1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2018 4 * Author: Christophe Kerello <christophe.kerello@st.com> 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/clk.h> 9 #include <linux/dmaengine.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/errno.h> 12 #include <linux/gpio/consumer.h> 13 #include <linux/interrupt.h> 14 #include <linux/iopoll.h> 15 #include <linux/mfd/syscon.h> 16 #include <linux/module.h> 17 #include <linux/mtd/rawnand.h> 18 #include <linux/of_address.h> 19 #include <linux/of_device.h> 20 #include <linux/pinctrl/consumer.h> 21 #include <linux/platform_device.h> 22 #include <linux/regmap.h> 23 #include <linux/reset.h> 24 25 /* Bad block marker length */ 26 #define FMC2_BBM_LEN 2 27 28 /* ECC step size */ 29 #define FMC2_ECC_STEP_SIZE 512 30 31 /* BCHDSRx registers length */ 32 #define FMC2_BCHDSRS_LEN 20 33 34 /* HECCR length */ 35 #define FMC2_HECCR_LEN 4 36 37 /* Max requests done for a 8k nand page size */ 38 #define FMC2_MAX_SG 16 39 40 /* Max chip enable */ 41 #define FMC2_MAX_CE 4 42 43 /* Max ECC buffer length */ 44 #define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG) 45 46 #define FMC2_TIMEOUT_MS 5000 47 48 /* Timings */ 49 #define FMC2_THIZ 1 50 #define FMC2_TIO 8000 51 #define FMC2_TSYNC 3000 52 #define FMC2_PCR_TIMING_MASK 0xf 53 #define FMC2_PMEM_PATT_TIMING_MASK 0xff 54 55 /* FMC2 Controller Registers */ 56 #define FMC2_BCR1 0x0 57 #define FMC2_PCR 0x80 58 #define FMC2_SR 0x84 59 #define FMC2_PMEM 0x88 60 #define FMC2_PATT 0x8c 61 #define FMC2_HECCR 0x94 62 #define FMC2_ISR 0x184 63 #define FMC2_ICR 0x188 64 #define FMC2_CSQCR 0x200 65 #define FMC2_CSQCFGR1 0x204 66 #define FMC2_CSQCFGR2 0x208 67 #define FMC2_CSQCFGR3 0x20c 68 #define FMC2_CSQAR1 0x210 69 #define FMC2_CSQAR2 0x214 70 #define FMC2_CSQIER 0x220 71 #define FMC2_CSQISR 0x224 72 #define FMC2_CSQICR 0x228 73 #define FMC2_CSQEMSR 0x230 74 #define FMC2_BCHIER 0x250 75 #define FMC2_BCHISR 0x254 76 #define FMC2_BCHICR 0x258 77 #define FMC2_BCHPBR1 0x260 78 #define FMC2_BCHPBR2 0x264 79 #define FMC2_BCHPBR3 0x268 80 #define FMC2_BCHPBR4 0x26c 81 #define FMC2_BCHDSR0 0x27c 82 #define FMC2_BCHDSR1 0x280 83 #define FMC2_BCHDSR2 0x284 84 #define FMC2_BCHDSR3 0x288 85 #define FMC2_BCHDSR4 0x28c 86 87 /* Register: FMC2_BCR1 */ 88 #define FMC2_BCR1_FMC2EN BIT(31) 89 90 /* Register: FMC2_PCR */ 91 #define FMC2_PCR_PWAITEN BIT(1) 92 #define FMC2_PCR_PBKEN BIT(2) 93 #define FMC2_PCR_PWID GENMASK(5, 4) 94 #define FMC2_PCR_PWID_BUSWIDTH_8 0 95 #define FMC2_PCR_PWID_BUSWIDTH_16 1 96 #define FMC2_PCR_ECCEN BIT(6) 97 #define FMC2_PCR_ECCALG BIT(8) 98 #define FMC2_PCR_TCLR GENMASK(12, 9) 99 #define FMC2_PCR_TCLR_DEFAULT 0xf 100 #define FMC2_PCR_TAR GENMASK(16, 13) 101 #define FMC2_PCR_TAR_DEFAULT 0xf 102 #define FMC2_PCR_ECCSS GENMASK(19, 17) 103 #define FMC2_PCR_ECCSS_512 1 104 #define FMC2_PCR_ECCSS_2048 3 105 #define FMC2_PCR_BCHECC BIT(24) 106 #define FMC2_PCR_WEN BIT(25) 107 108 /* Register: FMC2_SR */ 109 #define FMC2_SR_NWRF BIT(6) 110 111 /* Register: FMC2_PMEM */ 112 #define FMC2_PMEM_MEMSET GENMASK(7, 0) 113 #define FMC2_PMEM_MEMWAIT GENMASK(15, 8) 114 #define FMC2_PMEM_MEMHOLD GENMASK(23, 16) 115 #define FMC2_PMEM_MEMHIZ GENMASK(31, 24) 116 #define FMC2_PMEM_DEFAULT 0x0a0a0a0a 117 118 /* Register: FMC2_PATT */ 119 #define FMC2_PATT_ATTSET GENMASK(7, 0) 120 #define FMC2_PATT_ATTWAIT GENMASK(15, 8) 121 #define FMC2_PATT_ATTHOLD GENMASK(23, 16) 122 #define FMC2_PATT_ATTHIZ GENMASK(31, 24) 123 #define FMC2_PATT_DEFAULT 0x0a0a0a0a 124 125 /* Register: FMC2_ISR */ 126 #define FMC2_ISR_IHLF BIT(1) 127 128 /* Register: FMC2_ICR */ 129 #define FMC2_ICR_CIHLF BIT(1) 130 131 /* Register: FMC2_CSQCR */ 132 #define FMC2_CSQCR_CSQSTART BIT(0) 133 134 /* Register: FMC2_CSQCFGR1 */ 135 #define FMC2_CSQCFGR1_CMD2EN BIT(1) 136 #define FMC2_CSQCFGR1_DMADEN BIT(2) 137 #define FMC2_CSQCFGR1_ACYNBR GENMASK(6, 4) 138 #define FMC2_CSQCFGR1_CMD1 GENMASK(15, 8) 139 #define FMC2_CSQCFGR1_CMD2 GENMASK(23, 16) 140 #define FMC2_CSQCFGR1_CMD1T BIT(24) 141 #define FMC2_CSQCFGR1_CMD2T BIT(25) 142 143 /* Register: FMC2_CSQCFGR2 */ 144 #define FMC2_CSQCFGR2_SQSDTEN BIT(0) 145 #define FMC2_CSQCFGR2_RCMD2EN BIT(1) 146 #define FMC2_CSQCFGR2_DMASEN BIT(2) 147 #define FMC2_CSQCFGR2_RCMD1 GENMASK(15, 8) 148 #define FMC2_CSQCFGR2_RCMD2 GENMASK(23, 16) 149 #define FMC2_CSQCFGR2_RCMD1T BIT(24) 150 #define FMC2_CSQCFGR2_RCMD2T BIT(25) 151 152 /* Register: FMC2_CSQCFGR3 */ 153 #define FMC2_CSQCFGR3_SNBR GENMASK(13, 8) 154 #define FMC2_CSQCFGR3_AC1T BIT(16) 155 #define FMC2_CSQCFGR3_AC2T BIT(17) 156 #define FMC2_CSQCFGR3_AC3T BIT(18) 157 #define FMC2_CSQCFGR3_AC4T BIT(19) 158 #define FMC2_CSQCFGR3_AC5T BIT(20) 159 #define FMC2_CSQCFGR3_SDT BIT(21) 160 #define FMC2_CSQCFGR3_RAC1T BIT(22) 161 #define FMC2_CSQCFGR3_RAC2T BIT(23) 162 163 /* Register: FMC2_CSQCAR1 */ 164 #define FMC2_CSQCAR1_ADDC1 GENMASK(7, 0) 165 #define FMC2_CSQCAR1_ADDC2 GENMASK(15, 8) 166 #define FMC2_CSQCAR1_ADDC3 GENMASK(23, 16) 167 #define FMC2_CSQCAR1_ADDC4 GENMASK(31, 24) 168 169 /* Register: FMC2_CSQCAR2 */ 170 #define FMC2_CSQCAR2_ADDC5 GENMASK(7, 0) 171 #define FMC2_CSQCAR2_NANDCEN GENMASK(11, 10) 172 #define FMC2_CSQCAR2_SAO GENMASK(31, 16) 173 174 /* Register: FMC2_CSQIER */ 175 #define FMC2_CSQIER_TCIE BIT(0) 176 177 /* Register: FMC2_CSQICR */ 178 #define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0) 179 180 /* Register: FMC2_CSQEMSR */ 181 #define FMC2_CSQEMSR_SEM GENMASK(15, 0) 182 183 /* Register: FMC2_BCHIER */ 184 #define FMC2_BCHIER_DERIE BIT(1) 185 #define FMC2_BCHIER_EPBRIE BIT(4) 186 187 /* Register: FMC2_BCHICR */ 188 #define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0) 189 190 /* Register: FMC2_BCHDSR0 */ 191 #define FMC2_BCHDSR0_DUE BIT(0) 192 #define FMC2_BCHDSR0_DEF BIT(1) 193 #define FMC2_BCHDSR0_DEN GENMASK(7, 4) 194 195 /* Register: FMC2_BCHDSR1 */ 196 #define FMC2_BCHDSR1_EBP1 GENMASK(12, 0) 197 #define FMC2_BCHDSR1_EBP2 GENMASK(28, 16) 198 199 /* Register: FMC2_BCHDSR2 */ 200 #define FMC2_BCHDSR2_EBP3 GENMASK(12, 0) 201 #define FMC2_BCHDSR2_EBP4 GENMASK(28, 16) 202 203 /* Register: FMC2_BCHDSR3 */ 204 #define FMC2_BCHDSR3_EBP5 GENMASK(12, 0) 205 #define FMC2_BCHDSR3_EBP6 GENMASK(28, 16) 206 207 /* Register: FMC2_BCHDSR4 */ 208 #define FMC2_BCHDSR4_EBP7 GENMASK(12, 0) 209 #define FMC2_BCHDSR4_EBP8 GENMASK(28, 16) 210 211 enum stm32_fmc2_ecc { 212 FMC2_ECC_HAM = 1, 213 FMC2_ECC_BCH4 = 4, 214 FMC2_ECC_BCH8 = 8 215 }; 216 217 enum stm32_fmc2_irq_state { 218 FMC2_IRQ_UNKNOWN = 0, 219 FMC2_IRQ_BCH, 220 FMC2_IRQ_SEQ 221 }; 222 223 struct stm32_fmc2_timings { 224 u8 tclr; 225 u8 tar; 226 u8 thiz; 227 u8 twait; 228 u8 thold_mem; 229 u8 tset_mem; 230 u8 thold_att; 231 u8 tset_att; 232 }; 233 234 struct stm32_fmc2_nand { 235 struct nand_chip chip; 236 struct gpio_desc *wp_gpio; 237 struct stm32_fmc2_timings timings; 238 int ncs; 239 int cs_used[FMC2_MAX_CE]; 240 }; 241 242 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip) 243 { 244 return container_of(chip, struct stm32_fmc2_nand, chip); 245 } 246 247 struct stm32_fmc2_nfc; 248 249 struct stm32_fmc2_nfc_data { 250 int max_ncs; 251 int (*set_cdev)(struct stm32_fmc2_nfc *nfc); 252 }; 253 254 struct stm32_fmc2_nfc { 255 struct nand_controller base; 256 struct stm32_fmc2_nand nand; 257 struct device *dev; 258 struct device *cdev; 259 struct regmap *regmap; 260 void __iomem *data_base[FMC2_MAX_CE]; 261 void __iomem *cmd_base[FMC2_MAX_CE]; 262 void __iomem *addr_base[FMC2_MAX_CE]; 263 phys_addr_t io_phys_addr; 264 phys_addr_t data_phys_addr[FMC2_MAX_CE]; 265 struct clk *clk; 266 u8 irq_state; 267 const struct stm32_fmc2_nfc_data *data; 268 269 struct dma_chan *dma_tx_ch; 270 struct dma_chan *dma_rx_ch; 271 struct dma_chan *dma_ecc_ch; 272 struct sg_table dma_data_sg; 273 struct sg_table dma_ecc_sg; 274 u8 *ecc_buf; 275 int dma_ecc_len; 276 u32 tx_dma_max_burst; 277 u32 rx_dma_max_burst; 278 