1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Rockchip NAND Flash controller driver. 4 * Copyright (C) 2020 Rockchip Inc. 5 * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com> 6 */ 7 8 #include <linux/clk.h> 9 #include <linux/delay.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/dmaengine.h> 12 #include <linux/interrupt.h> 13 #include <linux/iopoll.h> 14 #include <linux/module.h> 15 #include <linux/mtd/mtd.h> 16 #include <linux/mtd/rawnand.h> 17 #include <linux/of.h> 18 #include <linux/platform_device.h> 19 #include <linux/slab.h> 20 21 /* 22 * NFC Page Data Layout: 23 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + 24 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + 25 * ...... 26 * NAND Page Data Layout: 27 * 1024 * n data + m Bytes oob 28 * Original Bad Block Mask Location: 29 * First byte of oob(spare). 30 * nand_chip->oob_poi data layout: 31 * 4Bytes sys data + .... + 4Bytes sys data + ECC data. 32 */ 33 34 /* NAND controller register definition */ 35 #define NFC_READ (0) 36 #define NFC_WRITE (1) 37 38 #define NFC_FMCTL (0x00) 39 #define FMCTL_CE_SEL_M 0xFF 40 #define FMCTL_CE_SEL(x) (1 << (x)) 41 #define FMCTL_WP BIT(8) 42 #define FMCTL_RDY BIT(9) 43 44 #define NFC_FMWAIT (0x04) 45 #define FLCTL_RST BIT(0) 46 #define FLCTL_WR (1) /* 0: read, 1: write */ 47 #define FLCTL_XFER_ST BIT(2) 48 #define FLCTL_XFER_EN BIT(3) 49 #define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ 50 #define FLCTL_XFER_READY BIT(20) 51 #define FLCTL_XFER_SECTOR (22) 52 #define FLCTL_TOG_FIX BIT(29) 53 54 #define BCHCTL_BANK_M (7 << 5) 55 #define BCHCTL_BANK (5) 56 57 #define DMA_ST BIT(0) 58 #define DMA_WR (1) /* 0: write, 1: read */ 59 #define DMA_EN BIT(2) 60 #define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ 61 #define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ 62 #define DMA_INC_NUM (9) /* 1 - 16 */ 63 64 #define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ 65 (((x) >> (e).high) & (e).high_mask) << (e).low_bn) 66 #define INT_DMA BIT(0) 67 #define NFC_BANK (0x800) 68 #define NFC_BANK_STEP (0x100) 69 #define BANK_DATA (0x00) 70 #define BANK_ADDR (0x04) 71 #define BANK_CMD (0x08) 72 #define NFC_SRAM0 (0x1000) 73 #define NFC_SRAM1 (0x1400) 74 #define NFC_SRAM_SIZE (0x400) 75 #define NFC_TIMEOUT (500000) 76 #define NFC_MAX_OOB_PER_STEP 128 77 #define NFC_MIN_OOB_PER_STEP 64 78 #define MAX_DATA_SIZE 0xFFFC 79 #define MAX_ADDRESS_CYC 6 80 #define NFC_ECC_MAX_MODES 4 81 #define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ 82 #define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/ 83 #define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ 84 #define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) 85 86 enum nfc_type { 87 NFC_V6, 88 NFC_V8, 89 NFC_V9, 90 }; 91 92 /** 93 * struct rk_ecc_cnt_status: represent a ecc status data. 94 * @err_flag_bit: error flag bit index at register. 95 * @low: ECC count low bit index at register. 96 * @low_mask: mask bit. 97 * @low_bn: ECC count low bit number. 98 * @high: ECC count high bit index at register. 99 * @high_mask: mask bit 100 */ 101 struct rk_ecc_cnt_status { 102 u8 err_flag_bit; 103 u8 low; 104 u8 low_mask; 105 u8 low_bn; 106 u8 high; 107 u8 high_mask; 108 }; 109 110 /** 111 * struct nfc_cfg: Rockchip NAND controller configuration 112 * @type: NFC version 113 * @ecc_strengths: ECC strengths 114 * @ecc_cfgs: ECC config values 115 * @flctl_off: FLCTL register offset 116 * @bchctl_off: BCHCTL register offset 117 * @dma_data_buf_off: DMA_DATA_BUF register offset 118 * @dma_oob_buf_off: DMA_OOB_BUF register offset 119 * @dma_cfg_off: DMA_CFG register offset 120 * @dma_st_off: DMA_ST register offset 121 * @bch_st_off: BCG_ST register offset 122 * @randmz_off: RANDMZ register offset 123 * @int_en_off: interrupt enable register offset 124 * @int_clr_off: interrupt clean register offset 125 * @int_st_off: interrupt status register offset 126 * @oob0_off: oob0 register offset 127 * @oob1_off: oob1 register offset 128 * @ecc0: represent ECC0 status data 129 * @ecc1: represent ECC1 status data 130 */ 131 struct nfc_cfg { 132 enum nfc_type type; 133 u8 ecc_strengths[NFC_ECC_MAX_MODES]; 134 u32 ecc_cfgs[NFC_ECC_MAX_MODES]; 135 u32 flctl_off; 136 u32 bchctl_off; 137 u32 dma_cfg_off; 138 u32 dma_data_buf_off; 139 u32 dma_oob_buf_off; 140 u32 dma_st_off; 141 u32 bch_st_off; 142 u32 randmz_off; 143 u32 int_en_off; 144 u32 int_clr_off; 145 u32 int_st_off; 146 u32 oob0_off; 147 u32 oob1_off; 148 struct rk_ecc_cnt_status ecc0; 149 struct rk_ecc_cnt_status ecc1; 150 }; 151 152 struct rk_nfc_nand_chip { 153 struct list_head node; 154 struct nand_chip chip; 155 156 u16 boot_blks; 157 u16 metadata_size; 158 u32 boot_ecc; 159 u32 timing; 160 161 u8 nsels; 162 u8 sels[] __counted_by(nsels); 163 }; 164 165 struct rk_nfc { 166 struct nand_controller controller; 167 const struct nfc_cfg *cfg; 168 struct device *dev; 169 170 struct clk *nfc_clk; 171 struct clk *ahb_clk; 172 void __iomem *regs; 173 174 u32 selected_bank; 175 u32 band_offset; 176 u32 cur_ecc; 177 u32 cur_timing; 178 179 struct completion done; 180 struct list_head chips; 181 182 u8 *page_buf; 183 u32 *oob_buf; 184 u32 page_buf_size; 185 u32 oob_buf_size; 186 187 unsigned long assigned_cs; 