xref: /linux/drivers/mtd/nand/raw/vf610_nfc.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
3  *
4  * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
5  * Jason ported to M54418TWR and MVFA5 (VF610).
6  * Authors: Stefan Agner <stefan.agner@toradex.com>
7  *          Bill Pringlemeir <bpringlemeir@nbsps.com>
8  *          Shaohui Xie <b21989@freescale.com>
9  *          Jason Jin <Jason.jin@freescale.com>
10  *
11  * Based on original driver mpc5121_nfc.c.
12  *
13  * This is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * Limitations:
19  * - Untested on MPC5125 and M54418.
20  * - DMA and pipelining not used.
21  * - 2K pages or less.
22  * - HW ECC: Only 2K page with 64+ OOB.
23  * - HW ECC: Only 24 and 32-bit error correction implemented.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/bitops.h>
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/io.h>
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/rawnand.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
38 #include <linux/slab.h>
39 #include <linux/swab.h>
40 
41 #define	DRV_NAME		"vf610_nfc"
42 
43 /* Register Offsets */
44 #define NFC_FLASH_CMD1			0x3F00
45 #define NFC_FLASH_CMD2			0x3F04
46 #define NFC_COL_ADDR			0x3F08
47 #define NFC_ROW_ADDR			0x3F0c
48 #define NFC_ROW_ADDR_INC		0x3F14
49 #define NFC_FLASH_STATUS1		0x3F18
50 #define NFC_FLASH_STATUS2		0x3F1c
51 #define NFC_CACHE_SWAP			0x3F28
52 #define NFC_SECTOR_SIZE			0x3F2c
53 #define NFC_FLASH_CONFIG		0x3F30
54 #define NFC_IRQ_STATUS			0x3F38
55 
56 /* Addresses for NFC MAIN RAM BUFFER areas */
57 #define NFC_MAIN_AREA(n)		((n) *  0x1000)
58 
59 #define PAGE_2K				0x0800
60 #define OOB_64				0x0040
61 #define OOB_MAX				0x0100
62 
63 /* NFC_CMD2[CODE] controller cycle bit masks */
64 #define COMMAND_CMD_BYTE1		BIT(14)
65 #define COMMAND_CAR_BYTE1		BIT(13)
66 #define COMMAND_CAR_BYTE2		BIT(12)
67 #define COMMAND_RAR_BYTE1		BIT(11)
68 #define COMMAND_RAR_BYTE2		BIT(10)
69 #define COMMAND_RAR_BYTE3		BIT(9)
70 #define COMMAND_NADDR_BYTES(x)		GENMASK(13, 13 - (x) + 1)
71 #define COMMAND_WRITE_DATA		BIT(8)
72 #define COMMAND_CMD_BYTE2		BIT(7)
73 #define COMMAND_RB_HANDSHAKE		BIT(6)
74 #define COMMAND_READ_DATA		BIT(5)
75 #define COMMAND_CMD_BYTE3		BIT(4)
76 #define COMMAND_READ_STATUS		BIT(3)
77 #define COMMAND_READ_ID			BIT(2)
78 
79 /* NFC ECC mode define */
80 #define ECC_BYPASS			0
81 #define ECC_45_BYTE			6
82 #define ECC_60_BYTE			7
83 
84 /*** Register Mask and bit definitions */
85 
86 /* NFC_FLASH_CMD1 Field */
87 #define CMD_BYTE2_MASK				0xFF000000
88 #define CMD_BYTE2_SHIFT				24
89 
90 /* NFC_FLASH_CM2 Field */
91 #define CMD_BYTE1_MASK				0xFF000000
92 #define CMD_BYTE1_SHIFT				24
93 #define CMD_CODE_MASK				0x00FFFF00
94 #define CMD_CODE_SHIFT				8
95 #define BUFNO_MASK				0x00000006
96 #define BUFNO_SHIFT				1
97 #define START_BIT				BIT(0)
98 
99 /* NFC_COL_ADDR Field */
100 #define COL_ADDR_MASK				0x0000FFFF
101 #define COL_ADDR_SHIFT				0
102 #define COL_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
103 
104 /* NFC_ROW_ADDR Field */
105 #define ROW_ADDR_MASK				0x00FFFFFF
106 #define ROW_ADDR_SHIFT				0
107 #define ROW_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
108 
109 #define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
110 #define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
111 #define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
112 #define ROW_ADDR_CHIP_SEL_SHIFT			24
113 
114 /* NFC_FLASH_STATUS2 Field */
115 #define STATUS_BYTE1_MASK			0x000000FF
116 
117 /* NFC_FLASH_CONFIG Field */
118 #define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
