xref: /linux/drivers/mtd/nand/raw/stm32_fmc2_nand.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/errno.h>
11 #include <linux/interrupt.h>
12 #include <linux/iopoll.h>
13 #include <linux/module.h>
14 #include <linux/mtd/rawnand.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/reset.h>
18 
19 /* Bad block marker length */
20 #define FMC2_BBM_LEN			2
21 
22 /* ECC step size */
23 #define FMC2_ECC_STEP_SIZE		512
24 
25 /* BCHDSRx registers length */
26 #define FMC2_BCHDSRS_LEN		20
27 
28 /* HECCR length */
29 #define FMC2_HECCR_LEN			4
30 
31 /* Max requests done for a 8k nand page size */
32 #define FMC2_MAX_SG			16
33 
34 /* Max chip enable */
35 #define FMC2_MAX_CE			2
36 
37 /* Max ECC buffer length */
38 #define FMC2_MAX_ECC_BUF_LEN		(FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
39 
40 /* Timings */
41 #define FMC2_THIZ			1
42 #define FMC2_TIO			8000
43 #define FMC2_TSYNC			3000
44 #define FMC2_PCR_TIMING_MASK		0xf
45 #define FMC2_PMEM_PATT_TIMING_MASK	0xff
46 
47 /* FMC2 Controller Registers */
48 #define FMC2_BCR1			0x0
49 #define FMC2_PCR			0x80
50 #define FMC2_SR				0x84
51 #define FMC2_PMEM			0x88
52 #define FMC2_PATT			0x8c
53 #define FMC2_HECCR			0x94
54 #define FMC2_CSQCR			0x200
55 #define FMC2_CSQCFGR1			0x204
56 #define FMC2_CSQCFGR2			0x208
57 #define FMC2_CSQCFGR3			0x20c
58 #define FMC2_CSQAR1			0x210
59 #define FMC2_CSQAR2			0x214
60 #define FMC2_CSQIER			0x220
61 #define FMC2_CSQISR			0x224
62 #define FMC2_CSQICR			0x228
63 #define FMC2_CSQEMSR			0x230
64 #define FMC2_BCHIER			0x250
65 #define FMC2_BCHISR			0x254
66 #define FMC2_BCHICR			0x258
67 #define FMC2_BCHPBR1			0x260
68 #define FMC2_BCHPBR2			0x264
69 #define FMC2_BCHPBR3			0x268
70 #define FMC2_BCHPBR4			0x26c
71 #define FMC2_BCHDSR0			0x27c
72 #define FMC2_BCHDSR1			0x280
73 #define FMC2_BCHDSR2			0x284
74 #define FMC2_BCHDSR3			0x288
75 #define FMC2_BCHDSR4			0x28c
76 
77 /* Register: FMC2_BCR1 */
78 #define FMC2_BCR1_FMC2EN		BIT(31)
79 
80 /* Register: FMC2_PCR */
81 #define FMC2_PCR_PWAITEN		BIT(1)
82 #define FMC2_PCR_PBKEN			BIT(2)
83 #define FMC2_PCR_PWID_MASK		GENMASK(5, 4)
84 #define FMC2_PCR_PWID(x)		(((x) & 0x3) << 4)
85 #define FMC2_PCR_PWID_BUSWIDTH_8	0
86 #define FMC2_PCR_PWID_BUSWIDTH_16	1
87 #define FMC2_PCR_ECCEN			BIT(6)
88 #define FMC2_PCR_ECCALG			BIT(8)
89 #define FMC2_PCR_TCLR_MASK		GENMASK(12, 9)
90 #define FMC2_PCR_TCLR(x)		(((x) & 0xf) << 9)
91 #define FMC2_PCR_TCLR_DEFAULT		0xf
92 #define FMC2_PCR_TAR_MASK		GENMASK(16, 13)
93 #define FMC2_PCR_TAR(x)			(((x) & 0xf) << 13)
94 #define FMC2_PCR_TAR_DEFAULT		0xf
95 #define FMC2_PCR_ECCSS_MASK		GENMASK(19, 17)
96 #define FMC2_PCR_ECCSS(x)		(((x) & 0x7) << 17)
97 #define FMC2_PCR_ECCSS_512		1
98 #define FMC2_PCR_ECCSS_2048		3
99 #define FMC2_PCR_BCHECC			BIT(24)
100 #define FMC2_PCR_WEN			BIT(25)
101 
102 /* Register: FMC2_SR */
103 #define FMC2_SR_NWRF			BIT(6)
104 
105 /* Register: FMC2_PMEM */
106 #define FMC2_PMEM_MEMSET(x)		(((x) & 0xff) << 0)
107 #define FMC2_PMEM_MEMWAIT(x)		(((x) & 0xff) << 8)
108 #define FMC2_PMEM_MEMHOLD(x)		(((x) & 0xff) << 16)
109 #define FMC2_PMEM_MEMHIZ(x)		(((x) & 0xff) << 24)
110 #define FMC2_PMEM_DEFAULT		0x0a0a0a0a
111 
112 /* Register: FMC2_PATT */
113 #define FMC2_PATT_ATTSET(x)		(((x) & 0xff) << 0)
114 #define FMC2_PATT_ATTWAIT(x)		(((x) & 0xff) << 8)
115 #define FMC2_PATT_ATTHOLD(x)		(((x) & 0xff) << 16)
116 #define FMC2_PATT_ATTHIZ(x)		(((x) & 0xff) << 24)
117 #define FMC2_PATT_DEFAULT		0x0a0a0a0a
118 
119 /* Register: FMC2_CSQCR */
120 #define FMC2_CSQCR_CSQSTART		BIT(0)
121 
122 /* Register: FMC2_CSQCFGR1 */
123 #define FMC2_CSQCFGR1_CMD2EN		BIT(1)
124 #define FMC2_CSQCFGR1_DMADEN		BIT(2)
125 #define FMC2_CSQCFGR1_ACYNBR(x)		(((x) & 0x7) << 4)
126 #define FMC2_CSQCFGR1_CMD1(x)		(((x) & 0xff) << 8)
127 #define FMC2_CSQCFGR1_CMD2(x)		(((x) & 0xff) << 16)
128 #define FMC2_CSQCFGR1_CMD1T		BIT(24)
129 #define FMC2_CSQCFGR1_CMD2T		BIT(25)
130 
131 /* Register: FMC2_CSQCFGR2 */
132 #define FMC2_CSQCFGR2_SQSDTEN		BIT(0)
133 #define FMC2_CSQCFGR2_RCMD2EN		BIT(1)
134 #define FMC2_CSQCFGR2_DMASEN		BIT(2)
135 #define FMC2_CSQCFGR2_RCMD1(x)		(((x) & 0xff) << 8)
136 #define FMC2_CSQCFGR2_RCMD2(x)		(((x) & 0xff) << 16)
137 #define FMC2_CSQCFGR2_RCMD1T		BIT(24)
138 #define FMC2_CSQCFGR2_RCMD2T		BIT(25)
139 
140 /* Register: FMC2_CSQCFGR3 */
141 #define FMC2_CSQCFGR3_SNBR(x)		(((x) & 0x1f) << 8)
142 #define FMC2_CSQCFGR3_AC1T		BIT(16)
143 #define FMC2_CSQCFGR3_AC2T		BIT(17)
144 #define FMC2_CSQCFGR3_AC3T		BIT(18)
145 #define FMC2_CSQCFGR3_AC4T		BIT(19)
146 #define FMC2_CSQCFGR3_AC5T		BIT(20)
147 #define FMC2_CSQCFGR3_SDT		BIT(21)
148 #define FMC2_CSQCFGR3_RAC1T		BIT(22)
149 #define FMC2_CSQCFGR3_RAC2T		BIT(23)
150 
151 /* Register: FMC2_CSQCAR1 */
152 #define FMC2_CSQCAR1_ADDC1(x)		(((x) & 0xff) << 0)
153 #define FMC2_CSQCAR1_ADDC2(x)		(((x) & 0xff) << 8)
154 #define FMC2_CSQCAR1_ADDC3(x)		(((x) & 0xff) << 16)
155 #define FMC2_CSQCAR1_ADDC4(x)		(((x) & 0xff) << 24)
156 
157 /* Register: FMC2_CSQCAR2 */
158 #define FMC2_CSQCAR2_ADDC5(x)		(((x) & 0xff) << 0)
159 #define FMC2_CSQCAR2_NANDCEN(x)		(((x) & 0x3) << 10)
160 #define FMC2_CSQCAR2_SAO(x)		(((x) & 0xffff) << 16)
161 
162 /* Register: FMC2_CSQIER */
163 #define FMC2_CSQIER_TCIE		BIT(0)
164 
165 /* Register: FMC2_CSQICR */
166 #define FMC2_CSQICR_CLEAR_IRQ		GENMASK(4, 0)
167 
168 /* Register: FMC2_CSQEMSR */
169 #define FMC2_CSQEMSR_SEM		GENMASK(15, 0)
170 
171 /* Register: FMC2_BCHIER */
172 #define FMC2_BCHIER_DERIE		BIT(1)
173 #define FMC2_BCHIER_EPBRIE		BIT(4)
174 
175 /* Register: FMC2_BCHICR */
176 #define FMC2_BCHICR_CLEAR_IRQ		GENMASK(4, 0)
177 
178 /* Register: FMC2_BCHDSR0 */
179 #define FMC2_BCHDSR0_DUE		BIT(0)
180 #define FMC2_BCHDSR0_DEF		BIT(1)
181 #define FMC2_BCHDSR0_DEN_MASK		GENMASK(7, 4)
182 #define FMC2_BCHDSR0_DEN_SHIFT		4
183 
184 /* Register: FMC2_BCHDSR1 */
185 #define FMC2_BCHDSR1_EBP1_MASK		GENMASK(12, 0)
186 #define FMC2_BCHDSR1_EBP2_MASK		GENMASK(28, 16)
187 #define FMC2_BCHDSR1_EBP2_SHIFT		16
188 
189 /* Register: FMC2_BCHDSR2 */
190 #define FMC2_BCHDSR2_EBP3_MASK		GENMASK(12, 0)
191 #define FMC2_BCHDSR2_EBP4_MASK		GENMASK(28, 16)
192 #define FMC2_BCHDSR2_EBP4_SHIFT		16
193 
194 /* Register: FMC2_BCHDSR3 */
195 #define FMC2_BCHDSR3_EBP5_MASK		GENMASK(12, 0)
196 #define FMC2_BCHDSR3_EBP6_MASK		GENMASK(28, 16)
197 #define FMC2_BCHDSR3_EBP6_SHIFT		16
198 
199 /* Register: FMC2_BCHDSR4 */
200 #define FMC2_BCHDSR4_EBP7_MASK		GENMASK(12, 0)
201 #define FMC2_BCHDSR4_EBP8_MASK		GENMASK(28, 16)
202 #define FMC2_BCHDSR4_EBP8_SHIFT		16
203 
204 enum stm32_fmc2_ecc {
205 	FMC2_ECC_HAM = 1,
206 	FMC2_ECC_BCH4 = 4,
207 	FMC2_ECC_BCH8 = 8
208 };
209 
210 enum stm32_fmc2_irq_state {
211 	FMC2_IRQ_UNKNOWN = 0,
212 	FMC2_IRQ_BCH,
213 	FMC2_IRQ_SEQ
214 };
215 
216 struct stm32_fmc2_timings {
217 	u8 tclr;
218 	u8 tar;
219 	u8 thiz;
220 	u8 twait;
221 	u8 thold_mem;
222 	u8 tset_mem;
223 	u8 thold_att;
224 	u8 tset_att;
225 };
226 
227 struct stm32_fmc2_nand {
228 	struct nand_chip chip;
229 	struct stm32_fmc2_timings timings;
230 	int ncs;
231 	int cs_used[FMC2_MAX_CE];
232 };
233 
234 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
235 {
236 	return container_of(chip, struct stm32_fmc2_nand, chip);
237 }
238 
239 struct stm32_fmc2_nfc {
240 	struct nand_controller base;
241 	struct stm32_fmc2_nand nand;
242 	struct device *dev;
243 	void __iomem *io_base;
244 	void __iomem *data_base[FMC2_MAX_CE];
245 	void __iomem *cmd_base[FMC2_MAX_CE];
246 	void __iomem *addr_base[FMC2_MAX_CE];
247 	phys_addr_t io_phys_addr;
248 	phys_addr_t data_phys_addr[FMC2_MAX_CE];
249 	struct clk *clk;
250 	u8 irq_state;
251 
252 	struct dma_chan *dma_tx_ch;
253 	struct dma_chan *dma_rx_ch;
254 	struct dma_chan *dma_ecc_ch;
255 	struct sg_table dma_data_sg;
256 	struct sg_table dma_ecc_sg;
257 	u8 *ecc_buf;
258 	int dma_ecc_len;
259 
260 	struct completion complete;
261 	struct completion dma_data_complete;
262 	struct completion dma_ecc_complete;
263 
264 	u8 cs_assigned;
265 	int cs_sel;
266 };
267 
