xref: /linux/drivers/mtd/nand/raw/rockchip-nand-controller.c (revision c8b90d40d5bba8e6fba457b8a7c10d3c0d467e37)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Rockchip NAND Flash controller driver.
4  * Copyright (C) 2020 Rockchip Inc.
5  * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 
21 /*
22  * NFC Page Data Layout:
23  *	1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
24  *	1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
25  *	......
26  * NAND Page Data Layout:
27  *	1024 * n data + m Bytes oob
28  * Original Bad Block Mask Location:
29  *	First byte of oob(spare).
30  * nand_chip->oob_poi data layout:
31  *	4Bytes sys data + .... + 4Bytes sys data + ECC data.
32  */
33 
34 /* NAND controller register definition */
35 #define NFC_READ			(0)
36 #define NFC_WRITE			(1)
37 
38 #define NFC_FMCTL			(0x00)
39 #define   FMCTL_CE_SEL_M		0xFF
40 #define   FMCTL_CE_SEL(x)		(1 << (x))
41 #define   FMCTL_WP			BIT(8)
42 #define   FMCTL_RDY			BIT(9)
43 
44 #define NFC_FMWAIT			(0x04)
45 #define   FLCTL_RST			BIT(0)
46 #define   FLCTL_WR			(1)	/* 0: read, 1: write */
47 #define   FLCTL_XFER_ST			BIT(2)
48 #define   FLCTL_XFER_EN			BIT(3)
49 #define   FLCTL_ACORRECT		BIT(10) /* Auto correct error bits. */
50 #define   FLCTL_XFER_READY		BIT(20)
51 #define   FLCTL_XFER_SECTOR		(22)
52 #define   FLCTL_TOG_FIX			BIT(29)
53 
54 #define   BCHCTL_BANK_M			(7 << 5)
55 #define   BCHCTL_BANK			(5)
56 
57 #define   DMA_ST			BIT(0)
58 #define   DMA_WR			(1)	/* 0: write, 1: read */
59 #define   DMA_EN			BIT(2)
60 #define   DMA_AHB_SIZE			(3)	/* 0: 1, 1: 2, 2: 4 */
61 #define   DMA_BURST_SIZE		(6)	/* 0: 1, 3: 4, 5: 8, 7: 16 */
62 #define   DMA_INC_NUM			(9)	/* 1 - 16 */
63 
64 #define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
65 	  (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
66 #define   INT_DMA			BIT(0)
67 #define NFC_BANK			(0x800)
68 #define NFC_BANK_STEP			(0x100)
69 #define   BANK_DATA			(0x00)
70 #define   BANK_ADDR			(0x04)
71 #define   BANK_CMD			(0x08)
72 #define NFC_SRAM0			(0x1000)
73 #define NFC_SRAM1			(0x1400)
74 #define NFC_SRAM_SIZE			(0x400)
75 #define NFC_TIMEOUT			(500000)
76 #define NFC_MAX_OOB_PER_STEP		128
77 #define NFC_MIN_OOB_PER_STEP		64
78 #define MAX_DATA_SIZE			0xFFFC
79 #define MAX_ADDRESS_CYC			6
80 #define NFC_ECC_MAX_MODES		4
81 #define NFC_MAX_NSELS			(8) /* Some Socs only have 1 or 2 CSs. */
82 #define NFC_SYS_DATA_SIZE		(4) /* 4 bytes sys data in oob pre 1024 data.*/
83 #define RK_DEFAULT_CLOCK_RATE		(150 * 1000 * 1000) /* 150 Mhz */
84 #define ACCTIMING(csrw, rwpw, rwcs)	((csrw) << 12 | (rwpw) << 5 | (rwcs))
85 
86 enum nfc_type {
87 	NFC_V6,
88 	NFC_V8,
89 	NFC_V9,
90 };
91 
92 /**
93  * struct rk_ecc_cnt_status: represent a ecc status data.
94  * @err_flag_bit: error flag bit index at register.
95  * @low: ECC count low bit index at register.
96  * @low_mask: mask bit.
97  * @low_bn: ECC count low bit number.
98  * @high: ECC count high bit index at register.
99  * @high_mask: mask bit
100  */
101 struct rk_ecc_cnt_status {
102 	u8 err_flag_bit;
103 	u8 low;
104 	u8 low_mask;
105 	u8 low_bn;
106 	u8 high;
107 	u8 high_mask;
108 };
109 
110 /**
111  * struct nfc_cfg: Rockchip NAND controller configuration
112  * @type: NFC version
113  * @ecc_strengths: ECC strengths
114  * @ecc_cfgs: ECC config values
115  * @flctl_off: FLCTL register offset
116  * @bchctl_off: BCHCTL register offset
117  * @dma_data_buf_off: DMA_DATA_BUF register offset
118  * @dma_oob_buf_off: DMA_OOB_BUF register offset
119  * @dma_cfg_off: DMA_CFG register offset
120  * @dma_st_off: DMA_ST register offset
121  * @bch_st_off: BCG_ST register offset
122  * @randmz_off: RANDMZ register offset
123  * @int_en_off: interrupt enable register offset
124  * @int_clr_off: interrupt clean register offset
125  * @int_st_off: interrupt status register offset
126  * @oob0_off: oob0 register offset
127  * @oob1_off: oob1 register offset
128  * @ecc0: represent ECC0 status data
129  * @ecc1: represent ECC1 status data
130  */
131 struct nfc_cfg {
132 	enum nfc_type type;
133 	u8 ecc_strengths[NFC_ECC_MAX_MODES];
134 	u32 ecc_cfgs[NFC_ECC_MAX_MODES];
135 	u32 flctl_off;
136 	u32 bchctl_off;
137 	u32 dma_cfg_off;
138 	u32 dma_data_buf_off;
139 	u32 dma_oob_buf_off;
140 	u32 dma_st_off;
141 	u32 bch_st_off;
142 	u32 randmz_off;
143 	u32 int_en_off;
144 	u32 int_clr_off;
145 	u32 int_st_off;
146 	u32 oob0_off;
147 	u32 oob1_off;
148 	struct rk_ecc_cnt_status ecc0;
149 	struct rk_ecc_cnt_status ecc1;
150 };
151 
152 struct rk_nfc_nand_chip {
153 	struct list_head node;
154 	struct nand_chip chip;
155 
156 	u16 boot_blks;
157 	u16 metadata_size;
158 	u32 boot_ecc;
159 	u32 timing;
160 
161 	u8 nsels;
162 	u8 sels[] __counted_by(nsels);
163 };
164 
165 struct rk_nfc {
166 	struct nand_controller controller;
167 	const struct nfc_cfg *cfg;
168 	struct device *dev;
169 
170 	struct clk *nfc_clk;
171 	struct clk *ahb_clk;
172 	void __iomem *regs;
173 
174 	u32 selected_bank;
175 	u32 band_offset;
176 	u32 cur_ecc;
177 	u32 cur_timing;
178 
179 	struct completion done;
180 	struct list_head chips;
181 
182 	u8 *page_buf;
183 	u32 *oob_buf;
184 	u32 page_buf_size;
185 	u32 oob_buf_size;
186 
187 	unsigned long assigned_cs;
188 };
189 
190 static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
191 {
192 	return container_of(chip, struct rk_nfc_nand_chip, chip);
193 }
194 
195 static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