188 }; 189 190 static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip) 191 { 192 return container_of(chip, struct rk_nfc_nand_chip, chip); 193 } 194 195 static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i) 196 { 197 return (u8 *)p + i * chip->ecc.size; 198 } 199 200 static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i) 201 { 202 u8 *poi; 203 204 poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; 205 206 return poi; 207 } 208 209 static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i) 210 { 211 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 212 u8 *poi; 213 214 poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i; 215 216 return poi; 217 } 218 219 static inline int rk_nfc_data_len(struct nand_chip *chip) 220 { 221 return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE; 222 } 223 224 static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) 225 { 226 struct rk_nfc *nfc = nand_get_controller_data(chip); 227 228 return nfc->page_buf + i * rk_nfc_data_len(chip); 229 } 230 231 static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) 232 { 233 struct rk_nfc *nfc = nand_get_controller_data(chip); 234 235 return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size; 236 } 237 238 static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength) 239 { 240 struct rk_nfc *nfc = nand_get_controller_data(chip); 241 u32 reg, i; 242 243 for (i = 0; i < NFC_ECC_MAX_MODES; i++) { 244 if (strength == nfc->cfg->ecc_strengths[i]) { 245 reg = nfc->cfg->ecc_cfgs[i]; 246 break; 247 } 248 } 249 250 if (i >= NFC_ECC_MAX_MODES) 251 return -EINVAL; 252 253 writel(reg, nfc->regs + nfc->cfg->bchctl_off); 254 255 /* Save chip ECC setting */ 256 nfc->cur_ecc = strength; 257 258 return 0; 259 } 260 261 static void rk_nfc_select_chip(struct nand_chip *chip, int cs) 262 { 263 struct rk_nfc *nfc = nand_get_controller_data(chip); 264 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 265 struct nand_ecc_ctrl *ecc = &chip->ecc; 266 u32 val; 267 268 if (cs < 0) { 269 nfc->selected_bank = -1; 270 /* Deselect the currently selected target. */ 271 val = readl_relaxed(nfc->regs + NFC_FMCTL); 272 val &= ~FMCTL_CE_SEL_M; 273 writel(val, nfc->regs + NFC_FMCTL); 274 return; 275 } 276 277 nfc->selected_bank = rknand->sels[cs]; 278 nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; 279 280 val = readl_relaxed(nfc->regs + NFC_FMCTL); 281 val &= ~FMCTL_CE_SEL_M; 282 val |= FMCTL_CE_SEL(nfc->selected_bank); 283 284 writel(val, nfc->regs + NFC_FMCTL); 285 286 /* 287 * Compare current chip timing with selected chip timing and 288 * change if needed. 289 */ 290 if (nfc->cur_timing != rknand->timing) { 291 writel(rknand->timing, nfc->regs + NFC_FMWAIT); 292 nfc->cur_timing = rknand->timing; 293 } 294 295 /* 296 * Compare current chip ECC setting with selected chip ECC setting and 297 * change if needed. 298 */ 299 if (nfc->cur_ecc != ecc->strength) 300 rk_nfc_hw_ecc_setup(chip, ecc->strength); 301 } 302 303 static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) 304 { 305 int rc; 306 u32 val; 307 308 rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, 309 val & FMCTL_RDY, 10, NFC_TIMEOUT); 310 311 return rc; 312 } 313 314 static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) 315 { 316 int i; 317 318 for (i = 0; i < len; i++) 319 buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + 320 BANK_DATA); 321 } 322 323 static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) 324 { 325 int i; 326 327 for (i = 0; i < len; i++) 328 writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); 329 } 330 331 static int rk_nfc_cmd(struct nand_chip *chip, 332 const struct nand_subop *subop) 333 { 334 struct rk_nfc *nfc = nand_get_controller_data(chip); 335 unsigned int i, j, remaining, start; 336 int reg_offset = nfc->band_offset; 337 u8 *inbuf = NULL; 338 const u8 *outbuf; 339 u32 cnt = 0; 340 int ret = 0; 341 342 for (i = 0; i < subop->ninstrs; i++) { 343 const struct nand_op_instr *instr = &subop->instrs[i]; 344 345 switch (instr->type) { 346 case NAND_OP_CMD_INSTR: 347 writeb(instr->ctx.cmd.opcode, 348 nfc->regs + reg_offset + BANK_CMD); 349 break; 350 351 case NAND_OP_ADDR_INSTR: 352 remaining = nand_subop_get_num_addr_cyc(subop, i); 353 start = nand_subop_get_addr_start_off(subop, i); 354 355 for (j = 0; j < 8 && j + start < remaining; j++) 356 writeb(instr->ctx.addr.addrs[j + start], 357 nfc->regs + reg_offset + BANK_ADDR); 358 break; 359 360 case NAND_OP_DATA_IN_INSTR: 361 case NAND_OP_DATA_OUT_INSTR: 362 start = nand_subop_get_data_start_off(subop, i); 363 cnt = nand_subop_get_data_len(subop, i); 364 365 if (instr->type == NAND_OP_DATA_OUT_INSTR) { 366 outbuf = instr->ctx.data.buf.out + start; 367 rk_nfc_write_buf(nfc, outbuf, cnt); 368 } else { 369 inbuf = instr->ctx.data.buf.in + start; 370 rk_nfc_read_buf(nfc, inbuf, cnt); 371 } 372 break; 373 374 case NAND_OP_WAITRDY_INSTR: 375 if (rk_nfc_wait_ioready(nfc) < 0) { 376 ret = -ETIMEDOUT; 377 dev_err(nfc->dev, "IO not ready\n"); 378 } 379 break; 380 } 381 } 382 383 return ret; 384 } 385 386 static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( 387 NAND_OP_PARSER_PATTERN( 388 rk_nfc_cmd, 389 NAND_OP_PARSER_PAT_CMD_ELEM(true), 390 