1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2016, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/slab.h> 8 #include <linux/bitops.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/dmaengine.h> 11 #include <linux/module.h> 12 #include <linux/mtd/rawnand.h> 13 #include <linux/mtd/partitions.h> 14 #include <linux/of.h> 15 #include <linux/of_device.h> 16 #include <linux/delay.h> 17 #include <linux/dma/qcom_bam_dma.h> 18 19 /* NANDc reg offsets */ 20 #define NAND_FLASH_CMD 0x00 21 #define NAND_ADDR0 0x04 22 #define NAND_ADDR1 0x08 23 #define NAND_FLASH_CHIP_SELECT 0x0c 24 #define NAND_EXEC_CMD 0x10 25 #define NAND_FLASH_STATUS 0x14 26 #define NAND_BUFFER_STATUS 0x18 27 #define NAND_DEV0_CFG0 0x20 28 #define NAND_DEV0_CFG1 0x24 29 #define NAND_DEV0_ECC_CFG 0x28 30 #define NAND_AUTO_STATUS_EN 0x2c 31 #define NAND_DEV1_CFG0 0x30 32 #define NAND_DEV1_CFG1 0x34 33 #define NAND_READ_ID 0x40 34 #define NAND_READ_STATUS 0x44 35 #define NAND_DEV_CMD0 0xa0 36 #define NAND_DEV_CMD1 0xa4 37 #define NAND_DEV_CMD2 0xa8 38 #define NAND_DEV_CMD_VLD 0xac 39 #define SFLASHC_BURST_CFG 0xe0 40 #define NAND_ERASED_CW_DETECT_CFG 0xe8 41 #define NAND_ERASED_CW_DETECT_STATUS 0xec 42 #define NAND_EBI2_ECC_BUF_CFG 0xf0 43 #define FLASH_BUF_ACC 0x100 44 45 #define NAND_CTRL 0xf00 46 #define NAND_VERSION 0xf08 47 #define NAND_READ_LOCATION_0 0xf20 48 #define NAND_READ_LOCATION_1 0xf24 49 #define NAND_READ_LOCATION_2 0xf28 50 #define NAND_READ_LOCATION_3 0xf2c 51 #define NAND_READ_LOCATION_LAST_CW_0 0xf40 52 #define NAND_READ_LOCATION_LAST_CW_1 0xf44 53 #define NAND_READ_LOCATION_LAST_CW_2 0xf48 54 #define NAND_READ_LOCATION_LAST_CW_3 0xf4c 55 56 /* dummy register offsets, used by write_reg_dma */ 57 #define NAND_DEV_CMD1_RESTORE 0xdead 58 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef 59 60 /* NAND_FLASH_CMD bits */ 61 #define PAGE_ACC BIT(4) 62 #define LAST_PAGE BIT(5) 63 64 /* NAND_FLASH_CHIP_SELECT bits */ 65 #define NAND_DEV_SEL 0 66 #define DM_EN BIT(2) 67 68 /* NAND_FLASH_STATUS bits */ 69 #define FS_OP_ERR BIT(4) 70 #define FS_READY_BSY_N BIT(5) 71 #define FS_MPU_ERR BIT(8) 72 #define FS_DEVICE_STS_ERR BIT(16) 73 #define FS_DEVICE_WP BIT(23) 74 75 /* NAND_BUFFER_STATUS bits */ 76 #define BS_UNCORRECTABLE_BIT BIT(8) 77 #define BS_CORRECTABLE_ERR_MSK 0x1f 78 79 /* NAND_DEVn_CFG0 bits */ 80 #define DISABLE_STATUS_AFTER_WRITE 4 81 #define CW_PER_PAGE 6 82 #define UD_SIZE_BYTES 9 83 #define ECC_PARITY_SIZE_BYTES_RS 19 84 #define SPARE_SIZE_BYTES 23 85 #define NUM_ADDR_CYCLES 27 86 #define STATUS_BFR_READ 30 87 #define SET_RD_MODE_AFTER_STATUS 31 88 89 /* NAND_DEVn_CFG0 bits */ 90 #define DEV0_CFG1_ECC_DISABLE 0 91 #define WIDE_FLASH 1 92 #define NAND_RECOVERY_CYCLES 2 93 #define CS_ACTIVE_BSY 5 94 #define BAD_BLOCK_BYTE_NUM 6 95 #define BAD_BLOCK_IN_SPARE_AREA 16 96 #define WR_RD_BSY_GAP 17 97 #define ENABLE_BCH_ECC 27 98 99 /* NAND_DEV0_ECC_CFG bits */ 100 #define ECC_CFG_ECC_DISABLE 0 101 #define ECC_SW_RESET 1 102 #define ECC_MODE 4 103 #define ECC_PARITY_SIZE_BYTES_BCH 8 104 #define ECC_NUM_DATA_BYTES 16 105 #define ECC_FORCE_CLK_OPEN 30 106 107 /* NAND_DEV_CMD1 bits */ 108 #define READ_ADDR 0 109 110 /* NAND_DEV_CMD_VLD bits */ 111 #define READ_START_VLD BIT(0) 112 #define READ_STOP_VLD BIT(1) 113 #define WRITE_START_VLD BIT(2) 114 #define ERASE_START_VLD BIT(3) 115 #define SEQ_READ_START_VLD BIT(4) 116 117 /* NAND_EBI2_ECC_BUF_CFG bits */ 118 #define NUM_STEPS 0 119 120 /* NAND_ERASED_CW_DETECT_CFG bits */ 121 #define ERASED_CW_ECC_MASK 1 122 #define AUTO_DETECT_RES 0 123 #define MASK_ECC (1 << ERASED_CW_ECC_MASK) 124 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES) 125 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) 126 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) 127 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) 128 129 /* NAND_ERASED_CW_DETECT_STATUS bits */ 130 #define PAGE_ALL_ERASED BIT(7) 131 #define CODEWORD_ALL_ERASED BIT(6) 132 #define PAGE_ERASED BIT(5) 133 #define CODEWORD_ERASED BIT(4) 134 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) 135 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) 136 137 /* NAND_READ_LOCATION_n bits */ 138 #define READ_LOCATION_OFFSET 0 139 #define READ_LOCATION_SIZE 16 140 #define READ_LOCATION_LAST 31 141 142 /* Version Mask */ 143 #define NAND_VERSION_MAJOR_MASK 0xf0000000 144 #define NAND_VERSION_MAJOR_SHIFT 28 145 #define NAND_VERSION_MINOR_MASK 0x0fff0000 146 #define NAND_VERSION_MINOR_SHIFT 16 147 148 /* NAND OP_CMDs */ 149 #define OP_PAGE_READ 0x2 150 #define OP_PAGE_READ_WITH_ECC 0x3 151 #define OP_PAGE_READ_WITH_ECC_SPARE 0x4 152 #define OP_PAGE_READ_ONFI_READ 0x5 153 #define OP_PROGRAM_PAGE 0x6 154 #define OP_PAGE_PROGRAM_WITH_ECC 0x7 155 #define OP_PROGRAM_PAGE_SPARE 0x9 156 #define OP_BLOCK_ERASE 0xa 157 #define OP_FETCH_ID 0xb 158 #define OP_RESET_DEVICE 0xd 159 160 /* Default Value for NAND_DEV_CMD_VLD */ 161 #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \ 162 ERASE_START_VLD | SEQ_READ_START_VLD) 163 164 /* NAND_CTRL bits */ 165 #define BAM_MODE_EN BIT(0) 166 167 /* 168 * the NAND controller performs reads/writes with ECC in 516 byte chunks. 169 * the driver calls the chunks 'step' or 'codeword' interchangeably 170 */ 171 #define NANDC_STEP_SIZE 512 172 173 /* 174 * the largest page size we support is 8K, this will have 16 steps/codewords 175 * of 512 bytes each 176 */ 177 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) 178 179 /* we read at most 3 registers per codeword scan */ 180 #define MAX_REG_RD (3 * MAX_NUM_STEPS) 181 182 /* ECC modes supported by the controller */ 183 #define ECC_NONE BIT(0) 184 #define ECC_RS_4BIT BIT(1) 185 #define ECC_BCH_4BIT BIT(2) 186 #define ECC_BCH_8BIT BIT(3) 187 188 #define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc) \ 189 nandc_set_reg(chip, reg, \ 190 ((cw_offset) << READ_LOCATION_OFFSET) | \ 191 ((read_size) << READ_LOCATION_SIZE) | \ 192 ((is_last_read_loc) << READ_LOCATION_LAST)) 193 194 #define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc) \ 195 nandc_set_reg(chip, reg, \ 196 ((cw_offset) << READ_LOCATION_OFFSET) | \ 197 ((read_size) << READ_LOCATION_SIZE) | \ 198 ((is_last_read_loc) << READ_LOCATION_LAST)) 199 /* 200 * Returns the actual register address for all NAND_DEV_ registers 201 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD) 202 */ 203 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg)) 204 205 /* Returns the NAND register physical address */ 206 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset)) 207 208 /* Returns the dma address for reg read buffer */ 209 #define reg_buf_dma_addr(chip, vaddr) \ 210 ((chip)->reg_read_dma + \ 211 ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf)) 212 213 #define QPIC_PER_CW_CMD_ELEMENTS 32 214 #define QPIC_PER_CW_CMD_SGL 32 215 #define QPIC_PER_CW_DATA_SGL 8 216 217 #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000) 218 219 /* 220 * Flags used in DMA descriptor preparation helper functions 221 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma) 222 */ 223 /* Don't set the EOT in current tx BAM sgl */ 224 #define NAND_BAM_NO_EOT BIT(0) 225 /* Set the NWD flag in current BAM sgl */ 226 #define NAND_BAM_NWD BIT(1) 227 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */ 228 #define NAND_BAM_NEXT_SGL BIT(2) 229 /* 230 * Erased codeword status is being used two times in single transfer so this 231 * flag will determine the current value of erased codeword status register 232 */ 233 #define NAND_ERASED_CW_SET BIT(4) 234 235 /* 236 * This data type corresponds to the BAM transaction which will be used for all 237 * NAND transfers. 238 * @bam_ce - the array of BAM command elements 239 * @cmd_sgl - sgl for NAND BAM command pipe 240 * @data_sgl - sgl for NAND BAM consumer/producer pipe 241 * @bam_ce_pos - the index in bam_ce which is available for next sgl 242 * @bam_ce_start - the index in bam_ce which marks the start position ce 243 * for current sgl. It will be used for size calculation 244 * for current sgl 245 * @cmd_sgl_pos - current index in command sgl. 246 * @cmd_sgl_start - start index in command sgl. 247 * @tx_sgl_pos - current index in data sgl for tx. 248 * @tx_sgl_start - start index in data sgl for tx. 249 * @rx_sgl_pos - current index in data sgl for rx. 250 * @rx_sgl_start - start index in data sgl for rx. 251 * @wait_second_completion - wait for second DMA desc completion before making 252 * the NAND transfer completion. 253 * @txn_done - completion for NAND transfer. 254 * @last_data_desc - last DMA desc in data channel (tx/rx). 