1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Rockchip NAND Flash controller driver. 4 * Copyright (C) 2020 Rockchip Inc. 5 * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com> 6 */ 7 8 #include <linux/clk.h> 9 #include <linux/delay.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/dmaengine.h> 12 #include <linux/interrupt.h> 13 #include <linux/iopoll.h> 14 #include <linux/module.h> 15 #include <linux/mtd/mtd.h> 16 #include <linux/mtd/rawnand.h> 17 #include <linux/of.h> 18 #include <linux/platform_device.h> 19 #include <linux/slab.h> 20 21 /* 22 * NFC Page Data Layout: 23 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + 24 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + 25 * ...... 26 * NAND Page Data Layout: 27 * 1024 * n data + m Bytes oob 28 * Original Bad Block Mask Location: 29 * First byte of oob(spare). 30 * nand_chip->oob_poi data layout: 31 * 4Bytes sys data + .... + 4Bytes sys data + ECC data. 32 */ 33 34 /* NAND controller register definition */ 35 #define NFC_READ (0) 36 #define NFC_WRITE (1) 37 38 #define NFC_FMCTL (0x00) 39 #define FMCTL_CE_SEL_M 0xFF 40 #define FMCTL_CE_SEL(x) (1 << (x)) 41 #define FMCTL_WP BIT(8) 42 #define FMCTL_RDY BIT(9) 43 44 #define NFC_FMWAIT (0x04) 45 #define FLCTL_RST BIT(0) 46 #define FLCTL_WR (1) /* 0: read, 1: write */ 47 #define FLCTL_XFER_ST BIT(2) 48 #define FLCTL_XFER_EN BIT(3) 49 #define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ 50 #define FLCTL_XFER_READY BIT(20) 51 #define FLCTL_XFER_SECTOR (22) 52 #define FLCTL_TOG_FIX BIT(29) 53 54 #define BCHCTL_BANK_M (7 << 5) 55 #define BCHCTL_BANK (5) 56 57 #define DMA_ST BIT(0) 58 #define DMA_WR (1) /* 0: write, 1: read */ 59 #define DMA_EN BIT(2) 60 #define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ 61 #define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ 62 #define DMA_INC_NUM (9) /* 1 - 16 */ 63 64 #define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ 65 (((x) >> (e).high) & (e).high_mask) << (e).low_bn) 66 #define INT_DMA BIT(0) 67 #define NFC_BANK (0x800) 68 #define NFC_BANK_STEP (0x100) 69 #define BANK_DATA (0x00) 70 #define BANK_ADDR (0x04) 71 #define BANK_CMD (0x08) 72 #define NFC_SRAM0 (0x1000) 73 #define NFC_SRAM1 (0x1400) 74 #define NFC_SRAM_SIZE (0x400) 75 #define NFC_TIMEOUT (500000) 76 #define NFC_MAX_OOB_PER_STEP 128 77 #define NFC_MIN_OOB_PER_STEP 64 78 #define MAX_DATA_SIZE 0xFFFC 79 #define MAX_ADDRESS_CYC 6 80 #define NFC_ECC_MAX_MODES 4 81 #define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ 82 #define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/ 83 #define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ 84 #define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) 85 86 enum nfc_type { 87 NFC_V6, 88 NFC_V8, 89 NFC_V9, 90 }; 91 92 /** 93 * struct rk_ecc_cnt_status: represent a ecc status data. 94 * @err_flag_bit: error flag bit index at register. 95 * @low: ECC count low bit index at register. 96 * @low_mask: mask bit. 97 * @low_bn: ECC count low bit number. 98 * @high: ECC count high bit index at register. 99 * @high_mask: mask bit 100 */ 101 struct rk_ecc_cnt_status { 102 u8 err_flag_bit; 103 u8 low; 104 u8 low_mask; 105 u8 low_bn; 106 u8 high; 107 u8 high_mask; 108 }; 109 110 /** 111 * struct nfc_cfg: Rockchip NAND controller configuration 112 * @type: NFC version 113 * @ecc_strengths: ECC strengths 114 * @ecc_cfgs: ECC config values 115 * @flctl_off: FLCTL register offset 116 * @bchctl_off: BCHCTL register offset 117 * @dma_data_buf_off: DMA_DATA_BUF register offset 118 * @dma_oob_buf_off: DMA_OOB_BUF register offset 119 * @dma_cfg_off: DMA_CFG register offset 120 * @dma_st_off: DMA_ST register offset 121 * @bch_st_off: BCG_ST register offset 122 * @randmz_off: RANDMZ register offset 123 * @int_en_off: interrupt enable register offset 124 * @int_clr_off: interrupt clean register offset 125 * @int_st_off: interrupt status register offset 126 * @oob0_off: oob0 register offset 127 * @oob1_off: oob1 register offset 128 * @ecc0: represent ECC0 status data 129 * @ecc1: represent ECC1 status data 130 */ 131 struct nfc_cfg { 132 enum nfc_type type; 133 u8 ecc_strengths[NFC_ECC_MAX_MODES]; 134 u32 ecc_cfgs[NFC_ECC_MAX_MODES]; 135 u32 flctl_off; 136 u32 bchctl_off; 137 u32 dma_cfg_off; 138 u32 dma_data_buf_off; 139 u32 dma_oob_buf_off; 140 u32 dma_st_off; 141 u32 bch_st_off; 142 u32 randmz_off; 143 u32 int_en_off; 144 u32 int_clr_off; 145 u32 int_st_off; 146 u32 oob0_off; 147 u32 oob1_off; 148 struct rk_ecc_cnt_status ecc0; 149 struct rk_ecc_cnt_status ecc1; 150 }; 151 152 struct rk_nfc_nand_chip { 153 struct list_head node; 154 struct nand_chip chip; 155 156 u16 boot_blks; 157 u16 metadata_size; 158 u32 boot_ecc; 159 u32 timing; 160 161 u8 nsels; 162 u8 sels[] __counted_by(nsels); 163 }; 164 165 struct rk_nfc { 166 struct nand_controller controller; 167 const struct nfc_cfg *cfg; 168 struct device *dev; 169 170 struct clk *nfc_clk; 171 struct clk *ahb_clk; 172 void __iomem *regs; 173 174 u32 selected_bank; 175 u32 band_offset; 176 u32 cur_ecc; 177 u32 cur_timing; 178 179 struct completion done; 180 struct list_head chips; 181 182 u8 *page_buf; 183 u32 *oob_buf; 184 u32 page_buf_size; 185 u32 oob_buf_size; 186 187 unsigned long assigned_cs; 188 }; 189 190 static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip) 