268 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
269 {
270 	return container_of(base, struct stm32_fmc2_nfc, base);
271 }
272 
273 /* Timings configuration */
274 static void stm32_fmc2_timings_init(struct nand_chip *chip)
275 {
276 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
277 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
278 	struct stm32_fmc2_timings *timings = &nand->timings;
279 	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
280 	u32 pmem, patt;
281 
282 	/* Set tclr/tar timings */
283 	pcr &= ~FMC2_PCR_TCLR_MASK;
284 	pcr |= FMC2_PCR_TCLR(timings->tclr);
285 	pcr &= ~FMC2_PCR_TAR_MASK;
286 	pcr |= FMC2_PCR_TAR(timings->tar);
287 
288 	/* Set tset/twait/thold/thiz timings in common bank */
289 	pmem = FMC2_PMEM_MEMSET(timings->tset_mem);
290 	pmem |= FMC2_PMEM_MEMWAIT(timings->twait);
291 	pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem);
292 	pmem |= FMC2_PMEM_MEMHIZ(timings->thiz);
293 
294 	/* Set tset/twait/thold/thiz timings in attribut bank */
295 	patt = FMC2_PATT_ATTSET(timings->tset_att);
296 	patt |= FMC2_PATT_ATTWAIT(timings->twait);
297 	patt |= FMC2_PATT_ATTHOLD(timings->thold_att);
298 	patt |= FMC2_PATT_ATTHIZ(timings->thiz);
299 
300 	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
301 	writel_relaxed(pmem, fmc2->io_base + FMC2_PMEM);
302 	writel_relaxed(patt, fmc2->io_base + FMC2_PATT);
303 }
304 
305 /* Controller configuration */
306 static void stm32_fmc2_setup(struct nand_chip *chip)
307 {
308 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
309 	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
310 
311 	/* Configure ECC algorithm (default configuration is Hamming) */
312 	pcr &= ~FMC2_PCR_ECCALG;
313 	pcr &= ~FMC2_PCR_BCHECC;
314 	if (chip->ecc.strength == FMC2_ECC_BCH8) {
315 		pcr |= FMC2_PCR_ECCALG;
316 		pcr |= FMC2_PCR_BCHECC;
317 	} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
318 		pcr |= FMC2_PCR_ECCALG;
319 	}
320 
321 	/* Set buswidth */
322 	pcr &= ~FMC2_PCR_PWID_MASK;
323 	if (chip->options & NAND_BUSWIDTH_16)
324 		pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
325 
326 	/* Set ECC sector size */
327 	pcr &= ~FMC2_PCR_ECCSS_MASK;
328 	pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512);
329 
330 	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
331 }
332 
333 /* Select target */
334 static int stm32_fmc2_select_chip(struct nand_chip *chip, int chipnr)
335 {
336 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
337 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
338 	struct dma_slave_config dma_cfg;
339 	int ret;
340 
341 	if (nand->cs_used[chipnr] == fmc2->cs_sel)
342 		return 0;
343 
344 	fmc2->cs_sel = nand->cs_used[chipnr];
345 
346 	/* FMC2 setup routine */
347 	stm32_fmc2_setup(chip);
348 
349 	/* Apply timings */
350 	stm32_fmc2_timings_init(chip);
351 
352 	if (fmc2->dma_tx_ch && fmc2->dma_rx_ch) {
353 		memset(&dma_cfg, 0, sizeof(dma_cfg));
354 		dma_cfg.src_addr = fmc2->data_phys_addr[fmc2->cs_sel];
355 		dma_cfg.dst_addr = fmc2->data_phys_addr[fmc2->cs_sel];
356 		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
357 		dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
358 		dma_cfg.src_maxburst = 32;
359 		dma_cfg.dst_maxburst = 32;
360 
361 		ret = dmaengine_slave_config(fmc2->dma_tx_ch, &dma_cfg);
362 		if (ret) {
363 			dev_err(fmc2->dev, "tx DMA engine slave config failed\n");
364 			return ret;
365 		}
366 
367 		ret = dmaengine_slave_config(fmc2->dma_rx_ch, &dma_cfg);
368 		if (ret) {
369 			dev_err(fmc2->dev, "rx DMA engine slave config failed\n");
370 			return ret;
371 		}
372 	}
373 
374 	if (fmc2->dma_ecc_ch) {
375 		/*
376 		 * Hamming: we read HECCR register
377 		 * BCH4/BCH8: we read BCHDSRSx registers
378 		 */
379 		memset(&dma_cfg, 0, sizeof(dma_cfg));
380 		dma_cfg.src_addr = fmc2->io_phys_addr;
381 		dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
382 				    FMC2_HECCR : FMC2_BCHDSR0;
383 		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
384 
385 		ret = dmaengine_slave_config(fmc2->dma_ecc_ch, &dma_cfg);
386 		if (ret) {
387 			dev_err(fmc2->dev, "ECC DMA engine slave config failed\n");
388 			return ret;
389 		}
390 
391 		/* Calculate ECC length needed for one sector */
392 		fmc2->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
393 				    FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
394 	}
395 
396 	return 0;
397 }
398 
399 /* Set bus width to 16-bit or 8-bit */
400 static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set)
401 {
402 	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
403 
404 	pcr &= ~FMC2_PCR_PWID_MASK;
405 	if (set)
406 		pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
407 	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
408 }
409 
410 /* Enable/disable ECC */
411 static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable)
412 {
413 	u32 pcr = readl(fmc2->io_base + FMC2_PCR);
414 
415 	pcr &= ~FMC2_PCR_ECCEN;
416 	if (enable)
417 		pcr |= FMC2_PCR_ECCEN;
418 	writel(pcr, fmc2->io_base + FMC2_PCR);
419 }
420 
421 /* Enable irq sources in case of the sequencer is used */
422 static inline void stm32_fmc2_enable_seq_irq(struct stm32_fmc2_nfc *fmc2)
423 {
424 	u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER);
425 
426 	csqier |= FMC2_CSQIER_TCIE;
427 
428 	fmc2->irq_state = FMC2_IRQ_SEQ;
429 
430 	writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER);
431 }
432 
433 /* Disable irq sources in case of the sequencer is used */
434 static inline void stm32_fmc2_disable_seq_irq(struct stm32_fmc2_nfc *fmc2)
435 {
436 	u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER);
437 
438 	csqier &= ~FMC2_CSQIER_TCIE;
439 
440 	writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER);
441 
442 	fmc2->irq_state = FMC2_IRQ_UNKNOWN;
443 }
444 
445 /* Clear irq sources in case of the sequencer is used */
446 static inline void stm32_fmc2_clear_seq_irq(struct stm32_fmc2_nfc *fmc2)
447 {
448 	writel_relaxed(FMC2_CSQICR_CLEAR_IRQ, fmc2->io_base + FMC2_CSQICR);
449 }
450 
451 /* Enable irq sources in case of bch is used */
452 static inline void stm32_fmc2_enable_bch_irq(struct stm32_fmc2_nfc *fmc2,
453 					     int mode)
454 {
455 	u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER);
456 
457 	if (mode == NAND_ECC_WRITE)
458 		bchier |= FMC2_BCHIER_EPBRIE;
459 	else
460 		bchier |= FMC2_BCHIER_DERIE;
461 
462 	fmc2->irq_state = FMC2_IRQ_BCH;
463 
464 	writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER);
465 }
466 
467 /* Disable irq sources in case of bch is used */
468 static inline void stm32_fmc2_disable_bch_irq(struct stm32_fmc2_nfc *fmc2)
469 {
470 	u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER);
471 
472 	bchier &= ~FMC2_BCHIER_DERIE;
473 	bchier &= ~FMC2_BCHIER_EPBRIE;
474 
475 	writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER);
476 
477 	fmc2->irq_state = FMC2_IRQ_UNKNOWN;
478 }
479 
480 /* Clear irq sources in case of bch is used */
481 static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2)
482 {
483 	writel_relaxed(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR);
484 }
485 
486 /*
487  * Enable ECC logic and reset syndrome/parity bits previously calculated
488  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
489  */
490 static void stm32_fmc2_hwctl(struct nand_chip *chip, int mode)
491 {
492 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
493 
494 	stm32_fmc2_set_ecc(fmc2, false);
495 
496 	if (chip->ecc.strength != FMC2_ECC_HAM) {
497 		u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
498 
499 		if (mode == NAND_ECC_WRITE)
500 			pcr |= FMC2_PCR_WEN;
501 		else
502 			pcr &= ~FMC2_PCR_WEN;
503 		writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
504 
505 		reinit_completion(&fmc2->complete);
506 		stm32_fmc2_clear_bch_irq(fmc2);
507 		stm32_fmc2_enable_bch_irq(fmc2, mode);
508 	}
509 
510 	stm32_fmc2_set_ecc(fmc2, true);
511 }
512 
513 /*
514  * ECC Hamming calculation
515  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
516  * max of 1-bit)