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), 391 NAND_OP_PARSER_PAT_CMD_ELEM(true), 392 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 393 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), 394 NAND_OP_PARSER_PATTERN( 395 rk_nfc_cmd, 396 NAND_OP_PARSER_PAT_CMD_ELEM(true), 397 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), 398 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), 399 NAND_OP_PARSER_PAT_CMD_ELEM(true), 400 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 401 ); 402 403 static int rk_nfc_exec_op(struct nand_chip *chip, 404 const struct nand_operation *op, 405 bool check_only) 406 { 407 if (!check_only) 408 rk_nfc_select_chip(chip, op->cs); 409 410 return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, 411 check_only); 412 } 413 414 static int rk_nfc_setup_interface(struct nand_chip *chip, int target, 415 const struct nand_interface_config *conf) 416 { 417 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 418 struct rk_nfc *nfc = nand_get_controller_data(chip); 419 const struct nand_sdr_timings *timings; 420 u32 rate, tc2rw, trwpw, trw2c; 421 u32 temp; 422 423 timings = nand_get_sdr_timings(conf); 424 if (IS_ERR(timings)) 425 return -EOPNOTSUPP; 426 427 if (target < 0) 428 return 0; 429 430 if (IS_ERR(nfc->nfc_clk)) 431 rate = clk_get_rate(nfc->ahb_clk); 432 else 433 rate = clk_get_rate(nfc->nfc_clk); 434 435 /* Turn clock rate into kHz. */ 436 rate /= 1000; 437 438 tc2rw = 1; 439 trw2c = 1; 440 441 trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; 442 trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); 443 444 temp = timings->tREA_max / 1000; 445 temp = DIV_ROUND_UP(temp * rate, 1000000); 446 447 if (trwpw < temp) 448 trwpw = temp; 449 450 /* 451 * ACCON: access timing control register 452 * ------------------------------------- 453 * 31:18: reserved 454 * 17:12: csrw, clock cycles from the falling edge of CSn to the 455 * falling edge of RDn or WRn 456 * 11:11: reserved 457 * 10:05: rwpw, the width of RDn or WRn in processor clock cycles 458 * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the 459 * rising edge of CSn 460 */ 461 462 /* Save chip timing */ 463 rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c); 464 465 return 0; 466 } 467 468 static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, 469 dma_addr_t dma_data, dma_addr_t dma_oob) 470 { 471 u32 dma_reg, fl_reg, bch_reg; 472 473 dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | 474 (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); 475 476 fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | 477 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; 478 479 if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { 480 bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); 481 bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | 482 (nfc->selected_bank << BCHCTL_BANK); 483 writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); 484 } 485 486 writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); 487 writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); 488 writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); 489 writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); 490 fl_reg |= FLCTL_XFER_ST; 491 writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); 492 } 493 494 static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) 495 { 496 void __iomem *ptr; 497 u32 reg; 498 499 ptr = nfc->regs + nfc->cfg->flctl_off; 500 501 return readl_relaxed_poll_timeout(ptr, reg, 502 reg & FLCTL_XFER_READY, 503 10, NFC_TIMEOUT); 504 } 505 506 static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, 507 int oob_on, int page) 508 { 509 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 510 struct rk_nfc *nfc = nand_get_controller_data(chip); 511 struct mtd_info *mtd = nand_to_mtd(chip); 512 struct nand_ecc_ctrl *ecc = &chip->ecc; 513 int i, pages_per_blk; 514 515 pages_per_blk = mtd->erasesize / mtd->writesize; 516 if ((chip->options & NAND_IS_BOOT_MEDIUM) && 517 (page < (pages_per_blk * rknand->boot_blks)) && 518 rknand->boot_ecc != ecc->strength) { 519 /* 520 * There's currently no method to notify the MTD framework that 521 * a different ECC strength is in use for the boot blocks. 522 */ 523 return -EIO; 524 } 525 526 if (!buf) 527 memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize); 528 529 for (i = 0; i < ecc->steps; i++) { 530 /* Copy data to the NFC buffer. */ 531 if (buf) 532 memcpy(rk_nfc_data_ptr(chip, i), 533 rk_nfc_buf_to_data_ptr(chip, buf, i), 534 ecc->size); 535 /* 536 * The first four bytes of OOB are reserved for the 537 * boot ROM. In some debugging cases, such as with a 538 * read, erase and write back test these 4 bytes stored 539 * in OOB also need to be written back. 540 * 541 * The function nand_block_bad detects bad blocks like: 542 * 543 * bad = chip->oob_poi[chip->badblockpos]; 544 * 545 * chip->badblockpos == 0 for a large page NAND Flash, 546 * so chip->oob_poi[0] is the bad block mask (BBM). 547 * 548 * The OOB data layout on the NFC is: 549 * 550 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... 551 * 552 * or 553 * 554 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... 