1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others 4 * 5 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver. 6 * Jason ported to M54418TWR and MVFA5 (VF610). 7 * Authors: Stefan Agner <stefan.agner@toradex.com> 8 * Bill Pringlemeir <bpringlemeir@nbsps.com> 9 * Shaohui Xie <b21989@freescale.com> 10 * Jason Jin <Jason.jin@freescale.com> 11 * 12 * Based on original driver mpc5121_nfc.c. 13 * 14 * Limitations: 15 * - Untested on MPC5125 and M54418. 16 * - DMA and pipelining not used. 17 * - 2K pages or less. 18 * - HW ECC: Only 2K page with 64+ OOB. 19 * - HW ECC: Only 24 and 32-bit error correction implemented. 20 */ 21 22 #include <linux/module.h> 23 #include <linux/bitops.h> 24 #include <linux/clk.h> 25 #include <linux/delay.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/io.h> 29 #include <linux/mtd/mtd.h> 30 #include <linux/mtd/rawnand.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/of.h> 33 #include <linux/platform_device.h> 34 #include <linux/property.h> 35 #include <linux/slab.h> 36 #include <linux/swab.h> 37 38 #define DRV_NAME "vf610_nfc" 39 40 /* Register Offsets */ 41 #define NFC_FLASH_CMD1 0x3F00 42 #define NFC_FLASH_CMD2 0x3F04 43 #define NFC_COL_ADDR 0x3F08 44 #define NFC_ROW_ADDR 0x3F0c 45 #define NFC_ROW_ADDR_INC 0x3F14 46 #define NFC_FLASH_STATUS1 0x3F18 47 #define NFC_FLASH_STATUS2 0x3F1c 48 #define NFC_CACHE_SWAP 0x3F28 49 #define NFC_SECTOR_SIZE 0x3F2c 50 #define NFC_FLASH_CONFIG 0x3F30 51 #define NFC_IRQ_STATUS 0x3F38 52 53 /* Addresses for NFC MAIN RAM BUFFER areas */ 54 #define NFC_MAIN_AREA(n) ((n) * 0x1000) 55 56 #define PAGE_2K 0x0800 57 #define OOB_64 0x0040 58 #define OOB_MAX 0x0100 59 60 /* NFC_CMD2[CODE] controller cycle bit masks */ 61 #define COMMAND_CMD_BYTE1 BIT(14) 62 #define COMMAND_CAR_BYTE1 BIT(13) 63 #define COMMAND_CAR_BYTE2 BIT(12) 64 #define COMMAND_RAR_BYTE1 BIT(11) 65 #define COMMAND_RAR_BYTE2 BIT(10) 66 #define COMMAND_RAR_BYTE3 BIT(9) 67 #define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1) 68 #define COMMAND_WRITE_DATA BIT(8) 69 #define COMMAND_CMD_BYTE2 BIT(7) 70 #define COMMAND_RB_HANDSHAKE BIT(6) 71 #define COMMAND_READ_DATA BIT(5) 72 #define COMMAND_CMD_BYTE3 BIT(4) 73 #define COMMAND_READ_STATUS BIT(3) 74 #define COMMAND_READ_ID BIT(2) 75 76 /* NFC ECC mode define */ 77 #define ECC_BYPASS 0 78 #define ECC_45_BYTE 6 79 #define ECC_60_BYTE 7 80 81 /*** Register Mask and bit definitions */ 82 83 /* NFC_FLASH_CMD1 Field */ 84 #define CMD_BYTE2_MASK 0xFF000000 85 #define CMD_BYTE2_SHIFT 24 86 87 /* NFC_FLASH_CM2 Field */ 88 #define CMD_BYTE1_MASK 0xFF000000 89 #define CMD_BYTE1_SHIFT 24 90 #define CMD_CODE_MASK 0x00FFFF00 91 #define CMD_CODE_SHIFT 8 92 #define BUFNO_MASK 0x00000006 93 #define BUFNO_SHIFT 1 94 #define START_BIT BIT(0) 95 96 /* NFC_COL_ADDR Field */ 97 #define COL_ADDR_MASK 0x0000FFFF 98 #define COL_ADDR_SHIFT 0 99 #define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) 100 101 /* NFC_ROW_ADDR Field */ 102 #define ROW_ADDR_MASK 0x00FFFFFF 103 #define ROW_ADDR_SHIFT 0 104 #define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) 105 106 #define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000 107 #define ROW_ADDR_CHIP_SEL_RB_SHIFT 28 108 #define ROW_ADDR_CHIP_SEL_MASK 0x0F000000 109 #define ROW_ADDR_CHIP_SEL_SHIFT 24 110 111 /* NFC_FLASH_STATUS2 Field */ 112 #define STATUS_BYTE1_MASK 0x000000FF 113 114 /* NFC_FLASH_CONFIG Field */ 115 #define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000 116 #define CONFIG_ECC_SRAM_ADDR_SHIFT 22 117 #define CONFIG_ECC_SRAM_REQ_BIT BIT(21) 118 #define CONFIG_DMA_REQ_BIT BIT(20) 119 #define CONFIG_ECC_MODE_MASK 0x000E0000 120 #define CONFIG_ECC_MODE_SHIFT 17 121 #define CONFIG_FAST_FLASH_BIT BIT(16) 122 #define CONFIG_16BIT BIT(7) 123 #define CONFIG_BOOT_MODE_BIT BIT(6) 124 #define CONFIG_ADDR_AUTO_INCR_BIT BIT(5) 125 #define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4) 126 #define CONFIG_PAGE_CNT_MASK 0xF 127 #define CONFIG_PAGE_CNT_SHIFT 0 128 129 /* NFC_IRQ_STATUS Field */ 130 #define IDLE_IRQ_BIT BIT(29) 131 #define IDLE_EN_BIT BIT(20) 132 #define CMD_DONE_CLEAR_BIT BIT(18) 133 #define IDLE_CLEAR_BIT BIT(17) 134 135 /* 136 * ECC status - seems to consume 8 bytes (double word). The documented 137 * status byte is located in the lowest byte of the second word (which is 138 * the 4th or 7th byte depending on endianness). 