279 struct completion complete; 280 struct completion dma_data_complete; 281 struct completion dma_ecc_complete; 282 283 u8 cs_assigned; 284 int cs_sel; 285 }; 286 287 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base) 288 { 289 return container_of(base, struct stm32_fmc2_nfc, base); 290 } 291 292 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip) 293 { 294 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 295 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); 296 struct stm32_fmc2_timings *timings = &nand->timings; 297 u32 pmem, patt; 298 299 /* Set tclr/tar timings */ 300 regmap_update_bits(nfc->regmap, FMC2_PCR, 301 FMC2_PCR_TCLR | FMC2_PCR_TAR, 302 FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) | 303 FIELD_PREP(FMC2_PCR_TAR, timings->tar)); 304 305 /* Set tset/twait/thold/thiz timings in common bank */ 306 pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem); 307 pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait); 308 pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem); 309 pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz); 310 regmap_write(nfc->regmap, FMC2_PMEM, pmem); 311 312 /* Set tset/twait/thold/thiz timings in attribut bank */ 313 patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att); 314 patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait); 315 patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att); 316 patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz); 317 regmap_write(nfc->regmap, FMC2_PATT, patt); 318 } 319 320 static void stm32_fmc2_nfc_setup(struct nand_chip *chip) 321 { 322 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 323 u32 pcr = 0, pcr_mask; 324 325 /* Configure ECC algorithm (default configuration is Hamming) */ 326 pcr_mask = FMC2_PCR_ECCALG; 327 pcr_mask |= FMC2_PCR_BCHECC; 328 if (chip->ecc.strength == FMC2_ECC_BCH8) { 329 pcr |= FMC2_PCR_ECCALG; 330 pcr |= FMC2_PCR_BCHECC; 331 } else if (chip->ecc.strength == FMC2_ECC_BCH4) { 332 pcr |= FMC2_PCR_ECCALG; 333 } 334 335 /* Set buswidth */ 336 pcr_mask |= FMC2_PCR_PWID; 337 if (chip->options & NAND_BUSWIDTH_16) 338 pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16); 339 340 /* Set ECC sector size */ 341 pcr_mask |= FMC2_PCR_ECCSS; 342 pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512); 343 344 regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr); 345 } 346 347 static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr) 348 { 349 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 350 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); 351 struct dma_slave_config dma_cfg; 352 int ret; 353 354 if (nand->cs_used[chipnr] == nfc->cs_sel) 355 return 0; 356 357 nfc->cs_sel = nand->cs_used[chipnr]; 358 stm32_fmc2_nfc_setup(chip); 359 stm32_fmc2_nfc_timings_init(chip); 360 361 if (nfc->dma_tx_ch) { 362 memset(&dma_cfg, 0, sizeof(dma_cfg)); 363 dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel]; 364 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 365 dma_cfg.dst_maxburst = nfc->tx_dma_max_burst / 366 dma_cfg.dst_addr_width; 367 368 ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg); 369 if (ret) { 370 dev_err(nfc->dev, "tx DMA engine slave config failed\n"); 371 return ret; 372 } 373 } 374 375 if (nfc->dma_rx_ch) { 376 memset(&dma_cfg, 0, sizeof(dma_cfg)); 377 dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel]; 378 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 379 dma_cfg.src_maxburst = nfc->rx_dma_max_burst / 380 dma_cfg.src_addr_width; 381 382 ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg); 383 if (ret) { 384 dev_err(nfc->dev, "rx DMA engine slave config failed\n"); 385 return ret; 386 } 387 } 388 389 if (nfc->dma_ecc_ch) { 390 /* 391 * Hamming: we read HECCR register 392 * BCH4/BCH8: we read BCHDSRSx registers 393 */ 394 memset(&dma_cfg, 0, sizeof(dma_cfg)); 395 dma_cfg.src_addr = nfc->io_phys_addr; 396 dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ? 397 FMC2_HECCR : FMC2_BCHDSR0; 398 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 399 400 ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg); 401 if (ret) { 402 dev_err(nfc->dev, "ECC DMA engine slave config failed\n"); 403 return ret; 404 } 405 406 /* Calculate ECC length needed for one sector */ 407 nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ? 408 FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN; 409 } 410 411 return 0; 412 } 413 414 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set) 415 { 416 u32 pcr; 417 418 pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) : 419 FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8); 420 421 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr); 422 } 423 424 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable) 425 { 426 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN, 427 enable ? FMC2_PCR_ECCEN : 0); 428 } 429 430 static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc) 431 { 432 nfc->irq_state = FMC2_IRQ_SEQ; 433 434 regmap_update_bits(nfc->regmap, FMC2_CSQIER, 435 FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE); 436 } 437 438 static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc) 439 { 440 regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0); 441 442 nfc->irq_state = FMC2_IRQ_UNKNOWN; 443 } 444 445 static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc) 446 { 447 regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ); 448 } 449 450 static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode) 451 { 452 nfc->irq_state = FMC2_IRQ_BCH; 453 454 if (mode == NAND_ECC_WRITE) 455 regmap_update_bits(nfc->regmap, FMC2_BCHIER, 456 FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE); 457 else 458 regmap_update_bits(nfc->regmap, FMC2_BCHIER, 459 FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE); 460 } 461 462 static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc) 463 { 464 regmap_update_bits(nfc->regmap, FMC2_BCHIER, 465 FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0); 466 467 nfc->irq_state = FMC2_IRQ_UNKNOWN; 468 } 469 470 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc) 471 { 472 regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ); 473 } 474 475 /* 476 * Enable ECC logic and reset syndrome/parity bits previously calculated 477 * Syndrome/parity bits is cleared by setting the ECCEN bit to 0 478 */ 479 static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode) 480 { 481 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 482 483 stm32_fmc2_nfc_set_ecc(nfc, false); 484 485 if (chip->ecc.strength != FMC2_ECC_HAM) { 486 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN, 487 mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0); 488 489 reinit_completion(&nfc->complete); 490 stm32_fmc2_nfc_clear_bch_irq(nfc); 491 stm32_fmc2_nfc_enable_bch_irq(nfc, mode); 492 } 493 494 stm32_fmc2_nfc_set_ecc(nfc, true); 495 } 496 497 /* 498 * ECC Hamming calculation 499 * ECC is 3 bytes for 512 bytes of data (supports error correction up to 500 * max of 1-bit) 501 */ 502 static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc) 503 { 504 ecc[0] = ecc_sta; 505 ecc[1] = ecc_sta >> 8; 506 ecc[2] = ecc_sta >> 16; 507 } 508 509 static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data, 510 u8 *ecc) 511 { 512 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 513 u32 sr, heccr; 514 int ret; 515 516 ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr, 517 sr & FMC2_SR_NWRF, 1, 518 1000 * FMC2_TIMEOUT_MS); 519 if (ret) { 520 dev_err(nfc->dev, "ham timeout\n"); 521 return ret; 522 } 523 524 regmap_read(nfc->regmap, FMC2_HECCR, &heccr); 525 stm32_fmc2_nfc_ham_set_ecc(heccr, ecc); 526 stm32_fmc2_nfc_set_ecc(nfc, false); 527 528 return 0; 529 } 530 531 static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat, 532 u8 *read_ecc, u8 *calc_ecc) 533 { 534 u8 