255 * @last_cmd_desc - last DMA desc in command channel. 256 */ 257 struct bam_transaction { 258 struct bam_cmd_element *bam_ce; 259 struct scatterlist *cmd_sgl; 260 struct scatterlist *data_sgl; 261 u32 bam_ce_pos; 262 u32 bam_ce_start; 263 u32 cmd_sgl_pos; 264 u32 cmd_sgl_start; 265 u32 tx_sgl_pos; 266 u32 tx_sgl_start; 267 u32 rx_sgl_pos; 268 u32 rx_sgl_start; 269 bool wait_second_completion; 270 struct completion txn_done; 271 struct dma_async_tx_descriptor *last_data_desc; 272 struct dma_async_tx_descriptor *last_cmd_desc; 273 }; 274 275 /* 276 * This data type corresponds to the nand dma descriptor 277 * @list - list for desc_info 278 * @dir - DMA transfer direction 279 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by 280 * ADM 281 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM 282 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM 283 * @dma_desc - low level DMA engine descriptor 284 */ 285 struct desc_info { 286 struct list_head node; 287 288 enum dma_data_direction dir; 289 union { 290 struct scatterlist adm_sgl; 291 struct { 292 struct scatterlist *bam_sgl; 293 int sgl_cnt; 294 }; 295 }; 296 struct dma_async_tx_descriptor *dma_desc; 297 }; 298 299 /* 300 * holds the current register values that we want to write. acts as a contiguous 301 * chunk of memory which we use to write the controller registers through DMA. 302 */ 303 struct nandc_regs { 304 __le32 cmd; 305 __le32 addr0; 306 __le32 addr1; 307 __le32 chip_sel; 308 __le32 exec; 309 310 __le32 cfg0; 311 __le32 cfg1; 312 __le32 ecc_bch_cfg; 313 314 __le32 clrflashstatus; 315 __le32 clrreadstatus; 316 317 __le32 cmd1; 318 __le32 vld; 319 320 __le32 orig_cmd1; 321 __le32 orig_vld; 322 323 __le32 ecc_buf_cfg; 324 __le32 read_location0; 325 __le32 read_location1; 326 __le32 read_location2; 327 __le32 read_location3; 328 __le32 read_location_last0; 329 __le32 read_location_last1; 330 __le32 read_location_last2; 331 __le32 read_location_last3; 332 333 __le32 erased_cw_detect_cfg_clr; 334 __le32 erased_cw_detect_cfg_set; 335 }; 336 337 /* 338 * NAND controller data struct 339 * 340 * @controller: base controller structure 341 * @host_list: list containing all the chips attached to the 342 * controller 343 * @dev: parent device 344 * @base: MMIO base 345 * @base_phys: physical base address of controller registers 346 * @base_dma: dma base address of controller registers 347 * @core_clk: controller clock 348 * @aon_clk: another controller clock 349 * 350 * @chan: dma channel 351 * @cmd_crci: ADM DMA CRCI for command flow control 352 * @data_crci: ADM DMA CRCI for data flow control 353 * @desc_list: DMA descriptor list (list of desc_infos) 354 * 355 * @data_buffer: our local DMA buffer for page read/writes, 356 * used when we can't use the buffer provided 357 * by upper layers directly 358 * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf 359 * functions 360 * @reg_read_buf: local buffer for reading back registers via DMA 361 * @reg_read_dma: contains dma address for register read buffer 362 * @reg_read_pos: marker for data read in reg_read_buf 363 * 364 * @regs: a contiguous chunk of memory for DMA register 365 * writes. contains the register values to be 366 * written to controller 367 * @cmd1/vld: some fixed controller register values 368 * @props: properties of current NAND controller, 369 * initialized via DT match data 370 * @max_cwperpage: maximum QPIC codewords required. calculated 371 * from all connected NAND devices pagesize 372 */ 373 struct qcom_nand_controller { 374 struct nand_controller controller; 375 struct list_head host_list; 376 377 struct device *dev; 378 379 void __iomem *base; 380 phys_addr_t base_phys; 381 dma_addr_t base_dma; 382 383 struct clk *core_clk; 384 struct clk *aon_clk; 385 386 union { 387 /* will be used only by QPIC for BAM DMA */ 388 struct { 389 struct dma_chan *tx_chan; 390 struct dma_chan *rx_chan; 391 struct dma_chan *cmd_chan; 392 }; 393 394 /* will be used only by EBI2 for ADM DMA */ 395 struct { 396 struct dma_chan *chan; 397 unsigned int cmd_crci; 398 unsigned int data_crci; 399 }; 400 }; 401 402 struct list_head desc_list; 403 struct bam_transaction *bam_txn; 404 405 u8 *data_buffer; 406 int buf_size; 407 int buf_count; 408 int buf_start; 409 unsigned int max_cwperpage; 410 411 __le32 *reg_read_buf; 412 dma_addr_t reg_read_dma; 413 int reg_read_pos; 414 415 struct nandc_regs *regs; 416 417 u32 cmd1, vld; 418 const struct qcom_nandc_props *props; 419 }; 420 421 /* 422 * NAND chip structure 423 * 424 * @chip: base NAND chip structure 425 * @node: list node to add itself to host_list in 426 * qcom_nand_controller 427 * 428 * @cs: chip select value for this chip 429 * @cw_size: the number of bytes in a single step/codeword 430 * of a page, consisting of all data, ecc, spare 431 * and reserved bytes 432 * @cw_data: the number of bytes within a codeword protected 433 * by ECC 434 * @use_ecc: request the controller to use ECC for the 435 * upcoming read/write 436 * @bch_enabled: flag to tell whether BCH ECC mode is used 437 * @ecc_bytes_hw: ECC bytes used by controller hardware for this 438 * chip 439 * @status: value to be returned if NAND_CMD_STATUS command 440 * is executed 441 * @last_command: keeps track of last command on this chip. used 442 * for reading correct status 443 * 444 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for 445 * ecc/non-ecc mode for the current nand flash 446 * device 447 */ 448 struct qcom_nand_host { 449 struct nand_chip chip; 450 struct list_head node; 451 452 int cs; 453 int cw_size; 454 int cw_data; 455 bool use_ecc; 456 bool bch_enabled; 457 int ecc_bytes_hw; 458 int spare_bytes; 459 int bbm_size; 460 u8 status; 461 int last_command; 462 463 u32 cfg0, cfg1; 464 u32 cfg0_raw, cfg1_raw; 465 u32 ecc_buf_cfg; 466 u32 ecc_bch_cfg; 467 u32 clrflashstatus; 468 u32 clrreadstatus; 469 }; 470 471 /* 472 * This data type corresponds to the NAND controller properties which varies 473 * among different NAND controllers. 474 * @ecc_modes - ecc mode for NAND 475 * @is_bam - whether NAND controller is using BAM 476 * @is_qpic - whether NAND CTRL is part of qpic IP 477 * @qpic_v2 - flag to indicate QPIC IP version 2 478 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset 479 */ 480 struct qcom_nandc_props { 481 u32 ecc_modes; 482 bool is_bam; 483 bool is_qpic; 484 bool qpic_v2; 485 u32 dev_cmd_reg_start; 486 }; 487 488 /* Frees the BAM transaction memory */ 489 static void free_bam_transaction(struct qcom_nand_controller *nandc) 490 { 491 struct bam_transaction *bam_txn = nandc->bam_txn; 492 493 devm_kfree(nandc->dev, bam_txn); 494 } 495 496 /* Allocates and Initializes the BAM transaction */ 497 static struct bam_transaction * 498 alloc_bam_transaction(struct qcom_nand_controller *nandc) 499 { 500 struct bam_transaction *bam_txn; 501 size_t bam_txn_size; 502 unsigned int num_cw = nandc->max_cwperpage; 503 void *bam_txn_buf; 504 505 bam_txn_size = 506 sizeof(*bam_txn) + num_cw * 507 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) + 508 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) + 509 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL)); 510 511 bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL); 512 if (!bam_txn_buf) 513 return NULL; 514 515 bam_txn = bam_txn_buf; 516 bam_txn_buf += sizeof(*bam_txn); 517 518 bam_txn->bam_ce = bam_txn_buf; 519 bam_txn_buf += 520 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw; 521 522 bam_txn->cmd_sgl = bam_txn_buf; 523 bam_txn_buf += 524 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw; 525 526 bam_txn->data_sgl = bam_txn_buf; 527 528 init_completion(&bam_txn->txn_done); 529 530 return bam_txn; 531 } 532 533 /* Clears the BAM transaction indexes */ 534 static void clear_bam_transaction(struct qcom_nand_controller *nandc) 535 { 536 struct bam_transaction *bam_txn = nandc->bam_txn; 537 538 if (!nandc->props->is_bam) 539 return; 540 541 bam_txn->bam_ce_pos = 0; 542 bam_txn->bam_ce_start = 0; 543 bam_txn->cmd_sgl_pos = 0; 544 bam_txn->cmd_sgl_start = 0; 545 bam_txn->tx_sgl_pos = 0; 546 bam_txn->tx_sgl_start = 0; 547 bam_txn->rx_sgl_pos = 0; 548 bam_txn->rx_sgl_start = 0; 549 bam_txn->last_data_desc = NULL; 550 bam_txn->wait_second_completion = false; 551 552 sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage * 553 QPIC_PER_CW_CMD_SGL); 554 sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage * 555 QPIC_PER_CW_DATA_SGL); 556 557 reinit_completion(&bam_txn->txn_done); 558 } 559 560 /* Callback for DMA descriptor completion */ 561 static void qpic_bam_dma_done(void *data) 562 { 563 struct bam_transaction *bam_txn = data; 564 565 /* 566 * In case of data transfer with NAND, 2 callbacks will be generated. 