1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Evatronix/Renesas R-Car Gen3, RZ/N1D, RZ/N1S, RZ/N1L NAND controller driver 4 * 5 * Copyright (C) 2021 Schneider Electric 6 * Author: Miquel RAYNAL <miquel.raynal@bootlin.com> 7 */ 8 9 #include <linux/bitfield.h> 10 #include <linux/clk.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/interrupt.h> 13 #include <linux/iopoll.h> 14 #include <linux/module.h> 15 #include <linux/mtd/mtd.h> 16 #include <linux/mtd/rawnand.h> 17 #include <linux/of.h> 18 #include <linux/platform_device.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/slab.h> 21 22 #define COMMAND_REG 0x00 23 #define COMMAND_SEQ(x) FIELD_PREP(GENMASK(5, 0), (x)) 24 #define COMMAND_SEQ_10 COMMAND_SEQ(0x2A) 25 #define COMMAND_SEQ_12 COMMAND_SEQ(0x0C) 26 #define COMMAND_SEQ_18 COMMAND_SEQ(0x32) 27 #define COMMAND_SEQ_19 COMMAND_SEQ(0x13) 28 #define COMMAND_SEQ_GEN_IN COMMAND_SEQ_18 29 #define COMMAND_SEQ_GEN_OUT COMMAND_SEQ_19 30 #define COMMAND_SEQ_READ_PAGE COMMAND_SEQ_10 31 #define COMMAND_SEQ_WRITE_PAGE COMMAND_SEQ_12 32 #define COMMAND_INPUT_SEL_AHBS 0 33 #define COMMAND_INPUT_SEL_DMA BIT(6) 34 #define COMMAND_FIFO_SEL 0 35 #define COMMAND_DATA_SEL BIT(7) 36 #define COMMAND_0(x) FIELD_PREP(GENMASK(15, 8), (x)) 37 #define COMMAND_1(x) FIELD_PREP(GENMASK(23, 16), (x)) 38 #define COMMAND_2(x) FIELD_PREP(GENMASK(31, 24), (x)) 39 40 #define CONTROL_REG 0x04 41 #define CONTROL_CHECK_RB_LINE 0 42 #define CONTROL_ECC_BLOCK_SIZE(x) FIELD_PREP(GENMASK(2, 1), (x)) 43 #define CONTROL_ECC_BLOCK_SIZE_256 CONTROL_ECC_BLOCK_SIZE(0) 44 #define CONTROL_ECC_BLOCK_SIZE_512 CONTROL_ECC_BLOCK_SIZE(1) 45 #define CONTROL_ECC_BLOCK_SIZE_1024 CONTROL_ECC_BLOCK_SIZE(2) 46 #define CONTROL_INT_EN BIT(4) 47 #define CONTROL_ECC_EN BIT(5) 48 #define CONTROL_BLOCK_SIZE(x) FIELD_PREP(GENMASK(7, 6), (x)) 49 #define CONTROL_BLOCK_SIZE_32P CONTROL_BLOCK_SIZE(0) 50 #define CONTROL_BLOCK_SIZE_64P CONTROL_BLOCK_SIZE(1) 51 #define CONTROL_BLOCK_SIZE_128P CONTROL_BLOCK_SIZE(2) 52 #define CONTROL_BLOCK_SIZE_256P CONTROL_BLOCK_SIZE(3) 53 54 #define STATUS_REG 0x8 55 #define MEM_RDY(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) 56 #define CTRL_RDY(reg) (FIELD_GET(BIT(8), (reg)) == 0) 57 58 #define ECC_CTRL_REG 0x18 59 #define ECC_CTRL_CAP(x) FIELD_PREP(GENMASK(2, 0), (x)) 60 #define ECC_CTRL_CAP_2B ECC_CTRL_CAP(0) 61 #define ECC_CTRL_CAP_4B ECC_CTRL_CAP(1) 62 #define ECC_CTRL_CAP_8B ECC_CTRL_CAP(2) 63 #define ECC_CTRL_CAP_16B ECC_CTRL_CAP(3) 64 #define ECC_CTRL_CAP_24B ECC_CTRL_CAP(4) 65 #define ECC_CTRL_CAP_32B ECC_CTRL_CAP(5) 66 #define ECC_CTRL_ERR_THRESHOLD(x) FIELD_PREP(GENMASK(13, 8), (x)) 67 68 #define INT_MASK_REG 0x10 69 #define INT_STATUS_REG 0x14 70 #define INT_CMD_END BIT(1) 71 #define INT_DMA_END BIT(3) 72 #define INT_MEM_RDY(cs) FIELD_PREP(GENMASK(11, 8), BIT(cs)) 73 #define INT_DMA_ENDED BIT(3) 74 #define MEM_IS_RDY(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) 75 #define DMA_HAS_ENDED(reg) FIELD_GET(BIT(3), (reg)) 76 77 #define ECC_OFFSET_REG 0x1C 78 #define ECC_OFFSET(x) FIELD_PREP(GENMASK(15, 0), (x)) 79 80 #define ECC_STAT_REG 0x20 81 #define ECC_STAT_CORRECTABLE(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) 82 #define ECC_STAT_UNCORRECTABLE(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) 83 84 #define ADDR0_COL_REG 0x24 85 #define ADDR0_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) 86 87 #define ADDR0_ROW_REG 0x28 88 #define ADDR0_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) 89 90 #define ADDR1_COL_REG 0x2C 91 #define ADDR1_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) 92 93 #define ADDR1_ROW_REG 0x30 94 #define ADDR1_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) 95 96 #define FIFO_DATA_REG 0x38 97 98 #define DATA_REG 0x3C 99 100 #define DATA_REG_SIZE_REG 0x40 101 102 #define DMA_ADDR_LOW_REG 0x64 103 104 #define DMA_ADDR_HIGH_REG 0x68 105 106 #define DMA_CNT_REG 0x6C 107 108 #define DMA_CTRL_REG 0x70 109 #define DMA_CTRL_INCREMENT_BURST_4 0 110 #define DMA_CTRL_REGISTER_MANAGED_MODE 0 111 #define DMA_CTRL_START BIT(7) 112 113 #define MEM_CTRL_REG 0x80 114 #define MEM_CTRL_CS(cs) FIELD_PREP(GENMASK(1, 0), (cs)) 115 #define MEM_CTRL_DIS_WP(cs) FIELD_PREP(GENMASK(11, 8), BIT((cs))) 116 117 #define DATA_SIZE_REG 0x84 118 #define DATA_SIZE(x) FIELD_PREP(GENMASK(14, 0), (x)) 119 120 #define TIMINGS_ASYN_REG 0x88 121 #define TIMINGS_ASYN_TRWP(x) FIELD_PREP(GENMASK(3, 0), max((x), 1U) - 1) 122 #define TIMINGS_ASYN_TRWH(x) FIELD_PREP(GENMASK(7, 4), max((x), 1U) - 1) 123 124 #define TIM_SEQ0_REG 0x90 125 #define TIM_SEQ0_TCCS(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) 126 #define TIM_SEQ0_TADL(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) 127 #define TIM_SEQ0_TRHW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) 128 #define TIM_SEQ0_TWHR(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) 129 130 #define TIM_SEQ1_REG 0x94 131 #define TIM_SEQ1_TWB(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) 132 #define TIM_SEQ1_TRR(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) 133 #define TIM_SEQ1_TWW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) 134 135 #define TIM_GEN_SEQ0_REG 0x98 136 #define TIM_GEN_SEQ0_D0(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) 137 #define TIM_GEN_SEQ0_D1(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) 138 #define TIM_GEN_SEQ0_D2(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) 