bit_position = 0, b0, b1, b2; 535 u32 byte_addr = 0, b; 536 u32 i, shifting = 1; 537 538 /* Indicate which bit and byte is faulty (if any) */ 539 b0 = read_ecc[0] ^ calc_ecc[0]; 540 b1 = read_ecc[1] ^ calc_ecc[1]; 541 b2 = read_ecc[2] ^ calc_ecc[2]; 542 b = b0 | (b1 << 8) | (b2 << 16); 543 544 /* No errors */ 545 if (likely(!b)) 546 return 0; 547 548 /* Calculate bit position */ 549 for (i = 0; i < 3; i++) { 550 switch (b % 4) { 551 case 2: 552 bit_position += shifting; 553 break; 554 case 1: 555 break; 556 default: 557 return -EBADMSG; 558 } 559 shifting <<= 1; 560 b >>= 2; 561 } 562 563 /* Calculate byte position */ 564 shifting = 1; 565 for (i = 0; i < 9; i++) { 566 switch (b % 4) { 567 case 2: 568 byte_addr += shifting; 569 break; 570 case 1: 571 break; 572 default: 573 return -EBADMSG; 574 } 575 shifting <<= 1; 576 b >>= 2; 577 } 578 579 /* Flip the bit */ 580 dat[byte_addr] ^= (1 << bit_position); 581 582 return 1; 583 } 584 585 /* 586 * ECC BCH calculation and correction 587 * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to 588 * max of 4-bit/8-bit) 589 */ 590 static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data, 591 u8 *ecc) 592 { 593 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 594 u32 bchpbr; 595 596 /* Wait until the BCH code is ready */ 597 if (!wait_for_completion_timeout(&nfc->complete, 598 msecs_to_jiffies(FMC2_TIMEOUT_MS))) { 599 dev_err(nfc->dev, "bch timeout\n"); 600 stm32_fmc2_nfc_disable_bch_irq(nfc); 601 return -ETIMEDOUT; 602 } 603 604 /* Read parity bits */ 605 regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr); 606 ecc[0] = bchpbr; 607 ecc[1] = bchpbr >> 8; 608 ecc[2] = bchpbr >> 16; 609 ecc[3] = bchpbr >> 24; 610 611 regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr); 612 ecc[4] = bchpbr; 613 ecc[5] = bchpbr >> 8; 614 ecc[6] = bchpbr >> 16; 615 616 if (chip->ecc.strength == FMC2_ECC_BCH8) { 617 ecc[7] = bchpbr >> 24; 618 619 regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr); 620 ecc[8] = bchpbr; 621 ecc[9] = bchpbr >> 8; 622 ecc[10] = bchpbr >> 16; 623 ecc[11] = bchpbr >> 24; 624 625 regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr); 626 ecc[12] = bchpbr; 627 } 628 629 stm32_fmc2_nfc_set_ecc(nfc, false); 630 631 return 0; 632 } 633 634 static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta) 635 { 636 u32 bchdsr0 = ecc_sta[0]; 637 u32 bchdsr1 = ecc_sta[1]; 638 u32 bchdsr2 = ecc_sta[2]; 639 u32 bchdsr3 = ecc_sta[3]; 640 u32 bchdsr4 = ecc_sta[4]; 641 u16 pos[8]; 642 int i, den; 643 unsigned int nb_errs = 0; 644 645 /* No errors found */ 646 if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF))) 647 return 0; 648 649 /* Too many errors detected */ 650 if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE)) 651 return -EBADMSG; 652 653 pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1); 654 pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1); 655 pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2); 656 pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2); 657 pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3); 658 pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3); 659 pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4); 660 pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4); 661 662 den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0); 663 for (i = 0; i < den; i++) { 664 if (pos[i] < eccsize * 8) { 665 change_bit(pos[i], (unsigned long *)dat); 666 nb_errs++; 667 } 668 } 669 670 return nb_errs; 671 } 672 673 static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat, 674 u8 *read_ecc, u8 *calc_ecc) 675 { 676 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 677 u32 ecc_sta[5]; 678 679 /* Wait until the decoding error is ready */ 680 if (!wait_for_completion_timeout(&nfc->complete, 681 msecs_to_jiffies(FMC2_TIMEOUT_MS))) { 682 dev_err(nfc->dev, "bch timeout\n"); 683 stm32_fmc2_nfc_disable_bch_irq(nfc); 684 return -ETIMEDOUT; 685 } 686 687 regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5); 688 689 stm32_fmc2_nfc_set_ecc(nfc, false); 690 691 return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta); 692 } 693 694 static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf, 695 int oob_required, int page) 696 { 697 struct mtd_info *mtd = nand_to_mtd(chip); 698 int ret, i, s, stat, eccsize = chip->ecc.size; 699 int eccbytes = chip->ecc.bytes; 700 int eccsteps = chip->ecc.steps; 701 int eccstrength = chip->ecc.strength; 702 u8 *p = buf; 703 u8 *ecc_calc = chip->ecc.calc_buf; 704 u8 *ecc_code = chip->ecc.code_buf; 705 unsigned int max_bitflips = 0; 706 707 ret = nand_read_page_op(chip, page, 0, NULL, 0); 708 if (ret) 709 return ret; 710 711 for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps; 712 s++, i += eccbytes, p += eccsize) { 713 chip->ecc.hwctl(chip, NAND_ECC_READ); 714 715 /* Read the nand page sector (512 bytes) */ 716 ret = nand_change_read_column_op(chip, s * eccsize, p, 717 eccsize, false); 718 if (ret) 719 return ret; 720 721 /* Read the corresponding ECC bytes */ 722 ret = nand_change_read_column_op(chip, i, ecc_code, 723 eccbytes, false); 724 if (ret) 725 return ret; 726 727 /* Correct the data */ 728 stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc); 729 if (stat == -EBADMSG) 730 /* Check for empty pages with bitflips */ 731 stat = nand_check_erased_ecc_chunk(p, eccsize, 732 ecc_code, eccbytes, 733 NULL, 0, 734 eccstrength); 735 736 if (stat < 0) { 737 mtd->ecc_stats.failed++; 738 } else { 739 mtd->ecc_stats.corrected += stat; 740 max_bitflips = max_t(unsigned int, max_bitflips, stat); 741 } 742 } 743 744 /* Read oob */ 745 if (oob_required) { 746 ret = nand_change_read_column_op(chip, mtd->writesize, 747 chip->oob_poi, mtd->oobsize, 748 false); 749 if (ret) 750 return ret; 751 } 752 753 return max_bitflips; 754 } 755 756 /* Sequencer read/write configuration */ 757 static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page, 758 int raw, bool write_data) 759 { 760 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 761 struct mtd_info *mtd = nand_to_mtd(chip); 762 u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN; 763 /* 764 * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3 765 * cfg[3] => csqar1, cfg[4] => csqar2 766 */ 767 u32 cfg[5]; 768 769 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN, 770 write_data ? FMC2_PCR_WEN : 0); 771 772 /* 773 * - Set Program Page/Page Read command 774 * - Enable DMA request data 775 * - Set timings 776 */ 777 cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T; 778 if (write_data) 779 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN); 780 else 781 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) | 782 FMC2_CSQCFGR1_CMD2EN | 783 FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) | 784 FMC2_CSQCFGR1_CMD2T; 785 786 /* 787 * - Set Random Data Input/Random Data Read command 788 * - Enable the sequencer to access the Spare data area 789 * - Enable DMA request status decoding for read 790 * - Set timings 791 */ 792 if (write_data) 793 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN); 794 else 795 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) | 796 FMC2_CSQCFGR2_RCMD2EN | 797 FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) | 798 FMC2_CSQCFGR2_RCMD1T | 799 FMC2_CSQCFGR2_RCMD2T; 800 if (!raw) { 801 cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN; 802 cfg[1] |= FMC2_CSQCFGR2_SQSDTEN; 803 } 804 805 /* 806 * - Set the number of sectors to be written 807 * - Set timings 808 */ 809 cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1); 810 if (write_data) { 811 cfg[2] |= FMC2_CSQCFGR3_RAC2T; 812 if (chip->options & NAND_ROW_ADDR_3) 813 cfg[2] |= FMC2_CSQCFGR3_AC5T; 814 else 815 cfg[2] |= FMC2_CSQCFGR3_AC4T; 816 } 817 818 /* 819 * Set the fourth first address cycles 820 * Byte 1 and byte 2 => column, we start at 0x0 821 * Byte 3 and byte 4 => page 822 */ 823 cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page); 824 cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8); 825 826 /* 827 * - Set chip enable number 828 * - Set ECC byte offset in the spare area 829 * - Calculate the number of address cycles to be issued 830 * - Set byte 5 of address cycle if needed 831 */ 832 cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel); 833 if (chip->options & NAND_BUSWIDTH_16) 834 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1); 835 else 836 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset); 837 if (chip->options & NAND_ROW_ADDR_3) { 838 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5); 839 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16); 840 } else { 841 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4); 842 } 843 844 regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5); 845 } 846 847 static void stm32_fmc2_nfc_dma_callback(void *arg) 848 { 849 complete((struct completion *)arg); 850 } 851 852 /* Read/write data from/to a page */ 853 static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf, 854 int raw, bool write_data) 855 { 856 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 857 struct dma_async_tx_descriptor *desc_data, *desc_ecc; 858 struct scatterlist *sg; 859 struct dma_chan *dma_ch = nfc->dma_rx_ch; 860 enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE; 861 enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM; 862 int eccsteps = chip->ecc.steps; 863 int eccsize = chip->ecc.size; 864 unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS); 865 const u8 *p = buf; 866 int s, ret; 867 868 /* Configure DMA data */ 869 if (write_data) { 870 dma_data_dir = DMA_TO_DEVICE; 871 dma_transfer_dir = DMA_MEM_TO_DEV; 872 dma_ch = nfc->dma_tx_ch; 873 } 874 875 for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) { 876 sg_set_buf(sg, p, eccsize); 877 p += eccsize; 878 } 879 880 ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl, 881 eccsteps, dma_data_dir); 882 if (!ret) 883 return -EIO; 884 885 desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl, 886 eccsteps, dma_transfer_dir, 887 DMA_PREP_INTERRUPT); 888 if (!desc_data) { 889 ret = -ENOMEM; 890 goto err_unmap_data; 891 } 892 893 reinit_completion(&nfc->dma_data_complete); 894 reinit_completion(&nfc->complete); 895 desc_data->callback = stm32_fmc2_nfc_dma_callback; 896 desc_data->callback_param = &nfc->dma_data_complete; 897 ret = dma_submit_error(dmaengine_submit(desc_data)); 898 if (ret) 899 goto err_unmap_data; 900 901 dma_async_issue_pending(dma_ch); 902 903 if (!write_data && !raw) { 904 /* Configure DMA ECC status */ 905 p = nfc->ecc_buf; 906 for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) { 907 sg_set_buf(sg, p, nfc->dma_ecc_len); 908 p += nfc->dma_ecc_len; 909 } 910 911 ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl, 912 eccsteps, dma_data_dir); 913 if (!ret) { 914 ret = -EIO; 915 goto err_unmap_data; 916 } 917 918 desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch, 919 nfc->dma_ecc_sg.sgl, 920 eccsteps, dma_transfer_dir, 921 DMA_PREP_INTERRUPT); 922 if (!desc_ecc) { 923 ret = -ENOMEM; 924 goto err_unmap_ecc; 925 } 926 927 reinit_completion(&nfc->dma_ecc_complete); 928 desc_ecc->callback = stm32_fmc2_nfc_dma_callback; 929 desc_ecc->callback_param = &nfc->dma_ecc_complete; 930 ret = dma_submit_error(dmaengine_submit(desc_ecc)); 931 if (ret) 932 goto err_unmap_ecc; 933 934 dma_async_issue_pending(nfc->dma_ecc_ch); 935 } 936 937 stm32_fmc2_nfc_clear_seq_irq(nfc); 938 stm32_fmc2_nfc_enable_seq_irq(nfc); 939 940 /* Start the transfer */ 941 regmap_update_bits(nfc->regmap, FMC2_CSQCR, 942 FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART); 943 944 /* Wait end of sequencer transfer */ 945 if (!wait_for_completion_timeout(&nfc->complete, timeout)) { 946 dev_err(nfc->dev, "seq timeout\n"); 947 stm32_fmc2_nfc_disable_seq_irq(nfc); 948 dmaengine_terminate_all(dma_ch); 949 if (!write_data && !raw) 950 dmaengine_terminate_all(nfc->dma_ecc_ch); 951 ret = -ETIMEDOUT; 952 goto err_unmap_ecc; 953 } 954 955 /* Wait DMA data transfer completion */ 956 if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) { 957 dev_err(nfc->dev, "data DMA timeout\n"); 958 dmaengine_terminate_all(dma_ch); 959 ret = -ETIMEDOUT; 960 } 961 962 /* Wait DMA ECC transfer completion */ 963 if (!write_data && !raw) { 964 if (!wait_for_completion_timeout(&nfc->dma_ecc_complete, 965 timeout)) { 966 dev_err(nfc->dev, "ECC DMA timeout\n"); 967 dmaengine_terminate_all(nfc->dma_ecc_ch); 968 ret = -ETIMEDOUT; 969 } 970 } 971 972 err_unmap_ecc: 973 if (!write_data && !raw) 974 dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl, 975 eccsteps, dma_data_dir); 976 977 err_unmap_data: 978 dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir); 979 980 return ret; 981 } 982 983 static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf, 984 int oob_required, int page, int raw) 985 { 986 struct mtd_info *mtd = nand_to_mtd(chip); 987 int ret; 988 989 /* Configure the sequencer */ 990 stm32_fmc2_nfc_rw_page_init(chip, page, raw, true); 991 992 /* Write the page */ 993 ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true); 994 if (ret) 995 return ret; 996 997 /* Write oob */ 998 if (oob_required) { 999 ret = nand_change_write_column_op(chip, mtd->writesize, 1000 chip->oob_poi, mtd->oobsize, 1001 false); 1002 if (ret) 1003 return ret; 1004 } 1005 1006 return nand_prog_page_end_op(chip); 1007 } 1008 1009 static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf, 1010 int oob_required, int page) 1011 { 1012 int ret; 1013 1014 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); 1015 if (ret) 1016 return ret; 1017 1018 return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false); 1019 } 1020 1021 static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip, 1022 const u8 *buf, int oob_required, 1023 int page) 1024 { 1025 int ret; 1026 1027 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); 1028 if (ret) 1029 return ret; 1030 1031 return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true); 1032 } 1033 1034 /* Get a status indicating which sectors have errors */ 1035 static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc) 1036 { 1037 u32 csqemsr; 1038 1039 regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr); 1040 1041 return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr); 1042 } 1043 1044 static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat, 1045 u8 *read_ecc, u8 *calc_ecc) 1046 { 1047 struct mtd_info *mtd = nand_to_mtd(chip); 1048 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1049 int eccbytes = chip->ecc.bytes; 1050 int eccsteps = chip->ecc.steps; 1051 int eccstrength = chip->ecc.strength; 1052 int i, s, eccsize = chip->ecc.size; 1053 u32 *ecc_sta = (u32 *)nfc->ecc_buf; 1054 u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc); 1055 unsigned int max_bitflips = 0; 1056 1057 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) { 1058 int stat = 0; 1059 1060 if (eccstrength == FMC2_ECC_HAM) { 1061 /* Ecc_sta = FMC2_HECCR */ 1062 if (sta_map & BIT(s)) { 1063 stm32_fmc2_nfc_ham_set_ecc(*ecc_sta, 1064 &calc_ecc[i]); 1065 stat = stm32_fmc2_nfc_ham_correct(chip, dat, 1066 &read_ecc[i], 1067 &calc_ecc[i]); 1068 } 1069 ecc_sta++; 1070 } else { 1071 /* 1072 * Ecc_sta[0] = FMC2_BCHDSR0 1073 * Ecc_sta[1] = FMC2_BCHDSR1 1074 * Ecc_sta[2] = FMC2_BCHDSR2 1075 * Ecc_sta[3] = FMC2_BCHDSR3 1076 * Ecc_sta[4] = FMC2_BCHDSR4 1077 */ 1078 if (sta_map & BIT(s)) 1079 stat = stm32_fmc2_nfc_bch_decode(eccsize, dat, 1080 ecc_sta); 1081 ecc_sta += 5; 1082 } 1083 1084 if (stat == -EBADMSG) 1085 /* Check for empty pages with bitflips */ 1086 stat = nand_check_erased_ecc_chunk(dat, eccsize, 1087 &read_ecc[i], 1088 eccbytes, 1089 NULL, 0, 1090 eccstrength); 1091 1092 if (stat < 0) { 1093 mtd->ecc_stats.failed++; 1094 } else { 1095 mtd->ecc_stats.corrected += stat; 1096 max_bitflips = max_t(unsigned int, max_bitflips, stat); 1097 } 1098 } 1099 1100 return max_bitflips; 1101 } 1102 1103 static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf, 1104 int oob_required, int page) 1105 { 1106 struct mtd_info *mtd = nand_to_mtd(chip); 1107 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1108 u8 *ecc_calc = chip->ecc.calc_buf; 1109 u8 *ecc_code = chip->ecc.code_buf; 1110 u16 sta_map; 1111 int ret; 1112 1113 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); 1114 if (ret) 1115 return ret; 1116 1117 /* Configure the sequencer */ 1118 stm32_fmc2_nfc_rw_page_init(chip, page, 0, false); 1119 1120 /* Read the page */ 1121 ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false); 1122 if (ret) 1123 return ret; 1124 1125 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc); 1126 1127 /* Check if errors happen */ 1128 if (likely(!sta_map)) { 1129 if (oob_required) 1130 return nand_change_read_column_op(chip, mtd->writesize, 1131 chip->oob_poi, 1132 mtd->oobsize, false); 1133 1134 return 0; 1135 } 1136 1137 /* Read oob */ 1138 ret = nand_change_read_column_op(chip, mtd->writesize, 1139 chip->oob_poi, mtd->oobsize, false); 1140 if (ret) 1141 return ret; 1142 1143 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 1144 chip->ecc.total); 1145 if (ret) 1146 return ret; 1147 1148 /* Correct data */ 1149 return chip->ecc.correct(chip, buf, ecc_code, ecc_calc); 1150 } 1151 1152 static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf, 1153 int oob_required, int page) 1154 { 1155 struct mtd_info *mtd = nand_to_mtd(chip); 1156 int ret; 1157 1158 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); 1159 if (ret) 1160 return ret; 1161 1162 /* Configure the sequencer */ 1163 stm32_fmc2_nfc_rw_page_init(chip, page, 1, false); 1164 1165 /* Read the page */ 1166 ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false); 1167 if (ret) 1168 return ret; 1169 1170 /* Read oob */ 1171 if (oob_required) 1172 return nand_change_read_column_op(chip, mtd->writesize, 1173 chip->oob_poi, mtd->oobsize, 1174 false); 1175 1176 return 0; 1177 } 1178 1179 static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id) 1180 { 1181 struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id; 1182 1183 if (nfc->irq_state == FMC2_IRQ_SEQ) 1184 /* Sequencer is used */ 1185 stm32_fmc2_nfc_disable_seq_irq(nfc); 1186 else if (nfc->irq_state == FMC2_IRQ_BCH) 1187 /* BCH is used */ 1188 stm32_fmc2_nfc_disable_bch_irq(nfc); 1189 1190 complete(&nfc->complete); 1191 1192 return IRQ_HANDLED; 1193 } 1194 1195 static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf, 1196 unsigned int len, bool force_8bit) 1197 { 1198 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1199 void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel]; 1200 1201 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1202 /* Reconfigure bus width to 8-bit */ 1203 stm32_fmc2_nfc_set_buswidth_16(nfc, false); 1204 1205 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { 1206 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { 1207 *(u8 *)buf = readb_relaxed(io_addr_r); 1208 buf += sizeof(u8); 1209 len -= sizeof(u8); 1210 } 1211 1212 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && 1213 len >= sizeof(u16)) { 1214 *(u16 *)buf = readw_relaxed(io_addr_r); 1215 buf += sizeof(u16); 1216 len -= sizeof(u16); 1217 } 1218 } 1219 1220 /* Buf is aligned */ 1221 while (len >= sizeof(u32)) { 1222 *(u32 *)buf = readl_relaxed(io_addr_r); 1223 buf += sizeof(u32); 1224 len -= sizeof(u32); 1225 } 1226 1227 /* Read remaining bytes */ 1228 if (len >= sizeof(u16)) { 1229 *(u16 *)buf = readw_relaxed(io_addr_r); 1230 buf += sizeof(u16); 1231 len -= sizeof(u16); 1232 } 1233 1234 if (len) 1235 *(u8 *)buf = readb_relaxed(io_addr_r); 1236 1237 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1238 /* Reconfigure bus width to 16-bit */ 1239 stm32_fmc2_nfc_set_buswidth_16(nfc, true); 1240 } 1241 1242 static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf, 1243 unsigned int len, bool force_8bit) 1244 { 1245 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1246 void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel]; 1247 1248 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1249 /* Reconfigure bus width to 8-bit */ 1250 stm32_fmc2_nfc_set_buswidth_16(nfc, false); 1251 1252 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { 1253 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { 1254 writeb_relaxed(*(u8 *)buf, io_addr_w); 1255 buf += sizeof(u8); 1256 len -= sizeof(u8); 1257 } 1258 1259 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && 1260 len >= sizeof(u16)) { 1261 writew_relaxed(*(u16 *)buf, io_addr_w); 1262 buf += sizeof(u16); 1263 len -= sizeof(u16); 1264 } 1265 } 1266 1267 /* Buf is aligned */ 1268 while (len >= sizeof(u32)) { 1269 writel_relaxed(*(u32 *)buf, io_addr_w); 1270 buf += sizeof(u32); 1271 len -= sizeof(u32); 1272 } 1273 1274 /* Write remaining bytes */ 1275 if (len >= sizeof(u16)) { 1276 writew_relaxed(*(u16 *)buf, io_addr_w); 1277 buf += sizeof(u16); 1278 len -= sizeof(u16); 1279 } 1280 1281 if (len) 1282 writeb_relaxed(*(u8 *)buf, io_addr_w); 1283 1284 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1285 /* Reconfigure bus width to 16-bit */ 1286 stm32_fmc2_nfc_set_buswidth_16(nfc, true); 1287 } 1288 1289 static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip, 1290 unsigned long timeout_ms) 1291 { 1292 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1293 const struct nand_sdr_timings *timings; 1294 u32 isr, sr; 1295 1296 /* Check if there is no pending requests to the NAND flash */ 1297 if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr, 1298 sr & FMC2_SR_NWRF, 1, 1299 1000 * FMC2_TIMEOUT_MS)) 1300 dev_warn(nfc->dev, "Waitrdy timeout\n"); 1301 1302 /* Wait tWB before R/B# signal is low */ 1303 timings = nand_get_sdr_timings(nand_get_interface_config(chip)); 1304 ndelay(PSEC_TO_NSEC(timings->tWB_max)); 1305 1306 /* R/B# signal is low, clear high level flag */ 1307 regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF); 1308 1309 /* Wait R/B# signal is high */ 1310 return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr, 1311 isr & FMC2_ISR_IHLF, 5, 1312 1000 * FMC2_TIMEOUT_MS); 1313 } 1314 1315 static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip, 1316 const struct nand_operation *op, 1317 bool check_only) 1318 { 1319 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1320 const struct nand_op_instr *instr = NULL; 1321 unsigned int op_id, i, timeout; 1322 int ret; 1323 1324 if (check_only) 1325 return 0; 1326 1327 ret = stm32_fmc2_nfc_select_chip(chip, op->cs); 1328 if (ret) 1329 return ret; 1330 1331 for (op_id = 0; op_id < op->ninstrs; op_id++) { 1332 instr = &op->instrs[op_id]; 1333 1334 switch (instr->type) { 1335 case NAND_OP_CMD_INSTR: 1336 writeb_relaxed(instr->ctx.cmd.opcode, 1337 nfc->cmd_base[nfc->cs_sel]); 1338 break; 1339 1340 case NAND_OP_ADDR_INSTR: 1341 for (i = 0; i < instr->ctx.addr.naddrs; i++) 1342 writeb_relaxed(instr->ctx.addr.addrs[i], 1343 nfc->addr_base[nfc->cs_sel]); 1344 break; 1345 1346 case NAND_OP_DATA_IN_INSTR: 1347 stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in, 1348 instr->ctx.data.len, 1349 instr->ctx.data.force_8bit); 1350 break; 1351 1352 case NAND_OP_DATA_OUT_INSTR: 1353 stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out, 1354 instr->ctx.data.len, 1355 instr->ctx.data.force_8bit); 1356 break; 1357 1358 case NAND_OP_WAITRDY_INSTR: 1359 timeout = instr->ctx.waitrdy.timeout_ms; 1360 ret = stm32_fmc2_nfc_waitrdy(chip, timeout); 1361 break; 1362 } 1363 } 1364 1365 return ret; 1366 } 1367 1368 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc) 1369 { 1370 u32 pcr; 1371 1372 regmap_read(nfc->regmap, FMC2_PCR, &pcr); 