xref: /linux/drivers/mtd/nand/raw/stm32_fmc2_nand.c (revision b7e32ae6664285e156e9f0cd821e63e19798baf7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/module.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/of_address.h>
19 #include <linux/of_device.h>
20 #include <linux/pinctrl/consumer.h>
21 #include <linux/platform_device.h>
22 #include <linux/regmap.h>
23 #include <linux/reset.h>
24 
25 /* Bad block marker length */
26 #define FMC2_BBM_LEN			2
27 
28 /* ECC step size */
29 #define FMC2_ECC_STEP_SIZE		512
30 
31 /* BCHDSRx registers length */
32 #define FMC2_BCHDSRS_LEN		20
33 
34 /* HECCR length */
35 #define FMC2_HECCR_LEN			4
36 
37 /* Max requests done for a 8k nand page size */
38 #define FMC2_MAX_SG			16
39 
40 /* Max chip enable */
41 #define FMC2_MAX_CE			4
42 
43 /* Max ECC buffer length */
44 #define FMC2_MAX_ECC_BUF_LEN		(FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
45 
46 #define FMC2_TIMEOUT_MS			5000
47 
48 /* Timings */
49 #define FMC2_THIZ			1
50 #define FMC2_TIO			8000
51 #define FMC2_TSYNC			3000
52 #define FMC2_PCR_TIMING_MASK		0xf
53 #define FMC2_PMEM_PATT_TIMING_MASK	0xff
54 
55 /* FMC2 Controller Registers */
56 #define FMC2_BCR1			0x0
57 #define FMC2_PCR			0x80
58 #define FMC2_SR				0x84
59 #define FMC2_PMEM			0x88
60 #define FMC2_PATT			0x8c
61 #define FMC2_HECCR			0x94
62 #define FMC2_ISR			0x184
63 #define FMC2_ICR			0x188
64 #define FMC2_CSQCR			0x200
65 #define FMC2_CSQCFGR1			0x204
66 #define FMC2_CSQCFGR2			0x208
67 #define FMC2_CSQCFGR3			0x20c
68 #define FMC2_CSQAR1			0x210
69 #define FMC2_CSQAR2			0x214
70 #define FMC2_CSQIER			0x220
71 #define FMC2_CSQISR			0x224
72 #define FMC2_CSQICR			0x228
73 #define FMC2_CSQEMSR			0x230
74 #define FMC2_BCHIER			0x250
75 #define FMC2_BCHISR			0x254
76 #define FMC2_BCHICR			0x258
77 #define FMC2_BCHPBR1			0x260
78 #define FMC2_BCHPBR2			0x264
79 #define FMC2_BCHPBR3			0x268
80 #define FMC2_BCHPBR4			0x26c
81 #define FMC2_BCHDSR0			0x27c
82 #define FMC2_BCHDSR1			0x280
83 #define FMC2_BCHDSR2			0x284
84 #define FMC2_BCHDSR3			0x288
85 #define FMC2_BCHDSR4			0x28c
86 
87 /* Register: FMC2_BCR1 */
88 #define FMC2_BCR1_FMC2EN		BIT(31)
89 
90 /* Register: FMC2_PCR */
91 #define FMC2_PCR_PWAITEN		BIT(1)
92 #define FMC2_PCR_PBKEN			BIT(2)
93 #define FMC2_PCR_PWID			GENMASK(5, 4)
94 #define FMC2_PCR_PWID_BUSWIDTH_8	0
95 #define FMC2_PCR_PWID_BUSWIDTH_16	1
96 #define FMC2_PCR_ECCEN			BIT(6)
97 #define FMC2_PCR_ECCALG			BIT(8)
98 #define FMC2_PCR_TCLR			GENMASK(12, 9)
99 #define FMC2_PCR_TCLR_DEFAULT		0xf
100 #define FMC2_PCR_TAR			GENMASK(16, 13)
101 #define FMC2_PCR_TAR_DEFAULT		0xf
102 #define FMC2_PCR_ECCSS			GENMASK(19, 17)
103 #define FMC2_PCR_ECCSS_512		1
104 #define FMC2_PCR_ECCSS_2048		3
105 #define FMC2_PCR_BCHECC			BIT(24)
106 #define FMC2_PCR_WEN			BIT(25)
107 
108 /* Register: FMC2_SR */
109 #define FMC2_SR_NWRF			BIT(6)
110 
111 /* Register: FMC2_PMEM */
112 #define FMC2_PMEM_MEMSET		GENMASK(7, 0)
113 #define FMC2_PMEM_MEMWAIT		GENMASK(15, 8)
114 #define FMC2_PMEM_MEMHOLD		GENMASK(23, 16)
115 #define FMC2_PMEM_MEMHIZ		GENMASK(31, 24)
116 #define FMC2_PMEM_DEFAULT		0x0a0a0a0a
117 
118 /* Register: FMC2_PATT */
119 #define FMC2_PATT_ATTSET		GENMASK(7, 0)
120 #define FMC2_PATT_ATTWAIT		GENMASK(15, 8)
121 #define FMC2_PATT_ATTHOLD		GENMASK(23, 16)
122 #define FMC2_PATT_ATTHIZ		GENMASK(31, 24)
123 #define FMC2_PATT_DEFAULT		0x0a0a0a0a
124 
125 /* Register: FMC2_ISR */
126 #define FMC2_ISR_IHLF			BIT(1)
127 
128 /* Register: FMC2_ICR */
129 #define FMC2_ICR_CIHLF			BIT(1)
130 
131 /* Register: FMC2_CSQCR */
132 #define FMC2_CSQCR_CSQSTART		BIT(0)
133 
134 /* Register: FMC2_CSQCFGR1 */
135 #define FMC2_CSQCFGR1_CMD2EN		BIT(1)
136 #define FMC2_CSQCFGR1_DMADEN		BIT(2)
137 #define FMC2_CSQCFGR1_ACYNBR		GENMASK(6, 4)
138 #define FMC2_CSQCFGR1_CMD1		GENMASK(15, 8)
139 #define FMC2_CSQCFGR1_CMD2		GENMASK(23, 16)
140 #define FMC2_CSQCFGR1_CMD1T		BIT(24)
141 #define FMC2_CSQCFGR1_CMD2T		BIT(25)
142 
143 /* Register: FMC2_CSQCFGR2 */
144 #define FMC2_CSQCFGR2_SQSDTEN		BIT(0)
145 #define FMC2_CSQCFGR2_RCMD2EN		BIT(1)
146 #define FMC2_CSQCFGR2_DMASEN		BIT(2)
147 #define FMC2_CSQCFGR2_RCMD1		GENMASK(15, 8)
148 #define FMC2_CSQCFGR2_RCMD2		GENMASK(23, 16)
149 #define FMC2_CSQCFGR2_RCMD1T		BIT(24)
150 #define FMC2_CSQCFGR2_RCMD2T		BIT(25)
151 
152 /* Register: FMC2_CSQCFGR3 */
153 #define FMC2_CSQCFGR3_SNBR		GENMASK(13, 8)
154 #define FMC2_CSQCFGR3_AC1T		BIT(16)
155 #define FMC2_CSQCFGR3_AC2T		BIT(17)
156 #define FMC2_CSQCFGR3_AC3T		BIT(18)
157 #define FMC2_CSQCFGR3_AC4T		BIT(19)
158 #define FMC2_CSQCFGR3_AC5T		BIT(20)
159 #define FMC2_CSQCFGR3_SDT		BIT(21)
160 #define FMC2_CSQCFGR3_RAC1T		BIT(22)
161 #define FMC2_CSQCFGR3_RAC2T		BIT(23)
162 
163 /* Register: FMC2_CSQCAR1 */
164 #define FMC2_CSQCAR1_ADDC1		GENMASK(7, 0)
165 #define FMC2_CSQCAR1_ADDC2		GENMASK(15, 8)
166 #define FMC2_CSQCAR1_ADDC3		GENMASK(23, 16)
167 #define FMC2_CSQCAR1_ADDC4		GENMASK(31, 24)
168 
169 /* Register: FMC2_CSQCAR2 */
170 #define FMC2_CSQCAR2_ADDC5		GENMASK(7, 0)
171 #define FMC2_CSQCAR2_NANDCEN		GENMASK(11, 10)
172 #define FMC2_CSQCAR2_SAO		GENMASK(31, 16)
173 
174 /* Register: FMC2_CSQIER */
175 #define FMC2_CSQIER_TCIE		BIT(0)
176 
177 /* Register: FMC2_CSQICR */
178 #define FMC2_CSQICR_CLEAR_IRQ		GENMASK(4, 0)
179 
180 /* Register: FMC2_CSQEMSR */
181 #define FMC2_CSQEMSR_SEM		GENMASK(15, 0)
182 
183 /* Register: FMC2_BCHIER */
184 #define FMC2_BCHIER_DERIE		BIT(1)
185 #define FMC2_BCHIER_EPBRIE		BIT(4)
186 
187 /* Register: FMC2_BCHICR */
188 #define FMC2_BCHICR_CLEAR_IRQ		GENMASK(4, 0)
189 
190 /* Register: FMC2_BCHDSR0 */
191 #define FMC2_BCHDSR0_DUE		BIT(0)
192 #define FMC2_BCHDSR0_DEF		BIT(1)
193 #define FMC2_BCHDSR0_DEN		GENMASK(7, 4)
194 
195 /* Register: FMC2_BCHDSR1 */
196 #define FMC2_BCHDSR1_EBP1		GENMASK(12, 0)
197 #define FMC2_BCHDSR1_EBP2		GENMASK(28, 16)
198 
199 /* Register: FMC2_BCHDSR2 */
200 #define FMC2_BCHDSR2_EBP3		GENMASK(12, 0)
201 #define FMC2_BCHDSR2_EBP4		GENMASK(28, 16)
202 
203 /* Register: FMC2_BCHDSR3 */
204 #define FMC2_BCHDSR3_EBP5		GENMASK(12, 0)
205 #define FMC2_BCHDSR3_EBP6		GENMASK(28, 16)
206 
207 /* Register: FMC2_BCHDSR4 */
208 #define FMC2_BCHDSR4_EBP7		GENMASK(12, 0)
209 #define FMC2_BCHDSR4_EBP8		GENMASK(28, 16)
210 
211 enum stm32_fmc2_ecc {
212 	FMC2_ECC_HAM = 1,
213 	FMC2_ECC_BCH4 = 4,
214 	FMC2_ECC_BCH8 = 8
215 };
216 
217 enum stm32_fmc2_irq_state {
218 	FMC2_IRQ_UNKNOWN = 0,
219 	FMC2_IRQ_BCH,
220 	FMC2_IRQ_SEQ
221 };
222 
223 struct stm32_fmc2_timings {
224 	u8 tclr;
225 	u8 tar;
226 	u8 thiz;
227 	u8 twait;
228 	u8 thold_mem;
229 	u8 tset_mem;
230 	u8 thold_att;
231 	u8 tset_att;
232 };
233 
234 struct stm32_fmc2_nand {
235 	struct nand_chip chip;
236 	struct gpio_desc *wp_gpio;
237 	struct stm32_fmc2_timings timings;
238 	int ncs;
239 	int cs_used[FMC2_MAX_CE];
240 };
241 
242 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
243 {
244 	return container_of(chip, struct stm32_fmc2_nand, chip);
245 }
246 
247 struct stm32_fmc2_nfc;
248 
249 struct stm32_fmc2_nfc_data {
250 	int max_ncs;
251 	int (*set_cdev)(struct stm32_fmc2_nfc *nfc);
252 };
253 
254 struct stm32_fmc2_nfc {
255 	struct nand_controller base;
256 	struct stm32_fmc2_nand nand;
257 	struct device *dev;
258 	struct device *cdev;
259 	struct regmap *regmap;
260 	void __iomem *data_base[FMC2_MAX_CE];
261 	void __iomem *cmd_base[FMC2_MAX_CE];
262 	void __iomem *addr_base[FMC2_MAX_CE];
263 	phys_addr_t io_phys_addr;
264 	phys_addr_t data_phys_addr[FMC2_MAX_CE];
265 	struct clk *clk;
266 	u8 irq_state;
267 	const struct stm32_fmc2_nfc_data *data;
268 
269 	struct dma_chan *dma_tx_ch;
270 	struct dma_chan *dma_rx_ch;
271 	struct dma_chan *dma_ecc_ch;
272 	struct sg_table dma_data_sg;
273 	struct sg_table dma_ecc_sg;
274 	u8 *ecc_buf;
275 	dma_addr_t dma_ecc_addr;
276 	int dma_ecc_len;
277 	u32 tx_dma_max_burst;
278 	u32 rx_dma_max_burst;
279 
280 	struct completion complete;
281 	struct completion dma_data_complete;
282 	struct completion dma_ecc_complete;
283 
284 	u8 cs_assigned;
285 	int cs_sel;
286 };
287 
288 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
289 {
290 	return container_of(base, struct stm32_fmc2_nfc, base);
291 }
292 
293 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
294 {
295 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
296 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
297 	struct stm32_fmc2_timings *timings = &nand->timings;
298 	u32 pmem, patt;
299 
300 	/* Set tclr/tar timings */