555 * 556 * The code here just swaps the first 4 bytes with the last 557 * 4 bytes without losing any data. 558 * 559 * The chip->oob_poi data layout: 560 * 561 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 562 * 563 * The rk_nfc_ooblayout_free() function already has reserved 564 * these 4 bytes together with 2 bytes for BBM 565 * by reducing it's length: 566 * 567 * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; 568 */ 569 if (!i) 570 memcpy(rk_nfc_oob_ptr(chip, i), 571 rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), 572 NFC_SYS_DATA_SIZE); 573 else 574 memcpy(rk_nfc_oob_ptr(chip, i), 575 rk_nfc_buf_to_oob_ptr(chip, i - 1), 576 NFC_SYS_DATA_SIZE); 577 /* Copy ECC data to the NFC buffer. */ 578 memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, 579 rk_nfc_buf_to_oob_ecc_ptr(chip, i), 580 ecc->bytes); 581 } 582 583 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 584 rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); 585 return nand_prog_page_end_op(chip); 586 } 587 588 static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, 589 int oob_on, int page) 590 { 591 struct mtd_info *mtd = nand_to_mtd(chip); 592 struct rk_nfc *nfc = nand_get_controller_data(chip); 593 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 594 struct nand_ecc_ctrl *ecc = &chip->ecc; 595 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : 596 NFC_MIN_OOB_PER_STEP; 597 int pages_per_blk = mtd->erasesize / mtd->writesize; 598 int ret = 0, i, boot_rom_mode = 0; 599 dma_addr_t dma_data, dma_oob; 600 u32 tmp; 601 u8 *oob; 602 603 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 604 605 if (buf) 606 memcpy(nfc->page_buf, buf, mtd->writesize); 607 else 608 memset(nfc->page_buf, 0xFF, mtd->writesize); 609 610 /* 611 * The first blocks (4, 8 or 16 depending on the device) are used 612 * by the boot ROM and the first 32 bits of OOB need to link to 613 * the next page address in the same block. We can't directly copy 614 * OOB data from the MTD framework, because this page address 615 * conflicts for example with the bad block marker (BBM), 616 * so we shift all OOB data including the BBM with 4 byte positions. 617 * As a consequence the OOB size available to the MTD framework is 618 * also reduced with 4 bytes. 619 * 620 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... 621 * 622 * If a NAND is not a boot medium or the page is not a boot block, 623 * the first 4 bytes are left untouched by writing 0xFF to them. 624 * 625 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... 626 * 627 * The code here just swaps the first 4 bytes with the last 628 * 4 bytes without losing any data. 629 * 630 * The chip->oob_poi data layout: 631 * 632 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 633 * 634 * Configure the ECC algorithm supported by the boot ROM. 635 */ 636 if ((page < (pages_per_blk * rknand->boot_blks)) && 637 (chip->options & NAND_IS_BOOT_MEDIUM)) { 638 boot_rom_mode = 1; 639 if (rknand->boot_ecc != ecc->strength) 640 rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); 641 } 642 643 for (i = 0; i < ecc->steps; i++) { 644 if (!i) 645 oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE; 646 else 647 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; 648 649 tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24; 650 651 if (nfc->cfg->type == NFC_V9) 652 nfc->oob_buf[i] = tmp; 653 else 654 nfc->oob_buf[i * (oob_step / 4)] = tmp; 655 } 656 657 dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, 658 mtd->writesize, DMA_TO_DEVICE); 659 dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, 660 ecc->steps * oob_step, 661 DMA_TO_DEVICE); 662 663 reinit_completion(&nfc->done); 664 writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); 665 666 rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, 667 dma_oob); 668 ret = wait_for_completion_timeout(&nfc->done, 669 msecs_to_jiffies(100)); 670 if (!ret) 671 dev_warn(nfc->dev, "write: wait dma done timeout.\n"); 672 /* 673 * Whether the DMA transfer is completed or not. The driver 674 * needs to check the NFC`s status register to see if the data 675 * transfer was completed. 676 */ 677 ret = rk_nfc_wait_for_xfer_done(nfc); 678 679 dma_unmap_single(nfc->dev, dma_data, mtd->writesize, 680 DMA_TO_DEVICE); 681 dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, 682 DMA_TO_DEVICE); 683 684 if (boot_rom_mode && rknand->boot_ecc != ecc->strength) 685 rk_nfc_hw_ecc_setup(chip, ecc->strength); 686 687 if (ret) { 688 dev_err(nfc->dev, "write: wait transfer done timeout.\n"); 689 return -ETIMEDOUT; 690 } 691 692 return nand_prog_page_end_op(chip); 693 } 694 695 static int rk_nfc_write_oob(struct nand_chip *chip, int page) 696 { 697 return rk_nfc_write_page_hwecc(chip, NULL, 1, page); 698 } 699 700 static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, 701 int page) 702 { 703 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 704 struct rk_nfc *nfc = nand_get_controller_data(chip); 705 struct mtd_info *mtd = nand_to_mtd(chip); 706 struct nand_ecc_ctrl *ecc = &chip->ecc; 707 int i, pages_per_blk; 708 709 pages_per_blk = mtd->erasesize / mtd->writesize; 710 if ((chip->options & NAND_IS_BOOT_MEDIUM) && 711 (page < (pages_per_blk * rknand->boot_blks)) && 712 rknand->boot_ecc != ecc->strength) { 713 /* 714 * There's currently no method to notify the MTD framework that 715 * a different ECC strength is in use for the boot blocks. 