xref: /linux/drivers/mtd/nand/raw/xway_nand.c (revision e74e1d55728509b352e4eec4283dd5b2781b2070)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  *  Copyright © 2012 John Crispin <john@phrozen.org>
5  *  Copyright © 2016 Hauke Mehrtens <hauke@hauke-m.de>
6  */
7 
8 #include <linux/mtd/rawnand.h>
9 #include <linux/of_gpio.h>
10 #include <linux/of_platform.h>
11 
12 #include <lantiq_soc.h>
13 
14 /* nand registers */
15 #define EBU_ADDSEL1		0x24
16 #define EBU_NAND_CON		0xB0
17 #define EBU_NAND_WAIT		0xB4
18 #define  NAND_WAIT_RD		BIT(0) /* NAND flash status output */
19 #define  NAND_WAIT_WR_C		BIT(3) /* NAND Write/Read complete */
20 #define EBU_NAND_ECC0		0xB8
21 #define EBU_NAND_ECC_AC		0xBC
22 
23 /*
24  * nand commands
25  * The pins of the NAND chip are selected based on the address bits of the
26  * "register" read and write. There are no special registers, but an
27  * address range and the lower address bits are used to activate the
28  * correct line. For example when the bit (1 << 2) is set in the address
29  * the ALE pin will be activated.
30  */
31 #define NAND_CMD_ALE		BIT(2) /* address latch enable */
32 #define NAND_CMD_CLE		BIT(3) /* command latch enable */
33 #define NAND_CMD_CS		BIT(4) /* chip select */
34 #define NAND_CMD_SE		BIT(5) /* spare area access latch */
35 #define NAND_CMD_WP		BIT(6) /* write protect */
36 #define NAND_WRITE_CMD		(NAND_CMD_CS | NAND_CMD_CLE)
37 #define NAND_WRITE_ADDR		(NAND_CMD_CS | NAND_CMD_ALE)
38 #define NAND_WRITE_DATA		(NAND_CMD_CS)
39 #define NAND_READ_DATA		(NAND_CMD_CS)
40 
41 /* we need to tel the ebu which addr we mapped the nand to */
42 #define ADDSEL1_MASK(x)		(x << 4)
43 #define ADDSEL1_REGEN		1
44 
45 /* we need to tell the EBU that we have nand attached and set it up properly */
46 #define BUSCON1_SETUP		(1 << 22)
47 #define BUSCON1_BCGEN_RES	(0x3 << 12)
48 #define BUSCON1_WAITWRC2	(2 << 8)
49 #define BUSCON1_WAITRDC2	(2 << 6)
50 #define BUSCON1_HOLDC1		(1 << 4)
51 #define BUSCON1_RECOVC1		(1 << 2)
52 #define BUSCON1_CMULT4		1
53 
54 #define NAND_CON_CE		(1 << 20)
55 #define NAND_CON_OUT_CS1	(1 << 10)
56 #define NAND_CON_IN_CS1		(1 << 8)
57 #define NAND_CON_PRE_P		(1 << 7)
58 #define NAND_CON_WP_P		(1 << 6)
59 #define NAND_CON_SE_P		(1 << 5)
60 #define NAND_CON_CS_P		(1 << 4)
61 #define NAND_CON_CSMUX		(1 << 1)
62 #define NAND_CON_NANDM		1
63 
64 struct xway_nand_data {
65 	struct nand_chip	chip;
66 	unsigned long		csflags;
67 	void __iomem		*nandaddr;
68 };
69 
70 static u8 xway_readb(struct mtd_info *mtd, int op)
71 {
72 	struct nand_chip *chip = mtd_to_nand(mtd);
73 	struct xway_nand_data *data = nand_get_controller_data(chip);
74 
75 	return readb(data->nandaddr + op);
76 }
77 
78 static void xway_writeb(struct mtd_info *mtd, int op, u8 value)
79 {
80 	struct nand_chip *chip = mtd_to_nand(mtd);
81 	struct xway_nand_data *data = nand_get_controller_data(chip);
82 
83 	writeb(value, data->nandaddr + op);
84 }
85 
86 static void xway_select_chip(struct nand_chip *chip, int select)
87 {
88 	struct xway_nand_data *data = nand_get_controller_data(chip);
89 
90 	switch (select) {
91 	case -1:
92 		ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON);
93 		ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON);
94 		spin_unlock_irqrestore(&ebu_lock, data->csflags);
95 		break;
96 	case 0:
97 		spin_lock_irqsave(&ebu_lock, data->csflags);
98 		ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON);
99 		ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON);
100 		break;
101 	default:
102 		BUG();
103 	}
104 }
105 
106 static void xway_cmd_ctrl(struct nand_chip *chip, int cmd, unsigned int ctrl)
107 {
108 	struct mtd_info *mtd = nand_to_mtd(chip);
109 
110 	if (cmd == NAND_CMD_NONE)
111 		return;
112 
113 	if (ctrl & NAND_CLE)
114 		xway_writeb(mtd, NAND_WRITE_CMD, cmd);
115 	else if (ctrl & NAND_ALE)
116 		xway_writeb(mtd, NAND_WRITE_ADDR, cmd);
117 
118 	while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0)
119 		;
120 }
121 
122 static int xway_dev_ready(struct nand_chip *chip)
123 {
124 	return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD;
125 }
126 
127 static unsigned char xway_read_byte(struct nand_chip *chip)
128 {
129 	return xway_readb(nand_to_mtd(chip), NAND_READ_DATA);
130 }
131 
132 static void xway_read_buf(struct nand_chip *chip, u_char *buf, int len)
133 {
134 	int i;
135 
136 	for (i = 0; i < len; i++)
137 		buf[i] = xway_readb(nand_to_mtd(chip), NAND_WRITE_DATA);
138 }
139 
140 static void xway_write_buf(struct nand_chip *chip, const u_char *buf, int len)
141 {
142 	int i;
143 
144 	for (i = 0; i < len; i++)
145 		xway_writeb(nand_to_mtd(chip), NAND_WRITE_DATA, buf[i]);
146 }
147 
148 /*
149  * Probe for the NAND device.