301 	regmap_update_bits(nfc->regmap, FMC2_PCR,
302 			   FMC2_PCR_TCLR | FMC2_PCR_TAR,
303 			   FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
304 			   FIELD_PREP(FMC2_PCR_TAR, timings->tar));
305 
306 	/* Set tset/twait/thold/thiz timings in common bank */
307 	pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
308 	pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
309 	pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
310 	pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
311 	regmap_write(nfc->regmap, FMC2_PMEM, pmem);
312 
313 	/* Set tset/twait/thold/thiz timings in attribut bank */
314 	patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
315 	patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
316 	patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
317 	patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
318 	regmap_write(nfc->regmap, FMC2_PATT, patt);
319 }
320 
321 static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
322 {
323 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
324 	u32 pcr = 0, pcr_mask;
325 
326 	/* Configure ECC algorithm (default configuration is Hamming) */
327 	pcr_mask = FMC2_PCR_ECCALG;
328 	pcr_mask |= FMC2_PCR_BCHECC;
329 	if (chip->ecc.strength == FMC2_ECC_BCH8) {
330 		pcr |= FMC2_PCR_ECCALG;
331 		pcr |= FMC2_PCR_BCHECC;
332 	} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
333 		pcr |= FMC2_PCR_ECCALG;
334 	}
335 
336 	/* Set buswidth */
337 	pcr_mask |= FMC2_PCR_PWID;
338 	if (chip->options & NAND_BUSWIDTH_16)
339 		pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
340 
341 	/* Set ECC sector size */
342 	pcr_mask |= FMC2_PCR_ECCSS;
343 	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
344 
345 	regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr);
346 }
347 
348 static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
349 {
350 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
351 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
352 	struct dma_slave_config dma_cfg;
353 	int ret;
354 
355 	if (nand->cs_used[chipnr] == nfc->cs_sel)
356 		return 0;
357 
358 	nfc->cs_sel = nand->cs_used[chipnr];
359 	stm32_fmc2_nfc_setup(chip);
360 	stm32_fmc2_nfc_timings_init(chip);
361 
362 	if (nfc->dma_tx_ch) {
363 		memset(&dma_cfg, 0, sizeof(dma_cfg));
364 		dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel];
365 		dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
366 		dma_cfg.dst_maxburst = nfc->tx_dma_max_burst /
367 				       dma_cfg.dst_addr_width;
368 
369 		ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg);
370 		if (ret) {
371 			dev_err(nfc->dev, "tx DMA engine slave config failed\n");
372 			return ret;
373 		}
374 	}
375 
376 	if (nfc->dma_rx_ch) {
377 		memset(&dma_cfg, 0, sizeof(dma_cfg));
378 		dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel];
379 		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
380 		dma_cfg.src_maxburst = nfc->rx_dma_max_burst /
381 				       dma_cfg.src_addr_width;
382 
383 		ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg);
384 		if (ret) {
385 			dev_err(nfc->dev, "rx DMA engine slave config failed\n");
386 			return ret;
387 		}
388 	}
389 
390 	if (nfc->dma_ecc_ch) {
391 		/*
392 		 * Hamming: we read HECCR register
393 		 * BCH4/BCH8: we read BCHDSRSx registers
394 		 */
395 		memset(&dma_cfg, 0, sizeof(dma_cfg));
396 		dma_cfg.src_addr = nfc->io_phys_addr;
397 		dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
398 				    FMC2_HECCR : FMC2_BCHDSR0;
399 		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
400 
401 		ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg);
402 		if (ret) {
403 			dev_err(nfc->dev, "ECC DMA engine slave config failed\n");
404 			return ret;
405 		}
406 
407 		/* Calculate ECC length needed for one sector */
408 		nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
409 				   FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
410 	}
411 
412 	return 0;
413 }
414 
415 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
416 {
417 	u32 pcr;
418 
419 	pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
420 		    FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
421 
422 	regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr);
423 }
424 
425 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
426 {
427 	regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN,
428 			   enable ? FMC2_PCR_ECCEN : 0);
429 }
430 
431 static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
432 {
433 	nfc->irq_state = FMC2_IRQ_SEQ;
434 
435 	regmap_update_bits(nfc->regmap, FMC2_CSQIER,
436 			   FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE);
437 }
438 
439 static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
440 {
441 	regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0);
442 
443 	nfc->irq_state = FMC2_IRQ_UNKNOWN;
444 }
445 
446 static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
447 {
448 	regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ);
449 }
450 
451 static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode)
452 {
453 	nfc->irq_state = FMC2_IRQ_BCH;
454 
455 	if (mode == NAND_ECC_WRITE)
456 		regmap_update_bits(nfc->regmap, FMC2_BCHIER,
457 				   FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE);
458 	else
459 		regmap_update_bits(nfc->regmap, FMC2_BCHIER,
460 				   FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE);
461 }
462 
463 static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
464 {
465 	regmap_update_bits(nfc->regmap, FMC2_BCHIER,
466 			   FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0);
467 
468 	nfc->irq_state = FMC2_IRQ_UNKNOWN;
469 }
470 
471 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
472 {
473 	regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ);
474 }
475 
476 /*
477  * Enable ECC logic and reset syndrome/parity bits previously calculated
478  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
479  */
480 static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
481 {
482 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
483 
484 	stm32_fmc2_nfc_set_ecc(nfc, false);
485 
486 	if (chip->ecc.strength != FMC2_ECC_HAM) {
487 		regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
488 				   mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
489 
490 		reinit_completion(&nfc->complete);
491 		stm32_fmc2_nfc_clear_bch_irq(nfc);
492 		stm32_fmc2_nfc_enable_bch_irq(nfc, mode);
493 	}
494 
495 	stm32_fmc2_nfc_set_ecc(nfc, true);
496 }
497 
498 /*
499  * ECC Hamming calculation
500  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
501  * max of 1-bit)
502  */
503 static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
504 {
505 	ecc[0] = ecc_sta;
506 	ecc[1] = ecc_sta >> 8;
507 	ecc[2] = ecc_sta >> 16;
508 }
509 
510 static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
511 					u8 *ecc)
512 {
513 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
514 	u32 sr, heccr;
515 	int ret;
516 
517 	ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
518 				       sr & FMC2_SR_NWRF, 1,
519 				       1000 * FMC2_TIMEOUT_MS);
520 	if (ret) {
521 		dev_err(nfc->dev, "ham timeout\n");
522 		return ret;
523 	}
524 
525 	regmap_read(nfc->regmap, FMC2_HECCR, &heccr);
526 	stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
527 	stm32_fmc2_nfc_set_ecc(nfc, false);
528 
529 	return 0;
530 }
531 
532 static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat,
533 				      u8 *read_ecc, u8 *calc_ecc)
534 {
535 	u8 bit_position = 0, b0, b1, b2;
536 	u32 byte_addr = 0, b;
537 	u32 i, shifting = 1;
538 
539 	/* Indicate which bit and byte is faulty (if any) */
540 	b0 = read_ecc[0] ^ calc_ecc[0];
541 	b1 = read_ecc[1] ^ calc_ecc[1];
542 	b2 = read_ecc[2] ^ calc_ecc[2];
543 	b = b0 | (b1 << 8) | (b2 << 16);
544 
545 	/* No errors */
546 	if (likely(!b))
547 		return 0;
548 
549 	/* Calculate bit position */
550 	for (i = 0; i < 3; i++) {
551 		switch (b % 4) {
552 		case 2:
553 			bit_position += shifting;
554 			break;
555 		case 1:
556 			break;
557 		default:
558 			return -EBADMSG;
559 		}
560 		shifting <<= 1;
561 		b >>= 2;
562 	}
563 
564 	/* Calculate byte position */
565 	shifting = 1;
566 	for (i = 0; i < 9; i++) {
567 		switch (b % 4) {
568 		case 2:
569 			byte_addr += shifting;
570 			break;
571 		case 1:
572 			break;
573 		default:
574 			return -EBADMSG;
575 		}
576 		shifting <<= 1;
577 		b >>= 2;
578 	}
579 