119 #define CONFIG_ECC_SRAM_ADDR_SHIFT		22
120 #define CONFIG_ECC_SRAM_REQ_BIT			BIT(21)
121 #define CONFIG_DMA_REQ_BIT			BIT(20)
122 #define CONFIG_ECC_MODE_MASK			0x000E0000
123 #define CONFIG_ECC_MODE_SHIFT			17
124 #define CONFIG_FAST_FLASH_BIT			BIT(16)
125 #define CONFIG_16BIT				BIT(7)
126 #define CONFIG_BOOT_MODE_BIT			BIT(6)
127 #define CONFIG_ADDR_AUTO_INCR_BIT		BIT(5)
128 #define CONFIG_BUFNO_AUTO_INCR_BIT		BIT(4)
129 #define CONFIG_PAGE_CNT_MASK			0xF
130 #define CONFIG_PAGE_CNT_SHIFT			0
131 
132 /* NFC_IRQ_STATUS Field */
133 #define IDLE_IRQ_BIT				BIT(29)
134 #define IDLE_EN_BIT				BIT(20)
135 #define CMD_DONE_CLEAR_BIT			BIT(18)
136 #define IDLE_CLEAR_BIT				BIT(17)
137 
138 /*
139  * ECC status - seems to consume 8 bytes (double word). The documented
140  * status byte is located in the lowest byte of the second word (which is
141  * the 4th or 7th byte depending on endianness).
142  * Calculate an offset to store the ECC status at the end of the buffer.
143  */
144 #define ECC_SRAM_ADDR		(PAGE_2K + OOB_MAX - 8)
145 
146 #define ECC_STATUS		0x4
147 #define ECC_STATUS_MASK		0x80
148 #define ECC_STATUS_ERR_COUNT	0x3F
149 
150 enum vf610_nfc_variant {
151 	NFC_VFC610 = 1,
152 };
153 
154 struct vf610_nfc {
155 	struct nand_chip chip;
156 	struct device *dev;
157 	void __iomem *regs;
158 	struct completion cmd_done;
159 	/* Status and ID are in alternate locations. */
160 	enum vf610_nfc_variant variant;
161 	struct clk *clk;
162 	/*
163 	 * Indicate that user data is accessed (full page/oob). This is
164 	 * useful to indicate the driver whether to swap byte endianness.
165 	 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
166 	 */
167 	bool data_access;
168 	u32 ecc_mode;
169 };
170 
171 static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
172 {
173 	return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
174 }
175 
176 static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
177 {
178 	return container_of(chip, struct vf610_nfc, chip);
179 }
180 
181 static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
182 {
183 	return readl(nfc->regs + reg);
184 }
185 
186 static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
187 {
188 	writel(val, nfc->regs + reg);
189 }
190 
191 static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
192 {
193 	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
194 }
195 
196 static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
197 {
198 	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
199 }
200 
201 static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
202 				       u32 mask, u32 shift, u32 val)
203 {
204 	vf610_nfc_write(nfc, reg,
205 			(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
206 }
207 
208 static inline bool vf610_nfc_kernel_is_little_endian(void)
209 {
210 #ifdef __LITTLE_ENDIAN
211 	return true;
212 #else
213 	return false;
214 #endif
215 }
216 
217 /**
218  * Read accessor for internal SRAM buffer
219  * @dst: destination address in regular memory
220  * @src: source address in SRAM buffer
221  * @len: bytes to copy
222  * @fix_endian: Fix endianness if required
223  *
224  * Use this accessor for the internal SRAM buffers. On the ARM
225  * Freescale Vybrid SoC it's known that the driver can treat
226  * the SRAM buffer as if it's memory. Other platform might need
227  * to treat the buffers differently.
228  *
229  * The controller stores bytes from the NAND chip internally in big
230  * endianness. On little endian platforms such as Vybrid this leads
231  * to reversed byte order.