139 * Calculate an offset to store the ECC status at the end of the buffer. 140 */ 141 #define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8) 142 143 #define ECC_STATUS 0x4 144 #define ECC_STATUS_MASK 0x80 145 #define ECC_STATUS_ERR_COUNT 0x3F 146 147 enum vf610_nfc_variant { 148 NFC_VFC610 = 1, 149 }; 150 151 struct vf610_nfc { 152 struct nand_controller base; 153 struct nand_chip chip; 154 struct device *dev; 155 void __iomem *regs; 156 struct completion cmd_done; 157 /* Status and ID are in alternate locations. */ 158 enum vf610_nfc_variant variant; 159 struct clk *clk; 160 /* 161 * Indicate that user data is accessed (full page/oob). This is 162 * useful to indicate the driver whether to swap byte endianness. 163 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram. 164 */ 165 bool data_access; 166 u32 ecc_mode; 167 }; 168 169 static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip) 170 { 171 return container_of(chip, struct vf610_nfc, chip); 172 } 173 174 static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg) 175 { 176 return readl(nfc->regs + reg); 177 } 178 179 static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val) 180 { 181 writel(val, nfc->regs + reg); 182 } 183 184 static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits) 185 { 186 vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits); 187 } 188 189 static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits) 190 { 191 vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits); 192 } 193 194 static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg, 195 u32 mask, u32 shift, u32 val) 196 { 197 vf610_nfc_write(nfc, reg, 198 (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift); 199 } 200 201 static inline bool vf610_nfc_kernel_is_little_endian(void) 202 { 203 #ifdef __LITTLE_ENDIAN 204 return true; 205 #else 206 return false; 207 #endif 208 } 209 210 /* 211 * Read accessor for internal SRAM buffer 212 * @dst: destination address in regular memory 213 * @src: source address in SRAM buffer 214 * @len: bytes to copy 215 * @fix_endian: Fix endianness if required 216 * 217 * Use this accessor for the internal SRAM buffers. On the ARM 218 * Freescale Vybrid SoC it's known that the driver can treat 219 * the SRAM buffer as if it's memory. Other platform might need 220 * to treat the buffers differently. 221 * 222 * The controller stores bytes from the NAND chip internally in big 223 * endianness. On little endian platforms such as Vybrid this leads 224 * to reversed byte order. 225 * For performance reason (and earlier probably due to unawareness) 226 * the driver avoids correcting endianness where it has control over 227 * write and read side (e.g. page wise data access). 228 */ 229 static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src, 230 size_t len, bool fix_endian) 231 { 232 if (vf610_nfc_kernel_is_little_endian() && fix_endian) { 233 unsigned int i; 234 235 for (i = 0; i < len; i += 4) { 236 u32 val = swab32(__raw_readl(src + i)); 237 238 memcpy(dst + i, &val, min(sizeof(val), len - i)); 239 } 240 } else { 241 memcpy_fromio(dst, src, len); 242 } 243 } 244 245 /* 246 * Write accessor for internal SRAM buffer 247 * @dst: destination address in SRAM buffer 248 * @src: source address in regular memory 249 * @len: bytes to copy 250 * @fix_endian: Fix endianness if required 251 * 252 * Use this accessor for the internal SRAM buffers. On the ARM 253 * Freescale Vybrid SoC it's known that the driver can treat 254 * the SRAM buffer as if it's memory. Other platform might need 255 * to treat the buffers differently. 256 * 257 * The controller stores bytes from the NAND chip internally in big 258 * endianness. On little endian platforms such as Vybrid this leads 259 * to reversed byte order. 