139 #define TIM_GEN_SEQ0_D3(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) 140 141 #define TIM_GEN_SEQ1_REG 0x9c 142 #define TIM_GEN_SEQ1_D4(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) 143 #define TIM_GEN_SEQ1_D5(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) 144 #define TIM_GEN_SEQ1_D6(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) 145 #define TIM_GEN_SEQ1_D7(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) 146 147 #define TIM_GEN_SEQ2_REG 0xA0 148 #define TIM_GEN_SEQ2_D8(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) 149 #define TIM_GEN_SEQ2_D9(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) 150 #define TIM_GEN_SEQ2_D10(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) 151 #define TIM_GEN_SEQ2_D11(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) 152 153 #define FIFO_INIT_REG 0xB4 154 #define FIFO_INIT BIT(0) 155 156 #define FIFO_STATE_REG 0xB4 157 #define FIFO_STATE_R_EMPTY(reg) FIELD_GET(BIT(0), (reg)) 158 #define FIFO_STATE_W_FULL(reg) FIELD_GET(BIT(1), (reg)) 159 #define FIFO_STATE_C_EMPTY(reg) FIELD_GET(BIT(2), (reg)) 160 #define FIFO_STATE_R_FULL(reg) FIELD_GET(BIT(6), (reg)) 161 #define FIFO_STATE_W_EMPTY(reg) FIELD_GET(BIT(7), (reg)) 162 163 #define GEN_SEQ_CTRL_REG 0xB8 164 #define GEN_SEQ_CMD0_EN BIT(0) 165 #define GEN_SEQ_CMD1_EN BIT(1) 166 #define GEN_SEQ_CMD2_EN BIT(2) 167 #define GEN_SEQ_CMD3_EN BIT(3) 168 #define GEN_SEQ_COL_A0(x) FIELD_PREP(GENMASK(5, 4), min((x), 2U)) 169 #define GEN_SEQ_COL_A1(x) FIELD_PREP(GENMASK(7, 6), min((x), 2U)) 170 #define GEN_SEQ_ROW_A0(x) FIELD_PREP(GENMASK(9, 8), min((x), 3U)) 171 #define GEN_SEQ_ROW_A1(x) FIELD_PREP(GENMASK(11, 10), min((x), 3U)) 172 #define GEN_SEQ_DATA_EN BIT(12) 173 #define GEN_SEQ_DELAY_EN(x) FIELD_PREP(GENMASK(14, 13), (x)) 174 #define GEN_SEQ_DELAY0_EN GEN_SEQ_DELAY_EN(1) 175 #define GEN_SEQ_DELAY1_EN GEN_SEQ_DELAY_EN(2) 176 #define GEN_SEQ_IMD_SEQ BIT(15) 177 #define GEN_SEQ_COMMAND_3(x) FIELD_PREP(GENMASK(26, 16), (x)) 178 179 #define DMA_TLVL_REG 0x114 180 #define DMA_TLVL(x) FIELD_PREP(GENMASK(7, 0), (x)) 181 #define DMA_TLVL_MAX DMA_TLVL(0xFF) 182 183 #define TIM_GEN_SEQ3_REG 0x134 184 #define TIM_GEN_SEQ3_D12(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) 185 186 #define ECC_CNT_REG 0x14C 187 #define ECC_CNT(cs, reg) FIELD_GET(GENMASK(5, 0), (reg) >> ((cs) * 8)) 188 189 #define RNANDC_CS_NUM 4 190 191 #define TO_CYCLES64(ps, period_ns) ((unsigned int)DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 192 period_ns)) 193 194 struct rnand_chip_sel { 195 unsigned int cs; 196 }; 197 198 struct rnand_chip { 199 struct nand_chip chip; 200 struct list_head node; 201 int selected_die; 202 u32 ctrl; 203 unsigned int nsels; 204 u32 control; 205 u32 ecc_ctrl; 206 u32 timings_asyn; 207 u32 tim_seq0; 208 u32 tim_seq1; 209 u32 tim_gen_seq0; 210 u32 tim_gen_seq1; 211 u32 tim_gen_seq2; 212 u32 tim_gen_seq3; 213 struct rnand_chip_sel sels[] __counted_by(nsels); 214 }; 215 216 struct rnandc { 217 struct nand_controller controller; 218 struct device *dev; 219 void __iomem *regs; 220 unsigned long ext_clk_rate; 221 unsigned long assigned_cs; 222 struct list_head chips; 223 struct nand_chip *selected_chip; 224 struct completion complete; 225 bool use_polling; 226 u8 *buf; 227 unsigned int buf_sz; 228 }; 229 230 struct rnandc_op { 231 u32 command; 232 u32 addr0_col; 233 u32 addr0_row; 234 u32 addr1_col; 235 u32 addr1_row; 236 u32 data_size; 237 u32 ecc_offset; 238 u32 gen_seq_ctrl; 239 u8 *buf; 240 bool read; 241 unsigned int len; 242 }; 243 244 static inline struct rnandc *to_rnandc(struct nand_controller *ctrl) 245 { 246 return container_of(ctrl, struct rnandc, controller); 247 } 248 249 static inline struct rnand_chip *to_rnand(struct nand_chip *chip) 250 { 251 return container_of(chip, struct rnand_chip, chip); 252 } 253 254 static inline unsigned int to_rnandc_cs(struct rnand_chip *nand) 255 { 256 return nand->sels[nand->selected_die].cs; 257 } 258 259 static void rnandc_dis_correction(struct rnandc *rnandc) 260 { 261 u32 control; 262 263 control = readl_relaxed(rnandc->regs + CONTROL_REG); 264 control &= ~CONTROL_ECC_EN; 265 writel_relaxed(control, rnandc->regs + CONTROL_REG); 266 } 267 268 static void rnandc_en_correction(struct rnandc *rnandc) 269 { 270 u32 control; 271 272 control = readl_relaxed(rnandc->regs + CONTROL_REG); 273 control |= CONTROL_ECC_EN; 274 writel_relaxed(control, rnandc->regs + CONTROL_REG); 275 } 276 277 static void rnandc_clear_status(struct rnandc *rnandc) 278 { 279 writel_relaxed(0, rnandc->regs + INT_STATUS_REG); 280 writel_relaxed(0, rnandc->regs + ECC_STAT_REG); 281 writel_relaxed(0, rnandc->regs + ECC_CNT_REG); 282 } 283 284 static void rnandc_dis_interrupts(struct rnandc *rnandc) 285 { 286 writel_relaxed(0, rnandc->regs + INT_MASK_REG); 287 } 288 289 static void rnandc_en_interrupts(struct rnandc *rnandc, u32 val) 290 { 291 if (!rnandc->use_polling) 292 writel_relaxed(val, rnandc->regs + INT_MASK_REG); 293 } 294 295 static void rnandc_clear_fifo(struct rnandc *rnandc) 296 { 297 writel_relaxed(FIFO_INIT, rnandc->regs + FIFO_INIT_REG); 298 } 299 300 static void rnandc_select_target(struct nand_chip *chip, int die_nr) 301 { 302 struct rnand_chip *rnand = to_rnand(chip); 303 struct rnandc *rnandc = to_rnandc(chip->controller); 304 unsigned int cs = rnand->sels[die_nr].cs; 305 306 if (chip == rnandc->selected_chip && die_nr == rnand->selected_die) 307 return; 308 309 rnandc_clear_status(rnandc); 310 writel_relaxed(MEM_CTRL_CS(cs) | MEM_CTRL_DIS_WP(cs), rnandc->regs + MEM_CTRL_REG); 311 writel_relaxed(rnand->control, rnandc->regs + CONTROL_REG); 312 writel_relaxed(rnand->ecc_ctrl, rnandc->regs + ECC_CTRL_REG); 313 writel_relaxed(rnand->timings_asyn, rnandc->regs + TIMINGS_ASYN_REG); 314 writel_relaxed(rnand->tim_seq0, rnandc->regs + TIM_SEQ0_REG); 315 writel_relaxed(rnand->tim_seq1, rnandc->regs + TIM_SEQ1_REG); 316 writel_relaxed(rnand->tim_gen_seq0, rnandc->regs + TIM_GEN_SEQ0_REG); 317 writel_relaxed(rnand->tim_gen_seq1, rnandc->regs + TIM_GEN_SEQ1_REG); 318 writel_relaxed(rnand->tim_gen_seq2, rnandc->regs + TIM_GEN_SEQ2_REG); 319 writel_relaxed(rnand->tim_gen_seq3, rnandc->regs + TIM_GEN_SEQ3_REG); 320 321 rnandc->selected_chip = chip; 322 rnand->selected_die = die_nr; 323 } 324 325 static void rnandc_trigger_op(struct rnandc *rnandc, struct rnandc_op *rop) 326 { 327 writel_relaxed(rop->addr0_col, rnandc->regs + ADDR0_COL_REG); 328 writel_relaxed(rop->addr0_row, rnandc->regs + ADDR0_ROW_REG); 329 writel_relaxed(rop->addr1_col, rnandc->regs + ADDR1_COL_REG); 330 writel_relaxed(rop->addr1_row, rnandc->regs + ADDR1_ROW_REG); 331 writel_relaxed(rop->ecc_offset, rnandc->regs + ECC_OFFSET_REG); 332 writel_relaxed(rop->gen_seq_ctrl, rnandc->regs + GEN_SEQ_CTRL_REG); 333 writel_relaxed(DATA_SIZE(rop->len), rnandc->regs + DATA_SIZE_REG); 334 writel_relaxed(rop->command, rnandc->regs + COMMAND_REG); 335 } 336 337 static void rnandc_trigger_dma(struct rnandc *rnandc) 338 { 339 writel_relaxed(DMA_CTRL_INCREMENT_BURST_4 | 340 DMA_CTRL_REGISTER_MANAGED_MODE | 341 DMA_CTRL_START, rnandc->regs + DMA_CTRL_REG); 342 } 343 344 static irqreturn_t rnandc_irq_handler(int irq, void *private) 345 { 346 struct rnandc *rnandc = private; 347 348 rnandc_dis_interrupts(rnandc); 349 complete(&rnandc->complete); 350 351 return IRQ_HANDLED; 352 } 353 354 static int rnandc_wait_end_of_op(struct rnandc *rnandc, 355 struct nand_chip *chip) 356 { 357 struct rnand_chip *rnand = to_rnand(chip); 358 unsigned int cs = to_rnandc_cs(rnand); 359 u32 status; 360 int ret; 361 362 ret = readl_poll_timeout(rnandc->regs + STATUS_REG, status, 363 MEM_RDY(cs, status) && CTRL_RDY(status), 364 1, 100000); 365 if (ret) 366 dev_err(rnandc->dev, "Operation timed out, status: 0x%08x\n", 367 status); 368 369 return ret; 370 } 371 372 static int rnandc_wait_end_of_io(struct rnandc *rnandc, 373 struct nand_chip *chip) 374 { 375 int timeout_ms = 1000; 376 int ret; 377 378 if (rnandc->use_polling) { 379 struct rnand_chip *rnand = to_rnand(chip); 380 unsigned int cs = to_rnandc_cs(rnand); 381 u32 status; 382 383 ret = readl_poll_timeout(rnandc->regs + INT_STATUS_REG, status, 384 MEM_IS_RDY(cs, status) & 385 DMA_HAS_ENDED(status), 386 0, timeout_ms * 1000); 387 } else { 388 ret = wait_for_completion_timeout(&rnandc->complete, 389 msecs_to_jiffies(timeout_ms)); 390 if (!ret) 391 ret = -ETIMEDOUT; 392 else 393 ret = 0; 394 } 395 396 return ret; 397 } 398 399 static int rnandc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, 400 int oob_required, int page) 401 { 402 struct rnandc *rnandc = to_rnandc(chip->controller); 403 struct mtd_info *mtd = nand_to_mtd(chip); 404 struct rnand_chip *rnand = to_rnand(chip); 405 unsigned int cs = to_rnandc_cs(rnand); 406 struct rnandc_op rop = { 407 .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_READ0) | 408 COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | 409 COMMAND_SEQ_READ_PAGE, 410 .addr0_row = page, 411 .len = mtd->writesize, 412 .ecc_offset = ECC_OFFSET(mtd->writesize + 2), 413 }; 414 unsigned int max_bitflips = 0; 415 dma_addr_t dma_addr; 416 u32 ecc_stat; 417 int bf, ret, i; 418 419 /* Prepare controller */ 420 rnandc_select_target(chip, chip->cur_cs); 421 rnandc_clear_status(rnandc); 422 reinit_completion(&rnandc->complete); 423 rnandc_en_interrupts(rnandc, INT_DMA_ENDED); 424 rnandc_en_correction(rnandc); 425 426 /* Configure DMA */ 427 dma_addr = dma_map_single(rnandc->dev, rnandc->buf, mtd->writesize, 428 DMA_FROM_DEVICE); 429 writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG); 430 writel(mtd->writesize, rnandc->regs + DMA_CNT_REG); 431 writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG); 432 433 rnandc_trigger_op(rnandc, &rop); 434 rnandc_trigger_dma(rnandc); 435 436 ret = rnandc_wait_end_of_io(rnandc, chip); 437 dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_FROM_DEVICE); 438 rnandc_dis_correction(rnandc); 439 if (ret) { 440 dev_err(rnandc->dev, "Read page operation never ending\n"); 441 return ret; 442 } 443 444 ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG); 445 446 if (oob_required || ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { 447 ret = nand_change_read_column_op(chip, mtd->writesize, 448 chip->oob_poi, mtd->oobsize, 449 false); 450 if (ret) 451 return ret; 452 } 453 454 if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { 455 for (i = 0; i < chip->ecc.steps; i++) { 456 unsigned int off = i * chip->ecc.size; 457 unsigned int eccoff = i * chip->ecc.bytes; 458 459 bf = nand_check_erased_ecc_chunk(rnandc->buf + off, 460 chip->ecc.size, 461 chip->oob_poi + 2 + eccoff, 462 chip->ecc.bytes, 463 NULL, 0, 464 chip->ecc.strength); 465 if (bf < 0) { 466 mtd->ecc_stats.failed++; 467 } else { 468 mtd->ecc_stats.corrected += bf; 469 max_bitflips = max_t(unsigned