196 {
197 	return (u8 *)p + i * chip->ecc.size;
198 }
199 
200 static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
201 {
202 	u8 *poi;
203 
204 	poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
205 
206 	return poi;
207 }
208 
209 static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
210 {
211 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
212 	u8 *poi;
213 
214 	poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
215 
216 	return poi;
217 }
218 
219 static inline int rk_nfc_data_len(struct nand_chip *chip)
220 {
221 	return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
222 }
223 
224 static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
225 {
226 	struct rk_nfc *nfc = nand_get_controller_data(chip);
227 
228 	return nfc->page_buf + i * rk_nfc_data_len(chip);
229 }
230 
231 static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
232 {
233 	struct rk_nfc *nfc = nand_get_controller_data(chip);
234 
235 	return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
236 }
237 
238 static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
239 {
240 	struct rk_nfc *nfc = nand_get_controller_data(chip);
241 	u32 reg, i;
242 
243 	for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
244 		if (strength == nfc->cfg->ecc_strengths[i]) {
245 			reg = nfc->cfg->ecc_cfgs[i];
246 			break;
247 		}
248 	}
249 
250 	if (i >= NFC_ECC_MAX_MODES)
251 		return -EINVAL;
252 
253 	writel(reg, nfc->regs + nfc->cfg->bchctl_off);
254 
255 	/* Save chip ECC setting */
256 	nfc->cur_ecc = strength;
257 
258 	return 0;
259 }
260 
261 static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
262 {
263 	struct rk_nfc *nfc = nand_get_controller_data(chip);
264 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
265 	struct nand_ecc_ctrl *ecc = &chip->ecc;
266 	u32 val;
267 
268 	if (cs < 0) {
269 		nfc->selected_bank = -1;
270 		/* Deselect the currently selected target. */
271 		val = readl_relaxed(nfc->regs + NFC_FMCTL);
272 		val &= ~FMCTL_CE_SEL_M;
273 		writel(val, nfc->regs + NFC_FMCTL);
274 		return;
275 	}
276 
277 	nfc->selected_bank = rknand->sels[cs];
278 	nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
279 
280 	val = readl_relaxed(nfc->regs + NFC_FMCTL);
281 	val &= ~FMCTL_CE_SEL_M;
282 	val |= FMCTL_CE_SEL(nfc->selected_bank);
283 
284 	writel(val, nfc->regs + NFC_FMCTL);
285 
286 	/*
287 	 * Compare current chip timing with selected chip timing and
288 	 * change if needed.
289 	 */
290 	if (nfc->cur_timing != rknand->timing) {
291 		writel(rknand->timing, nfc->regs + NFC_FMWAIT);
292 		nfc->cur_timing = rknand->timing;
293 	}
294 
295 	/*
296 	 * Compare current chip ECC setting with selected chip ECC setting and
297 	 * change if needed.
298 	 */
299 	if (nfc->cur_ecc != ecc->strength)
300 		rk_nfc_hw_ecc_setup(chip, ecc->strength);
301 }
302 
303 static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
304 {
305 	int rc;
306 	u32 val;
307 
308 	rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
309 					val & FMCTL_RDY, 10, NFC_TIMEOUT);
310 
311 	return rc;
312 }
313 
314 static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
315 {
316 	int i;
317 
318 	for (i = 0; i < len; i++)
319 		buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
320 				       BANK_DATA);
321 }
322 
323 static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
324 {
325 	int i;
326 
327 	for (i = 0; i < len; i++)
328 		writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
329 }
330 
331 static int rk_nfc_cmd(struct nand_chip *chip,
332 		      const struct nand_subop *subop)
333 {
334 	struct rk_nfc *nfc = nand_get_controller_data(chip);
335 	unsigned int i, j, remaining, start;
336 	int reg_offset = nfc->band_offset;
337 	u8 *inbuf = NULL;
338 	const u8 *outbuf;
339 	u32 cnt = 0;
340 	int ret = 0;
341 
342 	for (i = 0; i < subop->ninstrs; i++) {
343 		const struct nand_op_instr *instr = &subop->instrs[i];
344 
345 		switch (instr->type) {
346 		case NAND_OP_CMD_INSTR:
347 			writeb(instr->ctx.cmd.opcode,
348 			       nfc->regs + reg_offset + BANK_CMD);
349 			break;
350 
351 		case NAND_OP_ADDR_INSTR:
352 			remaining = nand_subop_get_num_addr_cyc(subop, i);
353 			start = nand_subop_get_addr_start_off(subop, i);
354 
355 			for (j = 0; j < 8 && j + start < remaining; j++)
356 				writeb(instr->ctx.addr.addrs[j + start],
357 				       nfc->regs + reg_offset + BANK_ADDR);
358 			break;
359 
360 		case NAND_OP_DATA_IN_INSTR:
361 		case NAND_OP_DATA_OUT_INSTR:
362 			start = nand_subop_get_data_start_off(subop, i);
363 			cnt = nand_subop_get_data_len(subop, i);
364 
365 			if (instr->type == NAND_OP_DATA_OUT_INSTR) {
366 				outbuf = instr->ctx.data.buf.out + start;
367 				rk_nfc_write_buf(nfc, outbuf, cnt);
368 			} else {
369 				inbuf = instr->ctx.data.buf.in + start;
370 				rk_nfc_read_buf(nfc, inbuf, cnt);
371 			}
372 			break;
373 
374 		case NAND_OP_WAITRDY_INSTR:
375 			if (rk_nfc_wait_ioready(nfc) < 0) {
376 				ret = -ETIMEDOUT;
377 				dev_err(nfc->dev, "IO not ready\n");
378 			}
379 			break;
380 		}
381 	}
382 
383 	return ret;
384 }
385 
386 static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
387 	NAND_OP_PARSER_PATTERN(
388 		rk_nfc_cmd,
389 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
390 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
391 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
392 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