580 	/* Flip the bit */
581 	dat[byte_addr] ^= (1 << bit_position);
582 
583 	return 1;
584 }
585 
586 /*
587  * ECC BCH calculation and correction
588  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
589  * max of 4-bit/8-bit)
590  */
591 static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
592 					u8 *ecc)
593 {
594 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
595 	u32 bchpbr;
596 
597 	/* Wait until the BCH code is ready */
598 	if (!wait_for_completion_timeout(&nfc->complete,
599 					 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
600 		dev_err(nfc->dev, "bch timeout\n");
601 		stm32_fmc2_nfc_disable_bch_irq(nfc);
602 		return -ETIMEDOUT;
603 	}
604 
605 	/* Read parity bits */
606 	regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr);
607 	ecc[0] = bchpbr;
608 	ecc[1] = bchpbr >> 8;
609 	ecc[2] = bchpbr >> 16;
610 	ecc[3] = bchpbr >> 24;
611 
612 	regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr);
613 	ecc[4] = bchpbr;
614 	ecc[5] = bchpbr >> 8;
615 	ecc[6] = bchpbr >> 16;
616 
617 	if (chip->ecc.strength == FMC2_ECC_BCH8) {
618 		ecc[7] = bchpbr >> 24;
619 
620 		regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr);
621 		ecc[8] = bchpbr;
622 		ecc[9] = bchpbr >> 8;
623 		ecc[10] = bchpbr >> 16;
624 		ecc[11] = bchpbr >> 24;
625 
626 		regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr);
627 		ecc[12] = bchpbr;
628 	}
629 
630 	stm32_fmc2_nfc_set_ecc(nfc, false);
631 
632 	return 0;
633 }
634 
635 static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
636 {
637 	u32 bchdsr0 = ecc_sta[0];
638 	u32 bchdsr1 = ecc_sta[1];
639 	u32 bchdsr2 = ecc_sta[2];
640 	u32 bchdsr3 = ecc_sta[3];
641 	u32 bchdsr4 = ecc_sta[4];
642 	u16 pos[8];
643 	int i, den;
644 	unsigned int nb_errs = 0;
645 
646 	/* No errors found */
647 	if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
648 		return 0;
649 
650 	/* Too many errors detected */
651 	if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
652 		return -EBADMSG;
653 
654 	pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
655 	pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
656 	pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
657 	pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
658 	pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
659 	pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
660 	pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
661 	pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
662 
663 	den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
664 	for (i = 0; i < den; i++) {
665 		if (pos[i] < eccsize * 8) {
666 			change_bit(pos[i], (unsigned long *)dat);
667 			nb_errs++;
668 		}
669 	}
670 
671 	return nb_errs;
672 }
673 
674 static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
675 				      u8 *read_ecc, u8 *calc_ecc)
676 {
677 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
678 	u32 ecc_sta[5];
679 
680 	/* Wait until the decoding error is ready */
681 	if (!wait_for_completion_timeout(&nfc->complete,
682 					 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
683 		dev_err(nfc->dev, "bch timeout\n");
684 		stm32_fmc2_nfc_disable_bch_irq(nfc);
685 		return -ETIMEDOUT;
686 	}
687 
688 	regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5);
689 
690 	stm32_fmc2_nfc_set_ecc(nfc, false);
691 
692 	return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta);
693 }
694 
695 static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf,
696 				    int oob_required, int page)
697 {
698 	struct mtd_info *mtd = nand_to_mtd(chip);
699 	int ret, i, s, stat, eccsize = chip->ecc.size;
700 	int eccbytes = chip->ecc.bytes;
701 	int eccsteps = chip->ecc.steps;
702 	int eccstrength = chip->ecc.strength;
703 	u8 *p = buf;
704 	u8 *ecc_calc = chip->ecc.calc_buf;
705 	u8 *ecc_code = chip->ecc.code_buf;
706 	unsigned int max_bitflips = 0;
707 
708 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
709 	if (ret)
710 		return ret;
711 
712 	for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
713 	     s++, i += eccbytes, p += eccsize) {
714 		chip->ecc.hwctl(chip, NAND_ECC_READ);
715 
716 		/* Read the nand page sector (512 bytes) */
717 		ret = nand_change_read_column_op(chip, s * eccsize, p,
718 						 eccsize, false);
719 		if (ret)
720 			return ret;
721 
722 		/* Read the corresponding ECC bytes */
723 		ret = nand_change_read_column_op(chip, i, ecc_code,
724 						 eccbytes, false);
725 		if (ret)
726 			return ret;
727 
728 		/* Correct the data */
729 		stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
730 		if (stat == -EBADMSG)
731 			/* Check for empty pages with bitflips */
732 			stat = nand_check_erased_ecc_chunk(p, eccsize,
733 							   ecc_code, eccbytes,
734 							   NULL, 0,
735 							   eccstrength);
736 
737 		if (stat < 0) {
738 			mtd->ecc_stats.failed++;
739 		} else {
740 			mtd->ecc_stats.corrected += stat;
741 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
742 		}
743 	}
744 
745 	/* Read oob */
746 	if (oob_required) {
747 		ret = nand_change_read_column_op(chip, mtd->writesize,
748 						 chip->oob_poi, mtd->oobsize,
749 						 false);
750 		if (ret)
751 			return ret;
752 	}
753 
754 	return max_bitflips;
755 }
756 
757 /* Sequencer read/write configuration */
758 static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
759 					int raw, bool write_data)
760 {
761 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
762 	struct mtd_info *mtd = nand_to_mtd(chip);
763 	u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
764 	/*
765 	 * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3
766 	 * cfg[3] => csqar1, cfg[4] => csqar2
767 	 */
768 	u32 cfg[5];
769 
770 	regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
771 			   write_data ? FMC2_PCR_WEN : 0);
772 
773 	/*
774 	 * - Set Program Page/Page Read command
775 	 * - Enable DMA request data
776 	 * - Set timings
777 	 */
778 	cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
779 	if (write_data)
780 		cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
781 	else
782 		cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
783 			  FMC2_CSQCFGR1_CMD2EN |
784 			  FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
785 			  FMC2_CSQCFGR1_CMD2T;
786 
787 	/*
788 	 * - Set Random Data Input/Random Data Read command
789 	 * - Enable the sequencer to access the Spare data area
790 	 * - Enable  DMA request status decoding for read
791 	 * - Set timings
792 	 */
793 	if (write_data)
794 		cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
795 	else
796 		cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
797 			 FMC2_CSQCFGR2_RCMD2EN |
798 			 FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) |
799 			 FMC2_CSQCFGR2_RCMD1T |
800 			 FMC2_CSQCFGR2_RCMD2T;
801 	if (!raw) {
802 		cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
803 		cfg[1] |= FMC2_CSQCFGR2_SQSDTEN;
804 	}
805 
806 	/*
807 	 * - Set the number of sectors to be written
808 	 * - Set timings
809 	 */
810 	cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
811 	if (write_data) {
812 		cfg[2] |= FMC2_CSQCFGR3_RAC2T;
813 		if (chip->options & NAND_ROW_ADDR_3)
814 			cfg[2] |= FMC2_CSQCFGR3_AC5T;
815 		else
816 			cfg[2] |= FMC2_CSQCFGR3_AC4T;
817 	}
818 
819 	/*
820 	 * Set the fourth first address cycles
821 	 * Byte 1 and byte 2 => column, we start at 0x0
822 	 * Byte 3 and byte 4 => page
823 	 */
824 	cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
825 	cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
826 
827 	/*
828 	 * - Set chip enable number
829 	 * - Set ECC byte offset in the spare area
830 	 * - Calculate the number of address cycles to be issued
831 	 * - Set byte 5 of address cycle if needed
832 	 */
833 	cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
834 	if (chip->options & NAND_BUSWIDTH_16)
835 		cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
836 	else
837 		cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
838 	if (chip->options & NAND_ROW_ADDR_3) {
839 		cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
840 		cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
841 	} else {
842 		cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
843 	}
844 
845 	regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5);
846 }
847 
848 static void stm32_fmc2_nfc_dma_callback(void *arg)
849 {
850 	complete((struct completion *)arg);
851 }
852 
853 /* Read/write data from/to a page */
