xref: /linux/drivers/mtd/nand/raw/rockchip-nand-controller.c (revision 576d7fed09c7edbae7600f29a8a3ed6c1ead904f)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Rockchip NAND Flash controller driver.
4  * Copyright (C) 2020 Rockchip Inc.
5  * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 
21 /*
22  * NFC Page Data Layout:
23  *	1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
24  *	1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
25  *	......
26  * NAND Page Data Layout:
27  *	1024 * n data + m Bytes oob
28  * Original Bad Block Mask Location:
29  *	First byte of oob(spare).
30  * nand_chip->oob_poi data layout:
31  *	4Bytes sys data + .... + 4Bytes sys data + ECC data.
32  */
33 
34 /* NAND controller register definition */
35 #define NFC_READ			(0)
36 #define NFC_WRITE			(1)
37 
38 #define NFC_FMCTL			(0x00)
39 #define   FMCTL_CE_SEL_M		0xFF
40 #define   FMCTL_CE_SEL(x)		(1 << (x))
41 #define   FMCTL_WP			BIT(8)
42 #define   FMCTL_RDY			BIT(9)
43 
44 #define NFC_FMWAIT			(0x04)
45 #define   FLCTL_RST			BIT(0)
46 #define   FLCTL_WR			(1)	/* 0: read, 1: write */
47 #define   FLCTL_XFER_ST			BIT(2)
48 #define   FLCTL_XFER_EN			BIT(3)
49 #define   FLCTL_ACORRECT		BIT(10) /* Auto correct error bits. */
50 #define   FLCTL_XFER_READY		BIT(20)
51 #define   FLCTL_XFER_SECTOR		(22)
52 #define   FLCTL_TOG_FIX			BIT(29)
53 
54 #define   BCHCTL_BANK_M			(7 << 5)
55 #define   BCHCTL_BANK			(5)
56 
57 #define   DMA_ST			BIT(0)
58 #define   DMA_WR			(1)	/* 0: write, 1: read */
59 #define   DMA_EN			BIT(2)
60 #define   DMA_AHB_SIZE			(3)	/* 0: 1, 1: 2, 2: 4 */
61 #define   DMA_BURST_SIZE		(6)	/* 0: 1, 3: 4, 5: 8, 7: 16 */
62 #define   DMA_INC_NUM			(9)	/* 1 - 16 */
63 
64 #define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
65 	  (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
66 #define   INT_DMA			BIT(0)
67 #define NFC_BANK			(0x800)
68 #define NFC_BANK_STEP			(0x100)
69 #define   BANK_DATA			(0x00)
70 #define   BANK_ADDR			(0x04)
71 #define   BANK_CMD			(0x08)
72 #define NFC_SRAM0			(0x1000)
73 #define NFC_SRAM1			(0x1400)
74 #define NFC_SRAM_SIZE			(0x400)
75 #define NFC_TIMEOUT			(500000)
76 #define NFC_MAX_OOB_PER_STEP		128
77 #define NFC_MIN_OOB_PER_STEP		64
78 #define MAX_DATA_SIZE			0xFFFC
79 #define MAX_ADDRESS_CYC			6
80 #define NFC_ECC_MAX_MODES		4
81 #define NFC_MAX_NSELS			(8) /* Some Socs only have 1 or 2 CSs. */
82 #define NFC_SYS_DATA_SIZE		(4) /* 4 bytes sys data in oob pre 1024 data.*/
83 #define RK_DEFAULT_CLOCK_RATE		(150 * 1000 * 1000) /* 150 Mhz */
84 #define ACCTIMING(csrw, rwpw, rwcs)	((csrw) << 12 | (rwpw) << 5 | (rwcs))
85 
86 enum nfc_type {
87 	NFC_V6,
88 	NFC_V8,
89 	NFC_V9,
90 };
91 
92 /**
93  * struct rk_ecc_cnt_status: represent a ecc status data.
94  * @err_flag_bit: error flag bit index at register.
95  * @low: ECC count low bit index at register.
96  * @low_mask: mask bit.
97  * @low_bn: ECC count low bit number.
98  * @high: ECC count high bit index at register.
99  * @high_mask: mask bit
100  */
101 struct ecc_cnt_status {
102 	u8 err_flag_bit;
103 	u8 low;
104 	u8 low_mask;
105 	u8 low_bn;
106 	u8 high;
107 	u8 high_mask;
108 };
109 
110 /**
111  * @type: NFC version
112  * @ecc_strengths: ECC strengths
113  * @ecc_cfgs: ECC config values
114  * @flctl_off: FLCTL register offset
115  * @bchctl_off: BCHCTL register offset
116  * @dma_data_buf_off: DMA_DATA_BUF register offset
117  * @dma_oob_buf_off: DMA_OOB_BUF register offset
118  * @dma_cfg_off: DMA_CFG register offset
119  * @dma_st_off: DMA_ST register offset
120  * @bch_st_off: BCG_ST register offset
121  * @randmz_off: RANDMZ register offset
122  * @int_en_off: interrupt enable register offset
123  * @int_clr_off: interrupt clean register offset
124  * @int_st_off: interrupt status register offset
125  * @oob0_off: oob0 register offset
126  * @oob1_off: oob1 register offset
127  * @ecc0: represent ECC0 status data
128  * @ecc1: represent ECC1 status data
129  */
130 struct nfc_cfg {
131 	enum nfc_type type;
132 	u8 ecc_strengths[NFC_ECC_MAX_MODES];
133 	u32 ecc_cfgs[NFC_ECC_MAX_MODES];
134 	u32 flctl_off;
135 	u32 bchctl_off;
136 	u32 dma_cfg_off;
137 	u32 dma_data_buf_off;
138 	u32 dma_oob_buf_off;
139 	u32 dma_st_off;
140 	u32 bch_st_off;
141 	u32 randmz_off;
142 	u32 int_en_off;
143 	u32 int_clr_off;
144 	u32 int_st_off;
145 	u32 oob0_off;
146 	u32 oob1_off;
147 	struct ecc_cnt_status ecc0;
148 	struct ecc_cnt_status ecc1;
149 };
150 
151 struct rk_nfc_nand_chip {
152 	struct list_head node;
153 	struct nand_chip chip;
154 
155 	u16 boot_blks;
156 	u16 metadata_size;
157 	u32 boot_ecc;
158 	u32 timing;
159 
160 	u8 nsels;
161 	u8 sels[] __counted_by(nsels);
162 };
163 
164 struct rk_nfc {
165 	struct nand_controller controller;
166 	const struct nfc_cfg *cfg;
167 	struct device *dev;
168 
169 	struct clk *nfc_clk;
170 	struct clk *ahb_clk;
171 	void __iomem *regs;
172 
173 	u32 selected_bank;
174 	u32 band_offset;
175 	u32 cur_ecc;
176 	u32 cur_timing;
177 
178 	struct completion done;
179 	struct list_head chips;
180 
181 	u8 *page_buf;
182 	u32 *oob_buf;
183 	u32 page_buf_size;
184 	u32 oob_buf_size;
185 
186 	unsigned long assigned_cs;
187 };
188 
189 static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
190 {
191 	return container_of(chip, struct rk_nfc_nand_chip, chip);
192 }
193 
194 static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
195 {
196 	return (u8 *)p + i * chip->ecc.size;