191 { 192 return container_of(chip, struct rk_nfc_nand_chip, chip); 193 } 194 195 static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i) 196 { 197 return (u8 *)p + i * chip->ecc.size; 198 } 199 200 static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i) 201 { 202 u8 *poi; 203 204 poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; 205 206 return poi; 207 } 208 209 static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i) 210 { 211 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 212 u8 *poi; 213 214 poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i; 215 216 return poi; 217 } 218 219 static inline int rk_nfc_data_len(struct nand_chip *chip) 220 { 221 return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE; 222 } 223 224 static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) 225 { 226 struct rk_nfc *nfc = nand_get_controller_data(chip); 227 228 return nfc->page_buf + i * rk_nfc_data_len(chip); 229 } 230 231 static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) 232 { 233 struct rk_nfc *nfc = nand_get_controller_data(chip); 234 235 return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size; 236 } 237 238 static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength) 239 { 240 struct rk_nfc *nfc = nand_get_controller_data(chip); 241 u32 reg, i; 242 243 for (i = 0; i < NFC_ECC_MAX_MODES; i++) { 244 if (strength == nfc->cfg->ecc_strengths[i]) { 245 reg = nfc->cfg->ecc_cfgs[i]; 246 break; 247 } 248 } 249 250 if (i >= NFC_ECC_MAX_MODES) 251 return -EINVAL; 252 253 writel(reg, nfc->regs + nfc->cfg->bchctl_off); 254 255 /* Save chip ECC setting */ 256 nfc->cur_ecc = strength; 257 258 return 0; 259 } 260 261 static void rk_nfc_select_chip(struct nand_chip *chip, int cs) 262 { 263 struct rk_nfc *nfc = nand_get_controller_data(chip); 264 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 265 struct nand_ecc_ctrl *ecc = &chip->ecc; 266 u32 val; 267 268 if (cs < 0) { 269 nfc->selected_bank = -1; 270 /* Deselect the currently selected target. */ 271 val = readl_relaxed(nfc->regs + NFC_FMCTL); 272 val &= ~FMCTL_CE_SEL_M; 273 writel(val, nfc->regs + NFC_FMCTL); 274 return; 275 } 276 277 nfc->selected_bank = rknand->sels[cs]; 278 nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; 279 280 val = readl_relaxed(nfc->regs + NFC_FMCTL); 281 val &= ~FMCTL_CE_SEL_M; 282 val |= FMCTL_CE_SEL(nfc->selected_bank); 283 284 writel(val, nfc->regs + NFC_FMCTL); 285 286 /* 287 * Compare current chip timing with selected chip timing and 288 * change if needed. 289 */ 290 if (nfc->cur_timing != rknand->timing) { 291 writel(rknand->timing, nfc->regs + NFC_FMWAIT); 292 nfc->cur_timing = rknand->timing; 293 } 294 295 /* 296 * Compare current chip ECC setting with selected chip ECC setting and 297 * change if needed. 298 */ 299 if (nfc->cur_ecc != ecc->strength) 300 rk_nfc_hw_ecc_setup(chip, ecc->strength); 301 } 302 303 static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) 304 { 305 int rc; 306 u32 val; 307 308 rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, 309 val & FMCTL_RDY, 10, NFC_TIMEOUT); 310 311 return rc; 312 } 313 314 static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) 315 { 316 int i; 317 318 for (i = 0; i < len; i++) 319 buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + 320 BANK_DATA); 321 } 322 323 static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) 324 { 325 int i; 326 327 for (i = 0; i < len; i++) 328 writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); 329 } 330 331 static int rk_nfc_cmd(struct nand_chip *chip, 332 const struct nand_subop *subop) 333 { 334 struct rk_nfc *nfc = nand_get_controller_data(chip); 335 unsigned int i, j, remaining, start; 336 int reg_offset = nfc->band_offset; 337 u8 *inbuf = NULL; 338 const u8 *outbuf; 339 u32 cnt = 0; 340 int ret = 0; 341 342 for (i = 0; i < subop->ninstrs; i++) { 343 const struct nand_op_instr *instr = &subop->instrs[i]; 344 345 switch (instr->type) { 346 case NAND_OP_CMD_INSTR: 347 writeb(instr->ctx.cmd.opcode, 348 nfc->regs + reg_offset + BANK_CMD); 349 break; 350 351 case NAND_OP_ADDR_INSTR: 352 remaining = nand_subop_get_num_addr_cyc(subop, i); 353 start = nand_subop_get_addr_start_off(subop, i); 354 355 for (j = 0; j < 8 && j + start < remaining; j++) 356 writeb(instr->ctx.addr.addrs[j + start], 357 nfc->regs + reg_offset + BANK_ADDR); 358 break; 359 360 case NAND_OP_DATA_IN_INSTR: 361 case NAND_OP_DATA_OUT_INSTR: 362 start = nand_subop_get_data_start_off(subop, i); 363 cnt = nand_subop_get_data_len(subop, i); 364 365 if (instr->type == NAND_OP_DATA_OUT_INSTR) { 366 outbuf = instr->ctx.data.buf.out + start; 367 rk_nfc_write_buf(nfc, outbuf, cnt); 368 } else { 369 inbuf = instr->ctx.data.buf.in + start; 370 rk_nfc_read_buf(nfc, inbuf, cnt); 371 } 372 break; 373 374 case NAND_OP_WAITRDY_INSTR: 375 if (rk_nfc_wait_ioready(nfc) < 0) { 376 ret = -ETIMEDOUT; 377 dev_err(nfc->dev, "IO not ready\n"); 378 } 379 break; 380 } 381 } 382 383 return ret; 384 } 385 386 static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( 387 NAND_OP_PARSER_PATTERN( 388 rk_nfc_cmd, 389 NAND_OP_PARSER_PAT_CMD_ELEM(true), 390 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), 391 NAND_OP_PARSER_PAT_CMD_ELEM(true), 392 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 