517  */
518 static inline void stm32_fmc2_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
519 {
520 	ecc[0] = ecc_sta;
521 	ecc[1] = ecc_sta >> 8;
522 	ecc[2] = ecc_sta >> 16;
523 }
524 
525 static int stm32_fmc2_ham_calculate(struct nand_chip *chip, const u8 *data,
526 				    u8 *ecc)
527 {
528 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
529 	u32 sr, heccr;
530 	int ret;
531 
532 	ret = readl_relaxed_poll_timeout(fmc2->io_base + FMC2_SR,
533 					 sr, sr & FMC2_SR_NWRF, 10, 1000);
534 	if (ret) {
535 		dev_err(fmc2->dev, "ham timeout\n");
536 		return ret;
537 	}
538 
539 	heccr = readl_relaxed(fmc2->io_base + FMC2_HECCR);
540 
541 	stm32_fmc2_ham_set_ecc(heccr, ecc);
542 
543 	/* Disable ECC */
544 	stm32_fmc2_set_ecc(fmc2, false);
545 
546 	return 0;
547 }
548 
549 static int stm32_fmc2_ham_correct(struct nand_chip *chip, u8 *dat,
550 				  u8 *read_ecc, u8 *calc_ecc)
551 {
552 	u8 bit_position = 0, b0, b1, b2;
553 	u32 byte_addr = 0, b;
554 	u32 i, shifting = 1;
555 
556 	/* Indicate which bit and byte is faulty (if any) */
557 	b0 = read_ecc[0] ^ calc_ecc[0];
558 	b1 = read_ecc[1] ^ calc_ecc[1];
559 	b2 = read_ecc[2] ^ calc_ecc[2];
560 	b = b0 | (b1 << 8) | (b2 << 16);
561 
562 	/* No errors */
563 	if (likely(!b))
564 		return 0;
565 
566 	/* Calculate bit position */
567 	for (i = 0; i < 3; i++) {
568 		switch (b % 4) {
569 		case 2:
570 			bit_position += shifting;
571 		case 1:
572 			break;
573 		default:
574 			return -EBADMSG;
575 		}
576 		shifting <<= 1;
577 		b >>= 2;
578 	}
579 
580 	/* Calculate byte position */
581 	shifting = 1;
582 	for (i = 0; i < 9; i++) {
583 		switch (b % 4) {
584 		case 2:
585 			byte_addr += shifting;
586 		case 1:
587 			break;
588 		default:
589 			return -EBADMSG;
590 		}
591 		shifting <<= 1;
592 		b >>= 2;
593 	}
594 
595 	/* Flip the bit */
596 	dat[byte_addr] ^= (1 << bit_position);
597 
598 	return 1;
599 }
600 
601 /*
602  * ECC BCH calculation and correction
603  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
604  * max of 4-bit/8-bit)
605  */
606 static int stm32_fmc2_bch_calculate(struct nand_chip *chip, const u8 *data,
607 				    u8 *ecc)
608 {
609 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
610 	u32 bchpbr;
611 
612 	/* Wait until the BCH code is ready */
613 	if (!wait_for_completion_timeout(&fmc2->complete,
614 					 msecs_to_jiffies(1000))) {
615 		dev_err(fmc2->dev, "bch timeout\n");
616 		stm32_fmc2_disable_bch_irq(fmc2);
617 		return -ETIMEDOUT;
618 	}
619 
620 	/* Read parity bits */
621 	bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR1);
622 	ecc[0] = bchpbr;
623 	ecc[1] = bchpbr >> 8;
624 	ecc[2] = bchpbr >> 16;
625 	ecc[3] = bchpbr >> 24;
626 
627 	bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR2);
628 	ecc[4] = bchpbr;
629 	ecc[5] = bchpbr >> 8;
630 	ecc[6] = bchpbr >> 16;
631 
632 	if (chip->ecc.strength == FMC2_ECC_BCH8) {
633 		ecc[7] = bchpbr >> 24;
634 
635 		bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR3);
636 		ecc[8] = bchpbr;
637 		ecc[9] = bchpbr >> 8;
638 		ecc[10] = bchpbr >> 16;
639 		ecc[11] = bchpbr >> 24;
640 
641 		bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR4);
642 		ecc[12] = bchpbr;
643 	}
644 
645 	/* Disable ECC */
646 	stm32_fmc2_set_ecc(fmc2, false);
647 
648 	return 0;
649 }
650 
651 /* BCH algorithm correction */
652 static int stm32_fmc2_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
653 {
654 	u32 bchdsr0 = ecc_sta[0];
655 	u32 bchdsr1 = ecc_sta[1];
656 	u32 bchdsr2 = ecc_sta[2];
657 	u32 bchdsr3 = ecc_sta[3];
658 	u32 bchdsr4 = ecc_sta[4];
659 	u16 pos[8];
660 	int i, den;
661 	unsigned int nb_errs = 0;
662 
663 	/* No errors found */
664 	if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
665 		return 0;
666 
667 	/* Too many errors detected */
668 	if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
669 		return -EBADMSG;
670 
671 	pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK;
672 	pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT;
673 	pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK;
674 	pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT;
675 	pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK;
676 	pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT;
677 	pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK;
678 	pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT;
679 
680 	den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT;
681 	for (i = 0; i < den; i++) {
682 		if (pos[i] < eccsize * 8) {
683 			change_bit(pos[i], (unsigned long *)dat);
684 			nb_errs++;
685 		}
686 	}
687 
688 	return nb_errs;
689 }
690 
691 static int stm32_fmc2_bch_correct(struct nand_chip *chip, u8 *dat,
692 				  u8 *read_ecc, u8 *calc_ecc)
693 {
694 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
695 	u32 ecc_sta[5];
696 
697 	/* Wait until the decoding error is ready */
698 	if (!wait_for_completion_timeout(&fmc2->complete,
699 					 msecs_to_jiffies(1000))) {
700 		dev_err(fmc2->dev, "bch timeout\n");
701 		stm32_fmc2_disable_bch_irq(fmc2);
702 		return -ETIMEDOUT;
703 	}
704 
705 	ecc_sta[0] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR0);
706 	ecc_sta[1] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR1);
707 	ecc_sta[2] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR2);
708 	ecc_sta[3] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR3);
709 	ecc_sta[4] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR4);
710 
711 	/* Disable ECC */
712 	stm32_fmc2_set_ecc(fmc2, false);
713 
714 	return stm32_fmc2_bch_decode(chip->ecc.size, dat, ecc_sta);
715 }
716 
717 static int stm32_fmc2_read_page(struct nand_chip *chip, u8 *buf,
718 				int oob_required, int page)
719 {
720 	struct mtd_info *mtd = nand_to_mtd(chip);
721 	int ret, i, s, stat, eccsize = chip->ecc.size;
722 	int eccbytes = chip->ecc.bytes;
723 	int eccsteps = chip->ecc.steps;
724 	int eccstrength = chip->ecc.strength;
725 	u8 *p = buf;
726 	u8 *ecc_calc = chip->ecc.calc_buf;
727 	u8 *ecc_code = chip->ecc.code_buf;
728 	unsigned int max_bitflips = 0;
729 
730 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
731 	if (ret)
732 		return ret;
733 
734 	for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
735 	     s++, i += eccbytes, p += eccsize) {
736 		chip->ecc.hwctl(chip, NAND_ECC_READ);
737 
738 		/* Read the nand page sector (512 bytes) */
739 		ret = nand_change_read_column_op(chip, s * eccsize, p,
740 						 eccsize, false);
741 		if (ret)
742 			return ret;
743 
744 		/* Read the corresponding ECC bytes */
745 		ret = nand_change_read_column_op(chip, i, ecc_code,
746 						 eccbytes, false);
747 		if (ret)
748 			return ret;
749 
750 		/* Correct the data */
751 		stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
752 		if (stat == -EBADMSG)
753 			/* Check for empty pages with bitflips */
754 			stat = nand_check_erased_ecc_chunk(p, eccsize,
755 							   ecc_code, eccbytes,
756 							   NULL, 0,
757 							   eccstrength);
758 
759 		if (stat < 0) {
760 			mtd->ecc_stats.failed++;
761 		} else {
762 			mtd->ecc_stats.corrected += stat;
763 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
764 		}
765 	}
766 
767 	/* Read oob */
768 	if (oob_required) {
769 		ret = nand_change_read_column_op(chip, mtd->writesize,
770 						 chip->oob_poi, mtd->oobsize,
771 						 false);
772 		if (ret)
773 			return ret;
774 	}
775 
776 	return max_bitflips;
777 }
778 
779 /* Sequencer read/write configuration */
780 static void stm32_fmc2_rw_page_init(struct nand_chip *chip, int page,
781 				    int raw, bool write_data)
782 {
783 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
784 	struct mtd_info *mtd = nand_to_mtd(chip);
785 	u32 csqcfgr1, csqcfgr2, csqcfgr3;
786 	u32 csqar1, csqar2;
787 	u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
788 	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
789 
790 	if (write_data)
791 		pcr |= FMC2_PCR_WEN;
792 	else
793 		pcr &= ~FMC2_PCR_WEN;
794 	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