716 */ 717 return -EIO; 718 } 719 720 nand_read_page_op(chip, page, 0, NULL, 0); 721 rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize); 722 for (i = 0; i < ecc->steps; i++) { 723 /* 724 * The first four bytes of OOB are reserved for the 725 * boot ROM. In some debugging cases, such as with a read, 726 * erase and write back test, these 4 bytes also must be 727 * saved somewhere, otherwise this information will be 728 * lost during a write back. 729 */ 730 if (!i) 731 memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), 732 rk_nfc_oob_ptr(chip, i), 733 NFC_SYS_DATA_SIZE); 734 else 735 memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1), 736 rk_nfc_oob_ptr(chip, i), 737 NFC_SYS_DATA_SIZE); 738 739 /* Copy ECC data from the NFC buffer. */ 740 memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i), 741 rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, 742 ecc->bytes); 743 744 /* Copy data from the NFC buffer. */ 745 if (buf) 746 memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i), 747 rk_nfc_data_ptr(chip, i), 748 ecc->size); 749 } 750 751 return 0; 752 } 753 754 static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on, 755 int page) 756 { 757 struct mtd_info *mtd = nand_to_mtd(chip); 758 struct rk_nfc *nfc = nand_get_controller_data(chip); 759 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 760 struct nand_ecc_ctrl *ecc = &chip->ecc; 761 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : 762 NFC_MIN_OOB_PER_STEP; 763 int pages_per_blk = mtd->erasesize / mtd->writesize; 764 dma_addr_t dma_data, dma_oob; 765 int ret = 0, i, cnt, boot_rom_mode = 0; 766 int max_bitflips = 0, bch_st, ecc_fail = 0; 767 u8 *oob; 768 u32 tmp; 769 770 nand_read_page_op(chip, page, 0, NULL, 0); 771 772 dma_data = dma_map_single(nfc->dev, nfc->page_buf, 773 mtd->writesize, 774 DMA_FROM_DEVICE); 775 dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, 776 ecc->steps * oob_step, 777 DMA_FROM_DEVICE); 778 779 /* 780 * The first blocks (4, 8 or 16 depending on the device) 781 * are used by the boot ROM. 782 * Configure the ECC algorithm supported by the boot ROM. 783 */ 784 if ((page < (pages_per_blk * rknand->boot_blks)) && 785 (chip->options & NAND_IS_BOOT_MEDIUM)) { 786 boot_rom_mode = 1; 787 if (rknand->boot_ecc != ecc->strength) 788 rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); 789 } 790 791 reinit_completion(&nfc->done); 792 writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); 793 rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, 794 dma_oob); 795 ret = wait_for_completion_timeout(&nfc->done, 796 msecs_to_jiffies(100)); 797 if (!ret) 798 dev_warn(nfc->dev, "read: wait dma done timeout.\n"); 799 /* 800 * Whether the DMA transfer is completed or not. The driver 801 * needs to check the NFC`s status register to see if the data 802 * transfer was completed. 803 */ 804 ret = rk_nfc_wait_for_xfer_done(nfc); 805 806 dma_unmap_single(nfc->dev, dma_data, mtd->writesize, 807 DMA_FROM_DEVICE); 808 dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, 809 DMA_FROM_DEVICE); 810 811 if (ret) { 812 ret = -ETIMEDOUT; 813 dev_err(nfc->dev, "read: wait transfer done timeout.\n"); 814 goto timeout_err; 815 } 816 817 for (i = 0; i < ecc->steps; i++) { 818 if (!i) 819 oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE; 820 else 821 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; 822 823 if (nfc->cfg->type == NFC_V9) 824 tmp = nfc->oob_buf[i]; 825 else 826 tmp = nfc->oob_buf[i * (oob_step / 4)]; 827 828 *oob++ = (u8)tmp; 829 *oob++ = (u8)(tmp >> 8); 830 *oob++ = (u8)(tmp >> 16); 831 *oob++ = (u8)(tmp >> 24); 832 } 833 834 for (i = 0; i < (ecc->steps / 2); i++) { 835 bch_st = readl_relaxed(nfc->regs + 836 nfc->cfg->bch_st_off + i * 4); 837 if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || 838 bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { 839 mtd->ecc_stats.failed++; 840 ecc_fail = 1; 841 } else { 842 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); 843 mtd->ecc_stats.corrected += cnt; 844 max_bitflips = max_t(u32, max_bitflips, cnt); 845 846 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); 847 mtd->ecc_stats.corrected += cnt; 848 max_bitflips = max_t(u32, max_bitflips, cnt); 849 } 850 } 851 852 if (buf) 853 memcpy(buf, nfc->page_buf, mtd->writesize); 854 855 timeout_err: 856 if (boot_rom_mode && rknand->boot_ecc != ecc->strength) 857 rk_nfc_hw_ecc_setup(chip, ecc->strength); 858 859 if (ret) 860 return ret; 861 862 if (ecc_fail) { 863 dev_err(nfc->dev, "read page: %x ecc error!\n", page); 864 return 0; 865 } 866 867 return max_bitflips; 868 } 869 870 static int rk_nfc_read_oob(struct nand_chip *chip, int page) 871 { 872 return rk_nfc_read_page_hwecc(chip, NULL, 1, page); 873 } 874 875 static inline void rk_nfc_hw_init(struct rk_nfc *nfc) 876 { 877 /* Disable flash wp. */ 878 writel(FMCTL_WP, nfc->regs + NFC_FMCTL); 879 /* Config default timing 40ns at 150 Mhz NFC clock. */ 880 writel(0x1081, nfc->regs + NFC_FMWAIT); 881 nfc->cur_timing = 0x1081; 882 /* Disable randomizer and DMA. */ 883 writel(0, nfc->regs + nfc->cfg->randmz_off); 884 writel(0, nfc->regs + nfc->cfg->dma_cfg_off); 885 writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); 886 } 887 888 static irqreturn_t rk_nfc_irq(int irq, void *id) 889 { 890 struct rk_nfc *nfc = id; 891 u32 sta, ien; 892 893 sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); 894 ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); 895 896 if (!