393 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), 394 NAND_OP_PARSER_PATTERN( 395 rk_nfc_cmd, 396 NAND_OP_PARSER_PAT_CMD_ELEM(true), 397 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), 398 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), 399 NAND_OP_PARSER_PAT_CMD_ELEM(true), 400 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 401 ); 402 403 static int rk_nfc_exec_op(struct nand_chip *chip, 404 const struct nand_operation *op, 405 bool check_only) 406 { 407 if (!check_only) 408 rk_nfc_select_chip(chip, op->cs); 409 410 return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, 411 check_only); 412 } 413 414 static int rk_nfc_setup_interface(struct nand_chip *chip, int target, 415 const struct nand_interface_config *conf) 416 { 417 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 418 struct rk_nfc *nfc = nand_get_controller_data(chip); 419 const struct nand_sdr_timings *timings; 420 u32 rate, tc2rw, trwpw, trw2c; 421 u32 temp; 422 423 timings = nand_get_sdr_timings(conf); 424 if (IS_ERR(timings)) 425 return -EOPNOTSUPP; 426 427 if (target < 0) 428 return 0; 429 430 if (IS_ERR(nfc->nfc_clk)) 431 rate = clk_get_rate(nfc->ahb_clk); 432 else 433 rate = clk_get_rate(nfc->nfc_clk); 434 435 /* Turn clock rate into kHz. */ 436 rate /= 1000; 437 438 tc2rw = 1; 439 trw2c = 1; 440 441 trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; 442 trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); 443 444 temp = timings->tREA_max / 1000; 445 temp = DIV_ROUND_UP(temp * rate, 1000000); 446 447 if (trwpw < temp) 448 trwpw = temp; 449 450 /* 451 * ACCON: access timing control register 452 * ------------------------------------- 453 * 31:18: reserved 454 * 17:12: csrw, clock cycles from the falling edge of CSn to the 455 * falling edge of RDn or WRn 456 * 11:11: reserved 457 * 10:05: rwpw, the width of RDn or WRn in processor clock cycles 458 * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the 459 * rising edge of CSn 460 */ 461 462 /* Save chip timing */ 463 rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c); 464 465 return 0; 466 } 467 468 static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, 469 dma_addr_t dma_data, dma_addr_t dma_oob) 470 { 471 u32 dma_reg, fl_reg, bch_reg; 472 473 dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | 474 (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); 475 476 fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | 477 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; 478 479 if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { 480 bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); 481 bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | 482 (nfc->selected_bank << BCHCTL_BANK); 483 writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); 484 } 485 486 writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); 487 writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); 488 writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); 489 writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); 490 fl_reg |= FLCTL_XFER_ST; 491 writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); 492 } 493 494 static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) 495 { 496 void __iomem *ptr; 497 u32 reg; 498 499 ptr = nfc->regs + nfc->cfg->flctl_off; 500 501 return readl_relaxed_poll_timeout(ptr, reg, 502 reg & FLCTL_XFER_READY, 503 10, NFC_TIMEOUT); 504 } 505 506 static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, 507 int oob_on, int page) 508 { 509 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 510 struct rk_nfc *nfc = nand_get_controller_data(chip); 511 struct mtd_info *mtd = nand_to_mtd(chip); 512 struct nand_ecc_ctrl *ecc = &chip->ecc; 513 int i, pages_per_blk; 514 515 pages_per_blk = mtd->erasesize / mtd->writesize; 516 if ((chip->options & NAND_IS_BOOT_MEDIUM) && 517 (page < (pages_per_blk * rknand->boot_blks)) && 518 rknand->boot_ecc != ecc->strength) { 519 /* 520 * There's currently no method to notify the MTD framework that 521 * a different ECC strength is in use for the boot blocks. 522 */ 523 return -EIO; 524 } 525 526 if (!buf) 527 memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize); 528 529 for (i = 0; i < ecc->steps; i++) { 530 /* Copy data to the NFC buffer. */ 531 if (buf) 532 memcpy(rk_nfc_data_ptr(chip, i), 533 rk_nfc_buf_to_data_ptr(chip, buf, i), 534 ecc->size); 535 /* 536 * The first four bytes of OOB are reserved for the 537 * boot ROM. In some debugging cases, such as with a 538 * read, erase and write back test these 4 bytes stored 539 * in OOB also need to be written back. 540 * 541 * The function nand_block_bad detects bad blocks like: 542 * 543 * bad = chip->oob_poi[chip->badblockpos]; 544 * 545 * chip->badblockpos == 0 for a large page NAND Flash, 546 * so chip->oob_poi[0] is the bad block mask (BBM). 547 * 548 * The OOB data layout on the NFC is: 549 * 550 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... 551 * 552 * or 553 * 554 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... 