854 static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
855 			       int raw, bool write_data)
856 {
857 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
858 	struct dma_async_tx_descriptor *desc_data, *desc_ecc;
859 	struct scatterlist *sg;
860 	struct dma_chan *dma_ch = nfc->dma_rx_ch;
861 	enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
862 	enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
863 	int eccsteps = chip->ecc.steps;
864 	int eccsize = chip->ecc.size;
865 	unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
866 	const u8 *p = buf;
867 	int s, ret;
868 
869 	/* Configure DMA data */
870 	if (write_data) {
871 		dma_data_dir = DMA_TO_DEVICE;
872 		dma_transfer_dir = DMA_MEM_TO_DEV;
873 		dma_ch = nfc->dma_tx_ch;
874 	}
875 
876 	for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) {
877 		sg_set_buf(sg, p, eccsize);
878 		p += eccsize;
879 	}
880 
881 	ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl,
882 			 eccsteps, dma_data_dir);
883 	if (!ret)
884 		return -EIO;
885 
886 	desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl,
887 					    eccsteps, dma_transfer_dir,
888 					    DMA_PREP_INTERRUPT);
889 	if (!desc_data) {
890 		ret = -ENOMEM;
891 		goto err_unmap_data;
892 	}
893 
894 	reinit_completion(&nfc->dma_data_complete);
895 	reinit_completion(&nfc->complete);
896 	desc_data->callback = stm32_fmc2_nfc_dma_callback;
897 	desc_data->callback_param = &nfc->dma_data_complete;
898 	ret = dma_submit_error(dmaengine_submit(desc_data));
899 	if (ret)
900 		goto err_unmap_data;
901 
902 	dma_async_issue_pending(dma_ch);
903 
904 	if (!write_data && !raw) {
905 		/* Configure DMA ECC status */
906 		for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) {
907 			sg_dma_address(sg) = nfc->dma_ecc_addr +
908 					     s * nfc->dma_ecc_len;
909 			sg_dma_len(sg) = nfc->dma_ecc_len;
910 		}
911 
912 		desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch,
913 						   nfc->dma_ecc_sg.sgl,
914 						   eccsteps, dma_transfer_dir,
915 						   DMA_PREP_INTERRUPT);
916 		if (!desc_ecc) {
917 			ret = -ENOMEM;
918 			goto err_unmap_data;
919 		}
920 
921 		reinit_completion(&nfc->dma_ecc_complete);
922 		desc_ecc->callback = stm32_fmc2_nfc_dma_callback;
923 		desc_ecc->callback_param = &nfc->dma_ecc_complete;
924 		ret = dma_submit_error(dmaengine_submit(desc_ecc));
925 		if (ret)
926 			goto err_unmap_data;
927 
928 		dma_async_issue_pending(nfc->dma_ecc_ch);
929 	}
930 
931 	stm32_fmc2_nfc_clear_seq_irq(nfc);
932 	stm32_fmc2_nfc_enable_seq_irq(nfc);
933 
934 	/* Start the transfer */
935 	regmap_update_bits(nfc->regmap, FMC2_CSQCR,
936 			   FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART);
937 
938 	/* Wait end of sequencer transfer */
939 	if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
940 		dev_err(nfc->dev, "seq timeout\n");
941 		stm32_fmc2_nfc_disable_seq_irq(nfc);
942 		dmaengine_terminate_all(dma_ch);
943 		if (!write_data && !raw)
944 			dmaengine_terminate_all(nfc->dma_ecc_ch);
945 		ret = -ETIMEDOUT;
946 		goto err_unmap_data;
947 	}
948 
949 	/* Wait DMA data transfer completion */
950 	if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) {
951 		dev_err(nfc->dev, "data DMA timeout\n");
952 		dmaengine_terminate_all(dma_ch);
953 		ret = -ETIMEDOUT;
954 	}
955 
956 	/* Wait DMA ECC transfer completion */
957 	if (!write_data && !raw) {
958 		if (!wait_for_completion_timeout(&nfc->dma_ecc_complete,
959 						 timeout)) {
960 			dev_err(nfc->dev, "ECC DMA timeout\n");
961 			dmaengine_terminate_all(nfc->dma_ecc_ch);
962 			ret = -ETIMEDOUT;
963 		}
964 	}
965 
966 err_unmap_data:
967 	dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir);
968 
969 	return ret;
970 }
971 
972 static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf,
973 				    int oob_required, int page, int raw)
974 {
975 	struct mtd_info *mtd = nand_to_mtd(chip);
976 	int ret;
977 
978 	/* Configure the sequencer */
979 	stm32_fmc2_nfc_rw_page_init(chip, page, raw, true);
980 
981 	/* Write the page */
982 	ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true);
983 	if (ret)
984 		return ret;
985 
986 	/* Write oob */
987 	if (oob_required) {
988 		unsigned int offset_in_page = mtd->writesize;
989 		const void *buf = chip->oob_poi;
990 		unsigned int len = mtd->oobsize;
991 
992 		if (!raw) {
993 			struct mtd_oob_region oob_free;
994 
995 			mtd_ooblayout_free(mtd, 0, &oob_free);
996 			offset_in_page += oob_free.offset;
997 			buf += oob_free.offset;
998 			len = oob_free.length;
999 		}
1000 
1001 		ret = nand_change_write_column_op(chip, offset_in_page,
1002 						  buf, len, false);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	return nand_prog_page_end_op(chip);
1008 }
1009 
1010 static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf,
1011 					 int oob_required, int page)
1012 {
1013 	int ret;
1014 
1015 	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1016 	if (ret)
1017 		return ret;
1018 
1019 	return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false);
1020 }
1021 
1022 static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
1023 					     const u8 *buf, int oob_required,
1024 					     int page)
1025 {
1026 	int ret;
1027 
1028 	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1029 	if (ret)
1030 		return ret;
1031 
1032 	return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true);
1033 }
1034 
1035 /* Get a status indicating which sectors have errors */
1036 static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
1037 {
1038 	u32 csqemsr;
1039 
1040 	regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr);
1041 
1042 	return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr);
1043 }
1044 
1045 static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
1046 				      u8 *read_ecc, u8 *calc_ecc)
1047 {
1048 	struct mtd_info *mtd = nand_to_mtd(chip);
1049 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1050 	int eccbytes = chip->ecc.bytes;
1051 	int eccsteps = chip->ecc.steps;
1052 	int eccstrength = chip->ecc.strength;
1053 	int i, s, eccsize = chip->ecc.size;
1054 	u32 *ecc_sta = (u32 *)nfc->ecc_buf;
1055 	u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1056 	unsigned int max_bitflips = 0;
1057 
1058 	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
1059 		int stat = 0;
1060 
1061 		if (eccstrength == FMC2_ECC_HAM) {
1062 			/* Ecc_sta = FMC2_HECCR */
1063 			if (sta_map & BIT(s)) {
1064 				stm32_fmc2_nfc_ham_set_ecc(*ecc_sta,
1065 							   &calc_ecc[i]);
1066 				stat = stm32_fmc2_nfc_ham_correct(chip, dat,
1067 								  &read_ecc[i],
1068 								  &calc_ecc[i]);
1069 			}
1070 			ecc_sta++;
1071 		} else {
1072 			/*
1073 			 * Ecc_sta[0] = FMC2_BCHDSR0
1074 			 * Ecc_sta[1] = FMC2_BCHDSR1
1075 			 * Ecc_sta[2] = FMC2_BCHDSR2
1076 			 * Ecc_sta[3] = FMC2_BCHDSR3
1077 			 * Ecc_sta[4] = FMC2_BCHDSR4
1078 			 */
1079 			if (sta_map & BIT(s))
1080 				stat = stm32_fmc2_nfc_bch_decode(eccsize, dat,
1081 								 ecc_sta);
1082 			ecc_sta += 5;
1083 		}
1084 
1085 		if (stat == -EBADMSG)
1086 			/* Check for empty pages with bitflips */
1087 			stat = nand_check_erased_ecc_chunk(dat, eccsize,
1088 							   &read_ecc[i],
1089 							   eccbytes,
1090 							   NULL, 0,
1091 							   eccstrength);
1092 
1093 		if (stat < 0) {
1094 			mtd->ecc_stats.failed++;
1095 		} else {
1096 			mtd->ecc_stats.corrected += stat;
1097 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1098 		}
1099 	}
1100 
1101 	return max_bitflips;
1102 }
1103 
1104 static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf,
1105 					int oob_required, int page)
1106 {
1107 	struct mtd_info *mtd = nand_to_mtd(chip);
1108 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1109 	u8 *ecc_calc = chip->ecc.calc_buf;
1110 	u8 *ecc_code = chip->ecc.code_buf;
1111 	u16 sta_map;
1112 	int ret;
1113 
1114 	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1115 	if (ret)
1116 		return ret;
1117 
1118 	/* Configure the sequencer */
1119 	stm32_fmc2_nfc_rw_page_init(chip, page, 0, false);
1120 
1121 	/* Read the page */
1122 	ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false);
1123 	if (ret)
1124 		return ret;
1125 
1126 	sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1127 
1128 	/* Check if errors happen */
1129 	if (likely(!sta_map)) {
1130 		if (oob_required)
1131 			return nand_change_read_column_op(chip, mtd->writesize,
1132 							  chip->oob_poi,