567 * One for command channel and another one for data channel. 568 * If current transaction has data descriptors 569 * (i.e. wait_second_completion is true), then set this to false 570 * and wait for second DMA descriptor completion. 571 */ 572 if (bam_txn->wait_second_completion) 573 bam_txn->wait_second_completion = false; 574 else 575 complete(&bam_txn->txn_done); 576 } 577 578 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) 579 { 580 return container_of(chip, struct qcom_nand_host, chip); 581 } 582 583 static inline struct qcom_nand_controller * 584 get_qcom_nand_controller(struct nand_chip *chip) 585 { 586 return container_of(chip->controller, struct qcom_nand_controller, 587 controller); 588 } 589 590 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) 591 { 592 return ioread32(nandc->base + offset); 593 } 594 595 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, 596 u32 val) 597 { 598 iowrite32(val, nandc->base + offset); 599 } 600 601 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, 602 bool is_cpu) 603 { 604 if (!nandc->props->is_bam) 605 return; 606 607 if (is_cpu) 608 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma, 609 MAX_REG_RD * 610 sizeof(*nandc->reg_read_buf), 611 DMA_FROM_DEVICE); 612 else 613 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma, 614 MAX_REG_RD * 615 sizeof(*nandc->reg_read_buf), 616 DMA_FROM_DEVICE); 617 } 618 619 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) 620 { 621 switch (offset) { 622 case NAND_FLASH_CMD: 623 return ®s->cmd; 624 case NAND_ADDR0: 625 return ®s->addr0; 626 case NAND_ADDR1: 627 return ®s->addr1; 628 case NAND_FLASH_CHIP_SELECT: 629 return ®s->chip_sel; 630 case NAND_EXEC_CMD: 631 return ®s->exec; 632 case NAND_FLASH_STATUS: 633 return ®s->clrflashstatus; 634 case NAND_DEV0_CFG0: 635 return ®s->cfg0; 636 case NAND_DEV0_CFG1: 637 return ®s->cfg1; 638 case NAND_DEV0_ECC_CFG: 639 return ®s->ecc_bch_cfg; 640 case NAND_READ_STATUS: 641 return ®s->clrreadstatus; 642 case NAND_DEV_CMD1: 643 return ®s->cmd1; 644 case NAND_DEV_CMD1_RESTORE: 645 return ®s->orig_cmd1; 646 case NAND_DEV_CMD_VLD: 647 return ®s->vld; 648 case NAND_DEV_CMD_VLD_RESTORE: 649 return ®s->orig_vld; 650 case NAND_EBI2_ECC_BUF_CFG: 651 return ®s->ecc_buf_cfg; 652 case NAND_READ_LOCATION_0: 653 return ®s->read_location0; 654 case NAND_READ_LOCATION_1: 655 return ®s->read_location1; 656 case NAND_READ_LOCATION_2: 657 return ®s->read_location2; 658 case NAND_READ_LOCATION_3: 659 return ®s->read_location3; 660 case NAND_READ_LOCATION_LAST_CW_0: 661 return ®s->read_location_last0; 662 case NAND_READ_LOCATION_LAST_CW_1: 663 return ®s->read_location_last1; 664 case NAND_READ_LOCATION_LAST_CW_2: 665 return ®s->read_location_last2; 666 case NAND_READ_LOCATION_LAST_CW_3: 667 return ®s->read_location_last3; 668 default: 669 return NULL; 670 } 671 } 672 673 static void nandc_set_reg(struct nand_chip *chip, int offset, 674 u32 val) 675 { 676 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 677 struct nandc_regs *regs = nandc->regs; 678 __le32 *reg; 679 680 reg = offset_to_nandc_reg(regs, offset); 681 682 if (reg) 683 *reg = cpu_to_le32(val); 684 } 685 686 /* Helper to check the code word, whether it is last cw or not */ 687 static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw) 688 { 689 return cw == (ecc->steps - 1); 690 } 691 692 /* helper to configure location register values */ 693 static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg, 694 int cw_offset, int read_size, int is_last_read_loc) 695 { 696 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 697 struct nand_ecc_ctrl *ecc = &chip->ecc; 698 int reg_base = NAND_READ_LOCATION_0; 699 700 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) 701 reg_base = NAND_READ_LOCATION_LAST_CW_0; 702 703 reg_base += reg * 4; 704 705 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) 706 return nandc_set_read_loc_last(chip, reg_base, cw_offset, 707 read_size, is_last_read_loc); 708 else 709 return nandc_set_read_loc_first(chip, reg_base, cw_offset, 710 read_size, is_last_read_loc); 711 } 712 713 /* helper to configure address register values */ 714 static void set_address(struct qcom_nand_host *host, u16 column, int page) 715 { 716 struct nand_chip *chip = &host->chip; 717 718 if (chip->options & NAND_BUSWIDTH_16) 719 column >>= 1; 720 721 nandc_set_reg(chip, NAND_ADDR0, page << 16 | column); 722 nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff); 723 } 724 725 /* 726 * update_rw_regs: set up read/write register values, these will be 727 * written to the NAND controller registers via DMA 728 * 729 * @num_cw: number of steps for the read/write operation 730 * @read: read or write operation 731 * @cw : which code word 732 */ 733 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw) 734 { 735 struct nand_chip *chip = &host->chip; 736 u32 cmd, cfg0, cfg1, ecc_bch_cfg; 737 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 738 739 if (read) { 740 if (host->use_ecc) 741 cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; 742 else 743 cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE; 744 } else { 745 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; 746 } 747 748 if (host->use_ecc) { 749 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) | 750 (num_cw - 1) << CW_PER_PAGE; 751 752 cfg1 = host->cfg1; 753 ecc_bch_cfg = host->ecc_bch_cfg; 754 } else { 755 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) | 756 (num_cw - 1) << CW_PER_PAGE; 757 758 cfg1 = host->cfg1_raw; 759 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; 760 } 761 762 nandc_set_reg(chip, NAND_FLASH_CMD, cmd); 763 nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0); 764 nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1); 765 nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg); 766 if (!nandc->props->qpic_v2) 767 nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg); 768 nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus); 769 nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus); 770 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 771 772 if (read) 773 nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ? 774 host->cw_data : host->cw_size, 1); 775 } 776 777 /* 778 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor 779 * for BAM. This descriptor will be added in the NAND DMA descriptor queue 780 * which will be submitted to DMA engine. 781 */ 782 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc, 783 struct dma_chan *chan, 784 unsigned long flags) 785 { 786 struct desc_info *desc; 787 struct scatterlist *sgl; 788 unsigned int sgl_cnt; 789 int ret; 790 struct bam_transaction *bam_txn = nandc->bam_txn; 791 enum dma_transfer_direction dir_eng; 792 struct dma_async_tx_descriptor *dma_desc; 793 794 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 795 if (!desc) 796 return -ENOMEM; 797 798 if (chan == nandc->cmd_chan) { 799 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start]; 800 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start; 801 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos; 802 dir_eng = DMA_MEM_TO_DEV; 803 desc->dir = DMA_TO_DEVICE; 804 } else if (chan == nandc->tx_chan) { 805 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start]; 806 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start; 807 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos; 808 dir_eng = DMA_MEM_TO_DEV; 809 desc->dir = DMA_TO_DEVICE; 810 } else { 811 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start]; 812 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start; 813 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos; 814 dir_eng = DMA_DEV_TO_MEM; 815 desc->dir = DMA_FROM_DEVICE; 816 } 817 818 sg_mark_end(sgl + sgl_cnt - 1); 819 ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir); 820 if (ret == 0) { 821 dev_err(nandc->dev, "failure in mapping desc\n"); 822 kfree(desc); 823 return -ENOMEM; 824 } 825 826 desc->sgl_cnt = sgl_cnt; 827 desc->bam_sgl = sgl; 828 829 dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng, 830 flags); 831 832 if (!dma_desc) { 833 dev_err(nandc->dev, "failure in prep desc\n"); 834 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir); 835 kfree(desc); 836 return -EINVAL; 837 } 838 839 desc->dma_desc = dma_desc; 840 841 /* update last data/command descriptor */ 842 if (chan == nandc->cmd_chan) 843 bam_txn->last_cmd_desc = dma_desc; 844 else 845 bam_txn->last_data_desc = dma_desc; 846 847 list_add_tail(&desc->node, &nandc->desc_list); 848 849 return 0; 850 } 851 852 /* 853 * Prepares the command descriptor for BAM DMA which will be used for NAND 854 * register reads and writes. The command descriptor requires the command 855 * to be formed in command element type so this function uses the command 856 * element from bam transaction ce array and fills the same with required 857 * data. A single SGL can contain multiple command elements so 858 * NAND_BAM_NEXT_SGL will be used for starting the separate SGL 859 * after the current command element. 