232  * For performance reason (and earlier probably due to unawareness)
233  * the driver avoids correcting endianness where it has control over
234  * write and read side (e.g. page wise data access).
235  */
236 static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
237 					  size_t len, bool fix_endian)
238 {
239 	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
240 		unsigned int i;
241 
242 		for (i = 0; i < len; i += 4) {
243 			u32 val = swab32(__raw_readl(src + i));
244 
245 			memcpy(dst + i, &val, min(sizeof(val), len - i));
246 		}
247 	} else {
248 		memcpy_fromio(dst, src, len);
249 	}
250 }
251 
252 /**
253  * Write accessor for internal SRAM buffer
254  * @dst: destination address in SRAM buffer
255  * @src: source address in regular memory
256  * @len: bytes to copy
257  * @fix_endian: Fix endianness if required
258  *
259  * Use this accessor for the internal SRAM buffers. On the ARM
260  * Freescale Vybrid SoC it's known that the driver can treat
261  * the SRAM buffer as if it's memory. Other platform might need
262  * to treat the buffers differently.
263  *
264  * The controller stores bytes from the NAND chip internally in big
265  * endianness. On little endian platforms such as Vybrid this leads
266  * to reversed byte order.
267  * For performance reason (and earlier probably due to unawareness)
268  * the driver avoids correcting endianness where it has control over
269  * write and read side (e.g. page wise data access).
270  */
271 static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
272 					size_t len, bool fix_endian)
273 {
274 	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
275 		unsigned int i;
276 
277 		for (i = 0; i < len; i += 4) {
278 			u32 val;
279 
280 			memcpy(&val, src + i, min(sizeof(val), len - i));
281 			__raw_writel(swab32(val), dst + i);
282 		}
283 	} else {
284 		memcpy_toio(dst, src, len);
285 	}
286 }
287 
288 /* Clear flags for upcoming command */
289 static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
290 {
291 	u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
292 
293 	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
294 	vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
295 }
296 
297 static void vf610_nfc_done(struct vf610_nfc *nfc)
298 {
299 	unsigned long timeout = msecs_to_jiffies(100);
300 
301 	/*
302 	 * Barrier is needed after this write. This write need
303 	 * to be done before reading the next register the first
304 	 * time.
305 	 * vf610_nfc_set implicates such a barrier by using writel
306 	 * to write to the register.
307 	 */
308 	vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
309 	vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
310 
311 	if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
312 		dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
313 
314 	vf610_nfc_clear_status(nfc);
315 }
316 
317 static irqreturn_t vf610_nfc_irq(int irq, void *data)
318 {
319 	struct mtd_info *mtd = data;
320 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
321 
322 	vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
323 	complete(&nfc->cmd_done);
324 
325 	return IRQ_HANDLED;
326 }
327 
328 static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
329 {
330 	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
331 			    CONFIG_ECC_MODE_MASK,
332 			    CONFIG_ECC_MODE_SHIFT, ecc_mode);
333 }
334 
335 static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
336 {
337 	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
338 }
339 
340 static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
341 				 u32 cmd1, u32 cmd2, u32 trfr_sz)
342 {
343 	vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
344 			    COL_ADDR_SHIFT, col);
345 
346 	vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
347 			    ROW_ADDR_SHIFT, row);
348 
349 	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
350 	vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
351 	vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
352 
353 	dev_dbg(nfc->dev,
354 		"col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
355 		col, row, cmd1, cmd2, trfr_sz);
356 
357 	vf610_nfc_done(nfc);
358 }
359 
360 static inline const struct nand_op_instr *
361 vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
362 {
363 	if (*op_id + 1 >= subop->ninstrs)
364 		return NULL;
365 
366 	(*op_id)++;
367 
368 	return &subop->instrs[*op_id];
369 }
370 
371 static int vf610_nfc_cmd(struct nand_chip *chip,
372 			 const struct nand_subop *subop)
373 {
374 	const struct nand_op_instr *instr;
375 	struct vf610_nfc *nfc = chip_to_nfc(chip);
376 	int op_id = -1, trfr_sz = 0, offset;
377 	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
378 	bool force8bit = false;
379 
380 	/*
381 	 * Some ops are optional, but the hardware requires the operations
382 	 * to be in this exact order.