1133 							  mtd->oobsize, false);
1134 
1135 		return 0;
1136 	}
1137 
1138 	/* Read oob */
1139 	ret = nand_change_read_column_op(chip, mtd->writesize,
1140 					 chip->oob_poi, mtd->oobsize, false);
1141 	if (ret)
1142 		return ret;
1143 
1144 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1145 					 chip->ecc.total);
1146 	if (ret)
1147 		return ret;
1148 
1149 	/* Correct data */
1150 	return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1151 }
1152 
1153 static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf,
1154 					    int oob_required, int page)
1155 {
1156 	struct mtd_info *mtd = nand_to_mtd(chip);
1157 	int ret;
1158 
1159 	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1160 	if (ret)
1161 		return ret;
1162 
1163 	/* Configure the sequencer */
1164 	stm32_fmc2_nfc_rw_page_init(chip, page, 1, false);
1165 
1166 	/* Read the page */
1167 	ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false);
1168 	if (ret)
1169 		return ret;
1170 
1171 	/* Read oob */
1172 	if (oob_required)
1173 		return nand_change_read_column_op(chip, mtd->writesize,
1174 						  chip->oob_poi, mtd->oobsize,
1175 						  false);
1176 
1177 	return 0;
1178 }
1179 
1180 static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id)
1181 {
1182 	struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id;
1183 
1184 	if (nfc->irq_state == FMC2_IRQ_SEQ)
1185 		/* Sequencer is used */
1186 		stm32_fmc2_nfc_disable_seq_irq(nfc);
1187 	else if (nfc->irq_state == FMC2_IRQ_BCH)
1188 		/* BCH is used */
1189 		stm32_fmc2_nfc_disable_bch_irq(nfc);
1190 
1191 	complete(&nfc->complete);
1192 
1193 	return IRQ_HANDLED;
1194 }
1195 
1196 static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf,
1197 				     unsigned int len, bool force_8bit)
1198 {
1199 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1200 	void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel];
1201 
1202 	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1203 		/* Reconfigure bus width to 8-bit */
1204 		stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1205 
1206 	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1207 		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1208 			*(u8 *)buf = readb_relaxed(io_addr_r);
1209 			buf += sizeof(u8);
1210 			len -= sizeof(u8);
1211 		}
1212 
1213 		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1214 		    len >= sizeof(u16)) {
1215 			*(u16 *)buf = readw_relaxed(io_addr_r);
1216 			buf += sizeof(u16);
1217 			len -= sizeof(u16);
1218 		}
1219 	}
1220 
1221 	/* Buf is aligned */
1222 	while (len >= sizeof(u32)) {
1223 		*(u32 *)buf = readl_relaxed(io_addr_r);
1224 		buf += sizeof(u32);
1225 		len -= sizeof(u32);
1226 	}
1227 
1228 	/* Read remaining bytes */
1229 	if (len >= sizeof(u16)) {
1230 		*(u16 *)buf = readw_relaxed(io_addr_r);
1231 		buf += sizeof(u16);
1232 		len -= sizeof(u16);
1233 	}
1234 
1235 	if (len)
1236 		*(u8 *)buf = readb_relaxed(io_addr_r);
1237 
1238 	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1239 		/* Reconfigure bus width to 16-bit */
1240 		stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1241 }
1242 
1243 static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf,
1244 				      unsigned int len, bool force_8bit)
1245 {
1246 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1247 	void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel];
1248 
1249 	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1250 		/* Reconfigure bus width to 8-bit */
1251 		stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1252 
1253 	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1254 		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1255 			writeb_relaxed(*(u8 *)buf, io_addr_w);
1256 			buf += sizeof(u8);
1257 			len -= sizeof(u8);
1258 		}
1259 
1260 		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1261 		    len >= sizeof(u16)) {
1262 			writew_relaxed(*(u16 *)buf, io_addr_w);
1263 			buf += sizeof(u16);
1264 			len -= sizeof(u16);
1265 		}
1266 	}
1267 
1268 	/* Buf is aligned */
1269 	while (len >= sizeof(u32)) {
1270 		writel_relaxed(*(u32 *)buf, io_addr_w);
1271 		buf += sizeof(u32);
1272 		len -= sizeof(u32);
1273 	}
1274 
1275 	/* Write remaining bytes */
1276 	if (len >= sizeof(u16)) {
1277 		writew_relaxed(*(u16 *)buf, io_addr_w);
1278 		buf += sizeof(u16);
1279 		len -= sizeof(u16);
1280 	}
1281 
1282 	if (len)
1283 		writeb_relaxed(*(u8 *)buf, io_addr_w);
1284 
1285 	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1286 		/* Reconfigure bus width to 16-bit */
1287 		stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1288 }
1289 
1290 static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
1291 				  unsigned long timeout_ms)
1292 {
1293 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1294 	const struct nand_sdr_timings *timings;
1295 	u32 isr, sr;
1296 
1297 	/* Check if there is no pending requests to the NAND flash */
1298 	if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
1299 				     sr & FMC2_SR_NWRF, 1,
1300 				     1000 * FMC2_TIMEOUT_MS))
1301 		dev_warn(nfc->dev, "Waitrdy timeout\n");
1302 
1303 	/* Wait tWB before R/B# signal is low */
1304 	timings = nand_get_sdr_timings(nand_get_interface_config(chip));
1305 	ndelay(PSEC_TO_NSEC(timings->tWB_max));
1306 
1307 	/* R/B# signal is low, clear high level flag */
1308 	regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF);
1309 
1310 	/* Wait R/B# signal is high */
1311 	return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr,
1312 					isr & FMC2_ISR_IHLF, 5,
1313 					1000 * FMC2_TIMEOUT_MS);
1314 }
1315 
1316 static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
1317 				  const struct nand_operation *op,
1318 				  bool check_only)
1319 {
1320 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1321 	const struct nand_op_instr *instr = NULL;
1322 	unsigned int op_id, i, timeout;
1323 	int ret;
1324 
1325 	if (check_only)
1326 		return 0;
1327 
1328 	ret = stm32_fmc2_nfc_select_chip(chip, op->cs);
1329 	if (ret)
1330 		return ret;
1331 
1332 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
1333 		instr = &op->instrs[op_id];
1334 
1335 		switch (instr->type) {
1336 		case NAND_OP_CMD_INSTR:
1337 			writeb_relaxed(instr->ctx.cmd.opcode,
1338 				       nfc->cmd_base[nfc->cs_sel]);
1339 			break;
1340 
1341 		case NAND_OP_ADDR_INSTR:
1342 			for (i = 0; i < instr->ctx.addr.naddrs; i++)
1343 				writeb_relaxed(instr->ctx.addr.addrs[i],
1344 					       nfc->addr_base[nfc->cs_sel]);
1345 			break;
1346 
1347 		case NAND_OP_DATA_IN_INSTR:
1348 			stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in,
1349 						 instr->ctx.data.len,
1350 						 instr->ctx.data.force_8bit);
1351 			break;
1352 
1353 		case NAND_OP_DATA_OUT_INSTR:
1354 			stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out,
1355 						  instr->ctx.data.len,
1356 						  instr->ctx.data.force_8bit);
1357 			break;
1358 
1359 		case NAND_OP_WAITRDY_INSTR:
1360 			timeout = instr->ctx.waitrdy.timeout_ms;
1361 			ret = stm32_fmc2_nfc_waitrdy(chip, timeout);
1362 			break;
1363 		}
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
1370 {
1371 	u32 pcr;
1372 
1373 	regmap_read(nfc->regmap, FMC2_PCR, &pcr);
1374 
1375 	/* Set CS used to undefined */
1376 	nfc->cs_sel = -1;
1377 
1378 	/* Enable wait feature and nand flash memory bank */
1379 	pcr |= FMC2_PCR_PWAITEN;
1380 	pcr |= FMC2_PCR_PBKEN;
1381 
1382 	/* Set buswidth to 8 bits mode for identification */
1383 	pcr &= ~FMC2_PCR_PWID;
1384 
1385 	/* ECC logic is disabled */
1386 	pcr &= ~FMC2_PCR_ECCEN;
1387 
1388 	/* Default mode */
1389 	pcr &= ~FMC2_PCR_ECCALG;
1390 	pcr &= ~FMC2_PCR_BCHECC;
1391 	pcr &= ~FMC2_PCR_WEN;
1392 
1393 	/* Set default ECC sector size */
1394 	pcr &= ~FMC2_PCR_ECCSS;
1395 	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
1396 
1397 	/* Set default tclr/tar timings */
1398 	pcr &= ~FMC2_PCR_TCLR;
1399 	pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
1400 	pcr &= ~FMC2_PCR_TAR;
1401 	pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
1402 
1403 	/* Enable FMC2 controller */
1404 	if (nfc->dev == nfc->cdev)
1405 		regmap_update_bits(nfc->regmap, FMC2_BCR1,
1406 				   FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
1407 
1408 	regmap_write(nfc->regmap, FMC2_PCR, pcr);
1409 	regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
1410 	regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT);
1411 }
1412 