1373 1374 /* Set CS used to undefined */ 1375 nfc->cs_sel = -1; 1376 1377 /* Enable wait feature and nand flash memory bank */ 1378 pcr |= FMC2_PCR_PWAITEN; 1379 pcr |= FMC2_PCR_PBKEN; 1380 1381 /* Set buswidth to 8 bits mode for identification */ 1382 pcr &= ~FMC2_PCR_PWID; 1383 1384 /* ECC logic is disabled */ 1385 pcr &= ~FMC2_PCR_ECCEN; 1386 1387 /* Default mode */ 1388 pcr &= ~FMC2_PCR_ECCALG; 1389 pcr &= ~FMC2_PCR_BCHECC; 1390 pcr &= ~FMC2_PCR_WEN; 1391 1392 /* Set default ECC sector size */ 1393 pcr &= ~FMC2_PCR_ECCSS; 1394 pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048); 1395 1396 /* Set default tclr/tar timings */ 1397 pcr &= ~FMC2_PCR_TCLR; 1398 pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT); 1399 pcr &= ~FMC2_PCR_TAR; 1400 pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT); 1401 1402 /* Enable FMC2 controller */ 1403 if (nfc->dev == nfc->cdev) 1404 regmap_update_bits(nfc->regmap, FMC2_BCR1, 1405 FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN); 1406 1407 regmap_write(nfc->regmap, FMC2_PCR, pcr); 1408 regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT); 1409 regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT); 1410 } 1411 1412 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip, 1413 const struct nand_sdr_timings *sdrt) 1414 { 1415 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1416 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); 1417 struct stm32_fmc2_timings *tims = &nand->timings; 1418 unsigned long hclk = clk_get_rate(nfc->clk); 1419 unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000); 1420 unsigned long timing, tar, tclr, thiz, twait; 1421 unsigned long tset_mem, tset_att, thold_mem, thold_att; 1422 1423 tar = max_t(unsigned long, hclkp, sdrt->tAR_min); 1424 timing = DIV_ROUND_UP(tar, hclkp) - 1; 1425 tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); 1426 1427 tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min); 1428 timing = DIV_ROUND_UP(tclr, hclkp) - 1; 1429 tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); 1430 1431 tims->thiz = FMC2_THIZ; 1432 thiz = (tims->thiz + 1) * hclkp; 1433 1434 /* 1435 * tWAIT > tRP 1436 * tWAIT > tWP 1437 * tWAIT > tREA + tIO 1438 */ 1439 twait = max_t(unsigned long, hclkp, sdrt->tRP_min); 1440 twait = max_t(unsigned long, twait, sdrt->tWP_min); 1441 twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO); 1442 timing = DIV_ROUND_UP(twait, hclkp); 1443 tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1444 1445 /* 1446 * tSETUP_MEM > tCS - tWAIT 1447 * tSETUP_MEM > tALS - tWAIT 1448 * tSETUP_MEM > tDS - (tWAIT - tHIZ) 1449 */ 1450 tset_mem = hclkp; 1451 if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait)) 1452 tset_mem = sdrt->tCS_min - twait; 1453 if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait)) 1454 tset_mem = sdrt->tALS_min - twait; 1455 if (twait > thiz && (sdrt->tDS_min > twait - thiz) && 1456 (tset_mem < sdrt->tDS_min - (twait - thiz))) 1457 tset_mem = sdrt->tDS_min - (twait - thiz); 1458 timing = DIV_ROUND_UP(tset_mem, hclkp); 1459 tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1460 1461 /* 1462 * tHOLD_MEM > tCH 1463 * tHOLD_MEM > tREH - tSETUP_MEM 1464 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT) 1465 */ 1466 thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min); 1467 if (sdrt->tREH_min > tset_mem && 1468 (thold_mem < sdrt->tREH_min - tset_mem)) 1469 thold_mem = sdrt->tREH_min - tset_mem; 1470 if ((sdrt->tRC_min > tset_mem + twait) && 1471 (thold_mem < sdrt->tRC_min - (tset_mem + twait))) 1472 thold_mem = sdrt->tRC_min - (tset_mem + twait); 1473 if ((sdrt->tWC_min > tset_mem + twait) && 1474 (thold_mem < sdrt->tWC_min - (tset_mem + twait))) 1475 thold_mem = sdrt->tWC_min - (tset_mem + twait); 1476 timing = DIV_ROUND_UP(thold_mem, hclkp); 1477 tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1478 1479 /* 1480 * tSETUP_ATT > tCS - tWAIT 1481 * tSETUP_ATT > tCLS - tWAIT 1482 * tSETUP_ATT > tALS - tWAIT 1483 * tSETUP_ATT > tRHW - tHOLD_MEM 1484 * tSETUP_ATT > tDS - (tWAIT - tHIZ) 1485 */ 1486 tset_att = hclkp; 1487 if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait)) 1488 tset_att = sdrt->tCS_min - twait; 1489 if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait)) 1490 tset_att = sdrt->tCLS_min - twait; 1491 if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait)) 1492 tset_att = sdrt->tALS_min - twait; 1493 if (sdrt->tRHW_min > thold_mem && 1494 (tset_att < sdrt->tRHW_min - thold_mem)) 1495 tset_att = sdrt->tRHW_min - thold_mem; 1496 if (twait > thiz && (sdrt->tDS_min > twait - thiz) && 1497 (tset_att < sdrt->tDS_min - (twait - thiz))) 1498 tset_att = sdrt->tDS_min - (twait - thiz); 1499 timing = DIV_ROUND_UP(tset_att, hclkp); 1500 tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1501 1502 /* 1503 * tHOLD_ATT > tALH 1504 * tHOLD_ATT > tCH 1505 * tHOLD_ATT > tCLH 1506 * tHOLD_ATT > tCOH 1507 * tHOLD_ATT > tDH 1508 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM 1509 * tHOLD_ATT > tADL - tSETUP_MEM 1510 * tHOLD_ATT > tWH - tSETUP_MEM 1511 * tHOLD_ATT > tWHR - tSETUP_MEM 1512 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT) 1513 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT) 1514 */ 1515 thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min); 1516 thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min); 1517 thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min); 1518 thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min); 1519 thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min); 1520 if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) && 1521 (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem)) 1522 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem; 1523 if (sdrt->tADL_min > tset_mem && 1524 (thold_att < sdrt->tADL_min - tset_mem)) 1525 thold_att = sdrt->tADL_min - tset_mem; 1526 if (sdrt->tWH_min > tset_mem && 1527 (thold_att < sdrt->tWH_min - tset_mem)) 1528 thold_att = sdrt->tWH_min - tset_mem; 1529 if (sdrt->tWHR_min > tset_mem && 1530 (thold_att < sdrt->tWHR_min - tset_mem)) 1531 thold_att = sdrt->tWHR_min - tset_mem; 1532 if ((sdrt->tRC_min > tset_att + twait) && 1533 (thold_att < sdrt->tRC_min - (tset_att + twait))) 1534 thold_att = sdrt->tRC_min - (tset_att + twait); 1535 if ((sdrt->tWC_min > tset_att + twait) && 1536 (thold_att < sdrt->tWC_min - (tset_att + twait))) 1537 thold_att = sdrt->tWC_min - (tset_att + twait); 1538 timing = DIV_ROUND_UP(thold_att, hclkp); 1539 tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1540 } 1541 1542 static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr, 1543 const struct nand_interface_config *conf) 1544 { 1545 const struct nand_sdr_timings *sdrt; 1546 1547 sdrt = nand_get_sdr_timings(conf); 1548 if (IS_ERR(sdrt)) 1549 return PTR_ERR(sdrt); 1550 1551 if (conf->timings.mode > 3) 1552 return -EOPNOTSUPP; 1553 1554 if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) 1555 return 0; 1556 1557 stm32_fmc2_nfc_calc_timings(chip, sdrt); 1558 stm32_fmc2_nfc_timings_init(chip); 1559 1560 return 0; 1561 } 1562 1563 static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc) 1564 { 1565 struct dma_slave_caps caps; 1566 int ret = 0; 1567 1568 nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx"); 1569 if (IS_ERR(nfc->dma_tx_ch)) { 1570 ret = PTR_ERR(nfc->dma_tx_ch); 1571 if (ret != -ENODEV && ret != -EPROBE_DEFER) 1572 dev_err(nfc->dev, 1573 "failed to request tx DMA channel: %d\n", ret); 1574 nfc->dma_tx_ch = NULL; 1575 goto err_dma; 1576 } 1577 1578 ret = dma_get_slave_caps(nfc->dma_tx_ch, &caps); 1579 if (ret) 1580 return ret; 1581 nfc->tx_dma_max_burst = caps.max_burst; 1582 1583 nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx"); 1584 if (IS_ERR(nfc->dma_rx_ch)) { 1585 ret = PTR_ERR(nfc->dma_rx_ch); 1586 if (ret != -ENODEV && ret != -EPROBE_DEFER) 