int, max_bitflips, bf); 470 } 471 } 472 } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { 473 bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG)); 474 /* 475 * The number of bitflips is an approximation given the fact 476 * that this controller does not provide per-chunk details but 477 * only gives statistics on the entire page. 478 */ 479 mtd->ecc_stats.corrected += bf; 480 } 481 482 memcpy(buf, rnandc->buf, mtd->writesize); 483 484 return 0; 485 } 486 487 static int rnandc_read_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, 488 u32 req_len, u8 *bufpoi, int page) 489 { 490 struct rnandc *rnandc = to_rnandc(chip->controller); 491 struct mtd_info *mtd = nand_to_mtd(chip); 492 struct rnand_chip *rnand = to_rnand(chip); 493 unsigned int cs = to_rnandc_cs(rnand); 494 unsigned int page_off = round_down(req_offset, chip->ecc.size); 495 unsigned int real_len = round_up(req_offset + req_len - page_off, 496 chip->ecc.size); 497 unsigned int start_chunk = page_off / chip->ecc.size; 498 unsigned int nchunks = real_len / chip->ecc.size; 499 unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); 500 struct rnandc_op rop = { 501 .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_READ0) | 502 COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | 503 COMMAND_SEQ_READ_PAGE, 504 .addr0_row = page, 505 .addr0_col = page_off, 506 .len = real_len, 507 .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), 508 }; 509 unsigned int max_bitflips = 0, i; 510 u32 ecc_stat; 511 int bf, ret; 512 513 /* Prepare controller */ 514 rnandc_select_target(chip, chip->cur_cs); 515 rnandc_clear_status(rnandc); 516 rnandc_en_correction(rnandc); 517 rnandc_trigger_op(rnandc, &rop); 518 519 while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) 520 cpu_relax(); 521 522 while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) 523 cpu_relax(); 524 525 ioread32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off, 526 real_len / 4); 527 528 if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) { 529 dev_err(rnandc->dev, "Clearing residual data in the read FIFO\n"); 530 rnandc_clear_fifo(rnandc); 531 } 532 533 ret = rnandc_wait_end_of_op(rnandc, chip); 534 rnandc_dis_correction(rnandc); 535 if (ret) { 536 dev_err(rnandc->dev, "Read subpage operation never ending\n"); 537 return ret; 538 } 539 540 ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG); 541 542 if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { 543 ret = nand_change_read_column_op(chip, mtd->writesize, 544 chip->oob_poi, mtd->oobsize, 545 false); 546 if (ret) 547 return ret; 548 549 for (i = start_chunk; i < nchunks; i++) { 550 unsigned int dataoff = i * chip->ecc.size; 551 unsigned int eccoff = 2 + (i * chip->ecc.bytes); 552 553 bf = nand_check_erased_ecc_chunk(bufpoi + dataoff, 554 chip->ecc.size, 555 chip->oob_poi + eccoff, 556 chip->ecc.bytes, 557 NULL, 0, 558 chip->ecc.strength); 559 if (bf < 0) { 560 mtd->ecc_stats.failed++; 561 } else { 562 mtd->ecc_stats.corrected += bf; 563 max_bitflips = max_t(unsigned int, max_bitflips, bf); 564 } 565 } 566 } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { 567 bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG)); 568 /* 569 * The number of bitflips is an approximation given the fact 570 * that this controller does not provide per-chunk details but 571 * only gives statistics on the entire page. 572 */ 573 mtd->ecc_stats.corrected += bf; 574 } 575 576 return 0; 577 } 578 579 static int rnandc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, 580 int oob_required, int page) 581 { 582 struct rnandc *rnandc = to_rnandc(chip->controller); 583 struct mtd_info *mtd = nand_to_mtd(chip); 584 struct rnand_chip *rnand = to_rnand(chip); 585 unsigned int cs = to_rnandc_cs(rnand); 586 struct rnandc_op rop = { 587 .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_SEQIN) | 588 COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | 589 COMMAND_SEQ_WRITE_PAGE, 590 .addr0_row = page, 591 .len = mtd->writesize, 592 .ecc_offset = ECC_OFFSET(mtd->writesize + 2), 593 }; 594 dma_addr_t dma_addr; 595 int ret; 596 597 memcpy(rnandc->buf, buf, mtd->writesize); 598 599 /* Prepare controller */ 600 rnandc_select_target(chip, chip->cur_cs); 601 rnandc_clear_status(rnandc); 602 reinit_completion(&rnandc->complete); 603 rnandc_en_interrupts(rnandc, INT_MEM_RDY(cs)); 604 rnandc_en_correction(rnandc); 605 606 /* Configure DMA */ 607 dma_addr = dma_map_single(rnandc->dev, (void *)rnandc->buf, mtd->writesize, 608 DMA_TO_DEVICE); 609 writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG); 610 writel(mtd->writesize, rnandc->regs + DMA_CNT_REG); 611 writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG); 612 613 rnandc_trigger_op(rnandc, &rop); 614 rnandc_trigger_dma(rnandc); 615 616 ret = rnandc_wait_end_of_io(rnandc, chip); 617 dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_TO_DEVICE); 618 rnandc_dis_correction(rnandc); 619 if (ret) { 620 dev_err(rnandc->dev, "Write page operation never ending\n"); 621 return ret; 622 } 623 624 if (!oob_required) 625 return 0; 626 627 return nand_change_write_column_op(chip, mtd->writesize, chip->oob_poi, 628 mtd->oobsize, false); 629 } 630 631 static int rnandc_write_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, 632 u32 req_len, const u8 *bufpoi, 633 int oob_required, int page) 634 { 635 struct rnandc *rnandc = to_rnandc(chip->controller); 636 struct mtd_info *mtd = nand_to_mtd(chip); 637 unsigned int page_off = round_down(req_offset, chip->ecc.size); 638 unsigned int real_len = round_up(req_offset + req_len - page_off, 639 chip->ecc.size); 640 unsigned int start_chunk = page_off / chip->ecc.size; 641 unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); 642 struct rnandc_op rop = { 643 .