197 }
198 
199 static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
200 {
201 	u8 *poi;
202 
203 	poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
204 
205 	return poi;
206 }
207 
208 static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
209 {
210 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
211 	u8 *poi;
212 
213 	poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
214 
215 	return poi;
216 }
217 
218 static inline int rk_nfc_data_len(struct nand_chip *chip)
219 {
220 	return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
221 }
222 
223 static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
224 {
225 	struct rk_nfc *nfc = nand_get_controller_data(chip);
226 
227 	return nfc->page_buf + i * rk_nfc_data_len(chip);
228 }
229 
230 static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
231 {
232 	struct rk_nfc *nfc = nand_get_controller_data(chip);
233 
234 	return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
235 }
236 
237 static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
238 {
239 	struct rk_nfc *nfc = nand_get_controller_data(chip);
240 	u32 reg, i;
241 
242 	for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
243 		if (strength == nfc->cfg->ecc_strengths[i]) {
244 			reg = nfc->cfg->ecc_cfgs[i];
245 			break;
246 		}
247 	}
248 
249 	if (i >= NFC_ECC_MAX_MODES)
250 		return -EINVAL;
251 
252 	writel(reg, nfc->regs + nfc->cfg->bchctl_off);
253 
254 	/* Save chip ECC setting */
255 	nfc->cur_ecc = strength;
256 
257 	return 0;
258 }
259 
260 static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
261 {
262 	struct rk_nfc *nfc = nand_get_controller_data(chip);
263 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
264 	struct nand_ecc_ctrl *ecc = &chip->ecc;
265 	u32 val;
266 
267 	if (cs < 0) {
268 		nfc->selected_bank = -1;
269 		/* Deselect the currently selected target. */
270 		val = readl_relaxed(nfc->regs + NFC_FMCTL);
271 		val &= ~FMCTL_CE_SEL_M;
272 		writel(val, nfc->regs + NFC_FMCTL);
273 		return;
274 	}
275 
276 	nfc->selected_bank = rknand->sels[cs];
277 	nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
278 
279 	val = readl_relaxed(nfc->regs + NFC_FMCTL);
280 	val &= ~FMCTL_CE_SEL_M;
281 	val |= FMCTL_CE_SEL(nfc->selected_bank);
282 
283 	writel(val, nfc->regs + NFC_FMCTL);
284 
285 	/*
286 	 * Compare current chip timing with selected chip timing and
287 	 * change if needed.
288 	 */
289 	if (nfc->cur_timing != rknand->timing) {
290 		writel(rknand->timing, nfc->regs + NFC_FMWAIT);
291 		nfc->cur_timing = rknand->timing;
292 	}
293 
294 	/*
295 	 * Compare current chip ECC setting with selected chip ECC setting and
296 	 * change if needed.
297 	 */
298 	if (nfc->cur_ecc != ecc->strength)
299 		rk_nfc_hw_ecc_setup(chip, ecc->strength);
300 }
301 
302 static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
303 {
304 	int rc;
305 	u32 val;
306 
307 	rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
308 					val & FMCTL_RDY, 10, NFC_TIMEOUT);
309 
310 	return rc;
311 }
312 
313 static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
314 {
315 	int i;
316 
317 	for (i = 0; i < len; i++)
318 		buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
319 				       BANK_DATA);
320 }
321 
322 static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
323 {
324 	int i;
325 
326 	for (i = 0; i < len; i++)
327 		writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
328 }
329 
330 static int rk_nfc_cmd(struct nand_chip *chip,
331 		      const struct nand_subop *subop)
332 {
333 	struct rk_nfc *nfc = nand_get_controller_data(chip);
334 	unsigned int i, j, remaining, start;
335 	int reg_offset = nfc->band_offset;
336 	u8 *inbuf = NULL;
337 	const u8 *outbuf;
338 	u32 cnt = 0;
339 	int ret = 0;
340 
341 	for (i = 0; i < subop->ninstrs; i++) {
342 		const struct nand_op_instr *instr = &subop->instrs[i];
343 
344 		switch (instr->type) {
345 		case NAND_OP_CMD_INSTR:
346 			writeb(instr->ctx.cmd.opcode,
347 			       nfc->regs + reg_offset + BANK_CMD);
348 			break;
349 
350 		case NAND_OP_ADDR_INSTR:
351 			remaining = nand_subop_get_num_addr_cyc(subop, i);
352 			start = nand_subop_get_addr_start_off(subop, i);
353 
354 			for (j = 0; j < 8 && j + start < remaining; j++)
355 				writeb(instr->ctx.addr.addrs[j + start],
356 				       nfc->regs + reg_offset + BANK_ADDR);
357 			break;
358 
359 		case NAND_OP_DATA_IN_INSTR:
360 		case NAND_OP_DATA_OUT_INSTR:
361 			start = nand_subop_get_data_start_off(subop, i);
362 			cnt = nand_subop_get_data_len(subop, i);
363 
364 			if (instr->type == NAND_OP_DATA_OUT_INSTR) {
365 				outbuf = instr->ctx.data.buf.out + start;
366 				rk_nfc_write_buf(nfc, outbuf, cnt);
367 			} else {
368 				inbuf = instr->ctx.data.buf.in + start;
369 				rk_nfc_read_buf(nfc, inbuf, cnt);
370 			}
371 			break;
372 
373 		case NAND_OP_WAITRDY_INSTR:
374 			if (rk_nfc_wait_ioready(nfc) < 0) {
375 				ret = -ETIMEDOUT;
376 				dev_err(nfc->dev, "IO not ready\n");
377 			}
378 			break;
379 		}
380 	}
381 
382 	return ret;
383 }
384 
385 static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
386 	NAND_OP_PARSER_PATTERN(
387 		rk_nfc_cmd,
388 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
389 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
390 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
391 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