260 * For performance reason (and earlier probably due to unawareness) 261 * the driver avoids correcting endianness where it has control over 262 * write and read side (e.g. page wise data access). 263 */ 264 static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src, 265 size_t len, bool fix_endian) 266 { 267 if (vf610_nfc_kernel_is_little_endian() && fix_endian) { 268 unsigned int i; 269 270 for (i = 0; i < len; i += 4) { 271 u32 val; 272 273 memcpy(&val, src + i, min(sizeof(val), len - i)); 274 __raw_writel(swab32(val), dst + i); 275 } 276 } else { 277 memcpy_toio(dst, src, len); 278 } 279 } 280 281 /* Clear flags for upcoming command */ 282 static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc) 283 { 284 u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS); 285 286 tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT; 287 vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp); 288 } 289 290 static void vf610_nfc_done(struct vf610_nfc *nfc) 291 { 292 unsigned long timeout = msecs_to_jiffies(100); 293 294 /* 295 * Barrier is needed after this write. This write need 296 * to be done before reading the next register the first 297 * time. 298 * vf610_nfc_set implicates such a barrier by using writel 299 * to write to the register. 300 */ 301 vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); 302 vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT); 303 304 if (!wait_for_completion_timeout(&nfc->cmd_done, timeout)) 305 dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n"); 306 307 vf610_nfc_clear_status(nfc); 308 } 309 310 static irqreturn_t vf610_nfc_irq(int irq, void *data) 311 { 312 struct vf610_nfc *nfc = data; 313 314 vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); 315 complete(&nfc->cmd_done); 316 317 return IRQ_HANDLED; 318 } 319 320 static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode) 321 { 322 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, 323 CONFIG_ECC_MODE_MASK, 324 CONFIG_ECC_MODE_SHIFT, ecc_mode); 325 } 326 327 static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row, 328 u32 cmd1, u32 cmd2, u32 trfr_sz) 329 { 330 vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK, 331 COL_ADDR_SHIFT, col); 332 333 vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK, 334 ROW_ADDR_SHIFT, row); 335 336 vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz); 337 vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1); 338 vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2); 339 340 dev_dbg(nfc->dev, 341 "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n", 342 col, row, cmd1, cmd2, trfr_sz); 343 344 vf610_nfc_done(nfc); 345 } 346 347 static inline const struct nand_op_instr * 348 vf610_get_next_instr(const struct nand_subop *subop, int *op_id) 349 { 350 if (*op_id + 1 >= subop->ninstrs) 351 return NULL; 352 353 (*op_id)++; 354 355 return &subop->instrs[*op_id]; 356 } 357 358 static int vf610_nfc_cmd(struct nand_chip *chip, 359 const struct nand_subop *subop) 360 { 361 const struct nand_op_instr *instr; 362 struct vf610_nfc *nfc = chip_to_nfc(chip); 363 int op_id = -1, trfr_sz = 0, offset = 0; 364 u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0; 365 bool force8bit = false; 366 367 /* 368 * Some ops are optional, but the hardware requires the operations 369 * to be in this exact order. 370 * The op parser enforces the order and makes sure that there isn't 371 * a read and write element in a single operation. 372 */ 373 instr = vf610_get_next_instr(subop, &op_id); 374 if (!instr) 375 return -EINVAL; 376 377 if (instr && instr->type == NAND_OP_CMD_INSTR) { 378 cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT; 379 code |= COMMAND_CMD_BYTE1; 380 381 instr = vf610_get_next_instr(subop, &op_id); 382 } 383 384 if (instr && instr->type == NAND_OP_ADDR_INSTR) { 385 int naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 386 int i = nand_subop_get_addr_start_off(subop, op_id); 387 388 for (; i < naddrs; i++) { 389 u8 val = instr->ctx.addr.addrs[i]; 390 391 if (i < 2) 392 col |= COL_ADDR(i, val); 393 else 394 row |= ROW_ADDR(i - 2, val); 395 } 396 code |= COMMAND_NADDR_BYTES(naddrs); 397 398 instr = vf610_get_next_instr(subop, &op_id); 399 } 400 401 if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) { 402 trfr_sz = nand_subop_get_data_len(subop, op_id); 403 offset = nand_subop_get_data_start_off(subop, op_id); 404 force8bit = instr->ctx.data.force_8bit; 405 406 /* 407 * Don't fix endianness on page access for historical reasons. 