(sta & ien)) 897 return IRQ_NONE; 898 899 writel(sta, nfc->regs + nfc->cfg->int_clr_off); 900 writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); 901 902 complete(&nfc->done); 903 904 return IRQ_HANDLED; 905 } 906 907 static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc) 908 { 909 int ret; 910 911 if (!IS_ERR(nfc->nfc_clk)) { 912 ret = clk_prepare_enable(nfc->nfc_clk); 913 if (ret) { 914 dev_err(dev, "failed to enable NFC clk\n"); 915 return ret; 916 } 917 } 918 919 ret = clk_prepare_enable(nfc->ahb_clk); 920 if (ret) { 921 dev_err(dev, "failed to enable ahb clk\n"); 922 clk_disable_unprepare(nfc->nfc_clk); 923 return ret; 924 } 925 926 return 0; 927 } 928 929 static void rk_nfc_disable_clks(struct rk_nfc *nfc) 930 { 931 clk_disable_unprepare(nfc->nfc_clk); 932 clk_disable_unprepare(nfc->ahb_clk); 933 } 934 935 static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, 936 struct mtd_oob_region *oob_region) 937 { 938 struct nand_chip *chip = mtd_to_nand(mtd); 939 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 940 941 if (section) 942 return -ERANGE; 943 944 oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; 945 oob_region->offset = 2; 946 947 return 0; 948 } 949 950 static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, 951 struct mtd_oob_region *oob_region) 952 { 953 struct nand_chip *chip = mtd_to_nand(mtd); 954 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 955 956 if (section) 957 return -ERANGE; 958 959 oob_region->length = mtd->oobsize - rknand->metadata_size; 960 oob_region->offset = rknand->metadata_size; 961 962 return 0; 963 } 964 965 static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { 966 .free = rk_nfc_ooblayout_free, 967 .ecc = rk_nfc_ooblayout_ecc, 968 }; 969 970 static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) 971 { 972 struct nand_chip *chip = mtd_to_nand(mtd); 973 struct rk_nfc *nfc = nand_get_controller_data(chip); 974 struct nand_ecc_ctrl *ecc = &chip->ecc; 975 const u8 *strengths = nfc->cfg->ecc_strengths; 976 u8 max_strength, nfc_max_strength; 977 int i; 978 979 nfc_max_strength = nfc->cfg->ecc_strengths[0]; 980 /* If optional dt settings not present. */ 981 if (!ecc->size || !ecc->strength || 982 ecc->strength > nfc_max_strength) { 983 chip->ecc.size = 1024; 984 ecc->steps = mtd->writesize / ecc->size; 985 986 /* 987 * HW ECC always requests the number of ECC bytes per 1024 byte 988 * blocks. The first 4 OOB bytes are reserved for sys data. 989 */ 990 max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / 991 fls(8 * 1024); 992 if (max_strength > nfc_max_strength) 993 max_strength = nfc_max_strength; 994 995 for (i = 0; i < 4; i++) { 996 if (max_strength >= strengths[i]) 997 break; 998 } 999 1000 if (i >= 4) { 1001 dev_err(nfc->dev, "unsupported ECC strength\n"); 1002 return -EOPNOTSUPP; 1003 } 1004 1005 ecc->strength = strengths[i]; 1006 } 1007 ecc->steps = mtd->writesize / ecc->size; 1008 ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8); 1009 1010 return 0; 1011 } 1012 1013 static int rk_nfc_attach_chip(struct nand_chip *chip) 1014 { 1015 struct mtd_info *mtd = nand_to_mtd(chip); 1016 struct device *dev = mtd->dev.parent; 1017 struct rk_nfc *nfc = nand_get_controller_data(chip); 1018 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 1019 struct nand_ecc_ctrl *ecc = &chip->ecc; 1020 int new_page_len, new_oob_len; 1021 void *buf; 1022 int ret; 1023 1024 if (chip->options & NAND_BUSWIDTH_16) { 1025 dev_err(dev, "16 bits bus width not supported"); 1026 return -EINVAL; 1027 } 1028 1029 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) 1030 return 0; 1031 1032 ret = rk_nfc_ecc_init(dev, mtd); 1033 if (ret) 1034 return ret; 1035 1036 rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; 1037 1038 if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { 1039 dev_err(dev, 1040 "driver needs at least %d bytes of meta data\n", 1041 NFC_SYS_DATA_SIZE + 2); 1042 return -EIO; 1043 } 1044 1045 /* Check buffer first, avoid duplicate alloc buffer. */ 1046 new_page_len = mtd->writesize + mtd->oobsize; 1047 if (nfc->page_buf && new_page_len > nfc->page_buf_size) { 1048 buf = krealloc(nfc->page_buf, new_page_len, 1049 GFP_KERNEL | GFP_DMA); 1050 if (!buf) 1051 return -ENOMEM; 1052 nfc->page_buf = buf; 1053 nfc->page_buf_size = new_page_len; 1054 } 1055 1056 new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; 1057 if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) { 1058 buf = krealloc(nfc->oob_buf, new_oob_len, 1059 GFP_KERNEL | GFP_DMA); 1060 if (!buf) { 1061 kfree(nfc->page_buf); 1062 nfc->page_buf = NULL; 1063 return -ENOMEM; 1064 } 1065 nfc->oob_buf = buf; 1066 nfc->oob_buf_size = new_oob_len; 1067 } 1068 1069 if (!nfc->page_buf) { 1070 nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA); 1071 if (!nfc->page_buf) 1072 return -ENOMEM; 1073 