1587 dev_err(nfc->dev, 1588 "failed to request rx DMA channel: %d\n", ret); 1589 nfc->dma_rx_ch = NULL; 1590 goto err_dma; 1591 } 1592 1593 ret = dma_get_slave_caps(nfc->dma_rx_ch, &caps); 1594 if (ret) 1595 return ret; 1596 nfc->rx_dma_max_burst = caps.max_burst; 1597 1598 nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc"); 1599 if (IS_ERR(nfc->dma_ecc_ch)) { 1600 ret = PTR_ERR(nfc->dma_ecc_ch); 1601 if (ret != -ENODEV && ret != -EPROBE_DEFER) 1602 dev_err(nfc->dev, 1603 "failed to request ecc DMA channel: %d\n", ret); 1604 nfc->dma_ecc_ch = NULL; 1605 goto err_dma; 1606 } 1607 1608 ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL); 1609 if (ret) 1610 return ret; 1611 1612 /* Allocate a buffer to store ECC status registers */ 1613 nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL); 1614 if (!nfc->ecc_buf) 1615 return -ENOMEM; 1616 1617 ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL); 1618 if (ret) 1619 return ret; 1620 1621 init_completion(&nfc->dma_data_complete); 1622 init_completion(&nfc->dma_ecc_complete); 1623 1624 return 0; 1625 1626 err_dma: 1627 if (ret == -ENODEV) { 1628 dev_warn(nfc->dev, 1629 "DMAs not defined in the DT, polling mode is used\n"); 1630 ret = 0; 1631 } 1632 1633 return ret; 1634 } 1635 1636 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip) 1637 { 1638 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1639 1640 /* 1641 * Specific callbacks to read/write a page depending on 1642 * the mode (polling/sequencer) and the algo used (Hamming, BCH). 1643 */ 1644 if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) { 1645 /* DMA => use sequencer mode callbacks */ 1646 chip->ecc.correct = stm32_fmc2_nfc_seq_correct; 1647 chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page; 1648 chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page; 1649 chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw; 1650 chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw; 1651 } else { 1652 /* No DMA => use polling mode callbacks */ 1653 chip->ecc.hwctl = stm32_fmc2_nfc_hwctl; 1654 if (chip->ecc.strength == FMC2_ECC_HAM) { 1655 /* Hamming is used */ 1656 chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate; 1657 chip->ecc.correct = stm32_fmc2_nfc_ham_correct; 1658 chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK; 1659 } else { 1660 /* BCH is used */ 1661 chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate; 1662 chip->ecc.correct = stm32_fmc2_nfc_bch_correct; 1663 chip->ecc.read_page = stm32_fmc2_nfc_read_page; 1664 } 1665 } 1666 1667 /* Specific configurations depending on the algo used */ 1668 if (chip->ecc.strength == FMC2_ECC_HAM) 1669 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3; 1670 else if (chip->ecc.strength == FMC2_ECC_BCH8) 1671 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13; 1672 else 1673 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7; 1674 } 1675 1676 static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, 1677 struct mtd_oob_region *oobregion) 1678 { 1679 struct nand_chip *chip = mtd_to_nand(mtd); 1680 struct nand_ecc_ctrl *ecc = &chip->ecc; 1681 1682 if (section) 1683 return -ERANGE; 1684 1685 oobregion->length = ecc->total; 1686 oobregion->offset = FMC2_BBM_LEN; 1687 1688 return 0; 1689 } 1690 1691 static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section, 1692 struct mtd_oob_region *oobregion) 1693 { 1694 struct nand_chip *chip = mtd_to_nand(mtd); 1695 struct nand_ecc_ctrl *ecc = &chip->ecc; 1696 1697 if (section) 1698 return -ERANGE; 1699 1700 oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN; 1701 oobregion->offset = ecc->total + FMC2_BBM_LEN; 1702 1703 return 0; 1704 } 1705 1706 static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = { 1707 .ecc = stm32_fmc2_nfc_ooblayout_ecc, 1708 .free = stm32_fmc2_nfc_ooblayout_free, 1709 }; 1710 1711 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength) 1712 { 1713 /* Hamming */ 1714 if (strength == FMC2_ECC_HAM) 1715 return 4; 1716 1717 /* BCH8 */ 1718 if (strength == FMC2_ECC_BCH8) 1719 return 14; 1720 1721 /* BCH4 */ 1722 return 8; 1723 } 1724 1725 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes, 1726 FMC2_ECC_STEP_SIZE, 1727 FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8); 1728 1729 static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip) 1730 { 1731 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1732 struct mtd_info *mtd = nand_to_mtd(chip); 1733 int ret; 1734 1735 /* 1736 * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported 1737 * Hamming => ecc.strength = 1 1738 * BCH4 => ecc.strength = 4 1739 * BCH8 => ecc.strength = 8 1740 * ECC sector size = 512 1741 */ 1742 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) { 1743 dev_err(nfc->dev, 1744 "nand_ecc_engine_type is not well defined in the DT\n"); 1745 return -EINVAL; 1746 } 1747 1748 /* Default ECC settings in case they are not set in the device tree */ 1749 if (!chip->ecc.size) 1750 chip->ecc.size = FMC2_ECC_STEP_SIZE; 1751 1752 if (!chip->ecc.strength) 1753 chip->ecc.strength = FMC2_ECC_BCH8; 1754 1755 ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps, 1756 mtd->oobsize - FMC2_BBM_LEN); 1757 if (ret) { 1758 dev_err(nfc->dev, "no valid ECC settings set\n"); 1759 return ret; 1760 } 1761 1762 if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) { 1763 dev_err(nfc->dev, "nand page size is not supported\n"); 1764 return -EINVAL; 1765 } 1766 1767 if (chip->bbt_options & NAND_BBT_USE_FLASH) 1768 chip->bbt_options |= NAND_BBT_NO_OOB; 1769 1770 stm32_fmc2_nfc_nand_callbacks_setup(chip); 1771 1772 mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops); 1773 1774 stm32_fmc2_nfc_setup(chip); 1775 1776 return 0; 1777 } 1778 1779 static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = { 1780 .attach_chip = stm32_fmc2_nfc_attach_chip, 1781 .exec_op = stm32_fmc2_nfc_exec_op, 1782 .setup_interface = stm32_fmc2_nfc_setup_interface, 1783 }; 1784 1785 static void stm32_fmc2_nfc_wp_enable(struct stm32_fmc2_nand *nand) 1786 { 1787 if (nand->wp_gpio) 1788 gpiod_set_value(nand->wp_gpio, 1); 1789 } 1790 1791 static void stm32_fmc2_nfc_wp_disable(struct stm32_fmc2_nand *nand) 1792 { 1793 if (nand->wp_gpio) 1794 gpiod_set_value(nand->wp_gpio, 0); 1795 } 1796 1797 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, 1798 struct device_node *dn) 1799 { 1800 struct stm32_fmc2_nand *nand = &nfc->nand; 1801 u32 cs; 1802 int ret, i; 1803 1804 if (!of_get_property(dn, "reg", &nand->ncs)) 1805 return -EINVAL; 1806 1807 nand->ncs /= sizeof(u32); 1808 if (!nand->ncs) { 1809 dev_err(nfc->dev, "invalid reg property size\n"); 1810 return -EINVAL; 1811 } 1812 1813 for (i = 0; i < nand->ncs; i++) { 1814 ret = of_property_read_u32_index(dn, "reg", i, &cs); 1815 if (ret) { 1816 dev_err(nfc->dev, "could not retrieve reg property: %d\n", 1817 ret); 1818 return ret; 1819 } 1820 1821 if (cs >= nfc->data->max_ncs) { 1822 dev_err(nfc->dev, "invalid reg value: %d\n", cs); 1823 return -EINVAL; 1824 } 1825 1826 if (nfc->cs_assigned & BIT(cs)) { 1827 dev_err(nfc->dev, "cs already assigned: %d\n", cs); 1828 return -EINVAL; 1829 } 1830 1831 nfc->cs_assigned |= BIT(cs); 1832 nand->cs_used[i] = cs; 1833 } 1834 1835 nand->wp_gpio = devm_fwnode_gpiod_get(nfc->dev, of_fwnode_handle(dn), 1836 "wp", GPIOD_OUT_HIGH, "wp"); 1837 if (IS_ERR(nand->wp_gpio)) { 1838 ret = PTR_ERR(nand->wp_gpio); 1839 if (ret != -ENOENT) 1840 return dev_err_probe(nfc->dev, ret, 1841 "failed to request WP GPIO\n"); 1842 1843 nand->wp_gpio = NULL; 1844 } 1845 1846 nand_set_flash_node(&nand->chip, dn); 1847 1848 return 0; 1849 } 1850 1851 static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc) 1852 { 1853 struct device_node *dn = nfc->dev->of_node; 1854 int nchips = of_get_child_count(dn); 1855 int ret = 0; 1856 1857 if (!nchips) { 1858 dev_err(nfc->dev, "NAND chip not defined\n"); 