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_SEQIN) | 644 COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | 645 COMMAND_SEQ_WRITE_PAGE, 646 .addr0_row = page, 647 .addr0_col = page_off, 648 .len = real_len, 649 .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), 650 }; 651 int ret; 652 653 /* Prepare controller */ 654 rnandc_select_target(chip, chip->cur_cs); 655 rnandc_clear_status(rnandc); 656 rnandc_en_correction(rnandc); 657 rnandc_trigger_op(rnandc, &rop); 658 659 while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG))) 660 cpu_relax(); 661 662 iowrite32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off, 663 real_len / 4); 664 665 while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) 666 cpu_relax(); 667 668 ret = rnandc_wait_end_of_op(rnandc, chip); 669 rnandc_dis_correction(rnandc); 670 if (ret) { 671 dev_err(rnandc->dev, "Write subpage operation never ending\n"); 672 return ret; 673 } 674 675 return 0; 676 } 677 678 /* 679 * This controller is simple enough and thus does not need to use the parser 680 * provided by the core, instead, handle every situation here. 681 */ 682 static int rnandc_exec_op(struct nand_chip *chip, 683 const struct nand_operation *op, bool check_only) 684 { 685 struct rnandc *rnandc = to_rnandc(chip->controller); 686 const struct nand_op_instr *instr = NULL; 687 struct rnandc_op rop = { 688 .command = COMMAND_INPUT_SEL_AHBS, 689 .gen_seq_ctrl = GEN_SEQ_IMD_SEQ, 690 }; 691 unsigned int cmd_phase = 0, addr_phase = 0, data_phase = 0, 692 delay_phase = 0, delays = 0; 693 unsigned int op_id, col_addrs, row_addrs, naddrs, remainder, words, i; 694 const u8 *addrs; 695 u32 last_bytes; 696 int ret; 697 698 if (!check_only) 699 rnandc_select_target(chip, op->cs); 700 701 for (op_id = 0; op_id < op->ninstrs; op_id++) { 702 instr = &op->instrs[op_id]; 703 704 nand_op_trace(" ", instr); 705 706 switch (instr->type) { 707 case NAND_OP_CMD_INSTR: 708 switch (cmd_phase++) { 709 case 0: 710 rop.command |= COMMAND_0(instr->ctx.cmd.opcode); 711 rop.gen_seq_ctrl |= GEN_SEQ_CMD0_EN; 712 break; 713 case 1: 714 rop.gen_seq_ctrl |= GEN_SEQ_COMMAND_3(instr->ctx.cmd.opcode); 715 rop.gen_seq_ctrl |= GEN_SEQ_CMD3_EN; 716 if (addr_phase == 0) 717 addr_phase = 1; 718 break; 719 case 2: 720 rop.command |= COMMAND_2(instr->ctx.cmd.opcode); 721 rop.gen_seq_ctrl |= GEN_SEQ_CMD2_EN; 722 if (addr_phase <= 1) 723 addr_phase = 2; 724 break; 725 case 3: 726 rop.command |= COMMAND_1(instr->ctx.cmd.opcode); 727 rop.gen_seq_ctrl |= GEN_SEQ_CMD1_EN; 728 if (addr_phase <= 1) 729 addr_phase = 2; 730 if (delay_phase == 0) 731 delay_phase = 1; 732 if (data_phase == 0) 733 data_phase = 1; 734 break; 735 default: 736 return -EOPNOTSUPP; 737 } 738 break; 739 740 case NAND_OP_ADDR_INSTR: 741 addrs = instr->ctx.addr.addrs; 742 naddrs = instr->ctx.addr.naddrs; 743 if (naddrs > 5) 744 return -EOPNOTSUPP; 745 746 col_addrs = min(2U, naddrs); 747 row_addrs = naddrs > 2 ? naddrs - col_addrs : 0; 748 749 switch (addr_phase++) { 750 case 0: 751 for (i = 0; i < col_addrs; i++) 752 rop.addr0_col |= addrs[i] << (i * 8); 753 rop.gen_seq_ctrl |= GEN_SEQ_COL_A0(col_addrs); 754 755 for (i = 0; i < row_addrs; i++) 756 rop.addr0_row |= addrs[2 + i] << (i * 8); 757 rop.gen_seq_ctrl |= GEN_SEQ_ROW_A0(row_addrs); 758 759 if (cmd_phase == 0) 760 cmd_phase = 1; 761 break; 762 case 1: 763 for (i = 0; i < col_addrs; i++) 764 rop.addr1_col |= addrs[i] << (i * 8); 765 rop.gen_seq_ctrl |= GEN_SEQ_COL_A1(col_addrs); 766 767 for (i = 0; i < row_addrs; i++) 768 rop.addr1_row |= addrs[2 + i] << (i * 8); 769 rop.gen_seq_ctrl |= GEN_SEQ_ROW_A1(row_addrs); 770 771 if (cmd_phase <= 1) 772 cmd_phase = 2; 773 break; 774 default: 775 return -EOPNOTSUPP; 776 } 777 break; 778 779 case NAND_OP_DATA_IN_INSTR: 780 rop.read = true; 781 fallthrough; 782 case NAND_OP_DATA_OUT_INSTR: 783 rop.gen_seq_ctrl |= GEN_SEQ_DATA_EN; 784 rop.buf = instr->ctx.data.buf.in; 785 rop.len = instr->ctx.data.len; 786 rop.command |= COMMAND_FIFO_SEL; 787 788 switch (data_phase++) { 789 case 0: 790 if (cmd_phase <= 2) 791 cmd_phase = 3; 792 if (addr_phase <= 1) 793 addr_phase = 2; 794 if (delay_phase == 0) 795 delay_phase = 1; 796 break; 797 default: 798 return -EOPNOTSUPP; 799 } 800 break; 801 802 case NAND_OP_WAITRDY_INSTR: 803 switch (delay_phase++) { 804 case 0: 805 rop.gen_seq_ctrl |= GEN_SEQ_DELAY0_EN; 806 807 if (cmd_phase <= 2) 808 cmd_phase = 3; 809 break; 810 case 1: 811 rop.gen_seq_ctrl |= GEN_SEQ_DELAY1_EN; 812 813 if (cmd_phase <= 3) 814 cmd_phase = 4; 815 if (data_phase == 0) 816 data_phase = 1; 817 break; 818 default: 819 return -EOPNOTSUPP; 820 } 821 break; 822 } 823 } 824 825 /* 826 * Sequence 19 is generic and dedicated to write operations. 827 * Sequence 18 is also generic and works for all other operations. 