795 
796 	/*
797 	 * - Set Program Page/Page Read command
798 	 * - Enable DMA request data
799 	 * - Set timings
800 	 */
801 	csqcfgr1 = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
802 	if (write_data)
803 		csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_SEQIN);
804 	else
805 		csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_READ0) |
806 			    FMC2_CSQCFGR1_CMD2EN |
807 			    FMC2_CSQCFGR1_CMD2(NAND_CMD_READSTART) |
808 			    FMC2_CSQCFGR1_CMD2T;
809 
810 	/*
811 	 * - Set Random Data Input/Random Data Read command
812 	 * - Enable the sequencer to access the Spare data area
813 	 * - Enable  DMA request status decoding for read
814 	 * - Set timings
815 	 */
816 	if (write_data)
817 		csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDIN);
818 	else
819 		csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDOUT) |
820 			   FMC2_CSQCFGR2_RCMD2EN |
821 			   FMC2_CSQCFGR2_RCMD2(NAND_CMD_RNDOUTSTART) |
822 			   FMC2_CSQCFGR2_RCMD1T |
823 			   FMC2_CSQCFGR2_RCMD2T;
824 	if (!raw) {
825 		csqcfgr2 |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
826 		csqcfgr2 |= FMC2_CSQCFGR2_SQSDTEN;
827 	}
828 
829 	/*
830 	 * - Set the number of sectors to be written
831 	 * - Set timings
832 	 */
833 	csqcfgr3 = FMC2_CSQCFGR3_SNBR(chip->ecc.steps - 1);
834 	if (write_data) {
835 		csqcfgr3 |= FMC2_CSQCFGR3_RAC2T;
836 		if (chip->options & NAND_ROW_ADDR_3)
837 			csqcfgr3 |= FMC2_CSQCFGR3_AC5T;
838 		else
839 			csqcfgr3 |= FMC2_CSQCFGR3_AC4T;
840 	}
841 
842 	/*
843 	 * Set the fourth first address cycles
844 	 * Byte 1 and byte 2 => column, we start at 0x0
845 	 * Byte 3 and byte 4 => page
846 	 */
847 	csqar1 = FMC2_CSQCAR1_ADDC3(page);
848 	csqar1 |= FMC2_CSQCAR1_ADDC4(page >> 8);
849 
850 	/*
851 	 * - Set chip enable number
852 	 * - Set ECC byte offset in the spare area
853 	 * - Calculate the number of address cycles to be issued
854 	 * - Set byte 5 of address cycle if needed
855 	 */
856 	csqar2 = FMC2_CSQCAR2_NANDCEN(fmc2->cs_sel);
857 	if (chip->options & NAND_BUSWIDTH_16)
858 		csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset >> 1);
859 	else
860 		csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset);
861 	if (chip->options & NAND_ROW_ADDR_3) {
862 		csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(5);
863 		csqar2 |= FMC2_CSQCAR2_ADDC5(page >> 16);
864 	} else {
865 		csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(4);
866 	}
867 
868 	writel_relaxed(csqcfgr1, fmc2->io_base + FMC2_CSQCFGR1);
869 	writel_relaxed(csqcfgr2, fmc2->io_base + FMC2_CSQCFGR2);
870 	writel_relaxed(csqcfgr3, fmc2->io_base + FMC2_CSQCFGR3);
871 	writel_relaxed(csqar1, fmc2->io_base + FMC2_CSQAR1);
872 	writel_relaxed(csqar2, fmc2->io_base + FMC2_CSQAR2);
873 }
874 
875 static void stm32_fmc2_dma_callback(void *arg)
876 {
877 	complete((struct completion *)arg);
878 }
879 
880 /* Read/write data from/to a page */
881 static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf,
882 			   int raw, bool write_data)
883 {
884 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
885 	struct dma_async_tx_descriptor *desc_data, *desc_ecc;
886 	struct scatterlist *sg;
887 	struct dma_chan *dma_ch = fmc2->dma_rx_ch;
888 	enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
889 	enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
890 	u32 csqcr = readl_relaxed(fmc2->io_base + FMC2_CSQCR);
891 	int eccsteps = chip->ecc.steps;
892 	int eccsize = chip->ecc.size;
893 	const u8 *p = buf;
894 	int s, ret;
895 
896 	/* Configure DMA data */
897 	if (write_data) {
898 		dma_data_dir = DMA_TO_DEVICE;
899 		dma_transfer_dir = DMA_MEM_TO_DEV;
900 		dma_ch = fmc2->dma_tx_ch;
901 	}
902 
903 	for_each_sg(fmc2->dma_data_sg.sgl, sg, eccsteps, s) {
904 		sg_set_buf(sg, p, eccsize);
905 		p += eccsize;
906 	}
907 
908 	ret = dma_map_sg(fmc2->dev, fmc2->dma_data_sg.sgl,
909 			 eccsteps, dma_data_dir);
910 	if (ret < 0)
911 		return ret;
912 
913 	desc_data = dmaengine_prep_slave_sg(dma_ch, fmc2->dma_data_sg.sgl,
914 					    eccsteps, dma_transfer_dir,
915 					    DMA_PREP_INTERRUPT);
916 	if (!desc_data) {
917 		ret = -ENOMEM;
918 		goto err_unmap_data;
919 	}
920 
921 	reinit_completion(&fmc2->dma_data_complete);
922 	reinit_completion(&fmc2->complete);
923 	desc_data->callback = stm32_fmc2_dma_callback;
924 	desc_data->callback_param = &fmc2->dma_data_complete;
925 	ret = dma_submit_error(dmaengine_submit(desc_data));
926 	if (ret)
927 		goto err_unmap_data;
928 
929 	dma_async_issue_pending(dma_ch);
930 
931 	if (!write_data && !raw) {
932 		/* Configure DMA ECC status */
933 		p = fmc2->ecc_buf;
934 		for_each_sg(fmc2->dma_ecc_sg.sgl, sg, eccsteps, s) {
935 			sg_set_buf(sg, p, fmc2->dma_ecc_len);
936 			p += fmc2->dma_ecc_len;
937 		}
938 
939 		ret = dma_map_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl,
940 				 eccsteps, dma_data_dir);
941 		if (ret < 0)
942 			goto err_unmap_data;
943 
944 		desc_ecc = dmaengine_prep_slave_sg(fmc2->dma_ecc_ch,
945 						   fmc2->dma_ecc_sg.sgl,
946 						   eccsteps, dma_transfer_dir,
947 						   DMA_PREP_INTERRUPT);
948 		if (!desc_ecc) {
949 			ret = -ENOMEM;
950 			goto err_unmap_ecc;
951 		}
952 
953 		reinit_completion(&fmc2->dma_ecc_complete);
954 		desc_ecc->callback = stm32_fmc2_dma_callback;
955 		desc_ecc->callback_param = &fmc2->dma_ecc_complete;
956 		ret = dma_submit_error(dmaengine_submit(desc_ecc));
957 		if (ret)
958 			goto err_unmap_ecc;
959 
960 		dma_async_issue_pending(fmc2->dma_ecc_ch);
961 	}
962 
963 	stm32_fmc2_clear_seq_irq(fmc2);
964 	stm32_fmc2_enable_seq_irq(fmc2);
965 
966 	/* Start the transfer */
967 	csqcr |= FMC2_CSQCR_CSQSTART;
968 	writel_relaxed(csqcr, fmc2->io_base + FMC2_CSQCR);
969 
970 	/* Wait end of sequencer transfer */
971 	if (!wait_for_completion_timeout(&fmc2->complete,
972 					 msecs_to_jiffies(1000))) {
973 		dev_err(fmc2->dev, "seq timeout\n");
974 		stm32_fmc2_disable_seq_irq(fmc2);
975 		dmaengine_terminate_all(dma_ch);
976 		if (!write_data && !raw)
977 			dmaengine_terminate_all(fmc2->dma_ecc_ch);
978 		ret = -ETIMEDOUT;
979 		goto err_unmap_ecc;
980 	}
981 
982 	/* Wait DMA data transfer completion */
983 	if (!wait_for_completion_timeout(&fmc2->dma_data_complete,
984 					 msecs_to_jiffies(100))) {
985 		dev_err(fmc2->dev, "data DMA timeout\n");
986 		dmaengine_terminate_all(dma_ch);
987 		ret = -ETIMEDOUT;
988 	}
989 
990 	/* Wait DMA ECC transfer completion */
991 	if (!write_data && !raw) {
992 		if (!wait_for_completion_timeout(&fmc2->dma_ecc_complete,
993 						 msecs_to_jiffies(100))) {
994 			dev_err(fmc2->dev, "ECC DMA timeout\n");
995 			dmaengine_terminate_all(fmc2->dma_ecc_ch);
996 			ret = -ETIMEDOUT;
997 		}
998 	}
999 
1000 err_unmap_ecc:
1001 	if (!write_data && !raw)
1002 		dma_unmap_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl,
1003 			     eccsteps, dma_data_dir);
1004 
1005 err_unmap_data:
1006 	dma_unmap_sg(fmc2->dev, fmc2->dma_data_sg.sgl, eccsteps, dma_data_dir);
1007 
1008 	return ret;
1009 }
1010 
1011 static int stm32_fmc2_sequencer_write(struct nand_chip *chip,
1012 				      const u8 *buf, int oob_required,
1013 				      int page, int raw)
1014 {
1015 	struct mtd_info *mtd = nand_to_mtd(chip);
1016 	int ret;
1017 
1018 	/* Configure the sequencer */
1019 	stm32_fmc2_rw_page_init(chip, page, raw, true);
1020 
1021 	/* Write the page */
1022 	ret = stm32_fmc2_xfer(chip, buf, raw, true);
1023 	if (ret)
1024 		return ret;
1025 
1026 	/* Write oob */
1027 	if (oob_required) {
1028 		ret = nand_change_write_column_op(chip, mtd->writesize,
1029 						  chip->oob_poi, mtd->oobsize,
1030 						  false);
1031 		if (ret)
1032 			return ret;
1033 	}
1034 
1035 	return nand_prog_page_end_op(chip);
1036 }
1037 
1038 static int stm32_fmc2_sequencer_write_page(struct nand_chip *chip,
1039 					   const u8 *buf,
1040 					   int oob_required,
1041 					   int page)
1042 {
1043 	int ret;
1044 
1045 	/* Select the target */
1046 	ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