393 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
394 	NAND_OP_PARSER_PATTERN(
395 		rk_nfc_cmd,
396 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
397 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
398 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
399 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
400 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
401 );
402 
403 static int rk_nfc_exec_op(struct nand_chip *chip,
404 			  const struct nand_operation *op,
405 			  bool check_only)
406 {
407 	if (!check_only)
408 		rk_nfc_select_chip(chip, op->cs);
409 
410 	return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
411 				      check_only);
412 }
413 
414 static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
415 				  const struct nand_interface_config *conf)
416 {
417 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
418 	struct rk_nfc *nfc = nand_get_controller_data(chip);
419 	const struct nand_sdr_timings *timings;
420 	u32 rate, tc2rw, trwpw, trw2c;
421 	u32 temp;
422 
423 	timings = nand_get_sdr_timings(conf);
424 	if (IS_ERR(timings))
425 		return -EOPNOTSUPP;
426 
427 	if (target < 0)
428 		return 0;
429 
430 	if (IS_ERR(nfc->nfc_clk))
431 		rate = clk_get_rate(nfc->ahb_clk);
432 	else
433 		rate = clk_get_rate(nfc->nfc_clk);
434 
435 	/* Turn clock rate into kHz. */
436 	rate /= 1000;
437 
438 	tc2rw = 1;
439 	trw2c = 1;
440 
441 	trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
442 	trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
443 
444 	temp = timings->tREA_max / 1000;
445 	temp = DIV_ROUND_UP(temp * rate, 1000000);
446 
447 	if (trwpw < temp)
448 		trwpw = temp;
449 
450 	/*
451 	 * ACCON: access timing control register
452 	 * -------------------------------------
453 	 * 31:18: reserved
454 	 * 17:12: csrw, clock cycles from the falling edge of CSn to the
455 	 *   falling edge of RDn or WRn
456 	 * 11:11: reserved
457 	 * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
458 	 * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
459 	 *   rising edge of CSn
460 	 */
461 
462 	/* Save chip timing */
463 	rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
464 
465 	return 0;
466 }
467 
468 static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
469 			      dma_addr_t dma_data, dma_addr_t dma_oob)
470 {
471 	u32 dma_reg, fl_reg, bch_reg;
472 
473 	dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
474 	      (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
475 
476 	fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
477 		 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
478 
479 	if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
480 		bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
481 		bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
482 			  (nfc->selected_bank << BCHCTL_BANK);
483 		writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
484 	}
485 
486 	writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
487 	writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
488 	writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
489 	writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
490 	fl_reg |= FLCTL_XFER_ST;
491 	writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
492 }
493 
494 static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
495 {
496 	void __iomem *ptr;
497 	u32 reg;
498 
499 	ptr = nfc->regs + nfc->cfg->flctl_off;
500 
501 	return readl_relaxed_poll_timeout(ptr, reg,
502 					 reg & FLCTL_XFER_READY,
503 					 10, NFC_TIMEOUT);
504 }
505 
506 static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
507 				 int oob_on, int page)
508 {
509 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
510 	struct rk_nfc *nfc = nand_get_controller_data(chip);
511 	struct mtd_info *mtd = nand_to_mtd(chip);
512 	struct nand_ecc_ctrl *ecc = &chip->ecc;
513 	int i, pages_per_blk;
514 
515 	pages_per_blk = mtd->erasesize / mtd->writesize;
516 	if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
517 	    (page < (pages_per_blk * rknand->boot_blks)) &&
518 	    rknand->boot_ecc != ecc->strength) {
519 		/*
520 		 * There's currently no method to notify the MTD framework that
521 		 * a different ECC strength is in use for the boot blocks.
522 		 */
523 		return -EIO;
524 	}
525 
526 	if (!buf)
527 		memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
528 
529 	for (i = 0; i < ecc->steps; i++) {
530 		/* Copy data to the NFC buffer. */
531 		if (buf)
532 			memcpy(rk_nfc_data_ptr(chip, i),
533 			       rk_nfc_buf_to_data_ptr(chip, buf, i),
534 			       ecc->size);
535 		/*
536 		 * The first four bytes of OOB are reserved for the
537 		 * boot ROM. In some debugging cases, such as with a
538 		 * read, erase and write back test these 4 bytes stored
539 		 * in OOB also need to be written back.
540 		 *
541 		 * The function nand_block_bad detects bad blocks like:
542 		 *
543 		 * bad = chip->oob_poi[chip->badblockpos];
544 		 *
545 		 * chip->badblockpos == 0 for a large page NAND Flash,
546 		 * so chip->oob_poi[0] is the bad block mask (BBM).
547 		 *
548 		 * The OOB data layout on the NFC is:
549 		 *
550 		 *    PA0  PA1  PA2  PA3  | BBM OOB1 OOB2 OOB3 | ...
551 		 *
552 		 * or
553 		 *
554 		 *    0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
555 		 *
556 		 * The code here just swaps the first 4 bytes with the last
557 		 * 4 bytes without losing any data.