828 */ 829 if (rop.buf && !rop.read) 830 rop.command |= COMMAND_SEQ_GEN_OUT; 831 else 832 rop.command |= COMMAND_SEQ_GEN_IN; 833 834 if (delays > 1) { 835 dev_err(rnandc->dev, "Cannot handle more than one wait delay\n"); 836 return -EOPNOTSUPP; 837 } 838 839 if (check_only) 840 return 0; 841 842 rnandc_trigger_op(rnandc, &rop); 843 844 words = rop.len / sizeof(u32); 845 remainder = rop.len % sizeof(u32); 846 if (rop.buf && rop.read) { 847 while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) 848 cpu_relax(); 849 850 while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) 851 cpu_relax(); 852 853 ioread32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, words); 854 if (remainder) { 855 last_bytes = readl_relaxed(rnandc->regs + FIFO_DATA_REG); 856 memcpy(rop.buf + (words * sizeof(u32)), &last_bytes, 857 remainder); 858 } 859 860 if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) { 861 dev_warn(rnandc->dev, 862 "Clearing residual data in the read FIFO\n"); 863 rnandc_clear_fifo(rnandc); 864 } 865 } else if (rop.len && !rop.read) { 866 while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG))) 867 cpu_relax(); 868 869 iowrite32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, 870 DIV_ROUND_UP(rop.len, 4)); 871 872 if (remainder) { 873 last_bytes = 0; 874 memcpy(&last_bytes, rop.buf + (words * sizeof(u32)), remainder); 875 writel_relaxed(last_bytes, rnandc->regs + FIFO_DATA_REG); 876 } 877 878 while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) 879 cpu_relax(); 880 } 881 882 ret = rnandc_wait_end_of_op(rnandc, chip); 883 if (ret) 884 return ret; 885 886 return 0; 887 } 888 889 static int rnandc_setup_interface(struct nand_chip *chip, int chipnr, 890 const struct nand_interface_config *conf) 891 { 892 struct rnand_chip *rnand = to_rnand(chip); 893 struct rnandc *rnandc = to_rnandc(chip->controller); 894 unsigned int period_ns = 1000000000 / rnandc->ext_clk_rate; 895 const struct nand_sdr_timings *sdr; 896 unsigned int cyc, cle, ale, bef_dly, ca_to_data; 897 898 sdr = nand_get_sdr_timings(conf); 899 if (IS_ERR(sdr)) 900 return PTR_ERR(sdr); 901 902 if (sdr->tRP_min != sdr->tWP_min || sdr->tREH_min != sdr->tWH_min) { 903 dev_err(rnandc->dev, "Read and write hold times must be identical\n"); 904 return -EINVAL; 905 } 906 907 if (chipnr < 0) 908 return 0; 909 910 rnand->timings_asyn = 911 TIMINGS_ASYN_TRWP(TO_CYCLES64(sdr->tRP_min, period_ns)) | 912 TIMINGS_ASYN_TRWH(TO_CYCLES64(sdr->tREH_min, period_ns)); 913 rnand->tim_seq0 = 914 TIM_SEQ0_TCCS(TO_CYCLES64(sdr->tCCS_min, period_ns)) | 915 TIM_SEQ0_TADL(TO_CYCLES64(sdr->tADL_min, period_ns)) | 916 TIM_SEQ0_TRHW(TO_CYCLES64(sdr->tRHW_min, period_ns)) | 917 TIM_SEQ0_TWHR(TO_CYCLES64(sdr->tWHR_min, period_ns)); 918 rnand->tim_seq1 = 919 TIM_SEQ1_TWB(TO_CYCLES64(sdr->tWB_max, period_ns)) | 920 TIM_SEQ1_TRR(TO_CYCLES64(sdr->tRR_min, period_ns)) | 921 TIM_SEQ1_TWW(TO_CYCLES64(sdr->tWW_min, period_ns)); 922 923 cyc = sdr->tDS_min + sdr->tDH_min; 924 cle = sdr->tCLH_min + sdr->tCLS_min; 925 ale = sdr->tALH_min + sdr->tALS_min; 926 bef_dly = sdr->tWB_max - sdr->tDH_min; 927 ca_to_data = sdr->tWHR_min + sdr->tREA_max - sdr->tDH_min; 928 929 /* 930 * D0 = CMD -> ADDR = tCLH + tCLS - 1 cycle 931 * D1 = CMD -> CMD = tCLH + tCLS - 1 cycle 932 * D2 = CMD -> DLY = tWB - tDH 933 * D3 = CMD -> DATA = tWHR + tREA - tDH 934 */ 935 rnand->tim_gen_seq0 = 936 TIM_GEN_SEQ0_D0(TO_CYCLES64(cle - cyc, period_ns)) | 937 TIM_GEN_SEQ0_D1(TO_CYCLES64(cle - cyc, period_ns)) | 938 TIM_GEN_SEQ0_D2(TO_CYCLES64(bef_dly, period_ns)) | 939 TIM_GEN_SEQ0_D3(TO_CYCLES64(ca_to_data, period_ns)); 940 941 /* 942 * D4 = ADDR -> CMD = tALH + tALS - 1 cyle 943 * D5 = ADDR -> ADDR = tALH + tALS - 1 cyle 944 * D6 = ADDR -> DLY = tWB - tDH 945 * D7 = ADDR -> DATA = tWHR + tREA - tDH 946 */ 947 rnand->tim_gen_seq1 = 948 TIM_GEN_SEQ1_D4(TO_CYCLES64(ale - cyc, period_ns)) | 949 TIM_GEN_SEQ1_D5(TO_CYCLES64(ale - cyc, period_ns)) | 950 TIM_GEN_SEQ1_D6(TO_CYCLES64(bef_dly, period_ns)) | 951 TIM_GEN_SEQ1_D7(TO_CYCLES64(ca_to_data, period_ns)); 952 953 /* 954 * D8 = DLY -> DATA = tRR + tREA 955 * D9 = DLY -> CMD = tRR 956 * D10 = DATA -> CMD = tCLH + tCLS - 1 cycle 957 * D11 = DATA -> DLY = tWB - tDH 958 */ 959 rnand->tim_gen_seq2 = 960 TIM_GEN_SEQ2_D8(TO_CYCLES64(sdr->tRR_min + sdr->tREA_max, period_ns)) | 961 TIM_GEN_SEQ2_D9(TO_CYCLES64(sdr->tRR_min, period_ns)) | 962 TIM_GEN_SEQ2_D10(TO_CYCLES64(cle - cyc, period_ns)) | 963 TIM_GEN_SEQ2_D11(TO_CYCLES64(bef_dly, period_ns)); 964 965 /* D12 = DATA -> END = tCLH - tDH */ 966 rnand->tim_gen_seq3 = 967 TIM_GEN_SEQ3_D12(TO_CYCLES64(sdr->tCLH_min - sdr->tDH_min, period_ns)); 968 969 return 0; 970 } 971 972 static int rnandc_ooblayout_ecc(struct mtd_info *mtd, int section, 973 struct mtd_oob_region *oobregion) 974 { 975 struct nand_chip *chip = mtd_to_nand(mtd); 976 unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; 977 978 if (section) 979 return -ERANGE; 980 981 oobregion->offset = 2; 982 oobregion->length = eccbytes; 983 984 return 0; 985 } 986 987 static int rnandc_ooblayout_free(struct mtd_info *mtd, int section, 988 struct mtd_oob_region *oobregion) 989 { 990 struct nand_chip *chip = mtd_to_nand(mtd); 991 unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; 992 993 if (section) 994 return -ERANGE; 995 996 oobregion->offset = 2 + eccbytes; 997 oobregion->length = mtd->oobsize - oobregion->offset; 998 999 return 0; 1000 } 1001 1002 static const struct mtd_ooblayout_ops rnandc_ooblayout_ops = { 1003 .ecc = rnandc_ooblayout_ecc, 1004 .free = rnandc_ooblayout_free, 1005 }; 1006 1007 static int rnandc_hw_ecc_controller_init(struct nand_chip *chip) 1008 { 1009 struct rnand_chip *rnand = to_rnand(chip); 1010 