860 */ 861 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, 862 int reg_off, const void *vaddr, 863 int size, unsigned int flags) 864 { 865 int bam_ce_size; 866 int i, ret; 867 struct bam_cmd_element *bam_ce_buffer; 868 struct bam_transaction *bam_txn = nandc->bam_txn; 869 870 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos]; 871 872 /* fill the command desc */ 873 for (i = 0; i < size; i++) { 874 if (read) 875 bam_prep_ce(&bam_ce_buffer[i], 876 nandc_reg_phys(nandc, reg_off + 4 * i), 877 BAM_READ_COMMAND, 878 reg_buf_dma_addr(nandc, 879 (__le32 *)vaddr + i)); 880 else 881 bam_prep_ce_le32(&bam_ce_buffer[i], 882 nandc_reg_phys(nandc, reg_off + 4 * i), 883 BAM_WRITE_COMMAND, 884 *((__le32 *)vaddr + i)); 885 } 886 887 bam_txn->bam_ce_pos += size; 888 889 /* use the separate sgl after this command */ 890 if (flags & NAND_BAM_NEXT_SGL) { 891 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start]; 892 bam_ce_size = (bam_txn->bam_ce_pos - 893 bam_txn->bam_ce_start) * 894 sizeof(struct bam_cmd_element); 895 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos], 896 bam_ce_buffer, bam_ce_size); 897 bam_txn->cmd_sgl_pos++; 898 bam_txn->bam_ce_start = bam_txn->bam_ce_pos; 899 900 if (flags & NAND_BAM_NWD) { 901 ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, 902 DMA_PREP_FENCE | 903 DMA_PREP_CMD); 904 if (ret) 905 return ret; 906 } 907 } 908 909 return 0; 910 } 911 912 /* 913 * Prepares the data descriptor for BAM DMA which will be used for NAND 914 * data reads and writes. 915 */ 916 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, 917 const void *vaddr, 918 int size, unsigned int flags) 919 { 920 int ret; 921 struct bam_transaction *bam_txn = nandc->bam_txn; 922 923 if (read) { 924 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos], 925 vaddr, size); 926 bam_txn->rx_sgl_pos++; 927 } else { 928 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos], 929 vaddr, size); 930 bam_txn->tx_sgl_pos++; 931 932 /* 933 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag 934 * is not set, form the DMA descriptor 935 */ 936 if (!(flags & NAND_BAM_NO_EOT)) { 937 ret = prepare_bam_async_desc(nandc, nandc->tx_chan, 938 DMA_PREP_INTERRUPT); 939 if (ret) 940 return ret; 941 } 942 } 943 944 return 0; 945 } 946 947 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, 948 int reg_off, const void *vaddr, int size, 949 bool flow_control) 950 { 951 struct desc_info *desc; 952 struct dma_async_tx_descriptor *dma_desc; 953 struct scatterlist *sgl; 954 struct dma_slave_config slave_conf; 955 enum dma_transfer_direction dir_eng; 956 int ret; 957 958 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 959 if (!desc) 960 return -ENOMEM; 961 962 sgl = &desc->adm_sgl; 963 964 sg_init_one(sgl, vaddr, size); 965 966 if (read) { 967 dir_eng = DMA_DEV_TO_MEM; 968 desc->dir = DMA_FROM_DEVICE; 969 } else { 970 dir_eng = DMA_MEM_TO_DEV; 971 desc->dir = DMA_TO_DEVICE; 972 } 973 974 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); 975 if (ret == 0) { 976 ret = -ENOMEM; 977 goto err; 978 } 979 980 memset(&slave_conf, 0x00, sizeof(slave_conf)); 981 982 slave_conf.device_fc = flow_control; 983 if (read) { 984 slave_conf.src_maxburst = 16; 985 slave_conf.src_addr = nandc->base_dma + reg_off; 986 slave_conf.slave_id = nandc->data_crci; 987 } else { 988 slave_conf.dst_maxburst = 16; 989 slave_conf.dst_addr = nandc->base_dma + reg_off; 990 slave_conf.slave_id = nandc->cmd_crci; 991 } 992 993 ret = dmaengine_slave_config(nandc->chan, &slave_conf); 994 if (ret) { 995 dev_err(nandc->dev, "failed to configure dma channel\n"); 996 goto err; 997 } 998 999 dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); 1000 if (!dma_desc) { 1001 dev_err(nandc->dev, "failed to prepare desc\n"); 1002 ret = -EINVAL; 1003 goto err; 1004 } 1005 1006 desc->dma_desc = dma_desc; 1007 1008 list_add_tail(&desc->node, &nandc->desc_list); 1009 1010 return 0; 1011 err: 1012 kfree(desc); 1013 1014 return ret; 1015 } 1016 1017 /* 1018 * read_reg_dma: prepares a descriptor to read a given number of 1019 * contiguous registers to the reg_read_buf pointer 1020 * 1021 * @first: offset of the first register in the contiguous block 1022 * @num_regs: number of registers to read 1023 * @flags: flags to control DMA descriptor preparation 1024 */ 1025 static int read_reg_dma(struct qcom_nand_controller *nandc, int first, 1026 int num_regs, unsigned int flags) 1027 { 1028 bool flow_control = false; 1029 void *vaddr; 1030 1031 vaddr = nandc->reg_read_buf + nandc->reg_read_pos; 1032 nandc->reg_read_pos += num_regs; 1033 1034 if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1) 1035 first = dev_cmd_reg_addr(nandc, first); 1036 1037 if (nandc->props->is_bam) 1038 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr, 1039 num_regs, flags); 1040 1041 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) 1042 flow_control = true; 1043 1044 return prep_adm_dma_desc(nandc, true, first, vaddr, 1045 num_regs * sizeof(u32), flow_control); 1046 } 1047 1048 /* 1049 * write_reg_dma: prepares a descriptor to write a given number of 1050 * contiguous registers 1051 * 1052 * @first: offset of the first register in the contiguous block 1053 * @num_regs: number of registers to write 1054 * @flags: flags to control DMA descriptor preparation 1055 */ 1056 static int write_reg_dma(struct qcom_nand_controller *nandc, int first, 1057 int num_regs, unsigned int flags) 1058 { 1059 bool flow_control = false; 1060 struct nandc_regs *regs = nandc->regs; 1061 void *vaddr; 1062 1063 vaddr = offset_to_nandc_reg(regs, first); 1064 1065 if (first == NAND_ERASED_CW_DETECT_CFG) { 1066 if (flags & NAND_ERASED_CW_SET) 1067 vaddr = ®s->erased_cw_detect_cfg_set; 1068 else 1069 vaddr = ®s->erased_cw_detect_cfg_clr; 1070 } 1071 1072 if (first == NAND_EXEC_CMD) 1073 flags |= NAND_BAM_NWD; 1074 1075 if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1) 1076 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1); 1077 1078 if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD) 1079 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD); 1080 1081 if (nandc->props->is_bam) 1082 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr, 1083 num_regs, flags); 1084 1085 if (first == NAND_FLASH_CMD) 1086 flow_control = true; 1087 1088 return prep_adm_dma_desc(nandc, false, first, vaddr, 1089 num_regs * sizeof(u32), flow_control); 1090 } 1091 1092 /* 1093 * read_data_dma: prepares a DMA descriptor to transfer data from the 1094 * controller's internal buffer to the buffer 'vaddr' 1095 * 1096 * @reg_off: offset within the controller's data buffer 1097 * @vaddr: virtual address of the buffer we want to write to 1098 * @size: DMA transaction size in bytes 1099 * @flags: flags to control DMA descriptor preparation 1100 */ 1101 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, 1102 const u8 *vaddr, int size, unsigned int flags) 1103 { 1104 if (nandc->props->is_bam) 1105 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags); 1106 1107 return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false); 1108 } 1109 1110 /* 1111 * write_data_dma: prepares a DMA descriptor to transfer data from 1112 * 'vaddr' to the controller's internal buffer 1113 * 1114 * @reg_off: offset within the controller's data buffer 1115 * @vaddr: virtual address of the buffer we want to read from 1116 * @size: DMA transaction size in bytes 1117 * @flags: flags to control DMA descriptor preparation 1118 */ 1119 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, 1120 const u8 *vaddr, int size, unsigned int flags) 1121 { 1122 if (nandc->props->is_bam) 1123 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags); 1124 1125 return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false); 1126 } 1127 1128 /* 1129 * Helper to prepare DMA descriptors for configuring registers 1130 * before reading a NAND page. 1131 */ 1132 static void config_nand_page_read(struct nand_chip *chip) 1133 { 1134 