150  */
151 static int xway_nand_probe(struct platform_device *pdev)
152 {
153 	struct xway_nand_data *data;
154 	struct mtd_info *mtd;
155 	struct resource *res;
156 	int err;
157 	u32 cs;
158 	u32 cs_flag = 0;
159 
160 	/* Allocate memory for the device structure (and zero it) */
161 	data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data),
162 			    GFP_KERNEL);
163 	if (!data)
164 		return -ENOMEM;
165 
166 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
167 	data->nandaddr = devm_ioremap_resource(&pdev->dev, res);
168 	if (IS_ERR(data->nandaddr))
169 		return PTR_ERR(data->nandaddr);
170 
171 	nand_set_flash_node(&data->chip, pdev->dev.of_node);
172 	mtd = nand_to_mtd(&data->chip);
173 	mtd->dev.parent = &pdev->dev;
174 
175 	data->chip.legacy.cmd_ctrl = xway_cmd_ctrl;
176 	data->chip.legacy.dev_ready = xway_dev_ready;
177 	data->chip.legacy.select_chip = xway_select_chip;
178 	data->chip.legacy.write_buf = xway_write_buf;
179 	data->chip.legacy.read_buf = xway_read_buf;
180 	data->chip.legacy.read_byte = xway_read_byte;
181 	data->chip.legacy.chip_delay = 30;
182 
183 	data->chip.ecc.mode = NAND_ECC_SOFT;
184 	data->chip.ecc.algo = NAND_ECC_HAMMING;
185 
186 	platform_set_drvdata(pdev, data);
187 	nand_set_controller_data(&data->chip, data);
188 
189 	/* load our CS from the DT. Either we find a valid 1 or default to 0 */
190 	err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs);
191 	if (!err && cs == 1)
192 		cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1;
193 
194 	/* setup the EBU to run in NAND mode on our base addr */
195 	ltq_ebu_w32(CPHYSADDR(data->nandaddr)
196 		    | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1);
197 
198 	ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2
199 		    | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1
200 		    | BUSCON1_CMULT4, LTQ_EBU_BUSCON1);
201 
202 	ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P
203 		    | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P
204 		    | cs_flag, EBU_NAND_CON);
205 
206 	/* Scan to find existence of the device */
207 	err = nand_scan(&data->chip, 1);
208 	if (err)
209 		return err;
210 
211 	err = mtd_device_register(mtd, NULL, 0);
212 	if (err)
213 		nand_cleanup(&data->chip);
214 
215 	return err;
216 }
217 
218 /*
219  * Remove a NAND device.
220  */
221 static int xway_nand_remove(struct platform_device *pdev)
222 {
223 	struct xway_nand_data *data = platform_get_drvdata(pdev);
224 	struct nand_chip *chip = &data->chip;
225 	int ret;
226 
227 	ret = mtd_device_unregister(nand_to_mtd(chip));
228 	WARN_ON(ret);
229 	nand_cleanup(chip);
230 
231 	return 0;
232 }
233 
234 static const struct of_device_id xway_nand_match[] = {
235 	{ .compatible = "lantiq,nand-xway" },
236 	{},
237 };
238 
239 static struct platform_driver xway_nand_driver = {
240 	.probe	= xway_nand_probe,
241 	.remove	= xway_nand_remove,
242 	.driver	= {
243 		.name		= "lantiq,nand-xway",
244 		.of_match_table = xway_nand_match,
245 	},
246 };
247 
248 builtin_platform_driver(xway_nand_driver);
249