558 		 *
559 		 * The chip->oob_poi data layout:
560 		 *
561 		 *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
562 		 *
563 		 * The rk_nfc_ooblayout_free() function already has reserved
564 		 * these 4 bytes together with 2 bytes for BBM
565 		 * by reducing it's length:
566 		 *
567 		 * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
568 		 */
569 		if (!i)
570 			memcpy(rk_nfc_oob_ptr(chip, i),
571 			       rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
572 			       NFC_SYS_DATA_SIZE);
573 		else
574 			memcpy(rk_nfc_oob_ptr(chip, i),
575 			       rk_nfc_buf_to_oob_ptr(chip, i - 1),
576 			       NFC_SYS_DATA_SIZE);
577 		/* Copy ECC data to the NFC buffer. */
578 		memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
579 		       rk_nfc_buf_to_oob_ecc_ptr(chip, i),
580 		       ecc->bytes);
581 	}
582 
583 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
584 	rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
585 	return nand_prog_page_end_op(chip);
586 }
587 
588 static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
589 				   int oob_on, int page)
590 {
591 	struct mtd_info *mtd = nand_to_mtd(chip);
592 	struct rk_nfc *nfc = nand_get_controller_data(chip);
593 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
594 	struct nand_ecc_ctrl *ecc = &chip->ecc;
595 	int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
596 			NFC_MIN_OOB_PER_STEP;
597 	int pages_per_blk = mtd->erasesize / mtd->writesize;
598 	int ret = 0, i, boot_rom_mode = 0;
599 	dma_addr_t dma_data, dma_oob;
600 	u32 tmp;
601 	u8 *oob;
602 
603 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
604 
605 	if (buf)
606 		memcpy(nfc->page_buf, buf, mtd->writesize);
607 	else
608 		memset(nfc->page_buf, 0xFF, mtd->writesize);
609 
610 	/*
611 	 * The first blocks (4, 8 or 16 depending on the device) are used
612 	 * by the boot ROM and the first 32 bits of OOB need to link to
613 	 * the next page address in the same block. We can't directly copy
614 	 * OOB data from the MTD framework, because this page address
615 	 * conflicts for example with the bad block marker (BBM),
616 	 * so we shift all OOB data including the BBM with 4 byte positions.
617 	 * As a consequence the OOB size available to the MTD framework is
618 	 * also reduced with 4 bytes.
619 	 *
620 	 *    PA0  PA1  PA2  PA3 | BBM OOB1 OOB2 OOB3 | ...
621 	 *
622 	 * If a NAND is not a boot medium or the page is not a boot block,
623 	 * the first 4 bytes are left untouched by writing 0xFF to them.
624 	 *
625 	 *   0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
626 	 *
627 	 * The code here just swaps the first 4 bytes with the last
628 	 * 4 bytes without losing any data.
629 	 *
630 	 * The chip->oob_poi data layout:
631 	 *
632 	 *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
633 	 *
634 	 * Configure the ECC algorithm supported by the boot ROM.
635 	 */
636 	if ((page < (pages_per_blk * rknand->boot_blks)) &&
637 	    (chip->options & NAND_IS_BOOT_MEDIUM)) {
638 		boot_rom_mode = 1;
639 		if (rknand->boot_ecc != ecc->strength)
640 			rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
641 	}
642 
643 	for (i = 0; i < ecc->steps; i++) {
644 		if (!i)
645 			oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
646 		else
647 			oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
648 
649 		tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24;
650 
651 		if (nfc->cfg->type == NFC_V9)
652 			nfc->oob_buf[i] = tmp;
653 		else
654 			nfc->oob_buf[i * (oob_step / 4)] = tmp;
655 	}
656 
657 	dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
658 				  mtd->writesize, DMA_TO_DEVICE);
659 	dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
660 				 ecc->steps * oob_step,
661 				 DMA_TO_DEVICE);
662 
663 	reinit_completion(&nfc->done);
664 	writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
665 
666 	rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
667 			  dma_oob);
668 	ret = wait_for_completion_timeout(&nfc->done,
669 					  msecs_to_jiffies(100));
670 	if (!ret)
671 		dev_warn(nfc->dev, "write: wait dma done timeout.\n");
672 	/*
673 	 * Whether the DMA transfer is completed or not. The driver
674 	 * needs to check the NFC`s status register to see if the data
675 	 * transfer was completed.
676 	 */
677 	ret = rk_nfc_wait_for_xfer_done(nfc);
678 
679 	dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
680 			 DMA_TO_DEVICE);
681 	dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
682 			 DMA_TO_DEVICE);
683 
684 	if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
685 		rk_nfc_hw_ecc_setup(chip, ecc->strength);
686 
687 	if (ret) {
688 		dev_err(nfc->dev, "write: wait transfer done timeout.\n");
689 		return -ETIMEDOUT;
690 	}
691 
692 	return nand_prog_page_end_op(chip);
693 }
694 
695 static int rk_nfc_write_oob(struct nand_chip *chip, int page)
696 {
697 	return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
698 }
699 
700 static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
701 				int page)
702 {
703 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
704 	struct rk_nfc *nfc = nand_get_controller_data(chip);
705 	struct mtd_info *mtd = nand_to_mtd(chip);
706 	struct nand_ecc_ctrl *ecc = &chip->ecc;
707 	int i, pages_per_blk;
708 
709 	pages_per_blk = mtd->erasesize / mtd->writesize;
710 	if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
711 	    (page < (pages_per_blk * rknand->boot_blks)) &&
712 	    rknand->boot_ecc != ecc->strength) {
713 		/*
714 		 * There's currently no method to notify the MTD framework that
715 		 * a different ECC strength is in use for the boot blocks.
716 		 */
717 		return -EIO;
718 	}
719 
720 	nand_read_page_op(chip, page, 0, NULL, 0);
721 	rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
722 	for (i = 0; i < ecc->steps; i++) {
723 		/*
724 		 * The first four bytes of OOB are reserved for the
725 		 * boot ROM. In some debugging cases, such as with a read,
726 		 * erase and write back test, these 4 bytes also must be
727 		 * saved somewhere, otherwise this information will be
728 		 * lost during a write back.
729 		 */
730 		if (!i)
731 			memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
732 			       rk_nfc_oob_ptr(chip, i),
733 			       NFC_SYS_DATA_SIZE);
734 		else
735 			memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
736 			       rk_nfc_oob_ptr(chip, i),
737 			       NFC_SYS_DATA_SIZE);
738 
739 		/* Copy ECC data from the NFC buffer. */
740 		memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
741 		       rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
742 		       ecc->bytes);
743 
744 		/* Copy data from the NFC buffer. */
745 		if (buf)
746 			memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
747 			       rk_nfc_data_ptr(chip, i),
748 			       ecc->size);
749 	}
750 
751 	return 0;
752 }
753 
754 static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
755 				  int page)
756 {
757 	struct mtd_info *mtd = nand_to_mtd(chip);
758 	struct rk_nfc *nfc = nand_get_controller_data(chip);
759 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
760 	struct nand_ecc_ctrl *ecc = &chip->ecc;
761 	int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
762 			NFC_MIN_OOB_PER_STEP;
763 	int pages_per_blk = mtd->erasesize / mtd->writesize;
764 	dma_addr_t dma_data, dma_oob;
765 	int ret = 0, i, cnt, boot_rom_mode = 0;
766 	int max_bitflips = 0, bch_st, ecc_fail = 0;
767 	u8 *oob;
768 	u32 tmp;
769 
770 	nand_read_page_op(chip, page, 0, NULL, 0);
771 
772 	dma_data = dma_map_single(nfc->dev, nfc->page_buf,
773 				  mtd->writesize,
774 				  DMA_FROM_DEVICE);
775 	dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
776 				 ecc->steps * oob_step,
777 				 DMA_FROM_DEVICE);
778 
779 	/*
780 	 * The first blocks (4, 8 or 16 depending on the device)
781 	 * are used by the boot ROM.
