dirmaps(spinand);
1291 	if (ret) {
1292 		dev_err(dev,
1293 			"Failed to create direct mappings for read/write operations (err = %d)\n",
1294 			ret);
1295 		goto err_cleanup_ecc_engine;
1296 	}
1297 
1298 	return 0;
1299 
1300 err_cleanup_ecc_engine:
1301 	nanddev_ecc_engine_cleanup(nand);
1302 
1303 err_cleanup_nanddev:
1304 	nanddev_cleanup(nand);
1305 
1306 err_manuf_cleanup:
1307 	spinand_manufacturer_cleanup(spinand);
1308 
1309 err_free_bufs:
1310 	kfree(spinand->databuf);
1311 	kfree(spinand->scratchbuf);
1312 	return ret;
1313 }
1314 
1315 static void spinand_cleanup(struct spinand_device *spinand)
1316 {
1317 	struct nand_device *nand = spinand_to_nand(spinand);
1318 
1319 	nanddev_cleanup(nand);
1320 	spinand_manufacturer_cleanup(spinand);
1321 	kfree(spinand->databuf);
1322 	kfree(spinand->scratchbuf);
1323 }
1324 
1325 static int spinand_probe(struct spi_mem *mem)
1326 {
1327 	struct spinand_device *spinand;
1328 	struct mtd_info *mtd;
1329 	int ret;
1330 
1331 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1332 			       GFP_KERNEL);
1333 	if (!spinand)
1334 		return -ENOMEM;
1335 
1336 	spinand->spimem = mem;
1337 	spi_mem_set_drvdata(mem, spinand);
1338 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
1339 	mutex_init(&spinand->lock);
1340 	mtd = spinand_to_mtd(spinand);
1341 	mtd->dev.parent = &mem->spi->dev;
1342 
1343 	ret = spinand_init(spinand);
1344 	if (ret)
1345 		return ret;
1346 
1347 	ret = mtd_device_register(mtd, NULL, 0);
1348 	if (ret)
1349 		goto err_spinand_cleanup;
1350 
1351 	return 0;
1352 
1353 err_spinand_cleanup:
1354 	spinand_cleanup(spinand);
1355 
1356 	return ret;
1357 }
1358 
1359 static int spinand_remove(struct spi_mem *mem)
1360 {
1361 	struct spinand_device *spinand;
1362 	struct mtd_info *mtd;
1363 	int ret;
1364 
1365 	spinand = spi_mem_get_drvdata(mem);
1366 	mtd = spinand_to_mtd(spinand);
1367 
1368 	ret = mtd_device_unregister(mtd);
1369 	if (ret)
1370 		return ret;
1371 
1372 	spinand_cleanup(spinand);
1373 
1374 	return 0;
1375 }
1376 
1377 static const struct spi_device_id spinand_ids[] = {
1378 	{ .name = "spi-nand" },
1379 	{ /* sentinel */ },
1380 };
1381 MODULE_DEVICE_TABLE(spi, spinand_ids);
1382 
1383 #ifdef CONFIG_OF
1384 static const struct of_device_id spinand_of_ids[] = {
1385 	{ .compatible = "spi-nand" },
1386 	{ /* sentinel */ },
1387 };
1388 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1389 #endif
1390 
1391 static struct spi_mem_driver spinand_drv = {
1392 	.spidrv = {
1393 		.id_table = spinand_ids,
1394 		.driver = {
1395 			.name = "spi-nand",
1396 			.of_match_table = of_match_ptr(spinand_of_ids),
1397 		},
1398 	},
1399 	.probe = spinand_probe,
1400 	.remove = spinand_remove,
1401 };
1402 module_spi_mem_driver(spinand_drv);
1403 
1404 MODULE_DESCRIPTION("SPI NAND framework");
1405 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1406 MODULE_LICENSE("GPL v2");
1407