struct mtd_info *mtd = nand_to_mtd(chip); 1011 struct rnandc *rnandc = to_rnandc(chip->controller); 1012 1013 if (mtd->writesize > SZ_16K) { 1014 dev_err(rnandc->dev, "Unsupported page size\n"); 1015 return -EINVAL; 1016 } 1017 1018 switch (chip->ecc.size) { 1019 case SZ_256: 1020 rnand->control |= CONTROL_ECC_BLOCK_SIZE_256; 1021 break; 1022 case SZ_512: 1023 rnand->control |= CONTROL_ECC_BLOCK_SIZE_512; 1024 break; 1025 case SZ_1K: 1026 rnand->control |= CONTROL_ECC_BLOCK_SIZE_1024; 1027 break; 1028 default: 1029 dev_err(rnandc->dev, "Unsupported ECC chunk size\n"); 1030 return -EINVAL; 1031 } 1032 1033 switch (chip->ecc.strength) { 1034 case 2: 1035 chip->ecc.bytes = 4; 1036 rnand->ecc_ctrl |= ECC_CTRL_CAP_2B; 1037 break; 1038 case 4: 1039 chip->ecc.bytes = 7; 1040 rnand->ecc_ctrl |= ECC_CTRL_CAP_4B; 1041 break; 1042 case 8: 1043 chip->ecc.bytes = 14; 1044 rnand->ecc_ctrl |= ECC_CTRL_CAP_8B; 1045 break; 1046 case 16: 1047 chip->ecc.bytes = 28; 1048 rnand->ecc_ctrl |= ECC_CTRL_CAP_16B; 1049 break; 1050 case 24: 1051 chip->ecc.bytes = 42; 1052 rnand->ecc_ctrl |= ECC_CTRL_CAP_24B; 1053 break; 1054 case 32: 1055 chip->ecc.bytes = 56; 1056 rnand->ecc_ctrl |= ECC_CTRL_CAP_32B; 1057 break; 1058 default: 1059 dev_err(rnandc->dev, "Unsupported ECC strength\n"); 1060 return -EINVAL; 1061 } 1062 1063 rnand->ecc_ctrl |= ECC_CTRL_ERR_THRESHOLD(chip->ecc.strength); 1064 1065 mtd_set_ooblayout(mtd, &rnandc_ooblayout_ops); 1066 chip->ecc.steps = mtd->writesize / chip->ecc.size; 1067 chip->ecc.read_page = rnandc_read_page_hw_ecc; 1068 chip->ecc.read_subpage = rnandc_read_subpage_hw_ecc; 1069 chip->ecc.write_page = rnandc_write_page_hw_ecc; 1070 chip->ecc.write_subpage = rnandc_write_subpage_hw_ecc; 1071 1072 return 0; 1073 } 1074 1075 static int rnandc_ecc_init(struct nand_chip *chip) 1076 { 1077 struct nand_ecc_ctrl *ecc = &chip->ecc; 1078 const struct nand_ecc_props *requirements = 1079 nanddev_get_ecc_requirements(&chip->base); 1080 struct rnandc *rnandc = to_rnandc(chip->controller); 1081 int ret; 1082 1083 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && 1084 (!ecc->size || !ecc->strength)) { 1085 if (requirements->step_size && requirements->strength) { 1086 ecc->size = requirements->step_size; 1087 ecc->strength = requirements->strength; 1088 } else { 1089 dev_err(rnandc->dev, "No minimum ECC strength\n"); 1090 return -EINVAL; 1091 } 1092 } 1093 1094 switch (ecc->engine_type) { 1095 case NAND_ECC_ENGINE_TYPE_ON_HOST: 1096 ret = rnandc_hw_ecc_controller_init(chip); 1097 if (ret) 1098 return ret; 1099 break; 1100 case NAND_ECC_ENGINE_TYPE_NONE: 1101 case NAND_ECC_ENGINE_TYPE_SOFT: 1102 case NAND_ECC_ENGINE_TYPE_ON_DIE: 1103 break; 1104 default: 1105 return -EINVAL; 1106 } 1107 1108 return 0; 1109 } 1110 1111 static int rnandc_attach_chip(struct nand_chip *chip) 1112 { 1113 struct rnand_chip *rnand = to_rnand(chip); 1114 struct rnandc *rnandc = to_rnandc(chip->controller); 1115 struct mtd_info *mtd = nand_to_mtd(chip); 1116 struct nand_memory_organization *memorg = nanddev_get_memorg(&chip->base); 1117 int ret; 1118 1119 /* Do not store BBT bits in the OOB section as it is not protected */ 1120 if (chip->bbt_options & NAND_BBT_USE_FLASH) 1121 chip->bbt_options |= NAND_BBT_NO_OOB; 1122 1123 if (mtd->writesize <= 512) { 1124 dev_err(rnandc->dev, "Small page devices not supported\n"); 1125 return -EINVAL; 1126 } 1127 1128 rnand->control |= CONTROL_CHECK_RB_LINE | CONTROL_INT_EN; 1129 1130 switch (memorg->pages_per_eraseblock) { 1131 case 32: 1132 rnand->control |= CONTROL_BLOCK_SIZE_32P; 1133 break; 1134 case 64: 1135 rnand->control |= CONTROL_BLOCK_SIZE_64P; 1136 break; 1137 case 128: 1138 rnand->control |= CONTROL_BLOCK_SIZE_128P; 1139 break; 1140 case 256: 1141 rnand->control |= CONTROL_BLOCK_SIZE_256P; 1142 break; 1143 default: 1144 dev_err(rnandc->dev, "Unsupported memory organization\n"); 1145 return -EINVAL; 1146 } 1147 1148 chip->options |= NAND_SUBPAGE_READ; 1149 1150 ret = rnandc_ecc_init(chip); 1151 if (ret) { 1152 dev_err(rnandc->dev, "ECC initialization failed (%d)\n", ret); 1153 return ret; 1154 } 1155 1156 /* Force an update of the configuration registers */ 1157 rnand->selected_die = -1; 1158 1159 return 0; 1160 } 1161 1162 static const struct nand_controller_ops rnandc_ops = { 1163 .attach_chip = rnandc_attach_chip, 1164 .exec_op = rnandc_exec_op, 1165 .setup_interface = rnandc_setup_interface, 1166 }; 1167 1168 static int rnandc_alloc_dma_buf(struct rnandc *rnandc, 1169 struct mtd_info *new_mtd) 1170 { 1171 unsigned int max_len = new_mtd->writesize + new_mtd->oobsize; 1172 struct rnand_chip *entry, *temp; 1173 struct nand_chip *chip; 1174 struct mtd_info *mtd; 1175 1176 list_for_each_entry_safe(entry, temp, &rnandc->chips, node) { 1177 chip = &entry->chip; 1178 mtd = nand_to_mtd(chip); 1179 max_len = max(max_len, mtd->writesize + mtd->oobsize); 1180 } 1181 1182 if (rnandc->buf && rnandc->buf_sz < max_len) { 1183 devm_kfree(rnandc->dev, rnandc->buf); 1184 rnandc->buf = NULL; 1185 } 1186 1187 if (!rnandc->buf) { 1188 rnandc->buf_sz = max_len; 1189 rnandc->buf = devm_kmalloc(rnandc->dev, max_len, 1190 GFP_KERNEL | GFP_DMA); 1191 if (!rnandc->buf) 1192 return -ENOMEM; 1193 } 1194 1195 return 0; 1196 } 1197 1198 static int rnandc_chip_init(struct rnandc *rnandc, struct device_node *np) 1199 { 1200 struct rnand_chip *rnand; 1201 struct mtd_info *mtd; 1202 struct nand_chip *chip; 1203 int nsels, ret, i; 