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1135 1136 write_reg_dma(nandc, NAND_ADDR0, 2, 0); 1137 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); 1138 if (!nandc->props->qpic_v2) 1139 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0); 1140 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0); 1141 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 1142 NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); 1143 } 1144 1145 /* 1146 * Helper to prepare DMA descriptors for configuring registers 1147 * before reading each codeword in NAND page. 1148 */ 1149 static void 1150 config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw) 1151 { 1152 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1153 struct nand_ecc_ctrl *ecc = &chip->ecc; 1154 1155 int reg = NAND_READ_LOCATION_0; 1156 1157 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) 1158 reg = NAND_READ_LOCATION_LAST_CW_0; 1159 1160 if (nandc->props->is_bam) 1161 write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL); 1162 1163 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1164 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1165 1166 if (use_ecc) { 1167 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); 1168 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, 1169 NAND_BAM_NEXT_SGL); 1170 } else { 1171 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1172 } 1173 } 1174 1175 /* 1176 * Helper to prepare dma descriptors to configure registers needed for reading a 1177 * single codeword in page 1178 */ 1179 static void 1180 config_nand_single_cw_page_read(struct nand_chip *chip, 1181 bool use_ecc, int cw) 1182 { 1183 config_nand_page_read(chip); 1184 config_nand_cw_read(chip, use_ecc, cw); 1185 } 1186 1187 /* 1188 * Helper to prepare DMA descriptors used to configure registers needed for 1189 * before writing a NAND page. 1190 */ 1191 static void config_nand_page_write(struct nand_chip *chip) 1192 { 1193 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1194 1195 write_reg_dma(nandc, NAND_ADDR0, 2, 0); 1196 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); 1197 if (!nandc->props->qpic_v2) 1198 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 1199 NAND_BAM_NEXT_SGL); 1200 } 1201 1202 /* 1203 * Helper to prepare DMA descriptors for configuring registers 1204 * before writing each codeword in NAND page. 1205 */ 1206 static void config_nand_cw_write(struct nand_chip *chip) 1207 { 1208 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1209 1210 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1211 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1212 1213 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1214 1215 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); 1216 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); 1217 } 1218 1219 /* 1220 * the following functions are used within chip->legacy.cmdfunc() to 1221 * perform different NAND_CMD_* commands 1222 */ 1223 1224 /* sets up descriptors for NAND_CMD_PARAM */ 1225 static int nandc_param(struct qcom_nand_host *host) 1226 { 1227 struct nand_chip *chip = &host->chip; 1228 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1229 1230 /* 1231 * NAND_CMD_PARAM is called before we know much about the FLASH chip 1232 * in use. we configure the controller to perform a raw read of 512 1233 * bytes to read onfi params 1234 */ 1235 if (nandc->props->qpic_v2) 1236 nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ_ONFI_READ | 1237 PAGE_ACC | LAST_PAGE); 1238 else 1239 nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ | 1240 PAGE_ACC | LAST_PAGE); 1241 1242 nandc_set_reg(chip, NAND_ADDR0, 0); 1243 nandc_set_reg(chip, NAND_ADDR1, 0); 1244 nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE 1245 | 512 << UD_SIZE_BYTES 1246 | 5 << NUM_ADDR_CYCLES 1247 | 0 << SPARE_SIZE_BYTES); 1248 nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES 1249 | 0 << CS_ACTIVE_BSY 1250 | 17 << BAD_BLOCK_BYTE_NUM 1251 | 1 << BAD_BLOCK_IN_SPARE_AREA 1252 | 2 << WR_RD_BSY_GAP 1253 | 0 << WIDE_FLASH 1254 | 1 << DEV0_CFG1_ECC_DISABLE); 1255 if (!nandc->props->qpic_v2) 1256 nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE); 1257 1258 /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */ 1259 if (!nandc->props->qpic_v2) { 1260 nandc_set_reg(chip, NAND_DEV_CMD_VLD, 1261 (nandc->vld & ~READ_START_VLD)); 1262 nandc_set_reg(chip, NAND_DEV_CMD1, 1263 (nandc->cmd1 & ~(0xFF << READ_ADDR)) 1264 | NAND_CMD_PARAM << READ_ADDR); 1265 } 1266 1267 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 1268 1269 if (!nandc->props->qpic_v2) { 1270 nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1); 1271 nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld); 1272 } 1273 1274 nandc_set_read_loc(chip, 0, 0, 0, 512, 1); 1275 1276 if (!nandc->props->qpic_v2) { 1277 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0); 1278 write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); 1279 } 1280 1281 nandc->buf_count = 512; 1282 memset(nandc->data_buffer, 0xff, nandc->buf_count); 1283 1284 config_nand_single_cw_page_read(chip, false, 0); 1285 1286 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, 1287 nandc->buf_count, 0); 1288 1289 /* restore CMD1 and VLD regs */ 1290 if (!nandc->props->qpic_v2) { 1291 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0); 1292 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL); 1293 } 1294 1295 return 0; 1296 } 1297 1298 /* sets up descriptors for NAND_CMD_ERASE1 */ 1299 static int erase_block(struct qcom_nand_host *host, int page_addr) 1300 { 1301 struct nand_chip *chip = &host->chip; 1302 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1303 1304 nandc_set_reg(chip, NAND_FLASH_CMD, 1305 OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE); 1306 nandc_set_reg(chip, NAND_ADDR0, page_addr); 1307 nandc_set_reg(chip, NAND_ADDR1, 0); 1308 nandc_set_reg(chip, NAND_DEV0_CFG0, 1309 host->cfg0_raw & ~(7 << CW_PER_PAGE)); 1310 nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw); 1311 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 1312 nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus); 1313 nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus); 1314 1315 write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); 1316 write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL); 1317 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1318 1319 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1320 1321 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); 1322 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); 1323 1324 return 0; 1325 } 1326 1327 /* sets up descriptors for NAND_CMD_READID */ 1328 static int read_id(struct qcom_nand_host *host, int column) 1329 { 1330 struct nand_chip *chip = &host->chip; 1331 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1332 1333 if (column == -1) 1334 return 0; 1335 1336 nandc_set_reg(chip, NAND_FLASH_CMD, OP_FETCH_ID); 1337 nandc_set_reg(chip, NAND_ADDR0, column); 1338 nandc_set_reg(chip, NAND_ADDR1, 0); 1339 nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT, 1340 nandc->props->is_bam ? 0 : DM_EN); 1341 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 1342 1343 write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); 1344 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1345 1346 read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); 1347 1348 return 0; 1349 } 1350 1351 /* sets up descriptors for NAND_CMD_RESET */ 1352 static int reset(struct qcom_nand_host *host) 1353 { 1354 struct nand_chip *chip = &host->chip; 1355 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1356 1357 nandc_set_reg(chip, NAND_FLASH_CMD, OP_RESET_DEVICE); 1358 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 1359 1360 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1361 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1362 1363 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1364 1365 return 0; 1366 } 1367 1368 /* helpers to submit/free our list of dma descriptors */ 1369 static int submit_descs(struct qcom_nand_controller *nandc) 1370 { 1371 struct desc_info *desc; 1372 dma_cookie_t cookie = 0; 1373 struct bam_transaction *bam_txn = nandc->bam_txn; 1374 int r; 1375 1376 if (nandc->props->is_bam) { 1377 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) { 1378 r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0); 1379 if (r) 1380 return r; 1381 } 1382 1383 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) { 1384 r = prepare_bam_async_desc(nandc, nandc->tx_chan, 1385 DMA_PREP_INTERRUPT); 