383 	 * The op parser enforces the order and makes sure that there isn't
384 	 * a read and write element in a single operation.
385 	 */
386 	instr = vf610_get_next_instr(subop, &op_id);
387 	if (!instr)
388 		return -EINVAL;
389 
390 	if (instr && instr->type == NAND_OP_CMD_INSTR) {
391 		cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
392 		code |= COMMAND_CMD_BYTE1;
393 
394 		instr = vf610_get_next_instr(subop, &op_id);
395 	}
396 
397 	if (instr && instr->type == NAND_OP_ADDR_INSTR) {
398 		int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
399 		int i = nand_subop_get_addr_start_off(subop, op_id);
400 
401 		for (; i < naddrs; i++) {
402 			u8 val = instr->ctx.addr.addrs[i];
403 
404 			if (i < 2)
405 				col |= COL_ADDR(i, val);
406 			else
407 				row |= ROW_ADDR(i - 2, val);
408 		}
409 		code |= COMMAND_NADDR_BYTES(naddrs);
410 
411 		instr = vf610_get_next_instr(subop, &op_id);
412 	}
413 
414 	if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
415 		trfr_sz = nand_subop_get_data_len(subop, op_id);
416 		offset = nand_subop_get_data_start_off(subop, op_id);
417 		force8bit = instr->ctx.data.force_8bit;
418 
419 		/*
420 		 * Don't fix endianness on page access for historical reasons.
421 		 * See comment in vf610_nfc_wr_to_sram
422 		 */
423 		vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
424 				     instr->ctx.data.buf.out + offset,
425 				     trfr_sz, !nfc->data_access);
426 		code |= COMMAND_WRITE_DATA;
427 
428 		instr = vf610_get_next_instr(subop, &op_id);
429 	}
430 
431 	if (instr && instr->type == NAND_OP_CMD_INSTR) {
432 		cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
433 		code |= COMMAND_CMD_BYTE2;
434 
435 		instr = vf610_get_next_instr(subop, &op_id);
436 	}
437 
438 	if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
439 		code |= COMMAND_RB_HANDSHAKE;
440 
441 		instr = vf610_get_next_instr(subop, &op_id);
442 	}
443 
444 	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
445 		trfr_sz = nand_subop_get_data_len(subop, op_id);
446 		offset = nand_subop_get_data_start_off(subop, op_id);
447 		force8bit = instr->ctx.data.force_8bit;
448 
449 		code |= COMMAND_READ_DATA;
450 	}
451 
452 	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
453 		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
454 
455 	cmd2 |= code << CMD_CODE_SHIFT;
456 
457 	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
458 
459 	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
460 		/*
461 		 * Don't fix endianness on page access for historical reasons.
462 		 * See comment in vf610_nfc_rd_from_sram
463 		 */
464 		vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
465 				       nfc->regs + NFC_MAIN_AREA(0) + offset,
466 				       trfr_sz, !nfc->data_access);
467 	}
468 
469 	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
470 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
471 
472 	return 0;
473 }
474 
475 static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
476 	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
477 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
478 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
479 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
480 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
481 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
482 	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
483 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
484 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
485 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
486 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
487 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
488 	);
489 
490 static int vf610_nfc_exec_op(struct nand_chip *chip,
491 			     const struct nand_operation *op,
492 			     bool check_only)
493 {
494 	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
495 				      check_only);
496 }
497 
498 /*
499  * This function supports Vybrid only (MPC5125 would have full RB and four CS)
500  */
501 static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
502 {
503 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
504 	u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
505 
506 	/* Vybrid only (MPC5125 would have full RB and four CS) */
507 	if (nfc->variant != NFC_VFC610)
508 		return;
509 
510 	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
511 
512 	if (chip >= 0) {
513 		tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
514 		tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT;
515 	}
516 
517 	vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
518 }
519 
520 static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
521 					 uint8_t *oob, int page)
522 {
523 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
524 	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
525 	u8 ecc_status;
526 	u8 ecc_count;
527 	int flips_threshold = nfc->chip.ecc.strength / 2;
528 
529 	ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
530 	ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
531 
532 	if (!(ecc_status & ECC_STATUS_MASK))
533 		return ecc_count;
534 
535 	nfc->data_access = true;
536 	nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
537 	nfc->data_access = false;
538 
539 	/*
540 	 * On an erased page, bit count (including OOB) should be zero or
541 	 * at least less then half of the ECC strength.