1413 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
1414 					const struct nand_sdr_timings *sdrt)
1415 {
1416 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1417 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
1418 	struct stm32_fmc2_timings *tims = &nand->timings;
1419 	unsigned long hclk = clk_get_rate(nfc->clk);
1420 	unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
1421 	unsigned long timing, tar, tclr, thiz, twait;
1422 	unsigned long tset_mem, tset_att, thold_mem, thold_att;
1423 
1424 	tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
1425 	timing = DIV_ROUND_UP(tar, hclkp) - 1;
1426 	tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1427 
1428 	tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
1429 	timing = DIV_ROUND_UP(tclr, hclkp) - 1;
1430 	tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1431 
1432 	tims->thiz = FMC2_THIZ;
1433 	thiz = (tims->thiz + 1) * hclkp;
1434 
1435 	/*
1436 	 * tWAIT > tRP
1437 	 * tWAIT > tWP
1438 	 * tWAIT > tREA + tIO
1439 	 */
1440 	twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
1441 	twait = max_t(unsigned long, twait, sdrt->tWP_min);
1442 	twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
1443 	timing = DIV_ROUND_UP(twait, hclkp);
1444 	tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1445 
1446 	/*
1447 	 * tSETUP_MEM > tCS - tWAIT
1448 	 * tSETUP_MEM > tALS - tWAIT
1449 	 * tSETUP_MEM > tDS - (tWAIT - tHIZ)
1450 	 */
1451 	tset_mem = hclkp;
1452 	if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
1453 		tset_mem = sdrt->tCS_min - twait;
1454 	if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
1455 		tset_mem = sdrt->tALS_min - twait;
1456 	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1457 	    (tset_mem < sdrt->tDS_min - (twait - thiz)))
1458 		tset_mem = sdrt->tDS_min - (twait - thiz);
1459 	timing = DIV_ROUND_UP(tset_mem, hclkp);
1460 	tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1461 
1462 	/*
1463 	 * tHOLD_MEM > tCH
1464 	 * tHOLD_MEM > tREH - tSETUP_MEM
1465 	 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
1466 	 */
1467 	thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
1468 	if (sdrt->tREH_min > tset_mem &&
1469 	    (thold_mem < sdrt->tREH_min - tset_mem))
1470 		thold_mem = sdrt->tREH_min - tset_mem;
1471 	if ((sdrt->tRC_min > tset_mem + twait) &&
1472 	    (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
1473 		thold_mem = sdrt->tRC_min - (tset_mem + twait);
1474 	if ((sdrt->tWC_min > tset_mem + twait) &&
1475 	    (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
1476 		thold_mem = sdrt->tWC_min - (tset_mem + twait);
1477 	timing = DIV_ROUND_UP(thold_mem, hclkp);
1478 	tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1479 
1480 	/*
1481 	 * tSETUP_ATT > tCS - tWAIT
1482 	 * tSETUP_ATT > tCLS - tWAIT
1483 	 * tSETUP_ATT > tALS - tWAIT
1484 	 * tSETUP_ATT > tRHW - tHOLD_MEM
1485 	 * tSETUP_ATT > tDS - (tWAIT - tHIZ)
1486 	 */
1487 	tset_att = hclkp;
1488 	if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
1489 		tset_att = sdrt->tCS_min - twait;
1490 	if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
1491 		tset_att = sdrt->tCLS_min - twait;
1492 	if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
1493 		tset_att = sdrt->tALS_min - twait;
1494 	if (sdrt->tRHW_min > thold_mem &&
1495 	    (tset_att < sdrt->tRHW_min - thold_mem))
1496 		tset_att = sdrt->tRHW_min - thold_mem;
1497 	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1498 	    (tset_att < sdrt->tDS_min - (twait - thiz)))
1499 		tset_att = sdrt->tDS_min - (twait - thiz);
1500 	timing = DIV_ROUND_UP(tset_att, hclkp);
1501 	tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1502 
1503 	/*
1504 	 * tHOLD_ATT > tALH
1505 	 * tHOLD_ATT > tCH
1506 	 * tHOLD_ATT > tCLH
1507 	 * tHOLD_ATT > tCOH
1508 	 * tHOLD_ATT > tDH
1509 	 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
1510 	 * tHOLD_ATT > tADL - tSETUP_MEM
1511 	 * tHOLD_ATT > tWH - tSETUP_MEM
1512 	 * tHOLD_ATT > tWHR - tSETUP_MEM
1513 	 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
1514 	 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
1515 	 */
1516 	thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
1517 	thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
1518 	thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
1519 	thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
1520 	thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
1521 	if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
1522 	    (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
1523 		thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
1524 	if (sdrt->tADL_min > tset_mem &&
1525 	    (thold_att < sdrt->tADL_min - tset_mem))
1526 		thold_att = sdrt->tADL_min - tset_mem;
1527 	if (sdrt->tWH_min > tset_mem &&
1528 	    (thold_att < sdrt->tWH_min - tset_mem))
1529 		thold_att = sdrt->tWH_min - tset_mem;
1530 	if (sdrt->tWHR_min > tset_mem &&
1531 	    (thold_att < sdrt->tWHR_min - tset_mem))
1532 		thold_att = sdrt->tWHR_min - tset_mem;
1533 	if ((sdrt->tRC_min > tset_att + twait) &&
1534 	    (thold_att < sdrt->tRC_min - (tset_att + twait)))
1535 		thold_att = sdrt->tRC_min - (tset_att + twait);
1536 	if ((sdrt->tWC_min > tset_att + twait) &&
1537 	    (thold_att < sdrt->tWC_min - (tset_att + twait)))
1538 		thold_att = sdrt->tWC_min - (tset_att + twait);
1539 	timing = DIV_ROUND_UP(thold_att, hclkp);
1540 	tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1541 }
1542 
1543 static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr,
1544 					  const struct nand_interface_config *conf)
1545 {
1546 	const struct nand_sdr_timings *sdrt;
1547 
1548 	sdrt = nand_get_sdr_timings(conf);
1549 	if (IS_ERR(sdrt))
1550 		return PTR_ERR(sdrt);
1551 
1552 	if (conf->timings.mode > 3)
1553 		return -EOPNOTSUPP;
1554 
1555 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1556 		return 0;
1557 
1558 	stm32_fmc2_nfc_calc_timings(chip, sdrt);
1559 	stm32_fmc2_nfc_timings_init(chip);
1560 
1561 	return 0;
1562 }
1563 
1564 static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
1565 {
1566 	struct dma_slave_caps caps;
1567 	int ret = 0;
1568 
1569 	nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
1570 	if (IS_ERR(nfc->dma_tx_ch)) {
1571 		ret = PTR_ERR(nfc->dma_tx_ch);
1572 		if (ret != -ENODEV && ret != -EPROBE_DEFER)
1573 			dev_err(nfc->dev,
1574 				"failed to request tx DMA channel: %d\n", ret);
1575 		nfc->dma_tx_ch = NULL;
1576 		goto err_dma;
1577 	}
1578 
1579 	ret = dma_get_slave_caps(nfc->dma_tx_ch, &caps);
1580 	if (ret)
1581 		return ret;
1582 	nfc->tx_dma_max_burst = caps.max_burst;
1583 
1584 	nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
1585 	if (IS_ERR(nfc->dma_rx_ch)) {
1586 		ret = PTR_ERR(nfc->dma_rx_ch);
1587 		if (ret != -ENODEV && ret != -EPROBE_DEFER)
1588 			dev_err(nfc->dev,
1589 				"failed to request rx DMA channel: %d\n", ret);
1590 		nfc->dma_rx_ch = NULL;
1591 		goto err_dma;
1592 	}
1593 
1594 	ret = dma_get_slave_caps(nfc->dma_rx_ch, &caps);
1595 	if (ret)
1596 		return ret;
1597 	nfc->rx_dma_max_burst = caps.max_burst;
1598 
1599 	nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
1600 	if (IS_ERR(nfc->dma_ecc_ch)) {
1601 		ret = PTR_ERR(nfc->dma_ecc_ch);
1602 		if (ret != -ENODEV && ret != -EPROBE_DEFER)
1603 			dev_err(nfc->dev,
1604 				"failed to request ecc DMA channel: %d\n", ret);
1605 		nfc->dma_ecc_ch = NULL;
1606 		goto err_dma;
1607 	}
1608 
1609 	ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
1610 	if (ret)
1611 		return ret;
1612 
1613 	/* Allocate a buffer to store ECC status registers */
1614 	nfc->ecc_buf = dmam_alloc_coherent(nfc->dev, FMC2_MAX_ECC_BUF_LEN,
1615 					   &nfc->dma_ecc_addr, GFP_KERNEL);
1616 	if (!nfc->ecc_buf)
1617 		return -ENOMEM;
1618 
1619 	ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
1620 	if (ret)
1621 		return ret;
1622 
1623 	init_completion(&nfc->dma_data_complete);
1624 	init_completion(&nfc->dma_ecc_complete);
1625 
1626 	return 0;
1627 
1628 err_dma:
1629 	if (ret == -ENODEV) {
1630 		dev_warn(nfc->dev,
1631 			 "DMAs not defined in the DT, polling mode is used\n");
1632 		ret = 0;
1633 	}
1634 
1635 	return ret;
1636 }
1637 
1638 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
1639 {
1640 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1641 
1642 	/*
1643 	 * Specific callbacks to read/write a page depending on
1644 	 * the mode (polling/sequencer) and the algo used (Hamming, BCH).