1386 if (r) 1387 return r; 1388 } 1389 1390 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) { 1391 r = prepare_bam_async_desc(nandc, nandc->cmd_chan, 1392 DMA_PREP_CMD); 1393 if (r) 1394 return r; 1395 } 1396 } 1397 1398 list_for_each_entry(desc, &nandc->desc_list, node) 1399 cookie = dmaengine_submit(desc->dma_desc); 1400 1401 if (nandc->props->is_bam) { 1402 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done; 1403 bam_txn->last_cmd_desc->callback_param = bam_txn; 1404 if (bam_txn->last_data_desc) { 1405 bam_txn->last_data_desc->callback = qpic_bam_dma_done; 1406 bam_txn->last_data_desc->callback_param = bam_txn; 1407 bam_txn->wait_second_completion = true; 1408 } 1409 1410 dma_async_issue_pending(nandc->tx_chan); 1411 dma_async_issue_pending(nandc->rx_chan); 1412 dma_async_issue_pending(nandc->cmd_chan); 1413 1414 if (!wait_for_completion_timeout(&bam_txn->txn_done, 1415 QPIC_NAND_COMPLETION_TIMEOUT)) 1416 return -ETIMEDOUT; 1417 } else { 1418 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) 1419 return -ETIMEDOUT; 1420 } 1421 1422 return 0; 1423 } 1424 1425 static void free_descs(struct qcom_nand_controller *nandc) 1426 { 1427 struct desc_info *desc, *n; 1428 1429 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { 1430 list_del(&desc->node); 1431 1432 if (nandc->props->is_bam) 1433 dma_unmap_sg(nandc->dev, desc->bam_sgl, 1434 desc->sgl_cnt, desc->dir); 1435 else 1436 dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1, 1437 desc->dir); 1438 1439 kfree(desc); 1440 } 1441 } 1442 1443 /* reset the register read buffer for next NAND operation */ 1444 static void clear_read_regs(struct qcom_nand_controller *nandc) 1445 { 1446 nandc->reg_read_pos = 0; 1447 nandc_read_buffer_sync(nandc, false); 1448 } 1449 1450 static void pre_command(struct qcom_nand_host *host, int command) 1451 { 1452 struct nand_chip *chip = &host->chip; 1453 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1454 1455 nandc->buf_count = 0; 1456 nandc->buf_start = 0; 1457 host->use_ecc = false; 1458 host->last_command = command; 1459 1460 clear_read_regs(nandc); 1461 1462 if (command == NAND_CMD_RESET || command == NAND_CMD_READID || 1463 command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1) 1464 clear_bam_transaction(nandc); 1465 } 1466 1467 /* 1468 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our 1469 * privately maintained status byte, this status byte can be read after 1470 * NAND_CMD_STATUS is called 1471 */ 1472 static void parse_erase_write_errors(struct qcom_nand_host *host, int command) 1473 { 1474 struct nand_chip *chip = &host->chip; 1475 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1476 struct nand_ecc_ctrl *ecc = &chip->ecc; 1477 int num_cw; 1478 int i; 1479 1480 num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1; 1481 nandc_read_buffer_sync(nandc, true); 1482 1483 for (i = 0; i < num_cw; i++) { 1484 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]); 1485 1486 if (flash_status & FS_MPU_ERR) 1487 host->status &= ~NAND_STATUS_WP; 1488 1489 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) && 1490 (flash_status & 1491 FS_DEVICE_STS_ERR))) 1492 host->status |= NAND_STATUS_FAIL; 1493 } 1494 } 1495 1496 static void post_command(struct qcom_nand_host *host, int command) 1497 { 1498 struct nand_chip *chip = &host->chip; 1499 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1500 1501 switch (command) { 1502 case NAND_CMD_READID: 1503 nandc_read_buffer_sync(nandc, true); 1504 memcpy(nandc->data_buffer, nandc->reg_read_buf, 1505 nandc->buf_count); 1506 break; 1507 case NAND_CMD_PAGEPROG: 1508 case NAND_CMD_ERASE1: 1509 parse_erase_write_errors(host, command); 1510 break; 1511 default: 1512 break; 1513 } 1514 } 1515 1516 /* 1517 * Implements chip->legacy.cmdfunc. It's only used for a limited set of 1518 * commands. The rest of the commands wouldn't be called by upper layers. 1519 * For example, NAND_CMD_READOOB would never be called because we have our own 1520 * versions of read_oob ops for nand_ecc_ctrl. 1521 */ 1522 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command, 1523 int column, int page_addr) 1524 { 1525 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1526 struct nand_ecc_ctrl *ecc = &chip->ecc; 1527 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1528 bool wait = false; 1529 int ret = 0; 1530 1531 pre_command(host, command); 1532 1533 switch (command) { 1534 case NAND_CMD_RESET: 1535 ret = reset(host); 1536 wait = true; 1537 break; 1538 1539 case NAND_CMD_READID: 1540 nandc->buf_count = 4; 1541 ret = read_id(host, column); 1542 wait = true; 1543 break; 1544 1545 case NAND_CMD_PARAM: 1546 ret = nandc_param(host); 1547 wait = true; 1548 break; 1549 1550 case NAND_CMD_ERASE1: 1551 ret = erase_block(host, page_addr); 1552 wait = true; 1553 break; 1554 1555 case NAND_CMD_READ0: 1556 /* we read the entire page for now */ 1557 WARN_ON(column != 0); 1558 1559 host->use_ecc = true; 1560 set_address(host, 0, page_addr); 1561 update_rw_regs(host, ecc->steps, true, 0); 1562 break; 1563 1564 case NAND_CMD_SEQIN: 1565 WARN_ON(column != 0); 1566 set_address(host, 0, page_addr); 1567 break; 1568 1569 case NAND_CMD_PAGEPROG: 1570 case NAND_CMD_STATUS: 1571 case NAND_CMD_NONE: 1572 default: 1573 break; 1574 } 1575 1576 if (ret) { 1577 dev_err(nandc->dev, "failure executing command %d\n", 1578 command); 1579 free_descs(nandc); 1580 return; 1581 } 1582 1583 if (wait) { 1584 ret = submit_descs(nandc); 1585 if (ret) 1586 dev_err(nandc->dev, 1587 "failure submitting descs for command %d\n", 1588 command); 1589 } 1590 1591 free_descs(nandc); 1592 1593 post_command(host, command); 1594 } 1595 1596 /* 1597 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read 1598 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. 1599 * 1600 * when using RS ECC, the HW reports the same erros when reading an erased CW, 1601 * but it notifies that it is an erased CW by placing special characters at 1602 * certain offsets in the buffer. 1603 * 1604 * verify if the page is erased or not, and fix up the page for RS ECC by 1605 * replacing the special characters with 0xff. 1606 */ 1607 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) 1608 { 1609 u8 empty1, empty2; 1610 1611 /* 1612 * an erased page flags an error in NAND_FLASH_STATUS, check if the page 1613 * is erased by looking for 0x54s at offsets 3 and 175 from the 1614 * beginning of each codeword 1615 */ 1616 1617 empty1 = data_buf[3]; 1618 empty2 = data_buf[175]; 1619 1620 /* 1621 * if the erased codework markers, if they exist override them with 1622 * 0xffs 1623 */ 1624 if ((empty1 == 0x54 && empty2 == 0xff) || 1625 (empty1 == 0xff && empty2 == 0x54)) { 1626 data_buf[3] = 0xff; 1627 data_buf[175] = 0xff; 1628 } 1629 1630 /* 1631 * check if the entire chunk contains 0xffs or not. if it doesn't, then 1632 * restore the original values at the special offsets 1633 */ 1634 if (memchr_inv(data_buf, 0xff, data_len)) { 1635 data_buf[3] = empty1; 1636 data_buf[175] = empty2; 1637 1638 return false; 1639 } 1640 1641 return true; 1642 } 1643 1644 struct read_stats { 1645 __le32 flash; 1646 __le32 buffer; 1647 __le32 erased_cw; 1648 }; 1649 1650 /* reads back FLASH_STATUS register set by the controller */ 1651 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt) 1652 { 1653 struct nand_chip *chip = &host->chip; 1654 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1655 int i; 1656 1657 nandc_read_buffer_sync(nandc, true); 1658 1659 for (i = 0; i < cw_cnt; i++) { 1660 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]); 1661 1662 if (flash & (FS_OP_ERR | FS_MPU_ERR)) 1663 return -EIO; 1664 } 1665 1666 return 0; 1667 } 1668 1669 /* performs raw read for one codeword */ 1670 static int 1671 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, 1672 u8 *data_buf, u8 *oob_buf, int page, int cw) 1673 { 1674 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1675 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1676 struct nand_ecc_ctrl *ecc = &chip->ecc; 1677 int data_size1, data_size2, oob_size1, oob_size2; 1678 int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; 1679 1680 nand_read_page_op(chip, page, 0, NULL, 0); 1681 host->use_ecc = false; 1682 1683 clear_bam_transaction(nandc); 1684 set_address(host, host->cw_size * cw, page); 1685 update_rw_regs(host, 1, true, cw); 1686 config_nand_page_read(chip); 1687 1688 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); 1689 oob_size1 = host->bbm_size; 1690 1691 if (qcom_nandc_is_last_cw(ecc, cw)) { 1692 data_size2 = ecc->size - data_size1 - 1693 ((ecc->steps - 1) * 4); 1694 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw + 1695 host->spare_bytes; 1696 } else { 1697 data_size2 = host->cw_data - data_size1; 1698 oob_size2 = host->ecc_bytes_hw + host->spare_bytes; 1699 } 1700 1701 if (nandc->props->is_bam) { 1702 nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0); 1703 read_loc += data_size1; 1704 1705 nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0); 1706 read_loc += oob_size1; 1707 1708 nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0); 1709 read_loc += data_size2; 1710 1711 nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1); 1712 } 1713 1714 config_nand_cw_read(chip, false, cw); 1715 1716 read_data_dma(nandc, reg_off, data_buf, data_size1, 0); 1717 reg_off += data_size1; 1718 1719 read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); 1720 reg_off += oob_size1; 1721 1722 read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0); 1723 reg_off += data_size2; 1724 1725 read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0); 1726 1727 ret = submit_descs(nandc); 1728 free_descs(nandc); 1729 if (ret) { 1730 dev_err(nandc->dev, "failure to read raw cw %d\n", cw); 1731 return ret; 1732 } 1733 1734 return check_flash_errors(host, 1); 1735 } 1736 1737 /* 1738 * Bitflips can happen in erased codewords also so this function counts the 1739 * number of 0 in each CW for which ECC engine returns the uncorrectable 1740 * error. The page will be assumed as erased if this count is less than or 1741 * equal to the ecc->strength for each CW. 1742 * 1743 * 1. Both DATA and OOB need to be checked for number of 0. The 1744 * top-level API can be called with only data buf or OOB buf so use 1745 * chip->data_buf if data buf is null and chip->oob_poi if oob buf 1746 * is null for copying the raw bytes. 1747 * 2. Perform raw read for all the CW which has uncorrectable errors. 1748 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes. 1749 * The BBM and spare bytes bit flip won’t affect the ECC so don’t check 1750 * the number of bitflips in this area. 1751 */ 1752 static int 1753 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf, 1754 u8 *oob_buf, unsigned long uncorrectable_cws, 1755 int page, unsigned int max_bitflips) 1756 { 1757 struct nand_chip *chip = &host->chip; 1758 struct mtd_info *mtd = nand_to_mtd(chip); 1759 struct nand_ecc_ctrl *ecc = &chip->ecc; 1760 u8 *cw_data_buf, *cw_oob_buf; 1761 int cw, data_size, oob_size, ret = 0; 1762 1763 if (!data_buf) 1764 data_buf = nand_get_data_buf(chip); 1765 1766 if (!oob_buf) { 1767 nand_get_data_buf(chip); 1768 oob_buf = chip->oob_poi; 1769 } 1770 1771 for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) { 1772 if (qcom_nandc_is_last_cw(ecc, cw)) { 1773 data_size = ecc->size - ((ecc->steps - 1) * 4); 1774 oob_size = (ecc->steps * 4) + host->ecc_bytes_hw; 1775 } else { 1776 data_size = host->cw_data; 1777 oob_size = host->ecc_bytes_hw; 1778 } 1779 1780 /* determine starting buffer address for current CW */ 1781 cw_data_buf = data_buf + (cw * host->cw_data); 1782 cw_oob_buf = oob_buf + (cw * ecc->bytes); 1783 1784 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf, 1785 cw_oob_buf, page, cw); 1786 if (ret) 1787 return ret; 1788 1789 /* 1790 * make sure it isn't an erased page reported 1791 * as not-erased by HW because of a few bitflips 1792 */ 1793 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size, 1794 cw_oob_buf + host->bbm_size, 1795 oob_size, NULL, 1796 0, ecc->strength); 1797 if (ret < 0) { 1798 mtd->ecc_stats.failed++; 1799 } else { 1800 mtd->ecc_stats.corrected += ret; 1801 max_bitflips = max_t(unsigned int, max_bitflips, ret); 1802 } 1803 } 1804 1805 return max_bitflips; 1806 } 1807 1808 /* 1809 * reads back status registers set by the controller to notify page read 1810 * errors. this is equivalent to what 'ecc->correct()' would do. 1811 */ 1812 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, 1813 u8 *oob_buf, int page) 1814 { 1815 struct nand_chip *chip = &host->chip; 1816 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1817 struct mtd_info *mtd = nand_to_mtd(chip); 1818 struct nand_ecc_ctrl *ecc = &chip->ecc; 1819 unsigned int max_bitflips = 0, uncorrectable_cws = 0; 1820 struct read_stats *buf; 1821 bool flash_op_err = false, erased; 1822 int i; 1823 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; 1824 1825 buf = (struct read_stats *)nandc->reg_read_buf; 1826 nandc_read_buffer_sync(nandc, true); 1827 1828 for (i = 0; i < ecc->steps; i++, buf++) { 1829 u32 flash, buffer, erased_cw; 1830 int data_len, oob_len; 1831 1832 if (qcom_nandc_is_last_cw(ecc, i)) { 1833 data_len = ecc->size - ((ecc->steps - 1) << 2); 1834 oob_len = ecc->steps << 2; 1835 } else { 1836 data_len = host->cw_data; 1837 oob_len = 0; 1838 } 1839 1840 flash = le32_to_cpu(buf->flash); 1841 buffer = le32_to_cpu(buf->buffer); 1842 erased_cw = le32_to_cpu(buf->erased_cw); 1843 1844 /* 1845 * Check ECC failure for each codeword. ECC failure can 1846 * happen in either of the following conditions 1847 * 1. If number of bitflips are greater than ECC engine 1848 * capability. 1849 * 2. If this codeword contains all 0xff for which erased 1850 * codeword detection check will be done. 1851 */ 1852 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { 1853 /* 1854 * For BCH ECC, ignore erased codeword errors, if 1855 * ERASED_CW bits are set. 1856 */ 1857 if (host->bch_enabled) { 1858 erased = (erased_cw & ERASED_CW) == ERASED_CW; 1859 /* 1860 * For RS ECC, HW reports the erased CW by placing 1861 * special characters at certain offsets in the buffer. 1862 * These special characters will be valid only if 1863 * complete page is read i.e. data_buf is not NULL. 1864 */ 1865 } else if (data_buf) { 1866 erased = erased_chunk_check_and_fixup(data_buf, 1867 data_len); 1868 } else { 1869 erased = false; 1870 } 1871 1872 if (!erased) 1873 uncorrectable_cws |= BIT(i); 1874 /* 1875 * Check if MPU or any other operational error (timeout, 1876 * device failure, etc.) happened for this codeword and 1877 * make flash_op_err true. If flash_op_err is set, then 1878 * EIO will be returned for page read. 1879 */ 1880 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { 1881 flash_op_err = true; 1882 /* 1883 * No ECC or operational errors happened. Check the number of 1884 * bits corrected and update the ecc_stats.corrected. 1885 */ 1886 } else { 1887 unsigned int stat; 1888 1889 stat = buffer & BS_CORRECTABLE_ERR_MSK; 1890 mtd->ecc_stats.corrected += stat; 1891 max_bitflips = max(max_bitflips, stat); 1892 } 1893 1894 if (data_buf) 1895 data_buf += data_len; 1896 if (oob_buf) 1897 oob_buf += oob_len + ecc->bytes; 1898 } 1899 1900 if (flash_op_err) 1901 return -EIO; 1902 1903 if (!uncorrectable_cws) 1904 return max_bitflips; 1905 1906 return check_for_erased_page(host, data_buf_start, oob_buf_start, 1907 uncorrectable_cws, page, 1908 max_bitflips); 1909 } 1910 1911 /* 1912 * helper to perform the actual page read operation, used by ecc->read_page(), 1913 * ecc->read_oob() 1914 */ 1915 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, 1916 u8 *oob_buf, int page) 1917 { 1918 struct nand_chip *chip = &host->chip; 1919 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1920 struct nand_ecc_ctrl *ecc = &chip->ecc; 1921 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; 1922 int i, ret; 1923 1924 config_nand_page_read(chip); 1925 1926 /* queue cmd descs for each codeword */ 1927 for (i = 0; i < ecc->steps; i++) { 1928 int data_size, oob_size; 1929 1930 if (qcom_nandc_is_last_cw(ecc, i)) { 1931 data_size = ecc->size - ((ecc->steps - 1) << 2); 1932 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + 1933 host->spare_bytes; 1934 } else { 1935 data_size = host->cw_data; 1936 oob_size = host->ecc_bytes_hw + host->spare_bytes; 1937 } 1938 1939 if (nandc->props->is_bam) { 1940 if (data_buf && oob_buf) { 1941 nandc_set_read_loc(chip, i, 0, 0, data_size, 0); 1942 nandc_set_read_loc(chip, i, 1, data_size, 1943 oob_size, 1); 1944 } else if (data_buf) { 1945 nandc_set_read_loc(chip, i, 0, 0, data_size, 1); 1946 } else { 1947 nandc_set_read_loc(chip, i, 0, data_size, 1948 oob_size, 1); 1949 } 1950 } 1951 1952 config_nand_cw_read(chip, true, i); 1953 1954 if (data_buf) 1955 read_data_dma(nandc, FLASH_BUF_ACC, data_buf, 1956 data_size, 0); 1957 1958 /* 1959 * when ecc is enabled, the controller doesn't read the real 1960 * or dummy bad block markers in each chunk. To maintain a 1961 * consistent layout across RAW and ECC reads, we just 1962 * leave the real/dummy BBM offsets empty (i.e, filled