408 * See comment in vf610_nfc_wr_to_sram 409 */ 410 vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset, 411 instr->ctx.data.buf.out + offset, 412 trfr_sz, !nfc->data_access); 413 code |= COMMAND_WRITE_DATA; 414 415 instr = vf610_get_next_instr(subop, &op_id); 416 } 417 418 if (instr && instr->type == NAND_OP_CMD_INSTR) { 419 cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT; 420 code |= COMMAND_CMD_BYTE2; 421 422 instr = vf610_get_next_instr(subop, &op_id); 423 } 424 425 if (instr && instr->type == NAND_OP_WAITRDY_INSTR) { 426 code |= COMMAND_RB_HANDSHAKE; 427 428 instr = vf610_get_next_instr(subop, &op_id); 429 } 430 431 if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { 432 trfr_sz = nand_subop_get_data_len(subop, op_id); 433 offset = nand_subop_get_data_start_off(subop, op_id); 434 force8bit = instr->ctx.data.force_8bit; 435 436 code |= COMMAND_READ_DATA; 437 } 438 439 if (force8bit && (chip->options & NAND_BUSWIDTH_16)) 440 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); 441 442 cmd2 |= code << CMD_CODE_SHIFT; 443 444 vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz); 445 446 if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { 447 /* 448 * Don't fix endianness on page access for historical reasons. 449 * See comment in vf610_nfc_rd_from_sram 450 */ 451 vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset, 452 nfc->regs + NFC_MAIN_AREA(0) + offset, 453 trfr_sz, !nfc->data_access); 454 } 455 456 if (force8bit && (chip->options & NAND_BUSWIDTH_16)) 457 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); 458 459 return 0; 460 } 461 462 static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER( 463 NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, 464 NAND_OP_PARSER_PAT_CMD_ELEM(true), 465 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), 466 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX), 467 NAND_OP_PARSER_PAT_CMD_ELEM(true), 468 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 469 NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, 470 NAND_OP_PARSER_PAT_CMD_ELEM(true), 471 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), 472 NAND_OP_PARSER_PAT_CMD_ELEM(true), 473 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 474 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)), 475 ); 476 477 /* 478 * This function supports Vybrid only (MPC5125 would have full RB and four CS) 479 */ 480 static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs) 481 { 482 struct vf610_nfc *nfc = chip_to_nfc(chip); 483 u32 tmp; 484 485 /* Vybrid only (MPC5125 would have full RB and four CS) */ 486 if (nfc->variant != NFC_VFC610) 487 return; 488 489 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR); 490 tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK); 491 tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT; 492 tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT; 493 494 vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp); 495 } 496 497 static int vf610_nfc_exec_op(struct nand_chip *chip, 498 const struct nand_operation *op, 499 bool check_only) 500 { 501 if (!check_only) 502 vf610_nfc_select_target(chip, op->cs); 503 504 return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op, 505 check_only); 506 } 507 508 static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat, 509 uint8_t *oob, int page) 510 { 511 struct vf610_nfc *nfc = chip_to_nfc(chip); 512 struct mtd_info *mtd = nand_to_mtd(chip); 513 u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS; 514 u8 ecc_status; 515 u8 ecc_count; 516 int flips_threshold = nfc->chip.ecc.strength / 2; 517 518 ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff; 519 ecc_count = ecc_status & ECC_STATUS_ERR_COUNT; 520 521 if (!