782 	 * Configure the ECC algorithm supported by the boot ROM.
783 	 */
784 	if ((page < (pages_per_blk * rknand->boot_blks)) &&
785 	    (chip->options & NAND_IS_BOOT_MEDIUM)) {
786 		boot_rom_mode = 1;
787 		if (rknand->boot_ecc != ecc->strength)
788 			rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
789 	}
790 
791 	reinit_completion(&nfc->done);
792 	writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
793 	rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
794 			  dma_oob);
795 	ret = wait_for_completion_timeout(&nfc->done,
796 					  msecs_to_jiffies(100));
797 	if (!ret)
798 		dev_warn(nfc->dev, "read: wait dma done timeout.\n");
799 	/*
800 	 * Whether the DMA transfer is completed or not. The driver
801 	 * needs to check the NFC`s status register to see if the data
802 	 * transfer was completed.
803 	 */
804 	ret = rk_nfc_wait_for_xfer_done(nfc);
805 
806 	dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
807 			 DMA_FROM_DEVICE);
808 	dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
809 			 DMA_FROM_DEVICE);
810 
811 	if (ret) {
812 		ret = -ETIMEDOUT;
813 		dev_err(nfc->dev, "read: wait transfer done timeout.\n");
814 		goto timeout_err;
815 	}
816 
817 	for (i = 0; i < ecc->steps; i++) {
818 		if (!i)
819 			oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
820 		else
821 			oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
822 
823 		if (nfc->cfg->type == NFC_V9)
824 			tmp = nfc->oob_buf[i];
825 		else
826 			tmp = nfc->oob_buf[i * (oob_step / 4)];
827 
828 		*oob++ = (u8)tmp;
829 		*oob++ = (u8)(tmp >> 8);
830 		*oob++ = (u8)(tmp >> 16);
831 		*oob++ = (u8)(tmp >> 24);
832 	}
833 
834 	for (i = 0; i < (ecc->steps / 2); i++) {
835 		bch_st = readl_relaxed(nfc->regs +
836 				       nfc->cfg->bch_st_off + i * 4);
837 		if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
838 		    bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
839 			mtd->ecc_stats.failed++;
840 			ecc_fail = 1;
841 		} else {
842 			cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
843 			mtd->ecc_stats.corrected += cnt;
844 			max_bitflips = max_t(u32, max_bitflips, cnt);
845 
846 			cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
847 			mtd->ecc_stats.corrected += cnt;
848 			max_bitflips = max_t(u32, max_bitflips, cnt);
849 		}
850 	}
851 
852 	if (buf)
853 		memcpy(buf, nfc->page_buf, mtd->writesize);
854 
855 timeout_err:
856 	if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
857 		rk_nfc_hw_ecc_setup(chip, ecc->strength);
858 
859 	if (ret)
860 		return ret;
861 
862 	if (ecc_fail) {
863 		dev_err(nfc->dev, "read page: %x ecc error!\n", page);
864 		return 0;
865 	}
866 
867 	return max_bitflips;
868 }
869 
870 static int rk_nfc_read_oob(struct nand_chip *chip, int page)
871 {
872 	return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
873 }
874 
875 static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
876 {
877 	/* Disable flash wp. */
878 	writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
879 	/* Config default timing 40ns at 150 Mhz NFC clock. */
880 	writel(0x1081, nfc->regs + NFC_FMWAIT);
881 	nfc->cur_timing = 0x1081;
882 	/* Disable randomizer and DMA. */
883 	writel(0, nfc->regs + nfc->cfg->randmz_off);
884 	writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
885 	writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
886 }
887 
888 static irqreturn_t rk_nfc_irq(int irq, void *id)
889 {
890 	struct rk_nfc *nfc = id;
891 	u32 sta, ien;
892 
893 	sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
894 	ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
895 
896 	if (!(sta & ien))
897 		return IRQ_NONE;
898 
899 	writel(sta, nfc->regs + nfc->cfg->int_clr_off);
900 	writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
901 
902 	complete(&nfc->done);
903 
904 	return IRQ_HANDLED;
905 }
906 
907 static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
908 {
909 	int ret;
910 
911 	if (!IS_ERR(nfc->nfc_clk)) {
912 		ret = clk_prepare_enable(nfc->nfc_clk);
913 		if (ret) {
914 			dev_err(dev, "failed to enable NFC clk\n");
915 			return ret;
916 		}
917 	}
918 
919 	ret = clk_prepare_enable(nfc->ahb_clk);
920 	if (ret) {
921 		dev_err(dev, "failed to enable ahb clk\n");
922 		clk_disable_unprepare(nfc->nfc_clk);
923 		return ret;
924 	}
925 
926 	return 0;
927 }
928 
929 static void rk_nfc_disable_clks(struct rk_nfc *nfc)
930 {
931 	clk_disable_unprepare(nfc->nfc_clk);
932 	clk_disable_unprepare(nfc->ahb_clk);
933 }
934 
935 static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
936 				 struct mtd_oob_region *oob_region)
937 {
938 	struct nand_chip *chip = mtd_to_nand(mtd);
939 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
940 
941 	if (section)
942 		return -ERANGE;
943 
944 	oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
945 	oob_region->offset = 2;
946 
947 	return 0;
948 }
949 
950 static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
951 				struct mtd_oob_region *oob_region)
952 {
953 	struct nand_chip *chip = mtd_to_nand(mtd);
954 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
955 
956 	if (section)
957 		return -ERANGE;
958 
959 	oob_region->length = mtd->oobsize - rknand->metadata_size;
960 	oob_region->offset = rknand->metadata_size;
961 
962 	return 0;
963 }
964 
965 static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
966 	.free = rk_nfc_ooblayout_free,
967 	.ecc = rk_nfc_ooblayout_ecc,
968 };
969 
970 static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
971 {
972 	struct nand_chip *chip = mtd_to_nand(mtd);
973 	struct rk_nfc *nfc = nand_get_controller_data(chip);
974 	struct nand_ecc_ctrl *ecc = &chip->ecc;
975 	const u8 *strengths = nfc->cfg->ecc_strengths;
976 	u8 max_strength, nfc_max_strength;
977 	int i;
978 
979 	nfc_max_strength = nfc->cfg->ecc_strengths[0];
980 	/* If optional dt settings not present. */
981 	if (!ecc->size || !ecc->strength ||
982 	    ecc->strength > nfc_max_strength) {
983 		chip->ecc.size = 1024;
984 		ecc->steps = mtd->writesize / ecc->size;
985 
986 		/*
987 		 * HW ECC always requests the number of ECC bytes per 1024 byte
988 		 * blocks. The first 4 OOB bytes are reserved for sys data.