392 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
393 	NAND_OP_PARSER_PATTERN(
394 		rk_nfc_cmd,
395 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
396 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
397 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
398 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
399 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
400 );
401 
402 static int rk_nfc_exec_op(struct nand_chip *chip,
403 			  const struct nand_operation *op,
404 			  bool check_only)
405 {
406 	if (!check_only)
407 		rk_nfc_select_chip(chip, op->cs);
408 
409 	return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
410 				      check_only);
411 }
412 
413 static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
414 				  const struct nand_interface_config *conf)
415 {
416 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
417 	struct rk_nfc *nfc = nand_get_controller_data(chip);
418 	const struct nand_sdr_timings *timings;
419 	u32 rate, tc2rw, trwpw, trw2c;
420 	u32 temp;
421 
422 	if (target < 0)
423 		return 0;
424 
425 	timings = nand_get_sdr_timings(conf);
426 	if (IS_ERR(timings))
427 		return -EOPNOTSUPP;
428 
429 	if (IS_ERR(nfc->nfc_clk))
430 		rate = clk_get_rate(nfc->ahb_clk);
431 	else
432 		rate = clk_get_rate(nfc->nfc_clk);
433 
434 	/* Turn clock rate into kHz. */
435 	rate /= 1000;
436 
437 	tc2rw = 1;
438 	trw2c = 1;
439 
440 	trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
441 	trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
442 
443 	temp = timings->tREA_max / 1000;
444 	temp = DIV_ROUND_UP(temp * rate, 1000000);
445 
446 	if (trwpw < temp)
447 		trwpw = temp;
448 
449 	/*
450 	 * ACCON: access timing control register
451 	 * -------------------------------------
452 	 * 31:18: reserved
453 	 * 17:12: csrw, clock cycles from the falling edge of CSn to the
454 	 *   falling edge of RDn or WRn
455 	 * 11:11: reserved
456 	 * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
457 	 * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
458 	 *   rising edge of CSn
459 	 */
460 
461 	/* Save chip timing */
462 	rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
463 
464 	return 0;
465 }
466 
467 static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
468 			      dma_addr_t dma_data, dma_addr_t dma_oob)
469 {
470 	u32 dma_reg, fl_reg, bch_reg;
471 
472 	dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
473 	      (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
474 
475 	fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
476 		 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
477 
478 	if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
479 		bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
480 		bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
481 			  (nfc->selected_bank << BCHCTL_BANK);
482 		writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
483 	}
484 
485 	writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
486 	writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
487 	writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
488 	writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
489 	fl_reg |= FLCTL_XFER_ST;
490 	writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
491 }
492 
493 static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
494 {
495 	void __iomem *ptr;
496 	u32 reg;
497 
498 	ptr = nfc->regs + nfc->cfg->flctl_off;
499 
500 	return readl_relaxed_poll_timeout(ptr, reg,
501 					 reg & FLCTL_XFER_READY,
502 					 10, NFC_TIMEOUT);
503 }
504 
505 static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
506 				 int oob_on, int page)
507 {
508 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
509 	struct rk_nfc *nfc = nand_get_controller_data(chip);
510 	struct mtd_info *mtd = nand_to_mtd(chip);
511 	struct nand_ecc_ctrl *ecc = &chip->ecc;
512 	int i, pages_per_blk;
513 
514 	pages_per_blk = mtd->erasesize / mtd->writesize;
515 	if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
516 	    (page < (pages_per_blk * rknand->boot_blks)) &&
517 	    rknand->boot_ecc != ecc->strength) {
518 		/*
519 		 * There's currently no method to notify the MTD framework that
520 		 * a different ECC strength is in use for the boot blocks.
521 		 */
522 		return -EIO;
523 	}
524 
525 	if (!buf)
526 		memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
527 
528 	for (i = 0; i < ecc->steps; i++) {
529 		/* Copy data to the NFC buffer. */
530 		if (buf)
531 			memcpy(rk_nfc_data_ptr(chip, i),
532 			       rk_nfc_buf_to_data_ptr(chip, buf, i),
533 			       ecc->size);
534 		/*
535 		 * The first four bytes of OOB are reserved for the
536 		 * boot ROM. In some debugging cases, such as with a
537 		 * read, erase and write back test these 4 bytes stored
538 		 * in OOB also need to be written back.
539 		 *
540 		 * The function nand_block_bad detects bad blocks like:
541 		 *
542 		 * bad = chip->oob_poi[chip->badblockpos];
543 		 *
544 		 * chip->badblockpos == 0 for a large page NAND Flash,
545 		 * so chip->oob_poi[0] is the bad block mask (BBM).
546 		 *
547 		 * The OOB data layout on the NFC is:
548 		 *
549 		 *    PA0  PA1  PA2  PA3  | BBM OOB1 OOB2 OOB3 | ...
550 		 *
551 		 * or
552 		 *
553 		 *    0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
554 		 *
555 		 * The code here just swaps the first 4 bytes with the last
556 		 * 4 bytes without losing any data.