1047 	if (ret)
1048 		return ret;
1049 
1050 	return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, false);
1051 }
1052 
1053 static int stm32_fmc2_sequencer_write_page_raw(struct nand_chip *chip,
1054 					       const u8 *buf,
1055 					       int oob_required,
1056 					       int page)
1057 {
1058 	int ret;
1059 
1060 	/* Select the target */
1061 	ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
1062 	if (ret)
1063 		return ret;
1064 
1065 	return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, true);
1066 }
1067 
1068 /* Get a status indicating which sectors have errors */
1069 static inline u16 stm32_fmc2_get_mapping_status(struct stm32_fmc2_nfc *fmc2)
1070 {
1071 	u32 csqemsr = readl_relaxed(fmc2->io_base + FMC2_CSQEMSR);
1072 
1073 	return csqemsr & FMC2_CSQEMSR_SEM;
1074 }
1075 
1076 static int stm32_fmc2_sequencer_correct(struct nand_chip *chip, u8 *dat,
1077 					u8 *read_ecc, u8 *calc_ecc)
1078 {
1079 	struct mtd_info *mtd = nand_to_mtd(chip);
1080 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1081 	int eccbytes = chip->ecc.bytes;
1082 	int eccsteps = chip->ecc.steps;
1083 	int eccstrength = chip->ecc.strength;
1084 	int i, s, eccsize = chip->ecc.size;
1085 	u32 *ecc_sta = (u32 *)fmc2->ecc_buf;
1086 	u16 sta_map = stm32_fmc2_get_mapping_status(fmc2);
1087 	unsigned int max_bitflips = 0;
1088 
1089 	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
1090 		int stat = 0;
1091 
1092 		if (eccstrength == FMC2_ECC_HAM) {
1093 			/* Ecc_sta = FMC2_HECCR */
1094 			if (sta_map & BIT(s)) {
1095 				stm32_fmc2_ham_set_ecc(*ecc_sta, &calc_ecc[i]);
1096 				stat = stm32_fmc2_ham_correct(chip, dat,
1097 							      &read_ecc[i],
1098 							      &calc_ecc[i]);
1099 			}
1100 			ecc_sta++;
1101 		} else {
1102 			/*
1103 			 * Ecc_sta[0] = FMC2_BCHDSR0
1104 			 * Ecc_sta[1] = FMC2_BCHDSR1
1105 			 * Ecc_sta[2] = FMC2_BCHDSR2
1106 			 * Ecc_sta[3] = FMC2_BCHDSR3
1107 			 * Ecc_sta[4] = FMC2_BCHDSR4
1108 			 */
1109 			if (sta_map & BIT(s))
1110 				stat = stm32_fmc2_bch_decode(eccsize, dat,
1111 							     ecc_sta);
1112 			ecc_sta += 5;
1113 		}
1114 
1115 		if (stat == -EBADMSG)
1116 			/* Check for empty pages with bitflips */
1117 			stat = nand_check_erased_ecc_chunk(dat, eccsize,
1118 							   &read_ecc[i],
1119 							   eccbytes,
1120 							   NULL, 0,
1121 							   eccstrength);
1122 
1123 		if (stat < 0) {
1124 			mtd->ecc_stats.failed++;
1125 		} else {
1126 			mtd->ecc_stats.corrected += stat;
1127 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1128 		}
1129 	}
1130 
1131 	return max_bitflips;
1132 }
1133 
1134 static int stm32_fmc2_sequencer_read_page(struct nand_chip *chip, u8 *buf,
1135 					  int oob_required, int page)
1136 {
1137 	struct mtd_info *mtd = nand_to_mtd(chip);
1138 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1139 	u8 *ecc_calc = chip->ecc.calc_buf;
1140 	u8 *ecc_code = chip->ecc.code_buf;
1141 	u16 sta_map;
1142 	int ret;
1143 
1144 	/* Select the target */
1145 	ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
1146 	if (ret)
1147 		return ret;
1148 
1149 	/* Configure the sequencer */
1150 	stm32_fmc2_rw_page_init(chip, page, 0, false);
1151 
1152 	/* Read the page */
1153 	ret = stm32_fmc2_xfer(chip, buf, 0, false);
1154 	if (ret)
1155 		return ret;
1156 
1157 	sta_map = stm32_fmc2_get_mapping_status(fmc2);
1158 
1159 	/* Check if errors happen */
1160 	if (likely(!sta_map)) {
1161 		if (oob_required)
1162 			return nand_change_read_column_op(chip, mtd->writesize,
1163 							  chip->oob_poi,
1164 							  mtd->oobsize, false);
1165 
1166 		return 0;
1167 	}
1168 
1169 	/* Read oob */
1170 	ret = nand_change_read_column_op(chip, mtd->writesize,
1171 					 chip->oob_poi, mtd->oobsize, false);
1172 	if (ret)
1173 		return ret;
1174 
1175 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1176 					 chip->ecc.total);
1177 	if (ret)
1178 		return ret;
1179 
1180 	/* Correct data */
1181 	return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1182 }
1183 
1184 static int stm32_fmc2_sequencer_read_page_raw(struct nand_chip *chip, u8 *buf,
1185 					      int oob_required, int page)
1186 {
1187 	struct mtd_info *mtd = nand_to_mtd(chip);
1188 	int ret;
1189 
1190 	/* Select the target */
1191 	ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
1192 	if (ret)
1193 		return ret;
1194 
1195 	/* Configure the sequencer */
1196 	stm32_fmc2_rw_page_init(chip, page, 1, false);
1197 
1198 	/* Read the page */
1199 	ret = stm32_fmc2_xfer(chip, buf, 1, false);
1200 	if (ret)
1201 		return ret;
1202 
1203 	/* Read oob */
1204 	if (oob_required)
1205 		return nand_change_read_column_op(chip, mtd->writesize,
1206 						  chip->oob_poi, mtd->oobsize,
1207 						  false);
1208 
1209 	return 0;
1210 }
1211 
1212 static irqreturn_t stm32_fmc2_irq(int irq, void *dev_id)
1213 {
1214 	struct stm32_fmc2_nfc *fmc2 = (struct stm32_fmc2_nfc *)dev_id;
1215 
1216 	if (fmc2->irq_state == FMC2_IRQ_SEQ)
1217 		/* Sequencer is used */
1218 		stm32_fmc2_disable_seq_irq(fmc2);
1219 	else if (fmc2->irq_state == FMC2_IRQ_BCH)
1220 		/* BCH is used */
1221 		stm32_fmc2_disable_bch_irq(fmc2);
1222 
1223 	complete(&fmc2->complete);
1224 
1225 	return IRQ_HANDLED;
1226 }
1227 
1228 static void stm32_fmc2_read_data(struct nand_chip *chip, void *buf,
1229 				 unsigned int len, bool force_8bit)
1230 {
1231 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1232 	void __iomem *io_addr_r = fmc2->data_base[fmc2->cs_sel];
1233 
1234 	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1235 		/* Reconfigure bus width to 8-bit */
1236 		stm32_fmc2_set_buswidth_16(fmc2, false);
1237 
1238 	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1239 		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1240 			*(u8 *)buf = readb_relaxed(io_addr_r);
1241 			buf += sizeof(u8);
1242 			len -= sizeof(u8);
1243 		}
1244 
1245 		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1246 		    len >= sizeof(u16)) {
1247 			*(u16 *)buf = readw_relaxed(io_addr_r);
1248 			buf += sizeof(u16);
1249 			len -= sizeof(u16);
1250 		}
1251 	}
1252 
1253 	/* Buf is aligned */
1254 	while (len >= sizeof(u32)) {
1255 		*(u32 *)buf = readl_relaxed(io_addr_r);
1256 		buf += sizeof(u32);
1257 		len -= sizeof(u32);
1258 	}
1259 
1260 	/* Read remaining bytes */
1261 	if (len >= sizeof(u16)) {
1262 		*(u16 *)buf = readw_relaxed(io_addr_r);
1263 		buf += sizeof(u16);
1264 		len -= sizeof(u16);
1265 	}
1266 
1267 	if (len)
1268 		*(u8 *)buf = readb_relaxed(io_addr_r);
1269 
1270 	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1271 		/* Reconfigure bus width to 16-bit */
1272 		stm32_fmc2_set_buswidth_16(fmc2, true);
1273 }
1274 
1275 static void stm32_fmc2_write_data(struct nand_chip *chip, const void *buf,
1276 				  unsigned int len, bool force_8bit)
1277 {
1278 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1279 	void __iomem *io_addr_w = fmc2->data_base[fmc2->cs_sel];
1280 
1281 	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1282 		/* Reconfigure bus width to 8-bit */
1283 		stm32_fmc2_set_buswidth_16(fmc2, false);
1284 
1285 	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1286 		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1287 			writeb_relaxed(*(u8 *)buf, io_addr_w);
1288 			buf += sizeof(u8);
1289 			len -= sizeof(u8);
1290 		}
1291 
1292 		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1293 		    len >= sizeof(u16)) {
1294 			writew_relaxed(*(u16 *)buf, io_addr_w);
1295 			buf += sizeof(u16);
1296 			len -= sizeof(u16);
1297 		}
1298 	}
1299 
1300 	/* Buf is aligned */
1301 	while (len >= sizeof(u32)) {
1302 		writel_relaxed(*(u32 *)buf, io_addr_w);
1303 		buf += sizeof(u32);
1304 		len -= sizeof(u32);
1305 	}
1306 
1307 	/* Write remaining bytes */
1308 	if (len >= sizeof(u16)) {
1309 		writew_relaxed(*(u16 *)buf, io_addr_w);
1310 		buf += sizeof(u16);
1311 		len -= sizeof(u16);
1312 	}
1313 
1314 	if (len)
1315 		writeb_relaxed(*(u8 *)buf, io_addr_w);
1316 