1645 	 */
1646 	if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) {
1647 		/* DMA => use sequencer mode callbacks */
1648 		chip->ecc.correct = stm32_fmc2_nfc_seq_correct;
1649 		chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page;
1650 		chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page;
1651 		chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw;
1652 		chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw;
1653 	} else {
1654 		/* No DMA => use polling mode callbacks */
1655 		chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
1656 		if (chip->ecc.strength == FMC2_ECC_HAM) {
1657 			/* Hamming is used */
1658 			chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
1659 			chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
1660 			chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
1661 		} else {
1662 			/* BCH is used */
1663 			chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
1664 			chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
1665 			chip->ecc.read_page = stm32_fmc2_nfc_read_page;
1666 		}
1667 	}
1668 
1669 	/* Specific configurations depending on the algo used */
1670 	if (chip->ecc.strength == FMC2_ECC_HAM)
1671 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
1672 	else if (chip->ecc.strength == FMC2_ECC_BCH8)
1673 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
1674 	else
1675 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
1676 }
1677 
1678 static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1679 					struct mtd_oob_region *oobregion)
1680 {
1681 	struct nand_chip *chip = mtd_to_nand(mtd);
1682 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1683 
1684 	if (section)
1685 		return -ERANGE;
1686 
1687 	oobregion->length = ecc->total;
1688 	oobregion->offset = FMC2_BBM_LEN;
1689 
1690 	return 0;
1691 }
1692 
1693 static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1694 					 struct mtd_oob_region *oobregion)
1695 {
1696 	struct nand_chip *chip = mtd_to_nand(mtd);
1697 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1698 
1699 	if (section)
1700 		return -ERANGE;
1701 
1702 	oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
1703 	oobregion->offset = ecc->total + FMC2_BBM_LEN;
1704 
1705 	return 0;
1706 }
1707 
1708 static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = {
1709 	.ecc = stm32_fmc2_nfc_ooblayout_ecc,
1710 	.free = stm32_fmc2_nfc_ooblayout_free,
1711 };
1712 
1713 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
1714 {
1715 	/* Hamming */
1716 	if (strength == FMC2_ECC_HAM)
1717 		return 4;
1718 
1719 	/* BCH8 */
1720 	if (strength == FMC2_ECC_BCH8)
1721 		return 14;
1722 
1723 	/* BCH4 */
1724 	return 8;
1725 }
1726 
1727 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
1728 		     FMC2_ECC_STEP_SIZE,
1729 		     FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
1730 
1731 static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip)
1732 {
1733 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1734 	struct mtd_info *mtd = nand_to_mtd(chip);
1735 	int ret;
1736 
1737 	/*
1738 	 * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported
1739 	 * Hamming => ecc.strength = 1
1740 	 * BCH4 => ecc.strength = 4
1741 	 * BCH8 => ecc.strength = 8
1742 	 * ECC sector size = 512
1743 	 */
1744 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
1745 		dev_err(nfc->dev,
1746 			"nand_ecc_engine_type is not well defined in the DT\n");
1747 		return -EINVAL;
1748 	}
1749 
1750 	/* Default ECC settings in case they are not set in the device tree */
1751 	if (!chip->ecc.size)
1752 		chip->ecc.size = FMC2_ECC_STEP_SIZE;
1753 
1754 	if (!chip->ecc.strength)
1755 		chip->ecc.strength = FMC2_ECC_BCH8;
1756 
1757 	ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps,
1758 				   mtd->oobsize - FMC2_BBM_LEN);
1759 	if (ret) {
1760 		dev_err(nfc->dev, "no valid ECC settings set\n");
1761 		return ret;
1762 	}
1763 
1764 	if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
1765 		dev_err(nfc->dev, "nand page size is not supported\n");
1766 		return -EINVAL;
1767 	}
1768 
1769 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1770 		chip->bbt_options |= NAND_BBT_NO_OOB;
1771 
1772 	stm32_fmc2_nfc_nand_callbacks_setup(chip);
1773 
1774 	mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops);
1775 
1776 	stm32_fmc2_nfc_setup(chip);
1777 
1778 	return 0;
1779 }
1780 
1781 static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = {
1782 	.attach_chip = stm32_fmc2_nfc_attach_chip,
1783 	.exec_op = stm32_fmc2_nfc_exec_op,
1784 	.setup_interface = stm32_fmc2_nfc_setup_interface,
1785 };
1786 
1787 static void stm32_fmc2_nfc_wp_enable(struct stm32_fmc2_nand *nand)
1788 {
1789 	if (nand->wp_gpio)
1790 		gpiod_set_value(nand->wp_gpio, 1);
1791 }
1792 
1793 static void stm32_fmc2_nfc_wp_disable(struct stm32_fmc2_nand *nand)
1794 {
1795 	if (nand->wp_gpio)
1796 		gpiod_set_value(nand->wp_gpio, 0);
1797 }
1798 
1799 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc,
1800 				      struct device_node *dn)
1801 {
1802 	struct stm32_fmc2_nand *nand = &nfc->nand;
1803 	u32 cs;
1804 	int ret, i;
1805 
1806 	if (!of_get_property(dn, "reg", &nand->ncs))
1807 		return -EINVAL;
1808 
1809 	nand->ncs /= sizeof(u32);
1810 	if (!nand->ncs) {
1811 		dev_err(nfc->dev, "invalid reg property size\n");
1812 		return -EINVAL;
1813 	}
1814 
1815 	for (i = 0; i < nand->ncs; i++) {
1816 		ret = of_property_read_u32_index(dn, "reg", i, &cs);
1817 		if (ret) {
1818 			dev_err(nfc->dev, "could not retrieve reg property: %d\n",
1819 				ret);
1820 			return ret;
1821 		}
1822 
1823 		if (cs >= nfc->data->max_ncs) {
1824 			dev_err(nfc->dev, "invalid reg value: %d\n", cs);
1825 			return -EINVAL;
1826 		}
1827 
1828 		if (nfc->cs_assigned & BIT(cs)) {
1829 			dev_err(nfc->dev, "cs already assigned: %d\n", cs);
1830 			return -EINVAL;
1831 		}
1832 
1833 		nfc->cs_assigned |= BIT(cs);
1834 		nand->cs_used[i] = cs;
1835 	}
1836 
1837 	nand->wp_gpio = devm_fwnode_gpiod_get(nfc->dev, of_fwnode_handle(dn),
1838 					      "wp", GPIOD_OUT_HIGH, "wp");
1839 	if (IS_ERR(nand->wp_gpio)) {
1840 		ret = PTR_ERR(nand->wp_gpio);
1841 		if (ret != -ENOENT)
1842 			return dev_err_probe(nfc->dev, ret,
1843 					     "failed to request WP GPIO\n");
1844 
1845 		nand->wp_gpio = NULL;
1846 	}
1847 
1848 	nand_set_flash_node(&nand->chip, dn);
1849 
1850 	return 0;
1851 }
1852 
1853 static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
1854 {
1855 	struct device_node *dn = nfc->dev->of_node;
1856 	int nchips = of_get_child_count(dn);
1857 	int ret = 0;
1858 
1859 	if (!nchips) {
1860 		dev_err(nfc->dev, "NAND chip not defined\n");
1861 		return -EINVAL;
1862 	}
1863 
1864 	if (nchips > 1) {
1865 		dev_err(nfc->dev, "too many NAND chips defined\n");
1866 		return -EINVAL;
1867 	}
1868 
1869 	for_each_child_of_node_scoped(dn, child) {
1870 		ret = stm32_fmc2_nfc_parse_child(nfc, child);
1871 		if (ret < 0)
1872 			return ret;
1873 	}
1874 
1875 	return ret;
1876 }
1877 
1878 static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc)
1879 {
1880 	struct device *dev = nfc->dev;
1881 	bool ebi_found = false;
1882 
1883 	if (dev->parent && of_device_is_compatible(dev->parent->of_node,
1884 						   "st,stm32mp1-fmc2-ebi"))
1885 		ebi_found = true;
1886 
1887 	if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) {
1888 		if (ebi_found) {
1889 			nfc->cdev = dev->parent;
1890 
1891 			return 0;