557 		 *
558 		 * The chip->oob_poi data layout:
559 		 *
560 		 *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
561 		 *
562 		 * The rk_nfc_ooblayout_free() function already has reserved
563 		 * these 4 bytes together with 2 bytes for BBM
564 		 * by reducing it's length:
565 		 *
566 		 * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
567 		 */
568 		if (!i)
569 			memcpy(rk_nfc_oob_ptr(chip, i),
570 			       rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
571 			       NFC_SYS_DATA_SIZE);
572 		else
573 			memcpy(rk_nfc_oob_ptr(chip, i),
574 			       rk_nfc_buf_to_oob_ptr(chip, i - 1),
575 			       NFC_SYS_DATA_SIZE);
576 		/* Copy ECC data to the NFC buffer. */
577 		memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
578 		       rk_nfc_buf_to_oob_ecc_ptr(chip, i),
579 		       ecc->bytes);
580 	}
581 
582 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
583 	rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
584 	return nand_prog_page_end_op(chip);
585 }
586 
587 static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
588 				   int oob_on, int page)
589 {
590 	struct mtd_info *mtd = nand_to_mtd(chip);
591 	struct rk_nfc *nfc = nand_get_controller_data(chip);
592 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
593 	struct nand_ecc_ctrl *ecc = &chip->ecc;
594 	int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
595 			NFC_MIN_OOB_PER_STEP;
596 	int pages_per_blk = mtd->erasesize / mtd->writesize;
597 	int ret = 0, i, boot_rom_mode = 0;
598 	dma_addr_t dma_data, dma_oob;
599 	u32 tmp;
600 	u8 *oob;
601 
602 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
603 
604 	if (buf)
605 		memcpy(nfc->page_buf, buf, mtd->writesize);
606 	else
607 		memset(nfc->page_buf, 0xFF, mtd->writesize);
608 
609 	/*
610 	 * The first blocks (4, 8 or 16 depending on the device) are used
611 	 * by the boot ROM and the first 32 bits of OOB need to link to
612 	 * the next page address in the same block. We can't directly copy
613 	 * OOB data from the MTD framework, because this page address
614 	 * conflicts for example with the bad block marker (BBM),
615 	 * so we shift all OOB data including the BBM with 4 byte positions.
616 	 * As a consequence the OOB size available to the MTD framework is
617 	 * also reduced with 4 bytes.
618 	 *
619 	 *    PA0  PA1  PA2  PA3 | BBM OOB1 OOB2 OOB3 | ...
620 	 *
621 	 * If a NAND is not a boot medium or the page is not a boot block,
622 	 * the first 4 bytes are left untouched by writing 0xFF to them.
623 	 *
624 	 *   0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
625 	 *
626 	 * The code here just swaps the first 4 bytes with the last
627 	 * 4 bytes without losing any data.
628 	 *
629 	 * The chip->oob_poi data layout:
630 	 *
631 	 *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
632 	 *
633 	 * Configure the ECC algorithm supported by the boot ROM.
634 	 */
635 	if ((page < (pages_per_blk * rknand->boot_blks)) &&
636 	    (chip->options & NAND_IS_BOOT_MEDIUM)) {
637 		boot_rom_mode = 1;
638 		if (rknand->boot_ecc != ecc->strength)
639 			rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
640 	}
641 
642 	for (i = 0; i < ecc->steps; i++) {
643 		if (!i)
644 			oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
645 		else
646 			oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
647 
648 		tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24;
649 
650 		if (nfc->cfg->type == NFC_V9)
651 			nfc->oob_buf[i] = tmp;
652 		else
653 			nfc->oob_buf[i * (oob_step / 4)] = tmp;
654 	}
655 
656 	dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
657 				  mtd->writesize, DMA_TO_DEVICE);
658 	dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
659 				 ecc->steps * oob_step,
660 				 DMA_TO_DEVICE);
661 
662 	reinit_completion(&nfc->done);
663 	writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
664 
665 	rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
666 			  dma_oob);
667 	ret = wait_for_completion_timeout(&nfc->done,
668 					  msecs_to_jiffies(100));
669 	if (!ret)
670 		dev_warn(nfc->dev, "write: wait dma done timeout.\n");
671 	/*
672 	 * Whether the DMA transfer is completed or not. The driver
673 	 * needs to check the NFC`s status register to see if the data
674 	 * transfer was completed.
675 	 */
676 	ret = rk_nfc_wait_for_xfer_done(nfc);
677 
678 	dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
679 			 DMA_TO_DEVICE);
680 	dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
681 			 DMA_TO_DEVICE);
682 
683 	if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
684 		rk_nfc_hw_ecc_setup(chip, ecc->strength);
685 
686 	if (ret) {
687 		dev_err(nfc->dev, "write: wait transfer done timeout.\n");
688 		return -ETIMEDOUT;
689 	}
690 
691 	return nand_prog_page_end_op(chip);
692 }
693 
694 static int rk_nfc_write_oob(struct nand_chip *chip, int page)
695 {
696 	return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
697 }
698 
699 static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
700 				int page)
701 {
702 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
703 	struct rk_nfc *nfc = nand_get_controller_data(chip);
704 	struct mtd_info *mtd = nand_to_mtd(chip);
705 	struct nand_ecc_ctrl *ecc = &chip->ecc;
706 	int i, pages_per_blk;
707 
708 	pages_per_blk = mtd->erasesize / mtd->writesize;
709 	if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
710 	    (page < (pages_per_blk * rknand->boot_blks)) &&
711 	    rknand->boot_ecc != ecc->strength) {
712 		/*
713 		 * There's currently no method to notify the MTD framework that
714 		 * a different ECC strength is in use for the boot blocks.
715 		 */
716 		return -EIO;
717 	}
718 
719 	nand_read_page_op(chip, page, 0, NULL, 0);
720 	rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
721 	for (i = 0; i < ecc->steps; i++) {
722 		/*
723 		 * The first four bytes of OOB are reserved for the
724 		 * boot ROM. In some debugging cases, such as with a read,
725 		 * erase and write back test, these 4 bytes also must be
726 		 * saved somewhere, otherwise this information will be
727 		 * lost during a write back.
728 		 */
729 		if (!i)
730 			memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
731 			       rk_nfc_oob_ptr(chip, i),
732 			       NFC_SYS_DATA_SIZE);
733 		else
734 			memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
735 			       rk_nfc_oob_ptr(chip, i),
736 			       NFC_SYS_DATA_SIZE);
737 
738 		/* Copy ECC data from the NFC buffer. */
739 		memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
740 		       rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
741 		       ecc->bytes);
742 
743 		/* Copy data from the NFC buffer. */
744 		if (buf)
745 			memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
746 			       rk_nfc_data_ptr(chip, i),
747 			       ecc->size);
748 	}
749 
750 	return 0;
751 }
752 
753 static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
754 				  int page)
755 {
756 	struct mtd_info *mtd = nand_to_mtd(chip);
757 	struct rk_nfc *nfc = nand_get_controller_data(chip);
758 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
759 	struct nand_ecc_ctrl *ecc = &chip->ecc;
760 	int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
761 			NFC_MIN_OOB_PER_STEP;
762 	int pages_per_blk = mtd->erasesize / mtd->writesize;
763 	dma_addr_t dma_data, dma_oob;
764 	int ret = 0, i, cnt, boot_rom_mode = 0;
765 	int max_bitflips = 0, bch_st, ecc_fail = 0;
766 	u8 *oob;
767 	u32 tmp;
768 
769 	nand_read_page_op(chip, page, 0, NULL, 0);
770 
771 	dma_data = dma_map_single(nfc->dev, nfc->page_buf,
772 				  mtd->writesize,
773 				  DMA_FROM_DEVICE);
774 	dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
775 				 ecc->steps * oob_step,
776 				 DMA_FROM_DEVICE);
777 
778 	/*
779 	 * The first blocks (4, 8 or 16 depending on the device)
780 	 * are used by the boot ROM.