542 	 */
543 	return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
544 					   mtd->oobsize, NULL, 0,
545 					   flips_threshold);
546 }
547 
548 static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
549 			       u32 *row)
550 {
551 	*row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
552 	*code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
553 
554 	if (chip->options & NAND_ROW_ADDR_3) {
555 		*row |= ROW_ADDR(2, page >> 16);
556 		*code |= COMMAND_RAR_BYTE3;
557 	}
558 }
559 
560 static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
561 				uint8_t *buf, int oob_required, int page)
562 {
563 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
564 	int trfr_sz = mtd->writesize + mtd->oobsize;
565 	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
566 	int stat;
567 
568 	cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
569 	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
570 
571 	vf610_nfc_fill_row(chip, page, &code, &row);
572 
573 	cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
574 	code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
575 
576 	cmd2 |= code << CMD_CODE_SHIFT;
577 
578 	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
579 	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
580 	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
581 
582 	/*
583 	 * Don't fix endianness on page access for historical reasons.
584 	 * See comment in vf610_nfc_rd_from_sram
585 	 */
586 	vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
587 			       mtd->writesize, false);
588 	if (oob_required)
589 		vf610_nfc_rd_from_sram(chip->oob_poi,
590 				       nfc->regs + NFC_MAIN_AREA(0) +
591 						   mtd->writesize,
592 				       mtd->oobsize, false);
593 
594 	stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
595 
596 	if (stat < 0) {
597 		mtd->ecc_stats.failed++;
598 		return 0;
599 	} else {
600 		mtd->ecc_stats.corrected += stat;
601 		return stat;
602 	}
603 }
604 
605 static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
606 				const uint8_t *buf, int oob_required, int page)
607 {
608 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
609 	int trfr_sz = mtd->writesize + mtd->oobsize;
610 	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
611 	u8 status;
612 	int ret;
613 
614 	cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
615 	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
616 
617 	vf610_nfc_fill_row(chip, page, &code, &row);
618 
619 	cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
620 	code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
621 
622 	/*
623 	 * Don't fix endianness on page access for historical reasons.
624 	 * See comment in vf610_nfc_wr_to_sram
625 	 */
626 	vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
627 			     mtd->writesize, false);
628 
629 	code |= COMMAND_RB_HANDSHAKE;
630 	cmd2 |= code << CMD_CODE_SHIFT;
631 
632 	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
633 	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
634 	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
635 
636 	ret = nand_status_op(chip, &status);
637 	if (ret)
638 		return ret;
639 
640 	if (status & NAND_STATUS_FAIL)
641 		return -EIO;
642 
643 	return 0;
644 }
645 
646 static int vf610_nfc_read_page_raw(struct mtd_info *mtd,
647 				   struct nand_chip *chip, u8 *buf,
648 				   int oob_required, int page)
649 {
650 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
651 	int ret;
652 
653 	nfc->data_access = true;
654 	ret = nand_read_page_raw(mtd, chip, buf, oob_required, page);
655 	nfc->data_access = false;
656 
657 	return ret;
658 }
659 
660 static int vf610_nfc_write_page_raw(struct mtd_info *mtd,
661 				    struct nand_chip *chip, const u8 *buf,
662 				    int oob_required, int page)
663 {
664 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
665 	int ret;
666 
667 	nfc->data_access = true;
668 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
669 	if (!ret && oob_required)
670 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
671 					 false);
672 	nfc->data_access = false;
673 
674 	if (ret)
675 		return ret;
676 