(ecc_status & ECC_STATUS_MASK)) 522 return ecc_count; 523 524 nfc->data_access = true; 525 nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize); 526 nfc->data_access = false; 527 528 /* 529 * On an erased page, bit count (including OOB) should be zero or 530 * at least less then half of the ECC strength. 531 */ 532 return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob, 533 mtd->oobsize, NULL, 0, 534 flips_threshold); 535 } 536 537 static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code, 538 u32 *row) 539 { 540 *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8); 541 *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2; 542 543 if (chip->options & NAND_ROW_ADDR_3) { 544 *row |= ROW_ADDR(2, page >> 16); 545 *code |= COMMAND_RAR_BYTE3; 546 } 547 } 548 549 static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf, 550 int oob_required, int page) 551 { 552 struct vf610_nfc *nfc = chip_to_nfc(chip); 553 struct mtd_info *mtd = nand_to_mtd(chip); 554 int trfr_sz = mtd->writesize + mtd->oobsize; 555 u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; 556 int stat; 557 558 vf610_nfc_select_target(chip, chip->cur_cs); 559 560 cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT; 561 code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; 562 563 vf610_nfc_fill_row(chip, page, &code, &row); 564 565 cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT; 566 code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA; 567 568 cmd2 |= code << CMD_CODE_SHIFT; 569 570 vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); 571 vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); 572 vf610_nfc_ecc_mode(nfc, ECC_BYPASS); 573 574 /* 575 * Don't fix endianness on page access for historical reasons. 576 * See comment in vf610_nfc_rd_from_sram 577 */ 578 vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0), 579 mtd->writesize, false); 580 if (oob_required) 581 vf610_nfc_rd_from_sram(chip->oob_poi, 582 nfc->regs + NFC_MAIN_AREA(0) + 583 mtd->writesize, 584 mtd->oobsize, false); 585 586 stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page); 587 588 if (stat < 0) { 589 mtd->ecc_stats.failed++; 590 return 0; 591 } else { 592 mtd->ecc_stats.corrected += stat; 593 return stat; 594 } 595 } 596 597 static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf, 598 int oob_required, int page) 599 { 600 struct vf610_nfc *nfc = chip_to_nfc(chip); 601 struct mtd_info *mtd = nand_to_mtd(chip); 602 int trfr_sz = mtd->writesize + mtd->oobsize; 603 u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; 604 u8 status; 605 int ret; 606 607 vf610_nfc_select_target(chip, chip->cur_cs); 608 609 cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT; 610 code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; 611 612 vf610_nfc_fill_row(chip, page, &code, &row); 613 614 cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT; 615 code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA; 616 617 /* 618 * Don't fix endianness on page access for historical reasons. 619 * See comment in vf610_nfc_wr_to_sram 620 */ 621 vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf, 622 mtd->writesize, false); 623 624 code |= COMMAND_RB_HANDSHAKE; 625 cmd2 |= code << CMD_CODE_SHIFT; 626 627 vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); 628 vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); 629 vf610_nfc_ecc_mode(nfc, ECC_BYPASS); 630 631 ret = nand_status_op(chip, &status); 632 if (ret) 633 return ret; 634 635 if (status & NAND_STATUS_FAIL) 636 return -EIO; 637 638 return 0; 639 } 640 641 static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, 642 int oob_required, int page) 643 { 644 struct vf610_nfc *nfc = chip_to_nfc(chip); 645 int ret; 646 647 nfc->data_access = true; 648 ret = nand_read_page_raw(chip, buf, oob_required, page); 649 nfc->data_access = false; 650 651 return ret; 652 } 653 654 