781 	 * Configure the ECC algorithm supported by the boot ROM.
782 	 */
783 	if ((page < (pages_per_blk * rknand->boot_blks)) &&
784 	    (chip->options & NAND_IS_BOOT_MEDIUM)) {
785 		boot_rom_mode = 1;
786 		if (rknand->boot_ecc != ecc->strength)
787 			rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
788 	}
789 
790 	reinit_completion(&nfc->done);
791 	writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
792 	rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
793 			  dma_oob);
794 	ret = wait_for_completion_timeout(&nfc->done,
795 					  msecs_to_jiffies(100));
796 	if (!ret)
797 		dev_warn(nfc->dev, "read: wait dma done timeout.\n");
798 	/*
799 	 * Whether the DMA transfer is completed or not. The driver
800 	 * needs to check the NFC`s status register to see if the data
801 	 * transfer was completed.
802 	 */
803 	ret = rk_nfc_wait_for_xfer_done(nfc);
804 
805 	dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
806 			 DMA_FROM_DEVICE);
807 	dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
808 			 DMA_FROM_DEVICE);
809 
810 	if (ret) {
811 		ret = -ETIMEDOUT;
812 		dev_err(nfc->dev, "read: wait transfer done timeout.\n");
813 		goto timeout_err;
814 	}
815 
816 	for (i = 0; i < ecc->steps; i++) {
817 		if (!i)
818 			oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
819 		else
820 			oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
821 
822 		if (nfc->cfg->type == NFC_V9)
823 			tmp = nfc->oob_buf[i];
824 		else
825 			tmp = nfc->oob_buf[i * (oob_step / 4)];
826 
827 		*oob++ = (u8)tmp;
828 		*oob++ = (u8)(tmp >> 8);
829 		*oob++ = (u8)(tmp >> 16);
830 		*oob++ = (u8)(tmp >> 24);
831 	}
832 
833 	for (i = 0; i < (ecc->steps / 2); i++) {
834 		bch_st = readl_relaxed(nfc->regs +
835 				       nfc->cfg->bch_st_off + i * 4);
836 		if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
837 		    bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
838 			mtd->ecc_stats.failed++;
839 			ecc_fail = 1;
840 		} else {
841 			cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
842 			mtd->ecc_stats.corrected += cnt;
843 			max_bitflips = max_t(u32, max_bitflips, cnt);
844 
845 			cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
846 			mtd->ecc_stats.corrected += cnt;
847 			max_bitflips = max_t(u32, max_bitflips, cnt);
848 		}
849 	}
850 
851 	if (buf)
852 		memcpy(buf, nfc->page_buf, mtd->writesize);
853 
854 timeout_err:
855 	if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
856 		rk_nfc_hw_ecc_setup(chip, ecc->strength);
857 
858 	if (ret)
859 		return ret;
860 
861 	if (ecc_fail) {
862 		dev_err(nfc->dev, "read page: %x ecc error!\n", page);
863 		return 0;
864 	}
865 
866 	return max_bitflips;
867 }
868 
869 static int rk_nfc_read_oob(struct nand_chip *chip, int page)
870 {
871 	return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
872 }
873 
874 static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
875 {
876 	/* Disable flash wp. */
877 	writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
878 	/* Config default timing 40ns at 150 Mhz NFC clock. */
879 	writel(0x1081, nfc->regs + NFC_FMWAIT);
880 	nfc->cur_timing = 0x1081;
881 	/* Disable randomizer and DMA. */
882 	writel(0, nfc->regs + nfc->cfg->randmz_off);
883 	writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
884 	writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
885 }
886 
887 static irqreturn_t rk_nfc_irq(int irq, void *id)
888 {
889 	struct rk_nfc *nfc = id;
890 	u32 sta, ien;
891 
892 	sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
893 	ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
894 
895 	if (!(sta & ien))
896 		return IRQ_NONE;
897 
898 	writel(sta, nfc->regs + nfc->cfg->int_clr_off);
899 	writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
900 
901 	complete(&nfc->done);
902 
903 	return IRQ_HANDLED;
904 }
905 
906 static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
907 {
908 	int ret;
909 
910 	if (!IS_ERR(nfc->nfc_clk)) {
911 		ret = clk_prepare_enable(nfc->nfc_clk);
912 		if (ret) {
913 			dev_err(dev, "failed to enable NFC clk\n");
914 			return ret;
915 		}
916 	}
917 
918 	ret = clk_prepare_enable(nfc->ahb_clk);
919 	if (ret) {
920 		dev_err(dev, "failed to enable ahb clk\n");
921 		clk_disable_unprepare(nfc->nfc_clk);
922 		return ret;
923 	}
924 
925 	return 0;
926 }
927 
928 static void rk_nfc_disable_clks(struct rk_nfc *nfc)
929 {
930 	clk_disable_unprepare(nfc->nfc_clk);
931 	clk_disable_unprepare(nfc->ahb_clk);
932 }
933 
934 static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
935 				 struct mtd_oob_region *oob_region)
936 {
937 	struct nand_chip *chip = mtd_to_nand(mtd);
938 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
939 
940 	if (section)
941 		return -ERANGE;
942 
943 	oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
944 	oob_region->offset = 2;
945 
946 	return 0;
947 }
948 
949 static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
950 				struct mtd_oob_region *oob_region)
951 {
952 	struct nand_chip *chip = mtd_to_nand(mtd);
953 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
954 
955 	if (section)
956 		return -ERANGE;
957 
958 	oob_region->length = mtd->oobsize - rknand->metadata_size;
959 	oob_region->offset = rknand->metadata_size;
960 
961 	return 0;
962 }
963 
964 static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
965 	.free = rk_nfc_ooblayout_free,
966 	.ecc = rk_nfc_ooblayout_ecc,
967 };
968 
969 static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
970 {
971 	struct nand_chip *chip = mtd_to_nand(mtd);
972 	struct rk_nfc *nfc = nand_get_controller_data(chip);
973 	struct nand_ecc_ctrl *ecc = &chip->ecc;
974 	const u8 *strengths = nfc->cfg->ecc_strengths;
975 	u8 max_strength, nfc_max_strength;
976 	int i;
977 
978 	nfc_max_strength = nfc->cfg->ecc_strengths[0];
979 	/* If optional dt settings not present. */
980 	if (!ecc->size || !ecc->strength ||
981 	    ecc->strength > nfc_max_strength) {
982 		chip->ecc.size = 1024;
983 		ecc->steps = mtd->writesize / ecc->size;
984 
985 		/*
986 		 * HW ECC always requests the number of ECC bytes per 1024 byte
987 		 * blocks. The first 4 OOB bytes are reserved for sys data.