nfc->page_buf_size = new_page_len; 1074 } 1075 1076 if (!nfc->oob_buf) { 1077 nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA); 1078 if (!nfc->oob_buf) { 1079 kfree(nfc->page_buf); 1080 nfc->page_buf = NULL; 1081 return -ENOMEM; 1082 } 1083 nfc->oob_buf_size = new_oob_len; 1084 } 1085 1086 chip->ecc.write_page_raw = rk_nfc_write_page_raw; 1087 chip->ecc.write_page = rk_nfc_write_page_hwecc; 1088 chip->ecc.write_oob = rk_nfc_write_oob; 1089 1090 chip->ecc.read_page_raw = rk_nfc_read_page_raw; 1091 chip->ecc.read_page = rk_nfc_read_page_hwecc; 1092 chip->ecc.read_oob = rk_nfc_read_oob; 1093 1094 return 0; 1095 } 1096 1097 static const struct nand_controller_ops rk_nfc_controller_ops = { 1098 .attach_chip = rk_nfc_attach_chip, 1099 .exec_op = rk_nfc_exec_op, 1100 .setup_interface = rk_nfc_setup_interface, 1101 }; 1102 1103 static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, 1104 struct device_node *np) 1105 { 1106 struct rk_nfc_nand_chip *rknand; 1107 struct nand_chip *chip; 1108 struct mtd_info *mtd; 1109 int nsels; 1110 u32 tmp; 1111 int ret; 1112 int i; 1113 1114 if (!of_get_property(np, "reg", &nsels)) 1115 return -ENODEV; 1116 nsels /= sizeof(u32); 1117 if (!nsels || nsels > NFC_MAX_NSELS) { 1118 dev_err(dev, "invalid reg property size %d\n", nsels); 1119 return -EINVAL; 1120 } 1121 1122 rknand = devm_kzalloc(dev, struct_size(rknand, sels, nsels), 1123 GFP_KERNEL); 1124 if (!rknand) 1125 return -ENOMEM; 1126 1127 rknand->nsels = nsels; 1128 for (i = 0; i < nsels; i++) { 1129 ret = of_property_read_u32_index(np, "reg", i, &tmp); 1130 if (ret) { 1131 dev_err(dev, "reg property failure : %d\n", ret); 1132 return ret; 1133 } 1134 1135 if (tmp >= NFC_MAX_NSELS) { 1136 dev_err(dev, "invalid CS: %u\n", tmp); 1137 return -EINVAL; 1138 } 1139 1140 if (test_and_set_bit(tmp, &nfc->assigned_cs)) { 1141 dev_err(dev, "CS %u already assigned\n", tmp); 1142 return -EINVAL; 1143 } 1144 1145 rknand->sels[i] = tmp; 1146 } 1147 1148 chip = &rknand->chip; 1149 chip->controller = &nfc->controller; 1150 1151 nand_set_flash_node(chip, np); 1152 1153 nand_set_controller_data(chip, nfc); 1154 1155 chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; 1156 chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; 1157 1158 /* Set default mode in case dt entry is missing. */ 1159 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 1160 1161 mtd = nand_to_mtd(chip); 1162 mtd->owner = THIS_MODULE; 1163 mtd->dev.parent = dev; 1164 1165 if (!mtd->name) { 1166 dev_err(nfc->dev, "NAND label property is mandatory\n"); 1167 return -EINVAL; 1168 } 1169 1170 mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); 1171 rk_nfc_hw_init(nfc); 1172 ret = nand_scan(chip, nsels); 1173 if (ret) 1174 return ret; 1175 1176 if (chip->options & NAND_IS_BOOT_MEDIUM) { 1177 ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); 1178 rknand->boot_blks = ret ? 0 : tmp; 1179 1180 ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", 1181 &tmp); 1182 rknand->boot_ecc = ret ? chip->ecc.strength : tmp; 1183 } 1184 1185 ret = mtd_device_register(mtd, NULL, 0); 1186 if (ret) { 1187 dev_err(dev, "MTD parse partition error\n"); 1188 nand_cleanup(chip); 1189 return ret; 1190 } 1191 1192 list_add_tail(&rknand->node, &nfc->chips); 1193 1194 return 0; 1195 } 1196 1197 static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) 1198 { 1199 struct rk_nfc_nand_chip *rknand, *tmp; 1200 struct nand_chip *chip; 1201 int ret; 1202 1203 list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { 1204 chip = &rknand->chip; 1205 ret = mtd_device_unregister(nand_to_mtd(chip)); 1206 WARN_ON(ret); 1207 nand_cleanup(chip); 1208 list_del(&rknand->node); 1209 } 1210 } 1211 1212 static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) 1213 { 1214 struct device_node *np = dev->of_node; 1215 int nchips = of_get_child_count(np); 1216 int ret; 1217 1218 if (!nchips || nchips > NFC_MAX_NSELS) { 1219 dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n", 1220 nchips); 1221 return -EINVAL; 1222 } 1223 1224 for_each_child_of_node_scoped(np, nand_np) { 1225 ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); 1226 if (ret) { 1227 rk_nfc_chips_cleanup(nfc); 1228 return ret; 1229 } 1230 } 1231 1232 return 0; 1233 } 1234 1235 static struct nfc_cfg nfc_v6_cfg = { 1236 .type = NFC_V6, 1237 .ecc_strengths = {60, 40, 24, 16}, 1238 .ecc_cfgs = { 1239 0x00040011, 0x00040001, 0x00000011, 0x00000001, 1240 }, 1241 .flctl_off = 0x08, 1242 .bchctl_off = 0x0C, 1243 .dma_cfg_off = 0x10, 1244 .dma_data_buf_off = 0x14, 1245 .dma_oob_buf_off = 0x18, 1246 .dma_st_off = 0x1C, 1247 .bch_st_off = 0x20, 1248 .randmz_off = 0x150, 1249 .int_en_off = 0x16C, 1250 .int_clr_off = 0x170, 1251 .int_st_off = 0x174, 1252 .oob0_off = 0x200, 1253 .oob1_off = 0x230, 1254 .ecc0 = { 1255 .err_flag_bit = 2, 1256 .low = 3, 1257 .low_mask = 0x1F, 1258 .low_bn = 5, 1259 .high = 27, 1260 .high_mask = 0x1, 1261 }, 1262 .ecc1 = { 1263 .err_flag_bit = 15, 1264 .low = 16, 1265 .low_mask = 0x1F, 1266 .low_bn = 5, 1267 .high = 29, 1268 .high_mask = 0x1, 1269 }, 1270 }; 1271 1272 static struct nfc_cfg nfc_v8_cfg = { 1273 .type = NFC_V8, 1274 .ecc_strengths = {16, 16, 16, 16}, 1275 .ecc_cfgs = { 1276 0x00000001, 0x00000001, 0x00000001, 