555 * 556 * The code here just swaps the first 4 bytes with the last 557 * 4 bytes without losing any data. 558 * 559 * The chip->oob_poi data layout: 560 * 561 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 562 * 563 * The rk_nfc_ooblayout_free() function already has reserved 564 * these 4 bytes together with 2 bytes for BBM 565 * by reducing it's length: 566 * 567 * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; 568 */ 569 if (!i) 570 memcpy(rk_nfc_oob_ptr(chip, i), 571 rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), 572 NFC_SYS_DATA_SIZE); 573 else 574 memcpy(rk_nfc_oob_ptr(chip, i), 575 rk_nfc_buf_to_oob_ptr(chip, i - 1), 576 NFC_SYS_DATA_SIZE); 577 /* Copy ECC data to the NFC buffer. */ 578 memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, 579 rk_nfc_buf_to_oob_ecc_ptr(chip, i), 580 ecc->bytes); 581 } 582 583 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 584 rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); 585 return nand_prog_page_end_op(chip); 586 } 587 588 static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, 589 int oob_on, int page) 590 { 591 struct mtd_info *mtd = nand_to_mtd(chip); 592 struct rk_nfc *nfc = nand_get_controller_data(chip); 593 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 594 struct nand_ecc_ctrl *ecc = &chip->ecc; 595 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : 596 NFC_MIN_OOB_PER_STEP; 597 int pages_per_blk = mtd->erasesize / mtd->writesize; 598 int ret = 0, i, boot_rom_mode = 0; 599 dma_addr_t dma_data, dma_oob; 600 u32 tmp; 601 u8 *oob; 602 603 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 604 605 if (buf) 606 memcpy(nfc->page_buf, buf, mtd->writesize); 607 else 608 memset(nfc->page_buf, 0xFF, mtd->writesize); 609 610 /* 611 * The first blocks (4, 8 or 16 depending on the device) are used 612 * by the boot ROM and the first 32 bits of OOB need to link to 613 * the next page address in the same block. We can't directly copy 614 * OOB data from the MTD framework, because this page address 615 * conflicts for example with the bad block marker (BBM), 616 * so we shift all OOB data including the BBM with 4 byte positions. 617 * As a consequence the OOB size available to the MTD framework is 618 * also reduced with 4 bytes. 619 * 620 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... 621 * 622 * If a NAND is not a boot medium or the page is not a boot block, 623 * the first 4 bytes are left untouched by writing 0xFF to them. 624 * 625 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... 626 * 627 * The code here just swaps the first 4 bytes with the last 628 * 4 bytes without losing any data. 629 * 630 * The chip->oob_poi data layout: 631 * 632 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 633 * 634 * Configure the ECC algorithm supported by the boot ROM. 635 */ 636 if ((page < (pages_per_blk * rknand->boot_blks)) && 637 (chip->options & NAND_IS_BOOT_MEDIUM)) { 638 boot_rom_mode = 1; 639 if (rknand->boot_ecc != ecc->strength) 640 rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); 641 } 642 643 for (i = 0; i < ecc->steps; i++) { 644 if (!i) 645 oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE; 646 else 647 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; 648 649 tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24; 650 651 if (nfc->cfg->type == NFC_V9) 652 nfc->oob_buf[i] = tmp; 653 else 654 nfc->oob_buf[i * (oob_step / 4)] = tmp; 655 } 656 657 dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, 658 mtd->writesize, DMA_TO_DEVICE); 659 if (dma_mapping_error(nfc->dev, dma_data)) 660 return -ENOMEM; 661 662 dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, 663 ecc->steps * oob_step, 664 DMA_TO_DEVICE); 665 if (dma_mapping_error(nfc->dev, dma_oob)) { 666 dma_unmap_single(nfc->dev, dma_data, mtd->writesize, DMA_TO_DEVICE); 667 return -ENOMEM; 668 } 669 670 reinit_completion(&nfc->done); 671 writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); 672 673 rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, 674 dma_oob); 675 ret = wait_for_completion_timeout(&nfc->done, 676 msecs_to_jiffies(100)); 677 if (!ret) 678 dev_warn(nfc->dev, "write: wait dma done timeout.\n"); 679 /* 680 * Whether the DMA transfer is completed or not. The driver 681 * needs to check the NFC`s status register to see if the data 682 * transfer was completed. 683 */ 684 ret = rk_nfc_wait_for_xfer_done(nfc); 685 686 dma_unmap_single(nfc->dev, dma_data, mtd->writesize, 687 DMA_TO_DEVICE); 688 dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, 689 DMA_TO_DEVICE); 690 691 if (boot_rom_mode && rknand->boot_ecc != ecc->strength) 692 rk_nfc_hw_ecc_setup(chip, ecc->strength); 693 694 if (ret) { 695 dev_err(nfc->dev, "write: wait transfer done timeout.\n"); 696 return -ETIMEDOUT; 697 } 698 699 return nand_prog_page_end_op(chip); 700 } 701 702 static int rk_nfc_write_oob(struct nand_chip *chip, int page) 703 { 704 return rk_nfc_write_page_hwecc(chip, NULL, 1, page); 705 } 706 707 static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, 708 int page) 709 { 710 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 711 struct rk_nfc *nfc = nand_get_controller_data(chip); 712 struct mtd_info *mtd = nand_to_mtd(chip); 713 struct nand_ecc_ctrl *ecc = &chip->ecc; 714 int i, pages_per_blk; 715 716 pages_per_blk = mtd->erasesize / mtd->writesize; 717 if ((chip->options & NAND_IS_BOOT_MEDIUM) && 718 (page < (pages_per_blk * rknand->boot_blks)) && 719 rknand->boot_ecc != ecc->strength) { 720 /* 721 * There's currently no method to notify the MTD framework that 722 * a different ECC strength is in use for the boot blocks. 