1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright © 2012 John Crispin <john@phrozen.org> 5 * Copyright © 2016 Hauke Mehrtens <hauke@hauke-m.de> 6 */ 7 8 #include <linux/mtd/rawnand.h> 9 #include <linux/of.h> 10 #include <linux/platform_device.h> 11 12 #include <lantiq_soc.h> 13 14 /* nand registers */ 15 #define EBU_ADDSEL1 0x24 16 #define EBU_NAND_CON 0xB0 17 #define EBU_NAND_WAIT 0xB4 18 #define NAND_WAIT_RD BIT(0) /* NAND flash status output */ 19 #define NAND_WAIT_WR_C BIT(3) /* NAND Write/Read complete */ 20 #define EBU_NAND_ECC0 0xB8 21 #define EBU_NAND_ECC_AC 0xBC 22 23 /* 24 * nand commands 25 * The pins of the NAND chip are selected based on the address bits of the 26 * "register" read and write. There are no special registers, but an 27 * address range and the lower address bits are used to activate the 28 * correct line. For example when the bit (1 << 2) is set in the address 29 * the ALE pin will be activated. 30 */ 31 #define NAND_CMD_ALE BIT(2) /* address latch enable */ 32 #define NAND_CMD_CLE BIT(3) /* command latch enable */ 33 #define NAND_CMD_CS BIT(4) /* chip select */ 34 #define NAND_CMD_SE BIT(5) /* spare area access latch */ 35 #define NAND_CMD_WP BIT(6) /* write protect */ 36 #define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE) 37 #define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE) 38 #define NAND_WRITE_DATA (NAND_CMD_CS) 39 #define NAND_READ_DATA (NAND_CMD_CS) 40 41 /* we need to tel the ebu which addr we mapped the nand to */ 42 #define ADDSEL1_MASK(x) (x << 4) 43 #define ADDSEL1_REGEN 1 44 45 /* we need to tell the EBU that we have nand attached and set it up properly */ 46 #define BUSCON1_SETUP (1 << 22) 47 #define BUSCON1_BCGEN_RES (0x3 << 12) 48 #define BUSCON1_WAITWRC2 (2 << 8) 49 #define BUSCON1_WAITRDC2 (2 << 6) 50 #define BUSCON1_HOLDC1 (1 << 4) 51 #define BUSCON1_RECOVC1 (1 << 2) 52 #define BUSCON1_CMULT4 1 53 54 #define NAND_CON_CE (1 << 20) 55 #define NAND_CON_OUT_CS1 (1 << 10) 56 #define NAND_CON_IN_CS1 (1 << 8) 57 #define NAND_CON_PRE_P (1 << 7) 58 #define NAND_CON_WP_P (1 << 6) 59 #define NAND_CON_SE_P (1 << 5) 60 #define NAND_CON_CS_P (1 << 4) 61 #define NAND_CON_CSMUX (1 << 1) 62 #define NAND_CON_NANDM 1 63 64 struct xway_nand_data { 65 struct nand_controller controller; 66 struct nand_chip chip; 67 unsigned long csflags; 68 void __iomem *nandaddr; 69 }; 70 71 static u8 xway_readb(struct mtd_info *mtd, int op) 72 { 73 struct nand_chip *chip = mtd_to_nand(mtd); 74 struct xway_nand_data *data = nand_get_controller_data(chip); 75 76 return readb(data->nandaddr + op); 77 } 78 79 static void xway_writeb(struct mtd_info *mtd, int op, u8 value) 80 { 81 struct nand_chip *chip = mtd_to_nand(mtd); 82 struct xway_nand_data *data = nand_get_controller_data(chip); 83 84 writeb(value, data->nandaddr + op); 85 } 86 87 static void xway_select_chip(struct nand_chip *chip, int select) 88 { 89 struct xway_nand_data *data = nand_get_controller_data(chip); 90 91 switch (select) { 92 case -1: 93 ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON); 94 ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON); 95 spin_unlock_irqrestore(&ebu_lock, data->csflags); 96 break; 97 case 0: 98 spin_lock_irqsave(&ebu_lock, data->csflags); 99 ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON); 100 ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON); 101 break; 102 default: 103 BUG(); 104 } 105 } 106 107 static void xway_cmd_ctrl(struct nand_chip *chip, int cmd, unsigned int ctrl) 108 { 109 struct mtd_info *mtd = nand_to_mtd(chip); 110 111 if (cmd == NAND_CMD_NONE) 112 return; 113 114 if (ctrl & NAND_CLE) 115 xway_writeb(mtd, NAND_WRITE_CMD, cmd); 116 else if (ctrl & NAND_ALE) 117 xway_writeb(mtd, NAND_WRITE_ADDR, cmd); 118 119 while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) 120 ; 121 } 122 123 static int xway_dev_ready(struct nand_chip *chip) 124 { 125 return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD; 126 } 127 128 static unsigned char xway_read_byte(struct nand_chip *chip) 129 { 130 return