989 		 */
990 		max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
991 				 fls(8 * 1024);
992 		if (max_strength > nfc_max_strength)
993 			max_strength = nfc_max_strength;
994 
995 		for (i = 0; i < 4; i++) {
996 			if (max_strength >= strengths[i])
997 				break;
998 		}
999 
1000 		if (i >= 4) {
1001 			dev_err(nfc->dev, "unsupported ECC strength\n");
1002 			return -EOPNOTSUPP;
1003 		}
1004 
1005 		ecc->strength = strengths[i];
1006 	}
1007 	ecc->steps = mtd->writesize / ecc->size;
1008 	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
1009 
1010 	return 0;
1011 }
1012 
1013 static int rk_nfc_attach_chip(struct nand_chip *chip)
1014 {
1015 	struct mtd_info *mtd = nand_to_mtd(chip);
1016 	struct device *dev = mtd->dev.parent;
1017 	struct rk_nfc *nfc = nand_get_controller_data(chip);
1018 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
1019 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1020 	int new_page_len, new_oob_len;
1021 	void *buf;
1022 	int ret;
1023 
1024 	if (chip->options & NAND_BUSWIDTH_16) {
1025 		dev_err(dev, "16 bits bus width not supported");
1026 		return -EINVAL;
1027 	}
1028 
1029 	if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1030 		return 0;
1031 
1032 	ret = rk_nfc_ecc_init(dev, mtd);
1033 	if (ret)
1034 		return ret;
1035 
1036 	rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
1037 
1038 	if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
1039 		dev_err(dev,
1040 			"driver needs at least %d bytes of meta data\n",
1041 			NFC_SYS_DATA_SIZE + 2);
1042 		return -EIO;
1043 	}
1044 
1045 	/* Check buffer first, avoid duplicate alloc buffer. */
1046 	new_page_len = mtd->writesize + mtd->oobsize;
1047 	if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
1048 		buf = krealloc(nfc->page_buf, new_page_len,
1049 			       GFP_KERNEL | GFP_DMA);
1050 		if (!buf)
1051 			return -ENOMEM;
1052 		nfc->page_buf = buf;
1053 		nfc->page_buf_size = new_page_len;
1054 	}
1055 
1056 	new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
1057 	if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
1058 		buf = krealloc(nfc->oob_buf, new_oob_len,
1059 			       GFP_KERNEL | GFP_DMA);
1060 		if (!buf) {
1061 			kfree(nfc->page_buf);
1062 			nfc->page_buf = NULL;
1063 			return -ENOMEM;
1064 		}
1065 		nfc->oob_buf = buf;
1066 		nfc->oob_buf_size = new_oob_len;
1067 	}
1068 
1069 	if (!nfc->page_buf) {
1070 		nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
1071 		if (!nfc->page_buf)
1072 			return -ENOMEM;
1073 		nfc->page_buf_size = new_page_len;
1074 	}
1075 
1076 	if (!nfc->oob_buf) {
1077 		nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
1078 		if (!nfc->oob_buf) {
1079 			kfree(nfc->page_buf);
1080 			nfc->page_buf = NULL;
1081 			return -ENOMEM;
1082 		}
1083 		nfc->oob_buf_size = new_oob_len;
1084 	}
1085 
1086 	chip->ecc.write_page_raw = rk_nfc_write_page_raw;
1087 	chip->ecc.write_page = rk_nfc_write_page_hwecc;
1088 	chip->ecc.write_oob = rk_nfc_write_oob;
1089 
1090 	chip->ecc.read_page_raw = rk_nfc_read_page_raw;
1091 	chip->ecc.read_page = rk_nfc_read_page_hwecc;
1092 	chip->ecc.read_oob = rk_nfc_read_oob;
1093 
1094 	return 0;
1095 }
1096 
1097 static const struct nand_controller_ops rk_nfc_controller_ops = {
1098 	.attach_chip = rk_nfc_attach_chip,
1099 	.exec_op = rk_nfc_exec_op,
1100 	.setup_interface = rk_nfc_setup_interface,
1101 };
1102 
1103 static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
1104 				 struct device_node *np)
1105 {
1106 	struct rk_nfc_nand_chip *rknand;
1107 	struct nand_chip *chip;
1108 	struct mtd_info *mtd;
1109 	int nsels;
1110 	u32 tmp;
1111 	int ret;
1112 	int i;
1113 
1114 	if (!of_get_property(np, "reg", &nsels))
1115 		return -ENODEV;
1116 	nsels /= sizeof(u32);
1117 	if (!nsels || nsels > NFC_MAX_NSELS) {
1118 		dev_err(dev, "invalid reg property size %d\n", nsels);
1119 		return -EINVAL;
1120 	}
1121 
1122 	rknand = devm_kzalloc(dev, struct_size(rknand, sels, nsels),
1123 			      GFP_KERNEL);
1124 	if (!rknand)
1125 		return -ENOMEM;
1126 
1127 	rknand->nsels = nsels;
1128 	for (i = 0; i < nsels; i++) {
1129 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1130 		if (ret) {
1131 			dev_err(dev, "reg property failure : %d\n", ret);
1132 			return ret;
1133 		}
1134 
1135 		if (tmp >= NFC_MAX_NSELS) {
1136 			dev_err(dev, "invalid CS: %u\n", tmp);
1137 			return -EINVAL;
1138 		}
1139 
1140 		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1141 			dev_err(dev, "CS %u already assigned\n", tmp);
1142 			return -EINVAL;
1143 		}
1144 