1317 	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1318 		/* Reconfigure bus width to 16-bit */
1319 		stm32_fmc2_set_buswidth_16(fmc2, true);
1320 }
1321 
1322 static int stm32_fmc2_exec_op(struct nand_chip *chip,
1323 			      const struct nand_operation *op,
1324 			      bool check_only)
1325 {
1326 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1327 	const struct nand_op_instr *instr = NULL;
1328 	unsigned int op_id, i;
1329 	int ret;
1330 
1331 	ret = stm32_fmc2_select_chip(chip, op->cs);
1332 	if (ret)
1333 		return ret;
1334 
1335 	if (check_only)
1336 		return ret;
1337 
1338 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
1339 		instr = &op->instrs[op_id];
1340 
1341 		switch (instr->type) {
1342 		case NAND_OP_CMD_INSTR:
1343 			writeb_relaxed(instr->ctx.cmd.opcode,
1344 				       fmc2->cmd_base[fmc2->cs_sel]);
1345 			break;
1346 
1347 		case NAND_OP_ADDR_INSTR:
1348 			for (i = 0; i < instr->ctx.addr.naddrs; i++)
1349 				writeb_relaxed(instr->ctx.addr.addrs[i],
1350 					       fmc2->addr_base[fmc2->cs_sel]);
1351 			break;
1352 
1353 		case NAND_OP_DATA_IN_INSTR:
1354 			stm32_fmc2_read_data(chip, instr->ctx.data.buf.in,
1355 					     instr->ctx.data.len,
1356 					     instr->ctx.data.force_8bit);
1357 			break;
1358 
1359 		case NAND_OP_DATA_OUT_INSTR:
1360 			stm32_fmc2_write_data(chip, instr->ctx.data.buf.out,
1361 					      instr->ctx.data.len,
1362 					      instr->ctx.data.force_8bit);
1363 			break;
1364 
1365 		case NAND_OP_WAITRDY_INSTR:
1366 			ret = nand_soft_waitrdy(chip,
1367 						instr->ctx.waitrdy.timeout_ms);
1368 			break;
1369 		}
1370 	}
1371 
1372 	return ret;
1373 }
1374 
1375 /* Controller initialization */
1376 static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2)
1377 {
1378 	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
1379 	u32 bcr1 = readl_relaxed(fmc2->io_base + FMC2_BCR1);
1380 
1381 	/* Set CS used to undefined */
1382 	fmc2->cs_sel = -1;
1383 
1384 	/* Enable wait feature and nand flash memory bank */
1385 	pcr |= FMC2_PCR_PWAITEN;
1386 	pcr |= FMC2_PCR_PBKEN;
1387 
1388 	/* Set buswidth to 8 bits mode for identification */
1389 	pcr &= ~FMC2_PCR_PWID_MASK;
1390 
1391 	/* ECC logic is disabled */
1392 	pcr &= ~FMC2_PCR_ECCEN;
1393 
1394 	/* Default mode */
1395 	pcr &= ~FMC2_PCR_ECCALG;
1396 	pcr &= ~FMC2_PCR_BCHECC;
1397 	pcr &= ~FMC2_PCR_WEN;
1398 
1399 	/* Set default ECC sector size */
1400 	pcr &= ~FMC2_PCR_ECCSS_MASK;
1401 	pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048);
1402 
1403 	/* Set default tclr/tar timings */
1404 	pcr &= ~FMC2_PCR_TCLR_MASK;
1405 	pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT);
1406 	pcr &= ~FMC2_PCR_TAR_MASK;
1407 	pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT);
1408 
1409 	/* Enable FMC2 controller */
1410 	bcr1 |= FMC2_BCR1_FMC2EN;
1411 
1412 	writel_relaxed(bcr1, fmc2->io_base + FMC2_BCR1);
1413 	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
1414 	writel_relaxed(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM);
1415 	writel_relaxed(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT);
1416 }
1417 
1418 /* Controller timings */
1419 static void stm32_fmc2_calc_timings(struct nand_chip *chip,
1420 				    const struct nand_sdr_timings *sdrt)
1421 {
1422 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1423 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
1424 	struct stm32_fmc2_timings *tims = &nand->timings;
1425 	unsigned long hclk = clk_get_rate(fmc2->clk);
1426 	unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
1427 	int tar, tclr, thiz, twait, tset_mem, tset_att, thold_mem, thold_att;
1428 
1429 	tar = hclkp;
1430 	if (tar < sdrt->tAR_min)
1431 		tar = sdrt->tAR_min;
1432 	tims->tar = DIV_ROUND_UP(tar, hclkp) - 1;
1433 	if (tims->tar > FMC2_PCR_TIMING_MASK)
1434 		tims->tar = FMC2_PCR_TIMING_MASK;
1435 
1436 	tclr = hclkp;
1437 	if (tclr < sdrt->tCLR_min)
1438 		tclr = sdrt->tCLR_min;
1439 	tims->tclr = DIV_ROUND_UP(tclr, hclkp) - 1;
1440 	if (tims->tclr > FMC2_PCR_TIMING_MASK)
1441 		tims->tclr = FMC2_PCR_TIMING_MASK;
1442 
1443 	tims->thiz = FMC2_THIZ;
1444 	thiz = (tims->thiz + 1) * hclkp;
1445 
1446 	/*
1447 	 * tWAIT > tRP
1448 	 * tWAIT > tWP
1449 	 * tWAIT > tREA + tIO
1450 	 */
1451 	twait = hclkp;
1452 	if (twait < sdrt->tRP_min)
1453 		twait = sdrt->tRP_min;
1454 	if (twait < sdrt->tWP_min)
1455 		twait = sdrt->tWP_min;
1456 	if (twait < sdrt->tREA_max + FMC2_TIO)
1457 		twait = sdrt->tREA_max + FMC2_TIO;
1458 	tims->twait = DIV_ROUND_UP(twait, hclkp);
1459 	if (tims->twait == 0)
1460 		tims->twait = 1;
1461 	else if (tims->twait > FMC2_PMEM_PATT_TIMING_MASK)
1462 		tims->twait = FMC2_PMEM_PATT_TIMING_MASK;
1463 
1464 	/*
1465 	 * tSETUP_MEM > tCS - tWAIT
1466 	 * tSETUP_MEM > tALS - tWAIT
1467 	 * tSETUP_MEM > tDS - (tWAIT - tHIZ)
1468 	 */
1469 	tset_mem = hclkp;
1470 	if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
1471 		tset_mem = sdrt->tCS_min - twait;
1472 	if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
1473 		tset_mem = sdrt->tALS_min - twait;
1474 	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1475 	    (tset_mem < sdrt->tDS_min - (twait - thiz)))
1476 		tset_mem = sdrt->tDS_min - (twait - thiz);
1477 	tims->tset_mem = DIV_ROUND_UP(tset_mem, hclkp);
1478 	if (tims->tset_mem == 0)
1479 		tims->tset_mem = 1;
1480 	else if (tims->tset_mem > FMC2_PMEM_PATT_TIMING_MASK)
1481 		tims->tset_mem = FMC2_PMEM_PATT_TIMING_MASK;
1482 
1483 	/*
1484 	 * tHOLD_MEM > tCH
1485 	 * tHOLD_MEM > tREH - tSETUP_MEM
1486 	 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
1487 	 */
1488 	thold_mem = hclkp;
1489 	if (thold_mem < sdrt->tCH_min)
1490 		thold_mem = sdrt->tCH_min;
1491 	if (sdrt->tREH_min > tset_mem &&
1492 	    (thold_mem < sdrt->tREH_min - tset_mem))
1493 		thold_mem = sdrt->tREH_min - tset_mem;
1494 	if ((sdrt->tRC_min > tset_mem + twait) &&
1495 	    (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
1496 		thold_mem = sdrt->tRC_min - (tset_mem + twait);
1497 	if ((sdrt->tWC_min > tset_mem + twait) &&
1498 	    (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
1499 		thold_mem = sdrt->tWC_min - (tset_mem + twait);
1500 	tims->thold_mem = DIV_ROUND_UP(thold_mem, hclkp);
1501 	if (tims->thold_mem == 0)
1502 		tims->thold_mem = 1;
1503 	else if (tims->thold_mem > FMC2_PMEM_PATT_TIMING_MASK)
1504 		tims->thold_mem = FMC2_PMEM_PATT_TIMING_MASK;
1505 
1506 	/*
1507 	 * tSETUP_ATT > tCS - tWAIT
1508 	 * tSETUP_ATT > tCLS - tWAIT
1509 	 * tSETUP_ATT > tALS - tWAIT
1510 	 * tSETUP_ATT > tRHW - tHOLD_MEM
1511 	 * tSETUP_ATT > tDS - (tWAIT - tHIZ)
1512 	 */
1513 	tset_att = hclkp;
1514 	if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
1515 		tset_att = sdrt->tCS_min - twait;
1516 	if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
1517 		tset_att = sdrt->tCLS_min - twait;
1518 	if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
1519 		tset_att = sdrt->tALS_min - twait;
1520 	if (sdrt->tRHW_min > thold_mem &&
1521 	    (tset_att < sdrt->tRHW_min - thold_mem))
1522 		tset_att = sdrt->tRHW_min - thold_mem;
1523 	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1524 	    (tset_att < sdrt->tDS_min - (twait - thiz)))
1525 		tset_att = sdrt->tDS_min - (twait - thiz);
1526 	tims->tset_att = DIV_ROUND_UP(tset_att, hclkp);
1527 	if (tims->tset_att == 0)
1528 		tims->tset_att = 1;
1529 	else if (tims->tset_att > FMC2_PMEM_PATT_TIMING_MASK)
1530 		tims->tset_att = FMC2_PMEM_PATT_TIMING_MASK;
1531 
1532 	/*
1533 	 * tHOLD_ATT > tALH
1534 	 * tHOLD_ATT > tCH
1535 	 * tHOLD_ATT > tCLH
1536 	 * tHOLD_ATT > tCOH
1537 	 * tHOLD_ATT > tDH
1538 	 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
1539 	 * tHOLD_ATT > tADL - tSETUP_MEM
1540 	 * tHOLD_ATT > tWH - tSETUP_MEM
1541 	 * tHOLD_ATT > tWHR - tSETUP_MEM
1542 	 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
1543 	 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
1544 	 */
1545 	thold_att = hclkp;
1546 	if (thold_att < sdrt->tALH_min)
1547 		thold_att = sdrt->tALH_min;
1548 	if (thold_att < sdrt->tCH_min)