1204 u32 cs; 1205 1206 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 1207 if (nsels <= 0) { 1208 ret = (nsels < 0) ? nsels : -EINVAL; 1209 dev_err(rnandc->dev, "Invalid reg property (%d)\n", ret); 1210 return ret; 1211 } 1212 1213 /* Alloc the driver's NAND chip structure */ 1214 rnand = devm_kzalloc(rnandc->dev, struct_size(rnand, sels, nsels), 1215 GFP_KERNEL); 1216 if (!rnand) 1217 return -ENOMEM; 1218 1219 rnand->nsels = nsels; 1220 rnand->selected_die = -1; 1221 1222 for (i = 0; i < nsels; i++) { 1223 ret = of_property_read_u32_index(np, "reg", i, &cs); 1224 if (ret) { 1225 dev_err(rnandc->dev, "Incomplete reg property (%d)\n", ret); 1226 return ret; 1227 } 1228 1229 if (cs >= RNANDC_CS_NUM) { 1230 dev_err(rnandc->dev, "Invalid reg property (%d)\n", cs); 1231 return -EINVAL; 1232 } 1233 1234 if (test_and_set_bit(cs, &rnandc->assigned_cs)) { 1235 dev_err(rnandc->dev, "CS %d already assigned\n", cs); 1236 return -EINVAL; 1237 } 1238 1239 /* 1240 * No need to check for RB or WP properties, there is a 1:1 1241 * mandatory mapping with the CS. 1242 */ 1243 rnand->sels[i].cs = cs; 1244 } 1245 1246 chip = &rnand->chip; 1247 chip->controller = &rnandc->controller; 1248 nand_set_flash_node(chip, np); 1249 1250 mtd = nand_to_mtd(chip); 1251 mtd->dev.parent = rnandc->dev; 1252 if (!mtd->name) { 1253 dev_err(rnandc->dev, "Missing MTD label\n"); 1254 return -EINVAL; 1255 } 1256 1257 ret = nand_scan(chip, rnand->nsels); 1258 if (ret) { 1259 dev_err(rnandc->dev, "Failed to scan the NAND chip (%d)\n", ret); 1260 return ret; 1261 } 1262 1263 ret = rnandc_alloc_dma_buf(rnandc, mtd); 1264 if (ret) 1265 goto cleanup_nand; 1266 1267 ret = mtd_device_register(mtd, NULL, 0); 1268 if (ret) { 1269 dev_err(rnandc->dev, "Failed to register MTD device (%d)\n", ret); 1270 goto cleanup_nand; 1271 } 1272 1273 list_add_tail(&rnand->node, &rnandc->chips); 1274 1275 return 0; 1276 1277 cleanup_nand: 1278 nand_cleanup(chip); 1279 1280 return ret; 1281 } 1282 1283 static void rnandc_chips_cleanup(struct rnandc *rnandc) 1284 { 1285 struct rnand_chip *entry, *temp; 1286 struct nand_chip *chip; 1287 int ret; 1288 1289 list_for_each_entry_safe(entry, temp, &rnandc->chips, node) { 1290 chip = &entry->chip; 1291 ret = mtd_device_unregister(nand_to_mtd(chip)); 1292 WARN_ON(ret); 1293 nand_cleanup(chip); 1294 list_del(&entry->node); 1295 } 1296 } 1297 1298 static int rnandc_chips_init(struct rnandc *rnandc) 1299 { 1300 int ret; 1301 1302 for_each_child_of_node_scoped(rnandc->dev->of_node, np) { 1303 ret = rnandc_chip_init(rnandc, np); 1304 if (ret) { 1305 rnandc_chips_cleanup(rnandc); 1306 return ret; 1307 } 1308 } 1309 1310 return 0; 1311 } 1312 1313 static int rnandc_probe(struct platform_device *pdev) 1314 { 1315 struct rnandc *rnandc; 1316 struct clk *eclk; 1317 int irq, ret; 1318 1319 rnandc = devm_kzalloc(&pdev->dev, sizeof(*rnandc), GFP_KERNEL); 1320 if (!rnandc) 1321 return -ENOMEM; 1322 1323 rnandc->dev = &pdev->dev; 1324 nand_controller_init(&rnandc->controller); 1325 rnandc->controller.ops = &rnandc_ops; 1326 INIT_LIST_HEAD(&rnandc->chips); 1327 init_completion(&rnandc->complete); 1328 1329 rnandc->regs = devm_platform_ioremap_resource(pdev, 0); 1330 if (IS_ERR(rnandc->regs)) 1331 return PTR_ERR(rnandc->regs); 1332 1333 devm_pm_runtime_enable(&pdev->dev); 1334 ret = pm_runtime_resume_and_get(&pdev->dev); 1335 if (ret < 0) 1336 return ret; 1337 1338 /* The external NAND bus clock rate is needed for computing timings */ 1339 eclk = clk_get(&pdev->dev, "eclk"); 1340 if (IS_ERR(eclk)) { 1341 ret = PTR_ERR(eclk); 1342 goto dis_runtime_pm; 1343 } 1344 1345 rnandc->ext_clk_rate = clk_get_rate(eclk); 1346 clk_put(eclk); 1347 1348 rnandc_dis_interrupts(rnandc); 1349 irq = platform_get_irq_optional(pdev, 0); 1350 if (irq == -EPROBE_DEFER) { 1351 ret = irq; 1352 goto dis_runtime_pm; 1353 } else if (irq < 0) { 1354 dev_info(&pdev->dev, "No IRQ found, fallback to polling\n"); 1355 rnandc->use_polling = true; 1356 } else { 1357 ret = devm_request_irq(&pdev->dev, irq, rnandc_irq_handler, 0, 1358 "renesas-nand-controller", rnandc); 1359 if (ret < 0) 1360 goto dis_runtime_pm; 1361 } 1362 1363 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 1364 if (ret) 1365 goto dis_runtime_pm; 1366 1367 rnandc_clear_fifo(rnandc); 1368 1369 platform_set_drvdata(pdev, rnandc); 1370 1371 ret = rnandc_chips_init(rnandc); 1372 if (ret) 1373 goto dis_runtime_pm; 1374 1375 return 0; 1376 1377 dis_runtime_pm: 1378 pm_runtime_put(&pdev->dev); 1379 1380 return ret; 1381 } 1382 1383 static void rnandc_remove(struct platform_device *pdev) 1384 { 1385 struct rnandc *rnandc = platform_get_drvdata(pdev); 1386 1387 rnandc_chips_cleanup(rnandc); 1388 1389 pm_runtime_put(&pdev->dev); 1390 } 1391 1392 static const struct of_device_id rnandc_id_table[] = { 1393 { .compatible = "renesas,rcar-gen3-nandc" }, 1394 { .compatible = "renesas,rzn1-nandc" }, 1395 {} /* sentinel */ 1396 }; 1397 MODULE_DEVICE_TABLE(of, rnandc_id_table); 1398 1399 static struct platform_driver rnandc_driver = { 1400 .driver = { 1401 .name = "renesas-nandc", 1402 .of_match_table = rnandc_id_table, 1403 }, 1404 .probe = rnandc_probe, 1405 .remove_new = rnandc_remove, 1406 }; 1407 module_platform_driver(rnandc_driver); 1408 1409 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); 1410 MODULE_DESCRIPTION("Renesas R-Car Gen3 & RZ/N1 NAND controller driver"); 1411 MODULE_LICENSE("GPL v2"); 1412