1145 		rknand->sels[i] = tmp;
1146 	}
1147 
1148 	chip = &rknand->chip;
1149 	chip->controller = &nfc->controller;
1150 
1151 	nand_set_flash_node(chip, np);
1152 
1153 	nand_set_controller_data(chip, nfc);
1154 
1155 	chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
1156 	chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1157 
1158 	/* Set default mode in case dt entry is missing. */
1159 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1160 
1161 	mtd = nand_to_mtd(chip);
1162 	mtd->owner = THIS_MODULE;
1163 	mtd->dev.parent = dev;
1164 
1165 	if (!mtd->name) {
1166 		dev_err(nfc->dev, "NAND label property is mandatory\n");
1167 		return -EINVAL;
1168 	}
1169 
1170 	mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
1171 	rk_nfc_hw_init(nfc);
1172 	ret = nand_scan(chip, nsels);
1173 	if (ret)
1174 		return ret;
1175 
1176 	if (chip->options & NAND_IS_BOOT_MEDIUM) {
1177 		ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
1178 		rknand->boot_blks = ret ? 0 : tmp;
1179 
1180 		ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
1181 					   &tmp);
1182 		rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
1183 	}
1184 
1185 	ret = mtd_device_register(mtd, NULL, 0);
1186 	if (ret) {
1187 		dev_err(dev, "MTD parse partition error\n");
1188 		nand_cleanup(chip);
1189 		return ret;
1190 	}
1191 
1192 	list_add_tail(&rknand->node, &nfc->chips);
1193 
1194 	return 0;
1195 }
1196 
1197 static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
1198 {
1199 	struct rk_nfc_nand_chip *rknand, *tmp;
1200 	struct nand_chip *chip;
1201 	int ret;
1202 
1203 	list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
1204 		chip = &rknand->chip;
1205 		ret = mtd_device_unregister(nand_to_mtd(chip));
1206 		WARN_ON(ret);
1207 		nand_cleanup(chip);
1208 		list_del(&rknand->node);
1209 	}
1210 }
1211 
1212 static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
1213 {
1214 	struct device_node *np = dev->of_node;
1215 	int nchips = of_get_child_count(np);
1216 	int ret;
1217 
1218 	if (!nchips || nchips > NFC_MAX_NSELS) {
1219 		dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
1220 			nchips);
1221 		return -EINVAL;
1222 	}
1223 
1224 	for_each_child_of_node_scoped(np, nand_np) {
1225 		ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
1226 		if (ret) {
1227 			rk_nfc_chips_cleanup(nfc);
1228 			return ret;
1229 		}
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 static struct nfc_cfg nfc_v6_cfg = {
1236 		.type			= NFC_V6,
1237 		.ecc_strengths		= {60, 40, 24, 16},
1238 		.ecc_cfgs		= {
1239 			0x00040011, 0x00040001, 0x00000011, 0x00000001,
1240 		},
1241 		.flctl_off		= 0x08,
1242 		.bchctl_off		= 0x0C,
1243 		.dma_cfg_off		= 0x10,
1244 		.dma_data_buf_off	= 0x14,
1245 		.dma_oob_buf_off	= 0x18,
1246 		.dma_st_off		= 0x1C,
1247 		.bch_st_off		= 0x20,
1248 		.randmz_off		= 0x150,
1249 		.int_en_off		= 0x16C,
1250 		.int_clr_off		= 0x170,
1251 		.int_st_off		= 0x174,
1252 		.oob0_off		= 0x200,
1253 		.oob1_off		= 0x230,
1254 		.ecc0			= {
1255 			.err_flag_bit	= 2,
1256 			.low		= 3,
1257 			.low_mask	= 0x1F,
1258 			.low_bn		= 5,
1259 			.high		= 27,
1260 			.high_mask	= 0x1,
1261 		},
1262 		.ecc1			= {
1263 			.err_flag_bit	= 15,
1264 			.low		= 16,
1265 			.low_mask	= 0x1F,
1266 			.low_bn		= 5,
1267 			.high		= 29,
1268 			.high_mask	= 0x1,
1269 		},
1270 };
1271 
1272 static struct nfc_cfg nfc_v8_cfg = {
1273 		.type			= NFC_V8,
1274 		.ecc_strengths		= {16, 16, 16, 16},
1275 		.ecc_cfgs		= {
1276 			0x00000001, 0x00000001, 0x00000001, 0x00000001,
1277 		},
1278 		.flctl_off		= 0x08,
1279 		.bchctl_off		= 0x0C,
1280 		.dma_cfg_off		= 0x10,
1281 		.dma_data_buf_off	= 0x14,
1282 		.dma_oob_buf_off	= 0x18,
1283 		.dma_st_off		= 0x1C,
1284 		.bch_st_off		= 0x20,
1285 		.randmz_off		= 0x150,
1286 		.int_en_off		= 0x16C,
1287 		.int_clr_off		= 0x170,
1288 		.int_st_off		= 0x174,
1289 		.oob0_off		= 0x200,
1290 		.oob1_off		= 0x230,
1291 		.ecc0			= {
1292 			.err_flag_bit	= 2,
1293 			.low		= 3,
1294 			.low_mask	= 0x1F,
1295 			.low_bn		= 5,
1296 			.high		= 27,
1297 			.high_mask	= 0x1,
1298 		},
1299 		.ecc1			= {
1300 			.err_flag_bit	= 15,
1301 			.low		= 16,
1302 			.low_mask	= 0x1F,
1303 			.low_bn		= 5,
1304 			.high		= 29,
1305 			.high_mask	= 0x1,
1306 		},
1307 };
1308 
1309 static struct nfc_cfg nfc_v9_cfg = {
1310 		.type			= NFC_V9,
1311 		.ecc_strengths		= {70, 60, 40, 16},
1312 		.ecc_cfgs		= {
1313 			0x00000001, 0x06000001, 0x04000001, 0x02000001,
1314 		},
1315 		.flctl_off		= 0x10,
1316 		.bchctl_off		= 0x20,
1317 		.dma_cfg_off		= 0x30,