723 */ 724 return -EIO; 725 } 726 727 nand_read_page_op(chip, page, 0, NULL, 0); 728 rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize); 729 for (i = 0; i < ecc->steps; i++) { 730 /* 731 * The first four bytes of OOB are reserved for the 732 * boot ROM. In some debugging cases, such as with a read, 733 * erase and write back test, these 4 bytes also must be 734 * saved somewhere, otherwise this information will be 735 * lost during a write back. 736 */ 737 if (!i) 738 memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), 739 rk_nfc_oob_ptr(chip, i), 740 NFC_SYS_DATA_SIZE); 741 else 742 memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1), 743 rk_nfc_oob_ptr(chip, i), 744 NFC_SYS_DATA_SIZE); 745 746 /* Copy ECC data from the NFC buffer. */ 747 memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i), 748 rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, 749 ecc->bytes); 750 751 /* Copy data from the NFC buffer. */ 752 if (buf) 753 memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i), 754 rk_nfc_data_ptr(chip, i), 755 ecc->size); 756 } 757 758 return 0; 759 } 760 761 static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on, 762 int page) 763 { 764 struct mtd_info *mtd = nand_to_mtd(chip); 765 struct rk_nfc *nfc = nand_get_controller_data(chip); 766 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 767 struct nand_ecc_ctrl *ecc = &chip->ecc; 768 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : 769 NFC_MIN_OOB_PER_STEP; 770 int pages_per_blk = mtd->erasesize / mtd->writesize; 771 dma_addr_t dma_data, dma_oob; 772 int ret = 0, i, cnt, boot_rom_mode = 0; 773 int max_bitflips = 0, bch_st, ecc_fail = 0; 774 u8 *oob; 775 u32 tmp; 776 777 nand_read_page_op(chip, page, 0, NULL, 0); 778 779 dma_data = dma_map_single(nfc->dev, nfc->page_buf, 780 mtd->writesize, 781 DMA_FROM_DEVICE); 782 if (dma_mapping_error(nfc->dev, dma_data)) 783 return -ENOMEM; 784 785 dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, 786 ecc->steps * oob_step, 787 DMA_FROM_DEVICE); 788 if (dma_mapping_error(nfc->dev, dma_oob)) { 789 dma_unmap_single(nfc->dev, dma_data, mtd->writesize, 790 DMA_FROM_DEVICE); 791 return -ENOMEM; 792 } 793 794 /* 795 * The first blocks (4, 8 or 16 depending on the device) 796 * are used by the boot ROM. 797 * Configure the ECC algorithm supported by the boot ROM. 798 */ 799 if ((page < (pages_per_blk * rknand->boot_blks)) && 800 (chip->options & NAND_IS_BOOT_MEDIUM)) { 801 boot_rom_mode = 1; 802 if (rknand->boot_ecc != ecc->strength) 803 rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); 804 } 805 806 reinit_completion(&nfc->done); 807 writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); 808 rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, 809 dma_oob); 810 ret = wait_for_completion_timeout(&nfc->done, 811 msecs_to_jiffies(100)); 812 if (!ret) 813 dev_warn(nfc->dev, "read: wait dma done timeout.\n"); 814 /* 815 * Whether the DMA transfer is completed or not. The driver 816 * needs to check the NFC`s status register to see if the data 817 * transfer was completed. 818 */ 819 ret = rk_nfc_wait_for_xfer_done(nfc); 820 821 dma_unmap_single(nfc->dev, dma_data, mtd->writesize, 822 DMA_FROM_DEVICE); 823 dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, 824 DMA_FROM_DEVICE); 825 826 if (ret) { 827 ret = -ETIMEDOUT; 828 dev_err(nfc->dev, "read: wait transfer done timeout.\n"); 829 goto timeout_err; 830 } 831 832 for (i = 0; i < ecc->steps; i++) { 833 if (!i) 834 oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE; 835 else 836 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; 837 838 if (nfc->cfg->type == NFC_V9) 839 tmp = nfc->oob_buf[i]; 840 else 841 tmp = nfc->oob_buf[i * (oob_step / 4)]; 842 843 *oob++ = (u8)tmp; 844 *oob++ = (u8)(tmp >> 8); 845 *oob++ = (u8)(tmp >> 16); 846 *oob++ = (u8)(tmp >> 24); 847 } 848 849 for (i = 0; i < (ecc->steps / 2); i++) { 850 bch_st = readl_relaxed(nfc->regs + 851 nfc->cfg->bch_st_off + i * 4); 852 if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || 853 bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { 854 mtd->ecc_stats.failed++; 855 ecc_fail = 1; 856 } else { 857 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); 858 mtd->ecc_stats.corrected += cnt; 859 max_bitflips = max_t(u32, max_bitflips, cnt); 860 861 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); 862 mtd->ecc_stats.corrected += cnt; 863 max_bitflips = max_t(u32, max_bitflips, cnt); 864 } 865 } 866 867 if (buf) 868 memcpy(buf, nfc->page_buf, mtd->writesize); 869 870 timeout_err: 871 if (boot_rom_mode && rknand->boot_ecc != ecc->strength) 872 rk_nfc_hw_ecc_setup(chip, ecc->strength); 873 874 if (ret) 875 return ret; 876 877 if (ecc_fail) { 878 dev_err(nfc->dev, "read page: %x ecc error!