677 	return nand_prog_page_end_op(chip);
678 }
679 
680 static int vf610_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
681 			      int page)
682 {
683 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
684 	int ret;
685 
686 	nfc->data_access = true;
687 	ret = nand_read_oob_std(mtd, chip, page);
688 	nfc->data_access = false;
689 
690 	return ret;
691 }
692 
693 static int vf610_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
694 			       int page)
695 {
696 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
697 	int ret;
698 
699 	nfc->data_access = true;
700 	ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
701 				      chip->oob_poi, mtd->oobsize);
702 	nfc->data_access = false;
703 
704 	if (ret)
705 		return ret;
706 
707 	return nand_prog_page_end_op(chip);
708 }
709 
710 static const struct of_device_id vf610_nfc_dt_ids[] = {
711 	{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
712 	{ /* sentinel */ }
713 };
714 MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
715 
716 static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
717 {
718 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
719 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
720 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
721 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
722 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
723 	vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
724 	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
725 
726 	/* Disable virtual pages, only one elementary transfer unit */
727 	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
728 			    CONFIG_PAGE_CNT_SHIFT, 1);
729 }
730 
731 static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
732 {
733 	if (nfc->chip.options & NAND_BUSWIDTH_16)
734 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
735 	else
736 		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
737 
738 	if (nfc->chip.ecc.mode == NAND_ECC_HW) {
739 		/* Set ECC status offset in SRAM */
740 		vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
741 				    CONFIG_ECC_SRAM_ADDR_MASK,
742 				    CONFIG_ECC_SRAM_ADDR_SHIFT,
743 				    ECC_SRAM_ADDR >> 3);
744 
745 		/* Enable ECC status in SRAM */
746 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
747 	}
748 }
749 
750 static int vf610_nfc_attach_chip(struct nand_chip *chip)
751 {
752 	struct mtd_info *mtd = nand_to_mtd(chip);
753 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
754 
755 	vf610_nfc_init_controller(nfc);
756 
757 	/* Bad block options. */
758 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
759 		chip->bbt_options |= NAND_BBT_NO_OOB;
760 
761 	/* Single buffer only, max 256 OOB minus ECC status */
762 	if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
763 		dev_err(nfc->dev, "Unsupported flash page size\n");
764 		return -ENXIO;
765 	}
766 
767 	if (chip->ecc.mode != NAND_ECC_HW)
768 		return 0;
769 
770 	if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
771 		dev_err(nfc->dev, "Unsupported flash with hwecc\n");
772 		return -ENXIO;
773 	}
774 
775 	if (chip->ecc.size != mtd->writesize) {
776 		dev_err(nfc->dev, "Step size needs to be page size\n");
777 		return -ENXIO;
778 	}
779 
780 	/* Only 64 byte ECC layouts known */
781 	if (mtd->oobsize > 64)
782 		mtd->oobsize = 64;
783 
784 	/* Use default large page ECC layout defined in NAND core */
785 	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
786 	if (chip->ecc.strength == 32) {
787 		nfc->ecc_mode = ECC_60_BYTE;
788 		chip->ecc.bytes = 60;
789 	} else if (chip->ecc.strength == 24) {
790 		nfc->ecc_mode = ECC_45_BYTE;
791 		chip->ecc.bytes = 45;
792 	} else {
793 		dev_err(nfc->dev, "Unsupported ECC strength\n");
794 		return -ENXIO;
795 	}
796 
797 	chip->ecc.read_page = vf610_nfc_read_page;
798 	chip->ecc.write_page = vf610_nfc_write_page;
799 	chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
800 	chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
801 	chip->ecc.read_oob = vf610_nfc_read_oob;
802 	chip->ecc.write_oob = vf610_nfc_write_oob;
803 
804 	chip->ecc.size = PAGE_2K;
805 
806 	return 0;
807 }
808 