1318 		.dma_data_buf_off	= 0x34,
1319 		.dma_oob_buf_off	= 0x38,
1320 		.dma_st_off		= 0x3C,
1321 		.bch_st_off		= 0x150,
1322 		.randmz_off		= 0x208,
1323 		.int_en_off		= 0x120,
1324 		.int_clr_off		= 0x124,
1325 		.int_st_off		= 0x128,
1326 		.oob0_off		= 0x200,
1327 		.oob1_off		= 0x204,
1328 		.ecc0			= {
1329 			.err_flag_bit	= 2,
1330 			.low		= 3,
1331 			.low_mask	= 0x7F,
1332 			.low_bn		= 7,
1333 			.high		= 0,
1334 			.high_mask	= 0x0,
1335 		},
1336 		.ecc1			= {
1337 			.err_flag_bit	= 18,
1338 			.low		= 19,
1339 			.low_mask	= 0x7F,
1340 			.low_bn		= 7,
1341 			.high		= 0,
1342 			.high_mask	= 0x0,
1343 		},
1344 };
1345 
1346 static const struct of_device_id rk_nfc_id_table[] = {
1347 	{
1348 		.compatible = "rockchip,px30-nfc",
1349 		.data = &nfc_v9_cfg
1350 	},
1351 	{
1352 		.compatible = "rockchip,rk2928-nfc",
1353 		.data = &nfc_v6_cfg
1354 	},
1355 	{
1356 		.compatible = "rockchip,rv1108-nfc",
1357 		.data = &nfc_v8_cfg
1358 	},
1359 	{ /* sentinel */ }
1360 };
1361 MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
1362 
1363 static int rk_nfc_probe(struct platform_device *pdev)
1364 {
1365 	struct device *dev = &pdev->dev;
1366 	struct rk_nfc *nfc;
1367 	int ret, irq;
1368 
1369 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1370 	if (!nfc)
1371 		return -ENOMEM;
1372 
1373 	nand_controller_init(&nfc->controller);
1374 	INIT_LIST_HEAD(&nfc->chips);
1375 	nfc->controller.ops = &rk_nfc_controller_ops;
1376 
1377 	nfc->cfg = of_device_get_match_data(dev);
1378 	nfc->dev = dev;
1379 
1380 	init_completion(&nfc->done);
1381 
1382 	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
1383 	if (IS_ERR(nfc->regs)) {
1384 		ret = PTR_ERR(nfc->regs);
1385 		goto release_nfc;
1386 	}
1387 
1388 	nfc->nfc_clk = devm_clk_get(dev, "nfc");
1389 	if (IS_ERR(nfc->nfc_clk)) {
1390 		dev_dbg(dev, "no NFC clk\n");
1391 		/* Some earlier models, such as rk3066, have no NFC clk. */
1392 	}
1393 
1394 	nfc->ahb_clk = devm_clk_get(dev, "ahb");
1395 	if (IS_ERR(nfc->ahb_clk)) {
1396 		dev_err(dev, "no ahb clk\n");
1397 		ret = PTR_ERR(nfc->ahb_clk);
1398 		goto release_nfc;
1399 	}
1400 
1401 	ret = rk_nfc_enable_clks(dev, nfc);
1402 	if (ret)
1403 		goto release_nfc;
1404 
1405 	irq = platform_get_irq(pdev, 0);
1406 	if (irq < 0) {
1407 		ret = -EINVAL;
1408 		goto clk_disable;
1409 	}
1410 
1411 	writel(0, nfc->regs + nfc->cfg->int_en_off);
1412 	ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
1413 	if (ret) {
1414 		dev_err(dev, "failed to request NFC irq\n");
1415 		goto clk_disable;
1416 	}
1417 
1418 	platform_set_drvdata(pdev, nfc);
1419 
1420 	ret = rk_nfc_nand_chips_init(dev, nfc);
1421 	if (ret) {
1422 		dev_err(dev, "failed to init NAND chips\n");
1423 		goto clk_disable;
1424 	}
1425 	return 0;
1426 
1427 clk_disable:
1428 	rk_nfc_disable_clks(nfc);
1429 release_nfc:
1430 	return ret;
1431 }
1432 
1433 static void rk_nfc_remove(struct platform_device *pdev)
1434 {
1435 	struct rk_nfc *nfc = platform_get_drvdata(pdev);
1436 
1437 	kfree(nfc->page_buf);
1438 	kfree(nfc->oob_buf);
1439 	rk_nfc_chips_cleanup(nfc);
1440 	rk_nfc_disable_clks(nfc);
1441 }
1442 
1443 static int __maybe_unused rk_nfc_suspend(struct device *dev)
1444 {
1445 	struct rk_nfc *nfc = dev_get_drvdata(dev);
1446 
1447 	rk_nfc_disable_clks(nfc);
1448 
1449 	return 0;
1450 }
1451 
1452 static int __maybe_unused rk_nfc_resume(struct device *dev)
1453 {
1454 	struct rk_nfc *nfc = dev_get_drvdata(dev);
1455 	struct rk_nfc_nand_chip *rknand;
1456 	struct nand_chip *chip;
1457 	int ret;
1458 	u32 i;
1459 
1460 	ret = rk_nfc_enable_clks(dev, nfc);
1461 	if (ret)
1462 		return ret;
1463 
1464 	/* Reset NAND chip if VCC was powered off. */
1465 	list_for_each_entry(rknand, &nfc->chips, node) {
1466 		chip = &rknand->chip;
1467 		for (i = 0; i < rknand->nsels; i++)
1468 			nand_reset(chip, i);
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 static const struct dev_pm_ops rk_nfc_pm_ops = {
1475 	SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
1476 };
1477 
1478 static struct platform_driver rk_nfc_driver = {
1479 	.probe = rk_nfc_probe,
1480 	.remove = rk_nfc_remove,
1481 	.driver = {
1482 		.name = "rockchip-nfc",
1483 		.of_match_table = rk_nfc_id_table,
1484 		.pm = &rk_nfc_pm_ops,
1485 	},
1486 };
1487 
1488 module_platform_driver(rk_nfc_driver);
1489 
1490 MODULE_LICENSE("Dual MIT/GPL");
1491 MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
1492 MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
1493 MODULE_ALIAS("platform:rockchip-nand-controller");
1494