xway_readb(nand_to_mtd(chip), NAND_READ_DATA); 131 } 132 133 static void xway_read_buf(struct nand_chip *chip, u_char *buf, int len) 134 { 135 int i; 136 137 for (i = 0; i < len; i++) 138 buf[i] = xway_readb(nand_to_mtd(chip), NAND_WRITE_DATA); 139 } 140 141 static void xway_write_buf(struct nand_chip *chip, const u_char *buf, int len) 142 { 143 int i; 144 145 for (i = 0; i < len; i++) 146 xway_writeb(nand_to_mtd(chip), NAND_WRITE_DATA, buf[i]); 147 } 148 149 static int xway_attach_chip(struct nand_chip *chip) 150 { 151 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 152 chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) 153 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 154 155 return 0; 156 } 157 158 static const struct nand_controller_ops xway_nand_ops = { 159 .attach_chip = xway_attach_chip, 160 }; 161 162 /* 163 * Probe for the NAND device. 164 */ 165 static int xway_nand_probe(struct platform_device *pdev) 166 { 167 struct xway_nand_data *data; 168 struct mtd_info *mtd; 169 int err; 170 u32 cs; 171 u32 cs_flag = 0; 172 173 /* Allocate memory for the device structure (and zero it) */ 174 data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data), 175 GFP_KERNEL); 176 if (!data) 177 return -ENOMEM; 178 179 data->nandaddr = devm_platform_ioremap_resource(pdev, 0); 180 if (IS_ERR(data->nandaddr)) 181 return PTR_ERR(data->nandaddr); 182 183 nand_set_flash_node(&data->chip, pdev->dev.of_node); 184 mtd = nand_to_mtd(&data->chip); 185 mtd->dev.parent = &pdev->dev; 186 187 data->chip.legacy.cmd_ctrl = xway_cmd_ctrl; 188 data->chip.legacy.dev_ready = xway_dev_ready; 189 data->chip.legacy.select_chip = xway_select_chip; 190 data->chip.legacy.write_buf = xway_write_buf; 191 data->chip.legacy.read_buf = xway_read_buf; 192 data->chip.legacy.read_byte = xway_read_byte; 193 data->chip.legacy.chip_delay = 30; 194 195 nand_controller_init(&data->controller); 196 data->controller.ops = &xway_nand_ops; 197 data->chip.controller = &data->controller; 198 199 platform_set_drvdata(pdev, data); 200 nand_set_controller_data(&data->chip, data); 201 202 /* load our CS from the DT. Either we find a valid 1 or default to 0 */ 203 err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs); 204 if (!err && cs == 1) 205 cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1; 206 207 /* setup the EBU to run in NAND mode on our base addr */ 208 ltq_ebu_w32(CPHYSADDR(data->nandaddr) 209 | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1); 210 211 ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2 212 | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1 213 | BUSCON1_CMULT4, LTQ_EBU_BUSCON1); 214 215 ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P 216 | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P 217 | cs_flag, EBU_NAND_CON); 218 219 /* 220 * This driver assumes that the default ECC engine should be TYPE_SOFT. 221 * Set ->engine_type before registering the NAND devices in order to 222 * provide a driver specific default value. 223 */ 224 data->chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 225 226 /* Scan to find existence of the device */ 227 err = nand_scan(&data->chip, 1); 228 if (err) 229 return err; 230 231 err = mtd_device_register(mtd, NULL, 0); 232 if (err) 233 nand_cleanup(&data->chip); 234 235 return err; 236 } 237 238 /* 239 * Remove a NAND device. 240 */ 241 static void xway_nand_remove(struct platform_device *pdev) 242 { 243 struct xway_nand_data *data = platform_get_drvdata(pdev); 244 struct nand_chip *chip = &data->chip; 245 int ret; 246 247 ret = mtd_device_unregister(nand_to_mtd(chip)); 248 WARN_ON(ret); 249 nand_cleanup(chip); 250 } 251 252 static const struct of_device_id xway_nand_match[] = { 253 { .compatible = "lantiq,nand-xway" }, 254 {}, 255 }; 256 257 static struct platform_driver xway_nand_driver = { 258 .probe = xway_nand_probe, 259 .remove = xway_nand_remove, 260 .driver = { 261 .name = "lantiq,nand-xway", 262 .of_match_table = xway_nand_match, 263 }, 264 }; 265 266 builtin_platform_driver(xway_nand_driver); 267