809 static const struct nand_controller_ops vf610_nfc_controller_ops = {
810 	.attach_chip = vf610_nfc_attach_chip,
811 };
812 
813 static int vf610_nfc_probe(struct platform_device *pdev)
814 {
815 	struct vf610_nfc *nfc;
816 	struct resource *res;
817 	struct mtd_info *mtd;
818 	struct nand_chip *chip;
819 	struct device_node *child;
820 	const struct of_device_id *of_id;
821 	int err;
822 	int irq;
823 
824 	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
825 	if (!nfc)
826 		return -ENOMEM;
827 
828 	nfc->dev = &pdev->dev;
829 	chip = &nfc->chip;
830 	mtd = nand_to_mtd(chip);
831 
832 	mtd->owner = THIS_MODULE;
833 	mtd->dev.parent = nfc->dev;
834 	mtd->name = DRV_NAME;
835 
836 	irq = platform_get_irq(pdev, 0);
837 	if (irq <= 0)
838 		return -EINVAL;
839 
840 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
841 	nfc->regs = devm_ioremap_resource(nfc->dev, res);
842 	if (IS_ERR(nfc->regs))
843 		return PTR_ERR(nfc->regs);
844 
845 	nfc->clk = devm_clk_get(&pdev->dev, NULL);
846 	if (IS_ERR(nfc->clk))
847 		return PTR_ERR(nfc->clk);
848 
849 	err = clk_prepare_enable(nfc->clk);
850 	if (err) {
851 		dev_err(nfc->dev, "Unable to enable clock!\n");
852 		return err;
853 	}
854 
855 	of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
856 	nfc->variant = (enum vf610_nfc_variant)of_id->data;
857 
858 	for_each_available_child_of_node(nfc->dev->of_node, child) {
859 		if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
860 
861 			if (nand_get_flash_node(chip)) {
862 				dev_err(nfc->dev,
863 					"Only one NAND chip supported!\n");
864 				err = -EINVAL;
865 				goto err_disable_clk;
866 			}
867 
868 			nand_set_flash_node(chip, child);
869 		}
870 	}
871 
872 	if (!nand_get_flash_node(chip)) {
873 		dev_err(nfc->dev, "NAND chip sub-node missing!\n");
874 		err = -ENODEV;
875 		goto err_disable_clk;
876 	}
877 
878 	chip->exec_op = vf610_nfc_exec_op;
879 	chip->select_chip = vf610_nfc_select_chip;
880 
881 	chip->options |= NAND_NO_SUBPAGE_WRITE;
882 
883 	init_completion(&nfc->cmd_done);
884 
885 	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
886 	if (err) {
887 		dev_err(nfc->dev, "Error requesting IRQ!\n");
888 		goto err_disable_clk;
889 	}
890 
891 	vf610_nfc_preinit_controller(nfc);
892 
893 	/* Scan the NAND chip */
894 	chip->dummy_controller.ops = &vf610_nfc_controller_ops;
895 	err = nand_scan(mtd, 1);
896 	if (err)
897 		goto err_disable_clk;
898 
899 	platform_set_drvdata(pdev, mtd);
900 
901 	/* Register device in MTD */
902 	err = mtd_device_register(mtd, NULL, 0);
903 	if (err)
904 		goto err_cleanup_nand;
905 	return 0;
906 
907 err_cleanup_nand:
908 	nand_cleanup(chip);
909 err_disable_clk:
910 	clk_disable_unprepare(nfc->clk);
911 	return err;
912 }
913 
914 static int vf610_nfc_remove(struct platform_device *pdev)
915 {
916 	struct mtd_info *mtd = platform_get_drvdata(pdev);
917 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
918 
919 	nand_release(mtd);
920 	clk_disable_unprepare(nfc->clk);
921 	return 0;
922 }
923 
924 #ifdef CONFIG_PM_SLEEP
925 static int vf610_nfc_suspend(struct device *dev)
926 {
927 	struct mtd_info *mtd = dev_get_drvdata(dev);
928 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
929 
930 	clk_disable_unprepare(nfc->clk);
931 	return 0;
932 }
933 
934 static int vf610_nfc_resume(struct device *dev)
935 {
936 	int err;
937 
938 	struct mtd_info *mtd = dev_get_drvdata(dev);
939 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
940 
941 	err = clk_prepare_enable(nfc->clk);
942 	if (err)
943 		return err;
944 
945 	vf610_nfc_preinit_controller(nfc);
946 	vf610_nfc_init_controller(nfc);
947 	return 0;
948 }
949 #endif
950 
951 static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
952 
953 static struct platform_driver vf610_nfc_driver = {
954 	.driver		= {
955 		.name	= DRV_NAME,
956 		.of_match_table = vf610_nfc_dt_ids,
957 		.pm	= &vf610_nfc_pm_ops,
958 	},
959 	.probe		= vf610_nfc_probe,
960 	.remove		= vf610_nfc_remove,
961 };
962 
963 module_platform_driver(vf610_nfc_driver);
964 
965 MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
966 MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
967 MODULE_LICENSE("GPL");
968