1892 		}
1893 
1894 		return -EINVAL;
1895 	}
1896 
1897 	if (ebi_found)
1898 		return -EINVAL;
1899 
1900 	nfc->cdev = dev;
1901 
1902 	return 0;
1903 }
1904 
1905 static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
1906 {
1907 	struct device *dev = &pdev->dev;
1908 	struct reset_control *rstc;
1909 	struct stm32_fmc2_nfc *nfc;
1910 	struct stm32_fmc2_nand *nand;
1911 	struct resource *res;
1912 	struct mtd_info *mtd;
1913 	struct nand_chip *chip;
1914 	struct resource cres;
1915 	int chip_cs, mem_region, ret, irq;
1916 	int start_region = 0;
1917 
1918 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1919 	if (!nfc)
1920 		return -ENOMEM;
1921 
1922 	nfc->dev = dev;
1923 	nand_controller_init(&nfc->base);
1924 	nfc->base.ops = &stm32_fmc2_nfc_controller_ops;
1925 
1926 	nfc->data = of_device_get_match_data(dev);
1927 	if (!nfc->data)
1928 		return -EINVAL;
1929 
1930 	if (nfc->data->set_cdev) {
1931 		ret = nfc->data->set_cdev(nfc);
1932 		if (ret)
1933 			return ret;
1934 	} else {
1935 		nfc->cdev = dev->parent;
1936 	}
1937 
1938 	ret = stm32_fmc2_nfc_parse_dt(nfc);
1939 	if (ret)
1940 		return ret;
1941 
1942 	ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres);
1943 	if (ret)
1944 		return ret;
1945 
1946 	nfc->io_phys_addr = cres.start;
1947 
1948 	nfc->regmap = device_node_to_regmap(nfc->cdev->of_node);
1949 	if (IS_ERR(nfc->regmap))
1950 		return PTR_ERR(nfc->regmap);
1951 
1952 	if (nfc->dev == nfc->cdev)
1953 		start_region = 1;
1954 
1955 	for (chip_cs = 0, mem_region = start_region; chip_cs < nfc->data->max_ncs;
1956 	     chip_cs++, mem_region += 3) {
1957 		if (!(nfc->cs_assigned & BIT(chip_cs)))
1958 			continue;
1959 
1960 		nfc->data_base[chip_cs] = devm_platform_get_and_ioremap_resource(pdev,
1961 						mem_region, &res);
1962 		if (IS_ERR(nfc->data_base[chip_cs]))
1963 			return PTR_ERR(nfc->data_base[chip_cs]);
1964 
1965 		nfc->data_phys_addr[chip_cs] = res->start;
1966 
1967 		nfc->cmd_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 1);
1968 		if (IS_ERR(nfc->cmd_base[chip_cs]))
1969 			return PTR_ERR(nfc->cmd_base[chip_cs]);
1970 
1971 		nfc->addr_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 2);
1972 		if (IS_ERR(nfc->addr_base[chip_cs]))
1973 			return PTR_ERR(nfc->addr_base[chip_cs]);
1974 	}
1975 
1976 	irq = platform_get_irq(pdev, 0);
1977 	if (irq < 0)
1978 		return irq;
1979 
1980 	ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0,
1981 			       dev_name(dev), nfc);
1982 	if (ret) {
1983 		dev_err(dev, "failed to request irq\n");
1984 		return ret;
1985 	}
1986 
1987 	init_completion(&nfc->complete);
1988 
1989 	nfc->clk = devm_clk_get_enabled(nfc->cdev, NULL);
1990 	if (IS_ERR(nfc->clk)) {
1991 		dev_err(dev, "can not get and enable the clock\n");
1992 		return PTR_ERR(nfc->clk);
1993 	}
1994 
1995 	rstc = devm_reset_control_get(dev, NULL);
1996 	if (IS_ERR(rstc)) {
1997 		ret = PTR_ERR(rstc);
1998 		if (ret == -EPROBE_DEFER)
1999 			return ret;
2000 	} else {
2001 		reset_control_assert(rstc);
2002 		reset_control_deassert(rstc);
2003 	}
2004 
2005 	ret = stm32_fmc2_nfc_dma_setup(nfc);
2006 	if (ret)
2007 		goto err_release_dma;
2008 
2009 	stm32_fmc2_nfc_init(nfc);
2010 
2011 	nand = &nfc->nand;
2012 	chip = &nand->chip;
2013 	mtd = nand_to_mtd(chip);
2014 	mtd->dev.parent = dev;
2015 
2016 	chip->controller = &nfc->base;
2017 	chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
2018 			 NAND_USES_DMA;
2019 
2020 	stm32_fmc2_nfc_wp_disable(nand);
2021 
2022 	/* Scan to find existence of the device */
2023 	ret = nand_scan(chip, nand->ncs);
2024 	if (ret)
2025 		goto err_wp_enable;
2026 
2027 	ret = mtd_device_register(mtd, NULL, 0);
2028 	if (ret)
2029 		goto err_nand_cleanup;
2030 
2031 	platform_set_drvdata(pdev, nfc);
2032 
2033 	return 0;
2034 
2035 err_nand_cleanup:
2036 	nand_cleanup(chip);
2037 
2038 err_wp_enable:
2039 	stm32_fmc2_nfc_wp_enable(nand);
2040 
2041 err_release_dma:
2042 	if (nfc->dma_ecc_ch)
2043 		dma_release_channel(nfc->dma_ecc_ch);
2044 	if (nfc->dma_tx_ch)
2045 		dma_release_channel(nfc->dma_tx_ch);
2046 	if (nfc->dma_rx_ch)
2047 		dma_release_channel(nfc->dma_rx_ch);
2048 
2049 	sg_free_table(&nfc->dma_data_sg);
2050 	sg_free_table(&nfc->dma_ecc_sg);
2051 
2052 	return ret;
2053 }
2054 
2055 static void stm32_fmc2_nfc_remove(struct platform_device *pdev)
2056 {
2057 	struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev);
2058 	struct stm32_fmc2_nand *nand = &nfc->nand;
2059 	struct nand_chip *chip = &nand->chip;
2060 	int ret;
2061 
2062 	ret = mtd_device_unregister(nand_to_mtd(chip));
2063 	WARN_ON(ret);
2064 	nand_cleanup(chip);
2065 
2066 	if (nfc->dma_ecc_ch)
2067 		dma_release_channel(nfc->dma_ecc_ch);
2068 	if (nfc->dma_tx_ch)
2069 		dma_release_channel(nfc->dma_tx_ch);
2070 	if (nfc->dma_rx_ch)
2071 		dma_release_channel(nfc->dma_rx_ch);
2072 
2073 	sg_free_table(&nfc->dma_data_sg);
2074 	sg_free_table(&nfc->dma_ecc_sg);
2075 
2076 	stm32_fmc2_nfc_wp_enable(nand);
2077 }
2078 
2079 static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev)
2080 {
2081 	struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2082 	struct stm32_fmc2_nand *nand = &nfc->nand;
2083 
2084 	clk_disable_unprepare(nfc->clk);
2085 
2086 	stm32_fmc2_nfc_wp_enable(nand);
2087 
2088 	pinctrl_pm_select_sleep_state(dev);
2089 
2090 	return 0;
2091 }
2092 
2093 static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev)
2094 {
2095 	struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2096 	struct stm32_fmc2_nand *nand = &nfc->nand;
2097 	int chip_cs, ret;
2098 
2099 	pinctrl_pm_select_default_state(dev);
2100 
2101 	ret = clk_prepare_enable(nfc->clk);
2102 	if (ret) {
2103 		dev_err(dev, "can not enable the clock\n");
2104 		return ret;
2105 	}
2106 
2107 	stm32_fmc2_nfc_init(nfc);
2108 
2109 	stm32_fmc2_nfc_wp_disable(nand);
2110 
2111 	for (chip_cs = 0; chip_cs < nfc->data->max_ncs; chip_cs++) {
2112 		if (!(nfc->cs_assigned & BIT(chip_cs)))
2113 			continue;
2114 
2115 		nand_reset(&nand->chip, chip_cs);
2116 	}
2117 
2118 	return 0;
2119 }
2120 
2121 static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,
2122 			 stm32_fmc2_nfc_resume);
2123 
2124 static const struct stm32_fmc2_nfc_data stm32_fmc2_nfc_mp1_data = {
2125 	.max_ncs = 2,
2126 	.set_cdev = stm32_fmc2_nfc_set_cdev,
2127 };
2128 
2129 static const struct stm32_fmc2_nfc_data stm32_fmc2_nfc_mp25_data = {
2130 	.max_ncs = 4,
2131 };
2132 
2133 static const struct of_device_id stm32_fmc2_nfc_match[] = {
2134 	{
2135 		.compatible = "st,stm32mp15-fmc2",
2136 		.data = &stm32_fmc2_nfc_mp1_data,
2137 	},
2138 	{
2139 		.compatible = "st,stm32mp1-fmc2-nfc",
2140 		.data = &stm32_fmc2_nfc_mp1_data,
2141 	},
2142 	{
2143 		.compatible = "st,stm32mp25-fmc2-nfc",
2144 		.data = &stm32_fmc2_nfc_mp25_data,
2145 	},
2146 	{}
2147 };
2148 MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
2149 
2150 static struct platform_driver stm32_fmc2_nfc_driver = {
2151 	.probe	= stm32_fmc2_nfc_probe,
2152 	.remove = stm32_fmc2_nfc_remove,
2153 	.driver	= {
2154 		.name = "stm32_fmc2_nfc",
2155 		.of_match_table = stm32_fmc2_nfc_match,
2156 		.pm = &stm32_fmc2_nfc_pm_ops,
2157 	},
2158 };
2159 module_platform_driver(stm32_fmc2_nfc_driver);
2160 
2161 MODULE_ALIAS("platform:stm32_fmc2_nfc");
2162 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
2163 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
2164 MODULE_LICENSE("GPL v2");
2165