1549 		thold_att = sdrt->tCH_min;
1550 	if (thold_att < sdrt->tCLH_min)
1551 		thold_att = sdrt->tCLH_min;
1552 	if (thold_att < sdrt->tCOH_min)
1553 		thold_att = sdrt->tCOH_min;
1554 	if (thold_att < sdrt->tDH_min)
1555 		thold_att = sdrt->tDH_min;
1556 	if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
1557 	    (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
1558 		thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
1559 	if (sdrt->tADL_min > tset_mem &&
1560 	    (thold_att < sdrt->tADL_min - tset_mem))
1561 		thold_att = sdrt->tADL_min - tset_mem;
1562 	if (sdrt->tWH_min > tset_mem &&
1563 	    (thold_att < sdrt->tWH_min - tset_mem))
1564 		thold_att = sdrt->tWH_min - tset_mem;
1565 	if (sdrt->tWHR_min > tset_mem &&
1566 	    (thold_att < sdrt->tWHR_min - tset_mem))
1567 		thold_att = sdrt->tWHR_min - tset_mem;
1568 	if ((sdrt->tRC_min > tset_att + twait) &&
1569 	    (thold_att < sdrt->tRC_min - (tset_att + twait)))
1570 		thold_att = sdrt->tRC_min - (tset_att + twait);
1571 	if ((sdrt->tWC_min > tset_att + twait) &&
1572 	    (thold_att < sdrt->tWC_min - (tset_att + twait)))
1573 		thold_att = sdrt->tWC_min - (tset_att + twait);
1574 	tims->thold_att = DIV_ROUND_UP(thold_att, hclkp);
1575 	if (tims->thold_att == 0)
1576 		tims->thold_att = 1;
1577 	else if (tims->thold_att > FMC2_PMEM_PATT_TIMING_MASK)
1578 		tims->thold_att = FMC2_PMEM_PATT_TIMING_MASK;
1579 }
1580 
1581 static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr,
1582 				      const struct nand_data_interface *conf)
1583 {
1584 	const struct nand_sdr_timings *sdrt;
1585 
1586 	sdrt = nand_get_sdr_timings(conf);
1587 	if (IS_ERR(sdrt))
1588 		return PTR_ERR(sdrt);
1589 
1590 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1591 		return 0;
1592 
1593 	stm32_fmc2_calc_timings(chip, sdrt);
1594 
1595 	/* Apply timings */
1596 	stm32_fmc2_timings_init(chip);
1597 
1598 	return 0;
1599 }
1600 
1601 /* DMA configuration */
1602 static int stm32_fmc2_dma_setup(struct stm32_fmc2_nfc *fmc2)
1603 {
1604 	int ret;
1605 
1606 	fmc2->dma_tx_ch = dma_request_slave_channel(fmc2->dev, "tx");
1607 	fmc2->dma_rx_ch = dma_request_slave_channel(fmc2->dev, "rx");
1608 	fmc2->dma_ecc_ch = dma_request_slave_channel(fmc2->dev, "ecc");
1609 
1610 	if (!fmc2->dma_tx_ch || !fmc2->dma_rx_ch || !fmc2->dma_ecc_ch) {
1611 		dev_warn(fmc2->dev, "DMAs not defined in the device tree, polling mode is used\n");
1612 		return 0;
1613 	}
1614 
1615 	ret = sg_alloc_table(&fmc2->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
1616 	if (ret)
1617 		return ret;
1618 
1619 	/* Allocate a buffer to store ECC status registers */
1620 	fmc2->ecc_buf = devm_kzalloc(fmc2->dev, FMC2_MAX_ECC_BUF_LEN,
1621 				     GFP_KERNEL);
1622 	if (!fmc2->ecc_buf)
1623 		return -ENOMEM;
1624 
1625 	ret = sg_alloc_table(&fmc2->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
1626 	if (ret)
1627 		return ret;
1628 
1629 	init_completion(&fmc2->dma_data_complete);
1630 	init_completion(&fmc2->dma_ecc_complete);
1631 
1632 	return 0;
1633 }
1634 
1635 /* NAND callbacks setup */
1636 static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip)
1637 {
1638 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1639 
1640 	/*
1641 	 * Specific callbacks to read/write a page depending on
1642 	 * the mode (polling/sequencer) and the algo used (Hamming, BCH).
1643 	 */
1644 	if (fmc2->dma_tx_ch && fmc2->dma_rx_ch && fmc2->dma_ecc_ch) {
1645 		/* DMA => use sequencer mode callbacks */
1646 		chip->ecc.correct = stm32_fmc2_sequencer_correct;
1647 		chip->ecc.write_page = stm32_fmc2_sequencer_write_page;
1648 		chip->ecc.read_page = stm32_fmc2_sequencer_read_page;
1649 		chip->ecc.write_page_raw = stm32_fmc2_sequencer_write_page_raw;
1650 		chip->ecc.read_page_raw = stm32_fmc2_sequencer_read_page_raw;
1651 	} else {
1652 		/* No DMA => use polling mode callbacks */
1653 		chip->ecc.hwctl = stm32_fmc2_hwctl;
1654 		if (chip->ecc.strength == FMC2_ECC_HAM) {
1655 			/* Hamming is used */
1656 			chip->ecc.calculate = stm32_fmc2_ham_calculate;
1657 			chip->ecc.correct = stm32_fmc2_ham_correct;
1658 			chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
1659 		} else {
1660 			/* BCH is used */
1661 			chip->ecc.calculate = stm32_fmc2_bch_calculate;
1662 			chip->ecc.correct = stm32_fmc2_bch_correct;
1663 			chip->ecc.read_page = stm32_fmc2_read_page;
1664 		}
1665 	}
1666 
1667 	/* Specific configurations depending on the algo used */
1668 	if (chip->ecc.strength == FMC2_ECC_HAM)
1669 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
1670 	else if (chip->ecc.strength == FMC2_ECC_BCH8)
1671 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
1672 	else
1673 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
1674 }
1675 
1676 /* FMC2 layout */
1677 static int stm32_fmc2_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
1678 					 struct mtd_oob_region *oobregion)
1679 {
1680 	struct nand_chip *chip = mtd_to_nand(mtd);
1681 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1682 
1683 	if (section)
1684 		return -ERANGE;
1685 
1686 	oobregion->length = ecc->total;
1687 	oobregion->offset = FMC2_BBM_LEN;
1688 
1689 	return 0;
1690 }
1691 
1692 static int stm32_fmc2_nand_ooblayout_free(struct mtd_info *mtd, int section,
1693 					  struct mtd_oob_region *oobregion)
1694 {
1695 	struct nand_chip *chip = mtd_to_nand(mtd);
1696 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1697 
1698 	if (section)
1699 		return -ERANGE;
1700 
1701 	oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
1702 	oobregion->offset = ecc->total + FMC2_BBM_LEN;
1703 
1704 	return 0;
1705 }
1706 
1707 static const struct mtd_ooblayout_ops stm32_fmc2_nand_ooblayout_ops = {
1708 	.ecc = stm32_fmc2_nand_ooblayout_ecc,
1709 	.free = stm32_fmc2_nand_ooblayout_free,
1710 };
1711 
1712 /* FMC2 caps */
1713 static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength)
1714 {
1715 	/* Hamming */
1716 	if (strength == FMC2_ECC_HAM)
1717 		return 4;
1718 
1719 	/* BCH8 */
1720 	if (strength == FMC2_ECC_BCH8)
1721 		return 14;
1722 
1723 	/* BCH4 */
1724 	return 8;
1725 }
1726 
1727 NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes,
1728 		     FMC2_ECC_STEP_SIZE,
1729 		     FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
1730 
1731 /* FMC2 controller ops */
1732 static int stm32_fmc2_attach_chip(struct nand_chip *chip)
1733 {
1734 	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1735 	struct mtd_info *mtd = nand_to_mtd(chip);
1736 	int ret;
1737 
1738 	/*
1739 	 * Only NAND_ECC_HW mode is actually supported
1740 	 * Hamming => ecc.strength = 1
1741 	 * BCH4 => ecc.strength = 4
1742 	 * BCH8 => ecc.strength = 8
1743 	 * ECC sector size = 512
1744 	 */
1745 	if (chip->ecc.mode != NAND_ECC_HW) {
1746 		dev_err(fmc2->dev, "nand_ecc_mode is not well defined in the DT\n");
1747 		return -EINVAL;
1748 	}
1749 
1750 	ret = nand_ecc_choose_conf(chip, &stm32_fmc2_ecc_caps,
1751 				   mtd->oobsize - FMC2_BBM_LEN);
1752 	if (ret) {
1753 		dev_err(fmc2->dev, "no valid ECC settings set\n");
1754 		return ret;
1755 	}
1756 
1757 	if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
1758 		dev_err(fmc2->dev, "nand page size is not supported\n");
1759 		return -EINVAL;
1760 	}
1761 
1762 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1763 		chip->bbt_options |= NAND_BBT_NO_OOB;
1764 
1765 	/* NAND callbacks setup */
1766 	stm32_fmc2_nand_callbacks_setup(chip);
1767 
1768 	/* Define ECC layout */
1769 	mtd_set_ooblayout(mtd, &stm32_fmc2_nand_ooblayout_ops);
1770 
1771 	/* Configure bus width to 16-bit */
1772 	if (chip->options & NAND_BUSWIDTH_16)
1773 		stm32_fmc2_set_buswidth_16(fmc2, true);
1774 
1775 	return 0;
1776 }
1777 
1778 static const struct nand_controller_ops stm32_fmc2_nand_controller_ops = {
1779 	.attach_chip = stm32_fmc2_attach_chip,
1780 	.exec_op = stm32_fmc2_exec_op,
1781 	.setup_data_interface = stm32_fmc2_setup_interface,
1782 };
1783 
1784 /* FMC2 probe */
1785 static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2,