988 		 */
989 		max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
990 				 fls(8 * 1024);
991 		if (max_strength > nfc_max_strength)
992 			max_strength = nfc_max_strength;
993 
994 		for (i = 0; i < 4; i++) {
995 			if (max_strength >= strengths[i])
996 				break;
997 		}
998 
999 		if (i >= 4) {
1000 			dev_err(nfc->dev, "unsupported ECC strength\n");
1001 			return -EOPNOTSUPP;
1002 		}
1003 
1004 		ecc->strength = strengths[i];
1005 	}
1006 	ecc->steps = mtd->writesize / ecc->size;
1007 	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
1008 
1009 	return 0;
1010 }
1011 
1012 static int rk_nfc_attach_chip(struct nand_chip *chip)
1013 {
1014 	struct mtd_info *mtd = nand_to_mtd(chip);
1015 	struct device *dev = mtd->dev.parent;
1016 	struct rk_nfc *nfc = nand_get_controller_data(chip);
1017 	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
1018 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1019 	int new_page_len, new_oob_len;
1020 	void *buf;
1021 	int ret;
1022 
1023 	if (chip->options & NAND_BUSWIDTH_16) {
1024 		dev_err(dev, "16 bits bus width not supported");
1025 		return -EINVAL;
1026 	}
1027 
1028 	if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1029 		return 0;
1030 
1031 	ret = rk_nfc_ecc_init(dev, mtd);
1032 	if (ret)
1033 		return ret;
1034 
1035 	rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
1036 
1037 	if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
1038 		dev_err(dev,
1039 			"driver needs at least %d bytes of meta data\n",
1040 			NFC_SYS_DATA_SIZE + 2);
1041 		return -EIO;
1042 	}
1043 
1044 	/* Check buffer first, avoid duplicate alloc buffer. */
1045 	new_page_len = mtd->writesize + mtd->oobsize;
1046 	if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
1047 		buf = krealloc(nfc->page_buf, new_page_len,
1048 			       GFP_KERNEL | GFP_DMA);
1049 		if (!buf)
1050 			return -ENOMEM;
1051 		nfc->page_buf = buf;
1052 		nfc->page_buf_size = new_page_len;
1053 	}
1054 
1055 	new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
1056 	if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
1057 		buf = krealloc(nfc->oob_buf, new_oob_len,
1058 			       GFP_KERNEL | GFP_DMA);
1059 		if (!buf) {
1060 			kfree(nfc->page_buf);
1061 			nfc->page_buf = NULL;
1062 			return -ENOMEM;
1063 		}
1064 		nfc->oob_buf = buf;
1065 		nfc->oob_buf_size = new_oob_len;
1066 	}
1067 
1068 	if (!nfc->page_buf) {
1069 		nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
1070 		if (!nfc->page_buf)
1071 			return -ENOMEM;
1072 		nfc->page_buf_size = new_page_len;
1073 	}
1074 
1075 	if (!nfc->oob_buf) {
1076 		nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
1077 		if (!nfc->oob_buf) {
1078 			kfree(nfc->page_buf);
1079 			nfc->page_buf = NULL;
1080 			return -ENOMEM;
1081 		}
1082 		nfc->oob_buf_size = new_oob_len;
1083 	}
1084 
1085 	chip->ecc.write_page_raw = rk_nfc_write_page_raw;
1086 	chip->ecc.write_page = rk_nfc_write_page_hwecc;
1087 	chip->ecc.write_oob = rk_nfc_write_oob;
1088 
1089 	chip->ecc.read_page_raw = rk_nfc_read_page_raw;
1090 	chip->ecc.read_page = rk_nfc_read_page_hwecc;
1091 	chip->ecc.read_oob = rk_nfc_read_oob;
1092 
1093 	return 0;
1094 }
1095 
1096 static const struct nand_controller_ops rk_nfc_controller_ops = {
1097 	.attach_chip = rk_nfc_attach_chip,
1098 	.exec_op = rk_nfc_exec_op,
1099 	.setup_interface = rk_nfc_setup_interface,
1100 };
1101 
1102 static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
1103 				 struct device_node *np)
1104 {
1105 	struct rk_nfc_nand_chip *rknand;
1106 	struct nand_chip *chip;
1107 	struct mtd_info *mtd;
1108 	int nsels;
1109 	u32 tmp;
1110 	int ret;
1111 	int i;
1112 
1113 	if (!of_get_property(np, "reg", &nsels))
1114 		return -ENODEV;
1115 	nsels /= sizeof(u32);
1116 	if (!nsels || nsels > NFC_MAX_NSELS) {
1117 		dev_err(dev, "invalid reg property size %d\n", nsels);
1118 		return -EINVAL;
1119 	}
1120 
1121 	rknand = devm_kzalloc(dev, struct_size(rknand, sels, nsels),
1122 			      GFP_KERNEL);
1123 	if (!rknand)
1124 		return -ENOMEM;
1125 
1126 	rknand->nsels = nsels;
1127 	for (i = 0; i < nsels; i++) {
1128 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1129 		if (ret) {
1130 			dev_err(dev, "reg property failure : %d\n", ret);
1131 			return ret;
1132 		}
1133 
1134 		if (tmp >= NFC_MAX_NSELS) {
1135 			dev_err(dev, "invalid CS: %u\n", tmp);
1136 			return -EINVAL;
1137 		}
1138 
1139 		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1140 			dev_err(dev, "CS %u already assigned\n", tmp);
1141 			return -EINVAL;
1142 		}
1143 
1144 		rknand->sels[i] = tmp;