1859 return -EINVAL; 1860 } 1861 1862 if (nchips > 1) { 1863 dev_err(nfc->dev, "too many NAND chips defined\n"); 1864 return -EINVAL; 1865 } 1866 1867 for_each_child_of_node_scoped(dn, child) { 1868 ret = stm32_fmc2_nfc_parse_child(nfc, child); 1869 if (ret < 0) 1870 return ret; 1871 } 1872 1873 return ret; 1874 } 1875 1876 static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc) 1877 { 1878 struct device *dev = nfc->dev; 1879 bool ebi_found = false; 1880 1881 if (dev->parent && of_device_is_compatible(dev->parent->of_node, 1882 "st,stm32mp1-fmc2-ebi")) 1883 ebi_found = true; 1884 1885 if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) { 1886 if (ebi_found) { 1887 nfc->cdev = dev->parent; 1888 1889 return 0; 1890 } 1891 1892 return -EINVAL; 1893 } 1894 1895 if (ebi_found) 1896 return -EINVAL; 1897 1898 nfc->cdev = dev; 1899 1900 return 0; 1901 } 1902 1903 static int stm32_fmc2_nfc_probe(struct platform_device *pdev) 1904 { 1905 struct device *dev = &pdev->dev; 1906 struct reset_control *rstc; 1907 struct stm32_fmc2_nfc *nfc; 1908 struct stm32_fmc2_nand *nand; 1909 struct resource *res; 1910 struct mtd_info *mtd; 1911 struct nand_chip *chip; 1912 struct resource cres; 1913 int chip_cs, mem_region, ret, irq; 1914 int start_region = 0; 1915 1916 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); 1917 if (!nfc) 1918 return -ENOMEM; 1919 1920 nfc->dev = dev; 1921 nand_controller_init(&nfc->base); 1922 nfc->base.ops = &stm32_fmc2_nfc_controller_ops; 1923 1924 nfc->data = of_device_get_match_data(dev); 1925 if (!nfc->data) 1926 return -EINVAL; 1927 1928 if (nfc->data->set_cdev) { 1929 ret = nfc->data->set_cdev(nfc); 1930 if (ret) 1931 return ret; 1932 } else { 1933 nfc->cdev = dev->parent; 1934 } 1935 1936 ret = stm32_fmc2_nfc_parse_dt(nfc); 1937 if (ret) 1938 return ret; 1939 1940 ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres); 1941 if (ret) 1942 return ret; 1943 1944 nfc->io_phys_addr = cres.start; 1945 1946 nfc->regmap = device_node_to_regmap(nfc->cdev->of_node); 1947 if (IS_ERR(nfc->regmap)) 1948 return PTR_ERR(nfc->regmap); 1949 1950 if (nfc->dev == nfc->cdev) 1951 start_region = 1; 1952 1953 for (chip_cs = 0, mem_region = start_region; chip_cs < nfc->data->max_ncs; 1954 chip_cs++, mem_region += 3) { 1955 if (!(nfc->cs_assigned & BIT(chip_cs))) 1956 continue; 1957 1958 nfc->data_base[chip_cs] = devm_platform_get_and_ioremap_resource(pdev, 1959 mem_region, &res); 1960 if (IS_ERR(nfc->data_base[chip_cs])) 1961 return PTR_ERR(nfc->data_base[chip_cs]); 1962 1963 nfc->data_phys_addr[chip_cs] = res->start; 1964 1965 nfc->cmd_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 1); 1966 if (IS_ERR(nfc->cmd_base[chip_cs])) 1967 return PTR_ERR(nfc->cmd_base[chip_cs]); 1968 1969 nfc->addr_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 2); 1970 if (IS_ERR(nfc->addr_base[chip_cs])) 1971 return PTR_ERR(nfc->addr_base[chip_cs]); 1972 } 1973 1974 irq = platform_get_irq(pdev, 0); 1975 if (irq < 0) 1976 return irq; 1977 1978 ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0, 1979 dev_name(dev), nfc); 1980 if (ret) { 1981 dev_err(dev, "failed to request irq\n"); 1982 return ret; 1983 } 1984 1985 init_completion(&nfc->complete); 1986 1987 nfc->clk = devm_clk_get_enabled(nfc->cdev, NULL); 1988 if (IS_ERR(nfc->clk)) { 1989 dev_err(dev, "can not get and enable the clock\n"); 1990 return PTR_ERR(nfc->clk); 1991 } 1992 1993 rstc = devm_reset_control_get(dev, NULL); 1994 if (IS_ERR(rstc)) { 1995 ret = PTR_ERR(rstc); 1996 if (ret == -EPROBE_DEFER) 1997 return ret; 1998 } else { 1999 reset_control_assert(rstc); 2000 reset_control_deassert(rstc); 2001 } 2002 2003 ret = stm32_fmc2_nfc_dma_setup(nfc); 2004 if (ret) 2005 goto err_release_dma; 2006 2007 stm32_fmc2_nfc_init(nfc); 2008 2009 nand = &nfc->nand; 2010 chip = &nand->chip; 2011 mtd = nand_to_mtd(chip); 2012 mtd->dev.parent = dev; 2013 2014 chip->controller = &nfc->base; 2015 chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | 2016 NAND_USES_DMA; 2017 2018 stm32_fmc2_nfc_wp_disable(nand); 2019 2020 /* Scan to find existence of the device */ 2021 ret = nand_scan(chip, nand->ncs); 2022 if (ret) 2023 goto err_wp_enable; 2024 2025 ret = mtd_device_register(mtd, NULL, 0); 2026 if (ret) 2027 goto err_nand_cleanup; 2028 2029 platform_set_drvdata(pdev, nfc); 2030 2031 return 0; 2032 2033 err_nand_cleanup: 2034 nand_cleanup(chip); 2035 2036 err_wp_enable: 2037 stm32_fmc2_nfc_wp_enable(nand); 2038 2039 err_release_dma: 2040 if (nfc->dma_ecc_ch) 2041 dma_release_channel(nfc->dma_ecc_ch); 2042 if (nfc->dma_tx_ch) 2043 dma_release_channel(nfc->dma_tx_ch); 2044 if (nfc->dma_rx_ch) 2045 dma_release_channel(nfc->dma_rx_ch); 2046 2047 sg_free_table(&nfc->dma_data_sg); 2048 sg_free_table(&nfc->dma_ecc_sg); 2049 2050 return ret; 2051 } 2052 2053 static void stm32_fmc2_nfc_remove(struct platform_device *pdev) 2054 { 2055 struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev); 2056 struct stm32_fmc2_nand *nand = &nfc->nand; 2057 struct nand_chip *chip = &nand->chip; 2058 int ret; 2059 2060 ret = mtd_device_unregister(nand_to_mtd(chip)); 2061 WARN_ON(ret); 2062 nand_cleanup(chip); 2063 2064 if (nfc->dma_ecc_ch) 2065 dma_release_channel(nfc->dma_ecc_ch); 2066 if (nfc->dma_tx_ch) 2067 dma_release_channel(nfc->dma_tx_ch); 2068 if (nfc->dma_rx_ch) 2069 dma_release_channel(nfc->dma_rx_ch); 2070 2071 sg_free_table(&nfc->dma_data_sg); 2072 sg_free_table(&nfc->dma_ecc_sg); 2073 2074 stm32_fmc2_nfc_wp_enable(nand); 2075 } 2076 2077 static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev) 2078 { 2079 struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev); 2080 struct stm32_fmc2_nand *nand = &nfc->nand; 2081 2082 clk_disable_unprepare(nfc->clk); 2083 2084 stm32_fmc2_nfc_wp_enable(nand); 2085 2086 pinctrl_pm_select_sleep_state(dev); 2087 2088 return 0; 2089 } 2090 2091 static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev) 2092 { 2093 struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev); 2094 struct stm32_fmc2_nand *nand = &nfc->nand; 2095 int chip_cs, ret; 2096 2097 pinctrl_pm_select_default_state(dev); 2098 2099 ret = clk_prepare_enable(nfc->clk); 2100 if (ret) { 2101 dev_err(dev, "can not enable the clock\n"); 2102 return ret; 2103 } 2104 2105 stm32_fmc2_nfc_init(nfc); 2106 2107 stm32_fmc2_nfc_wp_disable(nand); 2108 2109 for (chip_cs = 0; chip_cs < nfc->data->max_ncs; chip_cs++) { 2110 if (!(nfc->cs_assigned & BIT(chip_cs))) 2111 continue; 2112 2113 nand_reset(&nand->chip, chip_cs); 2114 } 2115 2116 return 0; 2117 } 2118 2119 static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend, 2120 stm32_fmc2_nfc_resume); 2121 2122 static const struct stm32_fmc2_nfc_data stm32_fmc2_nfc_mp1_data = { 2123 .max_ncs = 2, 2124 .set_cdev = stm32_fmc2_nfc_set_cdev, 2125 }; 2126 2127 static const struct stm32_fmc2_nfc_data stm32_fmc2_nfc_mp25_data = { 2128 .max_ncs = 4, 2129 }; 2130 2131 static const struct of_device_id stm32_fmc2_nfc_match[] = { 2132 { 2133 .compatible = "st,stm32mp15-fmc2", 2134 .data = &stm32_fmc2_nfc_mp1_data, 2135 }, 2136 { 2137 .compatible = "st,stm32mp1-fmc2-nfc", 2138 .data = &stm32_fmc2_nfc_mp1_data, 2139 }, 2140 { 2141 .compatible = "st,stm32mp25-fmc2-nfc", 2142 .data = &stm32_fmc2_nfc_mp25_data, 2143 }, 2144 {} 2145 }; 2146 MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match); 2147 2148 static struct platform_driver stm32_fmc2_nfc_driver = { 2149 .probe = stm32_fmc2_nfc_probe, 2150 .remove = stm32_fmc2_nfc_remove, 2151 .driver = { 2152 .name = "stm32_fmc2_nfc", 2153 .of_match_table = stm32_fmc2_nfc_match, 2154 .pm = &stm32_fmc2_nfc_pm_ops, 2155 }, 2156 }; 2157 module_platform_driver(stm32_fmc2_nfc_driver); 2158 2159 MODULE_ALIAS("platform:stm32_fmc2_nfc"); 2160 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>"); 2161 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver"); 2162 MODULE_LICENSE("GPL v2"); 2163