1786 				  struct device_node *dn)
1787 {
1788 	struct stm32_fmc2_nand *nand = &fmc2->nand;
1789 	u32 cs;
1790 	int ret, i;
1791 
1792 	if (!of_get_property(dn, "reg", &nand->ncs))
1793 		return -EINVAL;
1794 
1795 	nand->ncs /= sizeof(u32);
1796 	if (!nand->ncs) {
1797 		dev_err(fmc2->dev, "invalid reg property size\n");
1798 		return -EINVAL;
1799 	}
1800 
1801 	for (i = 0; i < nand->ncs; i++) {
1802 		ret = of_property_read_u32_index(dn, "reg", i, &cs);
1803 		if (ret) {
1804 			dev_err(fmc2->dev, "could not retrieve reg property: %d\n",
1805 				ret);
1806 			return ret;
1807 		}
1808 
1809 		if (cs > FMC2_MAX_CE) {
1810 			dev_err(fmc2->dev, "invalid reg value: %d\n", cs);
1811 			return -EINVAL;
1812 		}
1813 
1814 		if (fmc2->cs_assigned & BIT(cs)) {
1815 			dev_err(fmc2->dev, "cs already assigned: %d\n", cs);
1816 			return -EINVAL;
1817 		}
1818 
1819 		fmc2->cs_assigned |= BIT(cs);
1820 		nand->cs_used[i] = cs;
1821 	}
1822 
1823 	nand_set_flash_node(&nand->chip, dn);
1824 
1825 	return 0;
1826 }
1827 
1828 static int stm32_fmc2_parse_dt(struct stm32_fmc2_nfc *fmc2)
1829 {
1830 	struct device_node *dn = fmc2->dev->of_node;
1831 	struct device_node *child;
1832 	int nchips = of_get_child_count(dn);
1833 	int ret = 0;
1834 
1835 	if (!nchips) {
1836 		dev_err(fmc2->dev, "NAND chip not defined\n");
1837 		return -EINVAL;
1838 	}
1839 
1840 	if (nchips > 1) {
1841 		dev_err(fmc2->dev, "too many NAND chips defined\n");
1842 		return -EINVAL;
1843 	}
1844 
1845 	for_each_child_of_node(dn, child) {
1846 		ret = stm32_fmc2_parse_child(fmc2, child);
1847 		if (ret < 0) {
1848 			of_node_put(child);
1849 			return ret;
1850 		}
1851 	}
1852 
1853 	return ret;
1854 }
1855 
1856 static int stm32_fmc2_probe(struct platform_device *pdev)
1857 {
1858 	struct device *dev = &pdev->dev;
1859 	struct reset_control *rstc;
1860 	struct stm32_fmc2_nfc *fmc2;
1861 	struct stm32_fmc2_nand *nand;
1862 	struct resource *res;
1863 	struct mtd_info *mtd;
1864 	struct nand_chip *chip;
1865 	int chip_cs, mem_region, ret, irq;
1866 
1867 	fmc2 = devm_kzalloc(dev, sizeof(*fmc2), GFP_KERNEL);
1868 	if (!fmc2)
1869 		return -ENOMEM;
1870 
1871 	fmc2->dev = dev;
1872 	nand_controller_init(&fmc2->base);
1873 	fmc2->base.ops = &stm32_fmc2_nand_controller_ops;
1874 
1875 	ret = stm32_fmc2_parse_dt(fmc2);
1876 	if (ret)
1877 		return ret;
1878 
1879 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1880 	fmc2->io_base = devm_ioremap_resource(dev, res);
1881 	if (IS_ERR(fmc2->io_base))
1882 		return PTR_ERR(fmc2->io_base);
1883 
1884 	fmc2->io_phys_addr = res->start;
1885 
1886 	for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
1887 	     chip_cs++, mem_region += 3) {
1888 		if (!(fmc2->cs_assigned & BIT(chip_cs)))
1889 			continue;
1890 
1891 		res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
1892 		fmc2->data_base[chip_cs] = devm_ioremap_resource(dev, res);
1893 		if (IS_ERR(fmc2->data_base[chip_cs]))
1894 			return PTR_ERR(fmc2->data_base[chip_cs]);
1895 
1896 		fmc2->data_phys_addr[chip_cs] = res->start;
1897 
1898 		res = platform_get_resource(pdev, IORESOURCE_MEM,
1899 					    mem_region + 1);
1900 		fmc2->cmd_base[chip_cs] = devm_ioremap_resource(dev, res);
1901 		if (IS_ERR(fmc2->cmd_base[chip_cs]))
1902 			return PTR_ERR(fmc2->cmd_base[chip_cs]);
1903 
1904 		res = platform_get_resource(pdev, IORESOURCE_MEM,
1905 					    mem_region + 2);
1906 		fmc2->addr_base[chip_cs] = devm_ioremap_resource(dev, res);
1907 		if (IS_ERR(fmc2->addr_base[chip_cs]))
1908 			return PTR_ERR(fmc2->addr_base[chip_cs]);
1909 	}
1910 
1911 	irq = platform_get_irq(pdev, 0);
1912 	ret = devm_request_irq(dev, irq, stm32_fmc2_irq, 0,
1913 			       dev_name(dev), fmc2);
1914 	if (ret) {
1915 		dev_err(dev, "failed to request irq\n");
1916 		return ret;
1917 	}
1918 
1919 	init_completion(&fmc2->complete);
1920 
1921 	fmc2->clk = devm_clk_get(dev, NULL);
1922 	if (IS_ERR(fmc2->clk))
1923 		return PTR_ERR(fmc2->clk);
1924 
1925 	ret = clk_prepare_enable(fmc2->clk);
1926 	if (ret) {
1927 		dev_err(dev, "can not enable the clock\n");
1928 		return ret;
1929 	}
1930 
1931 	rstc = devm_reset_control_get(dev, NULL);
1932 	if (!IS_ERR(rstc)) {
1933 		reset_control_assert(rstc);
1934 		reset_control_deassert(rstc);
1935 	}
1936 
1937 	/* DMA setup */
1938 	ret = stm32_fmc2_dma_setup(fmc2);
1939 	if (ret)
1940 		return ret;
1941 
1942 	/* FMC2 init routine */
1943 	stm32_fmc2_init(fmc2);
1944 
1945 	nand = &fmc2->nand;
1946 	chip = &nand->chip;
1947 	mtd = nand_to_mtd(chip);
1948 	mtd->dev.parent = dev;
1949 
1950 	chip->controller = &fmc2->base;
1951 	chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1952 			 NAND_USE_BOUNCE_BUFFER;
1953 
1954 	/* Default ECC settings */
1955 	chip->ecc.mode = NAND_ECC_HW;
1956 	chip->ecc.size = FMC2_ECC_STEP_SIZE;
1957 	chip->ecc.strength = FMC2_ECC_BCH8;
1958 
1959 	/* Scan to find existence of the device */
1960 	ret = nand_scan(chip, nand->ncs);
1961 	if (ret)
1962 		goto err_scan;
1963 
1964 	ret = mtd_device_register(mtd, NULL, 0);
1965 	if (ret)
1966 		goto err_device_register;
1967 
1968 	platform_set_drvdata(pdev, fmc2);
1969 
1970 	return 0;
1971 
1972 err_device_register:
1973 	nand_cleanup(chip);
1974 
1975 err_scan:
1976 	if (fmc2->dma_ecc_ch)
1977 		dma_release_channel(fmc2->dma_ecc_ch);
1978 	if (fmc2->dma_tx_ch)
1979 		dma_release_channel(fmc2->dma_tx_ch);
1980 	if (fmc2->dma_rx_ch)
1981 		dma_release_channel(fmc2->dma_rx_ch);
1982 
1983 	sg_free_table(&fmc2->dma_data_sg);
1984 	sg_free_table(&fmc2->dma_ecc_sg);
1985 
1986 	clk_disable_unprepare(fmc2->clk);
1987 
1988 	return ret;
1989 }
1990 
1991 static int stm32_fmc2_remove(struct platform_device *pdev)
1992 {
1993 	struct stm32_fmc2_nfc *fmc2 = platform_get_drvdata(pdev);
1994 	struct stm32_fmc2_nand *nand = &fmc2->nand;
1995 
1996 	nand_release(&nand->chip);
1997 
1998 	if (fmc2->dma_ecc_ch)
1999 		dma_release_channel(fmc2->dma_ecc_ch);
2000 	if (fmc2->dma_tx_ch)
2001 		dma_release_channel(fmc2->dma_tx_ch);
2002 	if (fmc2->dma_rx_ch)
2003 		dma_release_channel(fmc2->dma_rx_ch);
2004 
2005 	sg_free_table(&fmc2->dma_data_sg);
2006 	sg_free_table(&fmc2->dma_ecc_sg);
2007 
2008 	clk_disable_unprepare(fmc2->clk);
2009 
2010 	return 0;
2011 }
2012 
2013 static int __maybe_unused stm32_fmc2_suspend(struct device *dev)
2014 {
2015 	struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev);
2016 
2017 	clk_disable_unprepare(fmc2->clk);
2018 
2019 	pinctrl_pm_select_sleep_state(dev);
2020 
2021 	return 0;
2022 }
2023 
2024 static int __maybe_unused stm32_fmc2_resume(struct device *dev)
2025 {
2026 	struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev);
2027 	struct stm32_fmc2_nand *nand = &fmc2->nand;
2028 	int chip_cs, ret;
2029 
2030 	pinctrl_pm_select_default_state(dev);
2031 
2032 	ret = clk_prepare_enable(fmc2->clk);
2033 	if (ret) {
2034 		dev_err(dev, "can not enable the clock\n");
2035 		return ret;
2036 	}
2037 
2038 	stm32_fmc2_init(fmc2);
2039 
2040 	for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
2041 		if (!(fmc2->cs_assigned & BIT(chip_cs)))
2042 			continue;
2043 
2044 		nand_reset(&nand->chip, chip_cs);
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 static SIMPLE_DEV_PM_OPS(stm32_fmc2_pm_ops, stm32_fmc2_suspend,
2051 			 stm32_fmc2_resume);
2052 
2053 static const struct of_device_id stm32_fmc2_match[] = {
2054 	{.compatible = "st,stm32mp15-fmc2"},
2055 	{}
2056 };
2057 MODULE_DEVICE_TABLE(of, stm32_fmc2_match);
2058 
2059 static struct platform_driver stm32_fmc2_driver = {
2060 	.probe	= stm32_fmc2_probe,
2061 	.remove	= stm32_fmc2_remove,
2062 	.driver	= {
2063 		.name = "stm32_fmc2_nand",
2064 		.of_match_table = stm32_fmc2_match,
2065 		.pm = &stm32_fmc2_pm_ops,
2066 	},
2067 };
2068 module_platform_driver(stm32_fmc2_driver);
2069 
2070 MODULE_ALIAS("platform:stm32_fmc2_nand");
2071 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
2072 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 nand driver");
2073 MODULE_LICENSE("GPL v2");
2074