static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, 655 int oob_required, int page) 656 { 657 struct vf610_nfc *nfc = chip_to_nfc(chip); 658 struct mtd_info *mtd = nand_to_mtd(chip); 659 int ret; 660 661 nfc->data_access = true; 662 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 663 if (!ret && oob_required) 664 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 665 false); 666 nfc->data_access = false; 667 668 if (ret) 669 return ret; 670 671 return nand_prog_page_end_op(chip); 672 } 673 674 static int vf610_nfc_read_oob(struct nand_chip *chip, int page) 675 { 676 struct vf610_nfc *nfc = chip_to_nfc(chip); 677 int ret; 678 679 nfc->data_access = true; 680 ret = nand_read_oob_std(chip, page); 681 nfc->data_access = false; 682 683 return ret; 684 } 685 686 static int vf610_nfc_write_oob(struct nand_chip *chip, int page) 687 { 688 struct mtd_info *mtd = nand_to_mtd(chip); 689 struct vf610_nfc *nfc = chip_to_nfc(chip); 690 int ret; 691 692 nfc->data_access = true; 693 ret = nand_prog_page_begin_op(chip, page, mtd->writesize, 694 chip->oob_poi, mtd->oobsize); 695 nfc->data_access = false; 696 697 if (ret) 698 return ret; 699 700 return nand_prog_page_end_op(chip); 701 } 702 703 static const struct of_device_id vf610_nfc_dt_ids[] = { 704 { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 }, 705 { /* sentinel */ } 706 }; 707 MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids); 708 709 static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc) 710 { 711 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); 712 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT); 713 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT); 714 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT); 715 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT); 716 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT); 717 vf610_nfc_ecc_mode(nfc, ECC_BYPASS); 718 719 /* Disable virtual pages, only one elementary transfer unit */ 720 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK, 721 CONFIG_PAGE_CNT_SHIFT, 1); 722 } 723 724 static void vf610_nfc_init_controller(struct vf610_nfc *nfc) 725 { 726 if (nfc->chip.options & NAND_BUSWIDTH_16) 727 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); 728 else 729 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); 730 731 if (nfc->chip.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { 732 /* Set ECC status offset in SRAM */ 733 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, 734 CONFIG_ECC_SRAM_ADDR_MASK, 735 CONFIG_ECC_SRAM_ADDR_SHIFT, 736 ECC_SRAM_ADDR >> 3); 737 738 /* Enable ECC status in SRAM */ 739 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT); 740 } 741 } 742 743 static int vf610_nfc_attach_chip(struct nand_chip *chip) 744 { 745 struct mtd_info *mtd = nand_to_mtd(chip); 746 struct vf610_nfc *nfc = chip_to_nfc(chip); 747 748 vf610_nfc_init_controller(nfc); 749 750 /* Bad block options. */ 751 if (chip->bbt_options & NAND_BBT_USE_FLASH) 752 chip->bbt_options |= NAND_BBT_NO_OOB; 753 754 /* Single buffer only, max 256 OOB minus ECC status */ 755 if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) { 756 dev_err(nfc->dev, "Unsupported flash page size\n"); 757 return -ENXIO; 758 } 759 760 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) 761 return 0; 762 763 if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) { 764 dev_err(nfc->dev, "Unsupported flash with hwecc\n"); 765 return -ENXIO; 766 } 767 768 if (chip->ecc.size != mtd->writesize) { 769 dev_err(nfc->dev, "Step size needs to be page size\n"); 770 return -ENXIO; 771 } 772 773 /* Only 64 byte ECC layouts known */ 774 if (mtd->oobsize > 64) 775 mtd->oobsize = 64; 776 777 /* Use default large page ECC layout defined in NAND core */ 778 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); 779 if (chip->ecc.strength == 32) { 780 nfc->ecc_mode = ECC_60_BYTE; 781 chip->ecc.bytes = 60; 782 } else if (chip->ecc.strength == 24) { 783 nfc->ecc_mode = ECC_45_BYTE; 784 chip->ecc.bytes = 45; 785 } else { 786 dev_err(nfc->dev, "Unsupported ECC strength\n"); 787 return -ENXIO; 788 } 789 790 chip->ecc.read_page = vf610_nfc_read_page; 791 chip->ecc.write_page = vf610_nfc_write_page; 792 chip->ecc.read_page_raw = vf610_nfc_read_page_raw; 793 chip->ecc.write_page_raw = vf610_nfc_write_page_raw; 794 chip->ecc.read_oob = vf610_nfc_read_oob; 795 chip->ecc.write_oob = vf610_nfc_write_oob; 796 797 chip->ecc.size = PAGE_2K; 798 799 return 0; 800 } 801 802 static const struct nand_controller_ops vf610_nfc_controller_ops = { 803 .attach_chip = vf610_nfc_attach_chip, 804 .exec_op = vf610_nfc_exec_op, 805 806 }; 807 808 static int vf610_nfc_probe(struct platform_device *pdev) 809 { 810 struct vf610_nfc *nfc; 811 struct mtd_info *mtd; 812 struct nand_chip *chip; 813 struct device_node *child; 814 int err; 815 int irq; 816 817 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); 818 if (!nfc) 819 return -ENOMEM; 820 821 nfc->dev = &pdev->dev; 822 chip = &nfc->chip; 823 mtd = nand_to_mtd(chip); 824 825 mtd->owner = THIS_MODULE; 826 mtd->dev.parent = nfc->dev; 827 mtd->name = DRV_NAME; 828 829 irq = platform_get_irq(pdev, 0); 830 if (irq < 0) 831 return irq; 832 833 nfc->regs = devm_platform_ioremap_resource(pdev, 0); 834 if (IS_ERR(nfc->regs)) 835 return PTR_ERR(nfc->regs); 836 837 nfc->clk = devm_clk_get_enabled(&pdev->dev, NULL); 838 if (IS_ERR(nfc->clk)) { 839 dev_err(nfc->dev, "Unable to get and enable clock!\n"); 840 return PTR_ERR(nfc->clk); 841 } 842 843 nfc->variant = (enum vf610_nfc_variant)device_get_match_data(&pdev->dev); 844 if (!nfc->variant) 845 return -ENODEV; 846 847 for_each_available_child_of_node(nfc->dev->of_node, child) { 848 if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) { 849 850 if (nand_get_flash_node(chip)) { 851 dev_err(nfc->dev, 852 "Only one NAND chip supported!\n"); 853 of_node_put(child); 854 return -EINVAL; 855 } 856 857 nand_set_flash_node(chip, child); 858 } 859 } 860 861 if (!nand_get_flash_node(chip)) { 862 dev_err(nfc->dev, "NAND chip sub-node missing!\n"); 863 return -ENODEV; 864 } 865 866 chip->options |= NAND_NO_SUBPAGE_WRITE; 867 868 init_completion(&nfc->cmd_done); 869 870 err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc); 871 if (err) { 872 dev_err(nfc->dev, "Error requesting IRQ!\n"); 873 return err; 874 } 875 876 vf610_nfc_preinit_controller(nfc); 877 878 nand_controller_init(&nfc->base); 879 nfc->base.ops = &vf610_nfc_controller_ops; 880 chip->controller = &nfc->base; 881 882 /* Scan the NAND chip */ 883 err = nand_scan(chip, 1); 884 if (err) 885 return err; 886 887 platform_set_drvdata(pdev, nfc); 888 889 /* Register device in MTD */ 890 err = mtd_device_register(mtd, NULL, 0); 891 if (err) 892 goto err_cleanup_nand; 893 return 0; 894 895 err_cleanup_nand: 896 nand_cleanup(chip); 897 return err; 898 } 899 900 static void vf610_nfc_remove(struct platform_device *pdev) 901 { 902 struct vf610_nfc *nfc = platform_get_drvdata(pdev); 903 struct nand_chip *chip = &nfc->chip; 904 int ret; 905 906 ret = mtd_device_unregister(nand_to_mtd(chip)); 907 WARN_ON(ret); 908 nand_cleanup(chip); 909 } 910 911 #ifdef CONFIG_PM_SLEEP 912 static int vf610_nfc_suspend(struct device *dev) 913 { 914 struct vf610_nfc *nfc = dev_get_drvdata(dev); 915 916 clk_disable_unprepare(nfc->clk); 917 return 0; 918 } 919 920 static int vf610_nfc_resume(struct device *dev) 921 { 922 struct vf610_nfc *nfc = dev_get_drvdata(dev); 923 int err; 924 925 err = clk_prepare_enable(nfc->clk); 926 if (err) 927 return err; 928 929 vf610_nfc_preinit_controller(nfc); 930 vf610_nfc_init_controller(nfc); 931 return 0; 932 } 933 #endif 934 935 static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume); 936 937 static struct platform_driver vf610_nfc_driver = { 938 .driver = { 939 .name = DRV_NAME, 940 .of_match_table = vf610_nfc_dt_ids, 941 .pm = &vf610_nfc_pm_ops, 942 }, 943 .probe = vf610_nfc_probe, 944 .remove = vf610_nfc_remove, 945 }; 946 947 module_platform_driver(vf610_nfc_driver); 948 949 MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>"); 950 MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver"); 951 MODULE_LICENSE("GPL"); 952