\n", page); 879 return 0; 880 } 881 882 return max_bitflips; 883 } 884 885 static int rk_nfc_read_oob(struct nand_chip *chip, int page) 886 { 887 return rk_nfc_read_page_hwecc(chip, NULL, 1, page); 888 } 889 890 static inline void rk_nfc_hw_init(struct rk_nfc *nfc) 891 { 892 /* Disable flash wp. */ 893 writel(FMCTL_WP, nfc->regs + NFC_FMCTL); 894 /* Config default timing 40ns at 150 Mhz NFC clock. */ 895 writel(0x1081, nfc->regs + NFC_FMWAIT); 896 nfc->cur_timing = 0x1081; 897 /* Disable randomizer and DMA. */ 898 writel(0, nfc->regs + nfc->cfg->randmz_off); 899 writel(0, nfc->regs + nfc->cfg->dma_cfg_off); 900 writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); 901 } 902 903 static irqreturn_t rk_nfc_irq(int irq, void *id) 904 { 905 struct rk_nfc *nfc = id; 906 u32 sta, ien; 907 908 sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); 909 ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); 910 911 if (!(sta & ien)) 912 return IRQ_NONE; 913 914 writel(sta, nfc->regs + nfc->cfg->int_clr_off); 915 writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); 916 917 complete(&nfc->done); 918 919 return IRQ_HANDLED; 920 } 921 922 static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc) 923 { 924 int ret; 925 926 if (!IS_ERR(nfc->nfc_clk)) { 927 ret = clk_prepare_enable(nfc->nfc_clk); 928 if (ret) { 929 dev_err(dev, "failed to enable NFC clk\n"); 930 return ret; 931 } 932 } 933 934 ret = clk_prepare_enable(nfc->ahb_clk); 935 if (ret) { 936 dev_err(dev, "failed to enable ahb clk\n"); 937 clk_disable_unprepare(nfc->nfc_clk); 938 return ret; 939 } 940 941 return 0; 942 } 943 944 static void rk_nfc_disable_clks(struct rk_nfc *nfc) 945 { 946 clk_disable_unprepare(nfc->nfc_clk); 947 clk_disable_unprepare(nfc->ahb_clk); 948 } 949 950 static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, 951 struct mtd_oob_region *oob_region) 952 { 953 struct nand_chip *chip = mtd_to_nand(mtd); 954 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 955 956 if (section) 957 return -ERANGE; 958 959 oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; 960 oob_region->offset = 2; 961 962 return 0; 963 } 964 965 static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, 966 struct mtd_oob_region *oob_region) 967 { 968 struct nand_chip *chip = mtd_to_nand(mtd); 969 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 970 971 if (section) 972 return -ERANGE; 973 974 oob_region->length = mtd->oobsize - rknand->metadata_size; 975 oob_region->offset = rknand->metadata_size; 976 977 return 0; 978 } 979 980 static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { 981 .free = rk_nfc_ooblayout_free, 982 .ecc = rk_nfc_ooblayout_ecc, 983 }; 984 985 static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) 986 { 987 struct nand_chip *chip = mtd_to_nand(mtd); 988 struct rk_nfc *nfc = nand_get_controller_data(chip); 989 struct nand_ecc_ctrl *ecc = &chip->ecc; 990 const u8 *strengths = nfc->cfg->ecc_strengths; 991 u8 max_strength, nfc_max_strength; 992 int i; 993 994 nfc_max_strength = nfc->cfg->ecc_strengths[0]; 995 /* If optional dt settings not present. */ 996 if (!ecc->size || !ecc->strength || 997 ecc->strength > nfc_max_strength) { 998 chip->ecc.size = 1024; 999 ecc->steps = mtd->writesize / ecc->size; 1000 1001 /* 1002 * HW ECC always requests the number of ECC bytes per 1024 byte 1003 * blocks. The first 4 OOB bytes are reserved for sys data. 1004 */ 1005 max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / 1006 fls(8 * 1024); 1007 if (max_strength > nfc_max_strength) 1008 max_strength = nfc_max_strength; 1009 1010 for (i = 0; i < 4; i++) { 1011 if (max_strength >= strengths[i]) 1012 break; 1013 } 1014 1015 if (i >= 4) { 1016 dev_err(nfc->dev, "unsupported ECC strength\n"); 1017 return -EOPNOTSUPP; 1018 } 1019 1020 ecc->strength = strengths[i]; 1021 } 1022 ecc->steps = mtd->writesize / ecc->size; 1023 ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8); 1024 1025 return 0; 1026 } 1027 1028 static int rk_nfc_attach_chip(struct nand_chip *chip) 1029 { 1030 struct mtd_info *mtd = nand_to_mtd(chip); 1031 struct device *dev = mtd->dev.parent; 1032 struct rk_nfc *nfc = nand_get_controller_data(chip); 1033 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 1034 struct nand_ecc_ctrl *ecc = &chip->ecc; 1035 int new_page_len, new_oob_len; 1036 void *buf; 1037 int ret; 1038 1039 if (chip->options & NAND_BUSWIDTH_16) { 1040 dev_err(dev, "16 bits bus width not supported"); 1041 return -EINVAL; 1042 } 1043 1044 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) 1045 return 0; 1046 1047 ret = rk_nfc_ecc_init(dev, mtd); 1048 if (ret) 1049 return ret; 1050 1051 rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; 1052 1053 if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { 1054 dev_err(dev, 1055 "driver needs at least %d bytes of meta data\n", 1056 NFC_SYS_DATA_SIZE + 2); 1057 return -EIO; 1058 } 1059 1060 /* Check buffer first, avoid duplicate alloc buffer. */ 1061 new_page_len = mtd->writesize + mtd->oobsize; 1062 if (nfc->page_buf && new_page_len > nfc->page_buf_size) { 1063 buf = krealloc(nfc->page_buf, new_page_len, 1064 GFP_KERNEL | GFP_DMA); 1065 if (!buf) 1066 return -ENOMEM; 1067 nfc->page_buf = buf; 1068 nfc->page_buf_size = new_page_len; 1069 } 1070 1071 new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; 1072 if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) { 1073 buf = krealloc(nfc->oob_buf, new_oob_len, 1074 GFP_KERNEL | GFP_DMA); 1075 if (!buf) { 1076 kfree(nfc->page_buf); 1077 nfc->page_buf = NULL; 1078 return -ENOMEM; 1079 } 1080 nfc->oob_buf = buf; 1081 nfc->oob_buf_size = new_oob_len; 1082 } 1083 1084 if (!nfc->page_buf) { 