1145 	}
1146 
1147 	chip = &rknand->chip;
1148 	chip->controller = &nfc->controller;
1149 
1150 	nand_set_flash_node(chip, np);
1151 
1152 	nand_set_controller_data(chip, nfc);
1153 
1154 	chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
1155 	chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1156 
1157 	/* Set default mode in case dt entry is missing. */
1158 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1159 
1160 	mtd = nand_to_mtd(chip);
1161 	mtd->owner = THIS_MODULE;
1162 	mtd->dev.parent = dev;
1163 
1164 	if (!mtd->name) {
1165 		dev_err(nfc->dev, "NAND label property is mandatory\n");
1166 		return -EINVAL;
1167 	}
1168 
1169 	mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
1170 	rk_nfc_hw_init(nfc);
1171 	ret = nand_scan(chip, nsels);
1172 	if (ret)
1173 		return ret;
1174 
1175 	if (chip->options & NAND_IS_BOOT_MEDIUM) {
1176 		ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
1177 		rknand->boot_blks = ret ? 0 : tmp;
1178 
1179 		ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
1180 					   &tmp);
1181 		rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
1182 	}
1183 
1184 	ret = mtd_device_register(mtd, NULL, 0);
1185 	if (ret) {
1186 		dev_err(dev, "MTD parse partition error\n");
1187 		nand_cleanup(chip);
1188 		return ret;
1189 	}
1190 
1191 	list_add_tail(&rknand->node, &nfc->chips);
1192 
1193 	return 0;
1194 }
1195 
1196 static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
1197 {
1198 	struct rk_nfc_nand_chip *rknand, *tmp;
1199 	struct nand_chip *chip;
1200 	int ret;
1201 
1202 	list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
1203 		chip = &rknand->chip;
1204 		ret = mtd_device_unregister(nand_to_mtd(chip));
1205 		WARN_ON(ret);
1206 		nand_cleanup(chip);
1207 		list_del(&rknand->node);
1208 	}
1209 }
1210 
1211 static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
1212 {
1213 	struct device_node *np = dev->of_node, *nand_np;
1214 	int nchips = of_get_child_count(np);
1215 	int ret;
1216 
1217 	if (!nchips || nchips > NFC_MAX_NSELS) {
1218 		dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
1219 			nchips);
1220 		return -EINVAL;
1221 	}
1222 
1223 	for_each_child_of_node(np, nand_np) {
1224 		ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
1225 		if (ret) {
1226 			of_node_put(nand_np);
1227 			rk_nfc_chips_cleanup(nfc);
1228 			return ret;
1229 		}
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 static struct nfc_cfg nfc_v6_cfg = {
1236 		.type			= NFC_V6,
1237 		.ecc_strengths		= {60, 40, 24, 16},
1238 		.ecc_cfgs		= {
1239 			0x00040011, 0x00040001, 0x00000011, 0x00000001,
1240 		},
1241 		.flctl_off		= 0x08,
1242 		.bchctl_off		= 0x0C,
1243 		.dma_cfg_off		= 0x10,
1244 		.dma_data_buf_off	= 0x14,
1245 		.dma_oob_buf_off	= 0x18,
1246 		.dma_st_off		= 0x1C,
1247 		.bch_st_off		= 0x20,
1248 		.randmz_off		= 0x150,
1249 		.int_en_off		= 0x16C,
1250 		.int_clr_off		= 0x170,
1251 		.int_st_off		= 0x174,
1252 		.oob0_off		= 0x200,
1253 		.oob1_off		= 0x230,
1254 		.ecc0			= {
1255 			.err_flag_bit	= 2,
1256 			.low		= 3,
1257 			.low_mask	= 0x1F,
1258 			.low_bn		= 5,
1259 			.high		= 27,
1260 			.high_mask	= 0x1,
1261 		},
1262 		.ecc1			= {
1263 			.err_flag_bit	= 15,
1264 			.low		= 16,
1265 			.low_mask	= 0x1F,
1266 			.low_bn		= 5,
1267 			.high		= 29,
1268 			.high_mask	= 0x1,
1269 		},
1270 };
1271 
1272 static struct nfc_cfg nfc_v8_cfg = {
1273 		.type			= NFC_V8,
1274 		.ecc_strengths		= {16, 16, 16, 16},
1275 		.ecc_cfgs		= {
1276 			0x00000001, 0x00000001, 0x00000001, 0x00000001,
1277 		},
1278 		.flctl_off		= 0x08,
1279 		.bchctl_off		= 0x0C,
1280 		.dma_cfg_off		= 0x10,
1281 		.dma_data_buf_off	= 0x14,
1282 		.dma_oob_buf_off	= 0x18,
1283 		.dma_st_off		= 0x1C,
1284 		.bch_st_off		= 0x20,
1285 		.randmz_off		= 0x150,
1286 		.int_en_off		= 0x16C,
1287 		.int_clr_off		= 0x170,
1288 		.int_st_off		= 0x174,
1289 		.oob0_off		= 0x200,
1290 		.oob1_off		= 0x230,
1291 		.ecc0			= {
1292 			.err_flag_bit	= 2,
1293 			.low		= 3,
1294 			.low_mask	= 0x1F,
1295 			.low_bn		= 5,
1296 			.high		= 27,
1297 			.high_mask	= 0x1,
1298 		},
1299 		.ecc1			= {
1300 			.err_flag_bit	= 15,
1301 			.low		= 16,
1302 			.low_mask	= 0x1F,
1303 			.low_bn		= 5,
1304 			.high		= 29,
1305 			.high_mask	= 0x1,
1306 		},
1307 };
1308 
1309 static struct nfc_cfg nfc_v9_cfg = {
1310 		.type			= NFC_V9,
1311 		.ecc_strengths		= {70, 60, 40, 16},
1312 		.ecc_cfgs		= {
1313 			0x00000001, 0x06000001, 0x04000001, 0x02000001,
1314 		},
1315 		.flctl_off		= 0x10,
1316 		.bchctl_off		= 0x20,
1317 		.dma_cfg_off		= 0x30,