0x00000001, 1277 }, 1278 .flctl_off = 0x08, 1279 .bchctl_off = 0x0C, 1280 .dma_cfg_off = 0x10, 1281 .dma_data_buf_off = 0x14, 1282 .dma_oob_buf_off = 0x18, 1283 .dma_st_off = 0x1C, 1284 .bch_st_off = 0x20, 1285 .randmz_off = 0x150, 1286 .int_en_off = 0x16C, 1287 .int_clr_off = 0x170, 1288 .int_st_off = 0x174, 1289 .oob0_off = 0x200, 1290 .oob1_off = 0x230, 1291 .ecc0 = { 1292 .err_flag_bit = 2, 1293 .low = 3, 1294 .low_mask = 0x1F, 1295 .low_bn = 5, 1296 .high = 27, 1297 .high_mask = 0x1, 1298 }, 1299 .ecc1 = { 1300 .err_flag_bit = 15, 1301 .low = 16, 1302 .low_mask = 0x1F, 1303 .low_bn = 5, 1304 .high = 29, 1305 .high_mask = 0x1, 1306 }, 1307 }; 1308 1309 static struct nfc_cfg nfc_v9_cfg = { 1310 .type = NFC_V9, 1311 .ecc_strengths = {70, 60, 40, 16}, 1312 .ecc_cfgs = { 1313 0x00000001, 0x06000001, 0x04000001, 0x02000001, 1314 }, 1315 .flctl_off = 0x10, 1316 .bchctl_off = 0x20, 1317 .dma_cfg_off = 0x30, 1318 .dma_data_buf_off = 0x34, 1319 .dma_oob_buf_off = 0x38, 1320 .dma_st_off = 0x3C, 1321 .bch_st_off = 0x150, 1322 .randmz_off = 0x208, 1323 .int_en_off = 0x120, 1324 .int_clr_off = 0x124, 1325 .int_st_off = 0x128, 1326 .oob0_off = 0x200, 1327 .oob1_off = 0x204, 1328 .ecc0 = { 1329 .err_flag_bit = 2, 1330 .low = 3, 1331 .low_mask = 0x7F, 1332 .low_bn = 7, 1333 .high = 0, 1334 .high_mask = 0x0, 1335 }, 1336 .ecc1 = { 1337 .err_flag_bit = 18, 1338 .low = 19, 1339 .low_mask = 0x7F, 1340 .low_bn = 7, 1341 .high = 0, 1342 .high_mask = 0x0, 1343 }, 1344 }; 1345 1346 static const struct of_device_id rk_nfc_id_table[] = { 1347 { 1348 .compatible = "rockchip,px30-nfc", 1349 .data = &nfc_v9_cfg 1350 }, 1351 { 1352 .compatible = "rockchip,rk2928-nfc", 1353 .data = &nfc_v6_cfg 1354 }, 1355 { 1356 .compatible = "rockchip,rv1108-nfc", 1357 .data = &nfc_v8_cfg 1358 }, 1359 { /* sentinel */ } 1360 }; 1361 MODULE_DEVICE_TABLE(of, rk_nfc_id_table); 1362 1363 static int rk_nfc_probe(struct platform_device *pdev) 1364 { 1365 struct device *dev = &pdev->dev; 1366 struct rk_nfc *nfc; 1367 int ret, irq; 1368 1369 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); 1370 if (!nfc) 1371 return -ENOMEM; 1372 1373 nand_controller_init(&nfc->controller); 1374 INIT_LIST_HEAD(&nfc->chips); 1375 nfc->controller.ops = &rk_nfc_controller_ops; 1376 1377 nfc->cfg = of_device_get_match_data(dev); 1378 nfc->dev = dev; 1379 1380 init_completion(&nfc->done); 1381 1382 nfc->regs = devm_platform_ioremap_resource(pdev, 0); 1383 if (IS_ERR(nfc->regs)) { 1384 ret = PTR_ERR(nfc->regs); 1385 goto release_nfc; 1386 } 1387 1388 nfc->nfc_clk = devm_clk_get(dev, "nfc"); 1389 if (IS_ERR(nfc->nfc_clk)) { 1390 dev_dbg(dev, "no NFC clk\n"); 1391 /* Some earlier models, such as rk3066, have no NFC clk. */ 1392 } 1393 1394 nfc->ahb_clk = devm_clk_get(dev, "ahb"); 1395 if (IS_ERR(nfc->ahb_clk)) { 1396 dev_err(dev, "no ahb clk\n"); 1397 ret = PTR_ERR(nfc->ahb_clk); 1398 goto release_nfc; 1399 } 1400 1401 ret = rk_nfc_enable_clks(dev, nfc); 1402 if (ret) 1403 goto release_nfc; 1404 1405 irq = platform_get_irq(pdev, 0); 1406 if (irq < 0) { 1407 ret = -EINVAL; 1408 goto clk_disable; 1409 } 1410 1411 writel(0, nfc->regs + nfc->cfg->int_en_off); 1412 ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); 1413 if (ret) { 1414 dev_err(dev, "failed to request NFC irq\n"); 1415 goto clk_disable; 1416 } 1417 1418 platform_set_drvdata(pdev, nfc); 1419 1420 ret = rk_nfc_nand_chips_init(dev, nfc); 1421 if (ret) { 1422 dev_err(dev, "failed to init NAND chips\n"); 1423 goto clk_disable; 1424 } 1425 return 0; 1426 1427 clk_disable: 1428 rk_nfc_disable_clks(nfc); 1429 release_nfc: 1430 return ret; 1431 } 1432 1433 static void rk_nfc_remove(struct platform_device *pdev) 1434 { 1435 struct rk_nfc *nfc = platform_get_drvdata(pdev); 1436 1437 kfree(nfc->page_buf); 1438 kfree(nfc->oob_buf); 1439 rk_nfc_chips_cleanup(nfc); 1440 rk_nfc_disable_clks(nfc); 1441 } 1442 1443 static int __maybe_unused rk_nfc_suspend(struct device *dev) 1444 { 1445 struct rk_nfc *nfc = dev_get_drvdata(dev); 1446 1447 rk_nfc_disable_clks(nfc); 1448 1449 return 0; 1450 } 1451 1452 static int __maybe_unused rk_nfc_resume(struct device *dev) 1453 { 1454 struct rk_nfc *nfc = dev_get_drvdata(dev); 1455 struct rk_nfc_nand_chip *rknand; 1456 struct nand_chip *chip; 1457 int ret; 1458 u32 i; 1459 1460 ret = rk_nfc_enable_clks(dev, nfc); 1461 if (ret) 1462 return ret; 1463 1464 /* Reset NAND chip if VCC was powered off. */ 1465 list_for_each_entry(rknand, &nfc->chips, node) { 1466 chip = &rknand->chip; 1467 for (i = 0; i < rknand->nsels; i++) 1468 nand_reset(chip, i); 1469 } 1470 1471 return 0; 1472 } 1473 1474 static const struct dev_pm_ops rk_nfc_pm_ops = { 1475 SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) 1476 }; 1477 1478 static struct platform_driver rk_nfc_driver = { 1479 .probe = rk_nfc_probe, 1480 .remove_new = rk_nfc_remove, 1481 .driver = { 1482 .name = "rockchip-nfc", 1483 .of_match_table = rk_nfc_id_table, 1484 .pm = &rk_nfc_pm_ops, 1485 }, 1486 }; 1487 1488 module_platform_driver(rk_nfc_driver); 1489 1490 MODULE_LICENSE("Dual MIT/GPL"); 1491 MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>"); 1492 MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); 1493 MODULE_ALIAS("platform:rockchip-nand-controller"); 1494