1085 nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA); 1086 if (!nfc->page_buf) 1087 return -ENOMEM; 1088 nfc->page_buf_size = new_page_len; 1089 } 1090 1091 if (!nfc->oob_buf) { 1092 nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA); 1093 if (!nfc->oob_buf) { 1094 kfree(nfc->page_buf); 1095 nfc->page_buf = NULL; 1096 return -ENOMEM; 1097 } 1098 nfc->oob_buf_size = new_oob_len; 1099 } 1100 1101 chip->ecc.write_page_raw = rk_nfc_write_page_raw; 1102 chip->ecc.write_page = rk_nfc_write_page_hwecc; 1103 chip->ecc.write_oob = rk_nfc_write_oob; 1104 1105 chip->ecc.read_page_raw = rk_nfc_read_page_raw; 1106 chip->ecc.read_page = rk_nfc_read_page_hwecc; 1107 chip->ecc.read_oob = rk_nfc_read_oob; 1108 1109 return 0; 1110 } 1111 1112 static const struct nand_controller_ops rk_nfc_controller_ops = { 1113 .attach_chip = rk_nfc_attach_chip, 1114 .exec_op = rk_nfc_exec_op, 1115 .setup_interface = rk_nfc_setup_interface, 1116 }; 1117 1118 static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, 1119 struct device_node *np) 1120 { 1121 struct rk_nfc_nand_chip *rknand; 1122 struct nand_chip *chip; 1123 struct mtd_info *mtd; 1124 int nsels; 1125 u32 tmp; 1126 int ret; 1127 int i; 1128 1129 if (!of_get_property(np, "reg", &nsels)) 1130 return -ENODEV; 1131 nsels /= sizeof(u32); 1132 if (!nsels || nsels > NFC_MAX_NSELS) { 1133 dev_err(dev, "invalid reg property size %d\n", nsels); 1134 return -EINVAL; 1135 } 1136 1137 rknand = devm_kzalloc(dev, struct_size(rknand, sels, nsels), 1138 GFP_KERNEL); 1139 if (!rknand) 1140 return -ENOMEM; 1141 1142 rknand->nsels = nsels; 1143 for (i = 0; i < nsels; i++) { 1144 ret = of_property_read_u32_index(np, "reg", i, &tmp); 1145 if (ret) { 1146 dev_err(dev, "reg property failure : %d\n", ret); 1147 return ret; 1148 } 1149 1150 if (tmp >= NFC_MAX_NSELS) { 1151 dev_err(dev, "invalid CS: %u\n", tmp); 1152 return -EINVAL; 1153 } 1154 1155 if (test_and_set_bit(tmp, &nfc->assigned_cs)) { 1156 dev_err(dev, "CS %u already assigned\n", tmp); 1157 return -EINVAL; 1158 } 1159 1160 rknand->sels[i] = tmp; 1161 } 1162 1163 chip = &rknand->chip; 1164 chip->controller = &nfc->controller; 1165 1166 nand_set_flash_node(chip, np); 1167 1168 nand_set_controller_data(chip, nfc); 1169 1170 chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; 1171 chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; 1172 1173 /* Set default mode in case dt entry is missing. */ 1174 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 1175 1176 mtd = nand_to_mtd(chip); 1177 mtd->owner = THIS_MODULE; 1178 mtd->dev.parent = dev; 1179 1180 if (!mtd->name) { 1181 dev_err(nfc->dev, "NAND label property is mandatory\n"); 1182 return -EINVAL; 1183 } 1184 1185 mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); 1186 rk_nfc_hw_init(nfc); 1187 ret = nand_scan(chip, nsels); 1188 if (ret) 1189 return ret; 1190 1191 if (chip->options & NAND_IS_BOOT_MEDIUM) { 1192 ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); 1193 rknand->boot_blks = ret ? 0 : tmp; 1194 1195 ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", 1196 &tmp); 1197 rknand->boot_ecc = ret ? chip->ecc.strength : tmp; 1198 } 1199 1200 ret = mtd_device_register(mtd, NULL, 0); 1201 if (ret) { 1202 dev_err(dev, "MTD parse partition error\n"); 1203 nand_cleanup(chip); 1204 return ret; 1205 } 1206 1207 list_add_tail(&rknand->node, &nfc->chips); 1208 1209 return 0; 1210 } 1211 1212 static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) 1213 { 1214 struct rk_nfc_nand_chip *rknand, *tmp; 1215 struct nand_chip *chip; 1216 int ret; 1217 1218 list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { 1219 chip = &rknand->chip; 1220 ret = mtd_device_unregister(nand_to_mtd(chip)); 1221 WARN_ON(ret); 1222 nand_cleanup(chip); 1223 list_del(&rknand->node); 1224 } 1225 } 1226 1227 static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) 1228 { 1229 struct device_node *np = dev->of_node; 1230 int nchips = of_get_child_count(np); 1231 int ret; 1232 1233 if (!nchips || nchips > NFC_MAX_NSELS) { 1234 dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n", 1235 nchips); 1236 return -EINVAL; 1237 } 1238 1239 for_each_child_of_node_scoped(np, nand_np) { 1240 ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); 1241 if (ret) { 1242 rk_nfc_chips_cleanup(nfc); 1243 return ret; 1244 } 1245 } 1246 1247 return 0; 1248 } 1249 1250 static struct nfc_cfg nfc_v6_cfg = { 1251 .type = NFC_V6, 1252 .ecc_strengths = {60, 40, 24, 16}, 1253 .ecc_cfgs = { 1254 0x00040011, 0x00040001, 0x00000011, 0x00000001, 1255 }, 1256 .flctl_off = 0x08, 1257 .bchctl_off = 0x0C, 1258 .dma_cfg_off = 0x10, 1259 .dma_data_buf_off = 0x14, 1260 .dma_oob_buf_off = 0x18, 1261 .dma_st_off = 0x1C, 1262 .bch_st_off = 0x20, 1263 .randmz_off = 0x150, 1264 .int_en_off = 0x16C, 1265 .int_clr_off = 0x170, 1266 .int_st_off = 0x174, 1267 .oob0_off = 0x200, 1268 .oob1_off = 0x230, 1269 .ecc0 = { 1270 .err_flag_bit = 2, 1271 .low = 3, 1272 .low_mask = 0x1F, 1273 .low_bn = 5, 1274 .high = 27, 1275 .high_mask = 0x1, 1276 }, 1277 .ecc1 = { 1278 .err_flag_bit = 15, 1279 .low = 16, 1280 .low_mask = 0x1F, 1281 .low_bn = 5, 1282 .high = 29, 1283 .high_mask = 0x1, 1284 }, 1285 }; 1286 1287 static struct nfc_cfg nfc_v8_cfg = { 1288 .type = NFC_V8, 1289 .ecc_strengths = {16, 16, 16, 16}, 1290 .ecc_cfgs = { 1291 0x00000001, 0x00000001, 0x00000001, 0x00000001, 1292 }, 1293 .flctl_off = 0x08, 1294 .bchctl_off = 0x0C, 1295 .dma_cfg_off = 0x10, 1296 .dma_data_buf_off = 0x14, 1297 .dma_oob_buf_off = 0x18, 1298 .dma_st_off = 0x1C, 1299 .bch_st_off = 0x20, 1300 .randmz_off = 0x150, 1301 .int_en_off = 0x16C, 1302 .int_clr_off = 0x170, 1303 .int_st_off = 0x174, 1304 .oob0_off = 0x200, 1305 .oob1_off = 0x230, 1306 .ecc0 = { 1307 .err_flag_bit = 2, 1308 .low = 3, 1309 .low_mask = 0x1F, 1310 .low_bn = 5, 1311 .high = 27, 1312 .high_mask = 0x1, 1313 }, 1314 .ecc1 = { 1315 .err_flag_bit = 15, 1316 .low = 16, 1317 .low_mask = 0x1F, 1318 .low_bn = 5, 1319 .high = 29, 1320 .high_mask = 0x1, 1321 }, 1322 }; 1323 1324 static struct nfc_cfg nfc_v9_cfg = { 1325 .type = NFC_V9, 1326 .ecc_strengths = {70, 60, 40, 16}, 1327 .ecc_cfgs = { 1328 0x00000001, 0x06000001, 0x04000001, 0x02000001, 1329 }, 1330 .flctl_off = 0x10, 1331 .bchctl_off = 0x20, 1332 .dma_cfg_off = 0x30, 1333 .dma_data_buf_off = 0x34, 1334 .dma_oob_buf_off = 0x38, 1335 .dma_st_off = 0x3C, 1336 .bch_st_off = 0x150, 1337 .randmz_off = 0x208, 1338 .int_en_off = 0x120, 1339 .int_clr_off = 0x124, 1340 .int_st_off = 0x128, 1341 .oob0_off = 0x200, 1342 .oob1_off = 0x204, 1343 .ecc0 = { 1344 .err_flag_bit = 2, 1345 .low = 3, 1346 .low_mask = 0x7F, 1347 .low_bn = 7, 1348 .high = 0, 1349 .high_mask = 0x0, 1350 }, 1351 .ecc1 = { 1352 .err_flag_bit = 18, 1353 .low = 19, 1354 .low_mask = 0x7F, 1355 .low_bn = 7, 1356 .high = 0, 1357 .high_mask = 0x0, 1358 }, 1359 }; 1360 1361 static const struct of_device_id rk_nfc_id_table[] = { 1362 { 1363 .compatible = "rockchip,px30-nfc", 1364 .data = &nfc_v9_cfg 1365 }, 1366 { 1367 .compatible = "rockchip,rk2928-nfc", 1368 .data = &nfc_v6_cfg 1369 }, 1370 { 1371 .compatible = "rockchip,rv1108-nfc", 1372 .data = &nfc_v8_cfg 1373 }, 1374 { /* sentinel */ } 1375 }; 1376 MODULE_DEVICE_TABLE(of, rk_nfc_id_table); 1377 1378 static int rk_nfc_probe(struct platform_device *pdev) 1379 { 1380 struct device *dev = &pdev->dev; 1381 struct rk_nfc *nfc; 1382 int ret, irq; 1383 1384 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); 1385 if (!nfc) 1386 return -ENOMEM; 1387 1388 nand_controller_init(&nfc->controller); 1389 INIT_LIST_HEAD(&nfc->chips); 1390 nfc->controller.ops = &rk_nfc_controller_ops; 1391 1392 nfc->cfg = of_device_get_match_data(dev); 1393 nfc->dev = dev; 1394 1395 init_completion(&nfc->done); 1396 1397 nfc->regs = devm_platform_ioremap_resource(pdev, 0); 1398 if (IS_ERR(nfc->regs)) { 1399 ret = PTR_ERR(nfc->regs); 1400 goto release_nfc; 1401 } 1402 1403 nfc->nfc_clk = devm_clk_get(dev, "nfc"); 1404 if (IS_ERR(nfc->nfc_clk)) { 1405 dev_dbg(dev, "no NFC clk\n"); 1406 /* Some earlier models, such as rk3066, have no NFC clk. */ 1407 } 1408 1409 nfc->ahb_clk = devm_clk_get(dev, "ahb"); 1410 if (IS_ERR(nfc->ahb_clk)) { 1411 dev_err(dev, "no ahb clk\n"); 1412 ret = PTR_ERR(nfc->ahb_clk); 1413 goto release_nfc; 1414 } 1415 1416 ret = rk_nfc_enable_clks(dev, nfc); 1417 if (ret) 1418 goto release_nfc; 1419 1420 irq = platform_get_irq(pdev, 0); 1421 if (irq < 0) { 1422 ret = -EINVAL; 1423 goto clk_disable; 1424 } 1425 1426 writel(0, nfc->regs + nfc->cfg->int_en_off); 1427 ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); 1428 if (ret) { 1429 dev_err(dev, "failed to request NFC irq\n"); 1430 goto clk_disable; 1431 } 1432 1433 platform_set_drvdata(pdev, nfc); 1434 1435 ret = rk_nfc_nand_chips_init(dev, nfc); 1436 if (ret) { 1437 dev_err(dev, "failed to init NAND chips\n"); 1438 goto clk_disable; 1439 } 1440 return 0; 1441 1442 clk_disable: 1443 rk_nfc_disable_clks(nfc); 1444 release_nfc: 1445 return ret; 1446 } 1447 1448 static void rk_nfc_remove(struct platform_device *pdev) 1449 { 1450 struct rk_nfc *nfc = platform_get_drvdata(pdev); 1451 1452 kfree(nfc->page_buf); 1453 kfree(nfc->oob_buf); 1454 rk_nfc_chips_cleanup(nfc); 1455 rk_nfc_disable_clks(nfc); 1456 } 1457 1458 static int __maybe_unused rk_nfc_suspend(struct device *dev) 1459 { 1460 struct rk_nfc *nfc = dev_get_drvdata(dev); 1461 1462 rk_nfc_disable_clks(nfc); 1463 1464 return 0; 1465 } 1466 1467 static int __maybe_unused rk_nfc_resume(struct device *dev) 1468 { 1469 struct rk_nfc *nfc = dev_get_drvdata(dev); 1470 struct rk_nfc_nand_chip *rknand; 1471 struct nand_chip *chip; 1472 int ret; 1473 u32 i; 1474 1475 ret = rk_nfc_enable_clks(dev, nfc); 1476 if (ret) 1477 return ret; 1478 1479 /* Reset NAND chip if VCC was powered off. */ 1480 list_for_each_entry(rknand, &nfc->chips, node) { 1481 chip = &rknand->chip; 1482 for (i = 0; i < rknand->nsels; i++) 1483 nand_reset(chip, i); 1484 } 1485 1486 return 0; 1487 } 1488 1489 static const struct dev_pm_ops rk_nfc_pm_ops = { 1490 SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) 1491 }; 1492 1493 static struct platform_driver rk_nfc_driver = { 1494 .probe = rk_nfc_probe, 1495 .remove = rk_nfc_remove, 1496 .driver = { 1497 .name = "rockchip-nfc", 1498 .of_match_table = rk_nfc_id_table, 1499 .pm = &rk_nfc_pm_ops, 1500 }, 1501 }; 1502 1503 module_platform_driver(rk_nfc_driver); 1504 1505 MODULE_LICENSE("Dual MIT/GPL"); 1506 MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>"); 1507 MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); 1508 MODULE_ALIAS("platform:rockchip-nand-controller"); 1509