1318 		.dma_data_buf_off	= 0x34,
1319 		.dma_oob_buf_off	= 0x38,
1320 		.dma_st_off		= 0x3C,
1321 		.bch_st_off		= 0x150,
1322 		.randmz_off		= 0x208,
1323 		.int_en_off		= 0x120,
1324 		.int_clr_off		= 0x124,
1325 		.int_st_off		= 0x128,
1326 		.oob0_off		= 0x200,
1327 		.oob1_off		= 0x204,
1328 		.ecc0			= {
1329 			.err_flag_bit	= 2,
1330 			.low		= 3,
1331 			.low_mask	= 0x7F,
1332 			.low_bn		= 7,
1333 			.high		= 0,
1334 			.high_mask	= 0x0,
1335 		},
1336 		.ecc1			= {
1337 			.err_flag_bit	= 18,
1338 			.low		= 19,
1339 			.low_mask	= 0x7F,
1340 			.low_bn		= 7,
1341 			.high		= 0,
1342 			.high_mask	= 0x0,
1343 		},
1344 };
1345 
1346 static const struct of_device_id rk_nfc_id_table[] = {
1347 	{
1348 		.compatible = "rockchip,px30-nfc",
1349 		.data = &nfc_v9_cfg
1350 	},
1351 	{
1352 		.compatible = "rockchip,rk2928-nfc",
1353 		.data = &nfc_v6_cfg
1354 	},
1355 	{
1356 		.compatible = "rockchip,rv1108-nfc",
1357 		.data = &nfc_v8_cfg
1358 	},
1359 	{ /* sentinel */ }
1360 };
1361 MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
1362 
1363 static int rk_nfc_probe(struct platform_device *pdev)
1364 {
1365 	struct device *dev = &pdev->dev;
1366 	struct rk_nfc *nfc;
1367 	int ret, irq;
1368 
1369 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1370 	if (!nfc)
1371 		return -ENOMEM;
1372 
1373 	nand_controller_init(&nfc->controller);
1374 	INIT_LIST_HEAD(&nfc->chips);
1375 	nfc->controller.ops = &rk_nfc_controller_ops;
1376 
1377 	nfc->cfg = of_device_get_match_data(dev);
1378 	nfc->dev = dev;
1379 
1380 	init_completion(&nfc->done);
1381 
1382 	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
1383 	if (IS_ERR(nfc->regs)) {
1384 		ret = PTR_ERR(nfc->regs);
1385 		goto release_nfc;
1386 	}
1387 
1388 	nfc->nfc_clk = devm_clk_get(dev, "nfc");
1389 	if (IS_ERR(nfc->nfc_clk)) {
1390 		dev_dbg(dev, "no NFC clk\n");
1391 		/* Some earlier models, such as rk3066, have no NFC clk. */
1392 	}
1393 
1394 	nfc->ahb_clk = devm_clk_get(dev, "ahb");
1395 	if (IS_ERR(nfc->ahb_clk)) {
1396 		dev_err(dev, "no ahb clk\n");
1397 		ret = PTR_ERR(nfc->ahb_clk);
1398 		goto release_nfc;
1399 	}
1400 
1401 	ret = rk_nfc_enable_clks(dev, nfc);
1402 	if (ret)
1403 		goto release_nfc;
1404 
1405 	irq = platform_get_irq(pdev, 0);
1406 	if (irq < 0) {
1407 		ret = -EINVAL;
1408 		goto clk_disable;
1409 	}
1410 
1411 	writel(0, nfc->regs + nfc->cfg->int_en_off);
1412 	ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
1413 	if (ret) {
1414 		dev_err(dev, "failed to request NFC irq\n");
1415 		goto clk_disable;
1416 	}
1417 
1418 	platform_set_drvdata(pdev, nfc);
1419 
1420 	ret = rk_nfc_nand_chips_init(dev, nfc);
1421 	if (ret) {
1422 		dev_err(dev, "failed to init NAND chips\n");
1423 		goto clk_disable;
1424 	}
1425 	return 0;
1426 
1427 clk_disable:
1428 	rk_nfc_disable_clks(nfc);
1429 release_nfc:
1430 	return ret;
1431 }
1432 
1433 static void rk_nfc_remove(struct platform_device *pdev)
1434 {
1435 	struct rk_nfc *nfc = platform_get_drvdata(pdev);
1436 
1437 	kfree(nfc->page_buf);
1438 	kfree(nfc->oob_buf);
1439 	rk_nfc_chips_cleanup(nfc);
1440 	rk_nfc_disable_clks(nfc);
1441 }
1442 
1443 static int __maybe_unused rk_nfc_suspend(struct device *dev)
1444 {
1445 	struct rk_nfc *nfc = dev_get_drvdata(dev);
1446 
1447 	rk_nfc_disable_clks(nfc);
1448 
1449 	return 0;
1450 }
1451 
1452 static int __maybe_unused rk_nfc_resume(struct device *dev)
1453 {
1454 	struct rk_nfc *nfc = dev_get_drvdata(dev);
1455 	struct rk_nfc_nand_chip *rknand;
1456 	struct nand_chip *chip;
1457 	int ret;
1458 	u32 i;
1459 
1460 	ret = rk_nfc_enable_clks(dev, nfc);
1461 	if (ret)
1462 		return ret;
1463 
1464 	/* Reset NAND chip if VCC was powered off. */
1465 	list_for_each_entry(rknand, &nfc->chips, node) {
1466 		chip = &rknand->chip;
1467 		for (i = 0; i < rknand->nsels; i++)
1468 			nand_reset(chip, i);
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 static const struct dev_pm_ops rk_nfc_pm_ops = {
1475 	SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
1476 };
1477 
1478 static struct platform_driver rk_nfc_driver = {
1479 	.probe = rk_nfc_probe,
1480 	.remove_new = rk_nfc_remove,
1481 	.driver = {
1482 		.name = "rockchip-nfc",
1483 		.of_match_table = rk_nfc_id_table,
1484 		.pm = &rk_nfc_pm_ops,
1485 	},
1486 };
1487 
1488 module_platform_driver(rk_nfc_driver);
1489 
1490 MODULE_LICENSE("Dual MIT/GPL");
1491 MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
1492 MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
1493 MODULE_ALIAS("platform:rockchip-nand-controller");
1494