with 1963 * 0xffs) 1964 */ 1965 if (oob_buf) { 1966 int j; 1967 1968 for (j = 0; j < host->bbm_size; j++) 1969 *oob_buf++ = 0xff; 1970 1971 read_data_dma(nandc, FLASH_BUF_ACC + data_size, 1972 oob_buf, oob_size, 0); 1973 } 1974 1975 if (data_buf) 1976 data_buf += data_size; 1977 if (oob_buf) 1978 oob_buf += oob_size; 1979 } 1980 1981 ret = submit_descs(nandc); 1982 free_descs(nandc); 1983 1984 if (ret) { 1985 dev_err(nandc->dev, "failure to read page/oob\n"); 1986 return ret; 1987 } 1988 1989 return parse_read_errors(host, data_buf_start, oob_buf_start, page); 1990 } 1991 1992 /* 1993 * a helper that copies the last step/codeword of a page (containing free oob) 1994 * into our local buffer 1995 */ 1996 static int copy_last_cw(struct qcom_nand_host *host, int page) 1997 { 1998 struct nand_chip *chip = &host->chip; 1999 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2000 struct nand_ecc_ctrl *ecc = &chip->ecc; 2001 int size; 2002 int ret; 2003 2004 clear_read_regs(nandc); 2005 2006 size = host->use_ecc ? host->cw_data : host->cw_size; 2007 2008 /* prepare a clean read buffer */ 2009 memset(nandc->data_buffer, 0xff, size); 2010 2011 set_address(host, host->cw_size * (ecc->steps - 1), page); 2012 update_rw_regs(host, 1, true, ecc->steps - 1); 2013 2014 config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1); 2015 2016 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); 2017 2018 ret = submit_descs(nandc); 2019 if (ret) 2020 dev_err(nandc->dev, "failed to copy last codeword\n"); 2021 2022 free_descs(nandc); 2023 2024 return ret; 2025 } 2026 2027 /* implements ecc->read_page() */ 2028 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf, 2029 int oob_required, int page) 2030 { 2031 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2032 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2033 u8 *data_buf, *oob_buf = NULL; 2034 2035 nand_read_page_op(chip, page, 0, NULL, 0); 2036 data_buf = buf; 2037 oob_buf = oob_required ? chip->oob_poi : NULL; 2038 2039 clear_bam_transaction(nandc); 2040 2041 return read_page_ecc(host, data_buf, oob_buf, page); 2042 } 2043 2044 /* implements ecc->read_page_raw() */ 2045 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf, 2046 int oob_required, int page) 2047 { 2048 struct mtd_info *mtd = nand_to_mtd(chip); 2049 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2050 struct nand_ecc_ctrl *ecc = &chip->ecc; 2051 int cw, ret; 2052 u8 *data_buf = buf, *oob_buf = chip->oob_poi; 2053 2054 for (cw = 0; cw < ecc->steps; cw++) { 2055 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf, 2056 page, cw); 2057 if (ret) 2058 return ret; 2059 2060 data_buf += host->cw_data; 2061 oob_buf += ecc->bytes; 2062 } 2063 2064 return 0; 2065 } 2066 2067 /* implements ecc->read_oob() */ 2068 static int qcom_nandc_read_oob(struct nand_chip *chip, int page) 2069 { 2070 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2071 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2072 struct nand_ecc_ctrl *ecc = &chip->ecc; 2073 2074 clear_read_regs(nandc); 2075 clear_bam_transaction(nandc); 2076 2077 host->use_ecc = true; 2078 set_address(host, 0, page); 2079 update_rw_regs(host, ecc->steps, true, 0); 2080 2081 return read_page_ecc(host, NULL, chip->oob_poi, page); 2082 } 2083 2084 /* implements ecc->write_page() */ 2085 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf, 2086 int oob_required, int page) 2087 { 2088 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2089 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2090 struct nand_ecc_ctrl *ecc = &chip->ecc; 2091 u8 *data_buf, *oob_buf; 2092 int i, ret; 2093 2094 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 2095 2096 clear_read_regs(nandc); 2097 clear_bam_transaction(nandc); 2098 2099 data_buf = (u8 *)buf; 2100 oob_buf = chip->oob_poi; 2101 2102 host->use_ecc = true; 2103 update_rw_regs(host, ecc->steps, false, 0); 2104 config_nand_page_write(chip); 2105 2106 for (i = 0; i < ecc->steps; i++) { 2107 int data_size, oob_size; 2108 2109 if (qcom_nandc_is_last_cw(ecc, i)) { 2110 data_size = ecc->size - ((ecc->steps - 1) << 2); 2111 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + 2112 host->spare_bytes; 2113 } else { 2114 data_size = host->cw_data; 2115 oob_size = ecc->bytes; 2116 } 2117 2118 2119 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, 2120 i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); 2121 2122 /* 2123 * when ECC is enabled, we don't really need to write anything 2124 * to oob for the first n - 1 codewords since these oob regions 2125 * just contain ECC bytes that's written by the controller 2126 * itself. For the last codeword, we skip the bbm positions and 2127 * write to the free oob area. 2128 */ 2129 if (qcom_nandc_is_last_cw(ecc, i)) { 2130 oob_buf += host->bbm_size; 2131 2132 write_data_dma(nandc, FLASH_BUF_ACC + data_size, 2133 oob_buf, oob_size, 0); 2134 } 2135 2136 config_nand_cw_write(chip); 2137 2138 data_buf += data_size; 2139 oob_buf += oob_size; 2140 } 2141 2142 ret = submit_descs(nandc); 2143 if (ret) 2144 dev_err(nandc->dev, "failure to write page\n"); 2145 2146 free_descs(nandc); 2147 2148 if (!ret) 2149 ret = nand_prog_page_end_op(chip); 2150 2151 return ret; 2152 } 2153 2154 /* implements ecc->write_page_raw() */ 2155 static int qcom_nandc_write_page_raw(struct nand_chip *chip, 2156 const uint8_t *buf, int oob_required, 2157 int page) 2158 { 2159 struct mtd_info *mtd = nand_to_mtd(chip); 2160 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2161 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2162 struct nand_ecc_ctrl *ecc = &chip->ecc; 2163 u8 *data_buf, *oob_buf; 2164 int i, ret; 2165 2166 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 2167 clear_read_regs(nandc); 2168 clear_bam_transaction(nandc); 2169 2170 data_buf = (u8 *)buf; 2171 oob_buf = chip->oob_poi; 2172 2173 host->use_ecc = false; 2174 update_rw_regs(host, ecc->steps, false, 0); 2175 config_nand_page_write(chip); 2176 2177 for (i = 0; i < ecc->steps; i++) { 2178 int data_size1, data_size2, oob_size1, oob_size2; 2179 int reg_off = FLASH_BUF_ACC; 2180 2181 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); 2182 oob_size1 = host->bbm_size; 2183 2184 if (qcom_nandc_is_last_cw(ecc, i)) { 2185 data_size2 = ecc->size - data_size1 - 2186 ((ecc->steps - 1) << 2); 2187 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + 2188 host->spare_bytes; 2189 } else { 2190 data_size2 = host->cw_data - data_size1; 2191 oob_size2 = host->ecc_bytes_hw + host->spare_bytes; 2192 } 2193 2194 write_data_dma(nandc, reg_off, data_buf, data_size1, 2195 NAND_BAM_NO_EOT); 2196 reg_off += data_size1; 2197 data_buf += data_size1; 2198 2199 write_data_dma(nandc, reg_off, oob_buf, oob_size1, 2200 NAND_BAM_NO_EOT); 2201 reg_off += oob_size1; 2202 oob_buf += oob_size1; 2203 2204 write_data_dma(nandc, reg_off, data_buf, data_size2, 2205 NAND_BAM_NO_EOT); 2206 reg_off += data_size2; 2207 data_buf += data_size2; 2208 2209 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); 2210 oob_buf += oob_size2; 2211 2212 config_nand_cw_write(chip); 2213 } 2214 2215 ret = submit_descs(nandc); 2216 if (ret) 2217 dev_err(nandc->dev, "failure to write raw page\n"); 2218 2219 free_descs(nandc); 2220 2221 if (!ret) 2222 ret = nand_prog_page_end_op(chip); 2223 2224 return ret; 2225 } 2226 2227 /* 2228 * implements ecc->write_oob() 2229 * 2230 * the NAND controller cannot write only data or only OOB within a codeword 2231 * since ECC is calculated for the combined codeword. So update the OOB from 2232 * chip->oob_poi, and pad the data area with OxFF before writing. 2233 */ 2234 static int qcom_nandc_write_oob(struct nand_chip *chip, int page) 2235 { 2236 struct mtd_info *mtd = nand_to_mtd(chip); 2237 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2238 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2239 struct nand_ecc_ctrl *ecc = &chip->ecc; 2240 u8 *oob = chip->oob_poi; 2241 int data_size, oob_size; 2242 int ret; 2243 2244 host->use_ecc = true; 2245 clear_bam_transaction(nandc); 2246 2247 /* calculate the data and oob size for the last codeword/step */ 2248 data_size = ecc->size - ((ecc->steps - 1) << 2); 2249 oob_size = mtd->oobavail; 2250 2251 memset(nandc->data_buffer, 0xff, host->cw_data); 2252 /* override new oob content to last codeword */ 2253 mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, 2254 0, mtd->oobavail); 2255 2256 set_address(host, host->cw_size * (ecc->steps - 1), page); 2257 update_rw_regs(host, 1, false, 0); 2258 2259 config_nand_page_write(chip); 2260 write_data_dma(nandc, FLASH_BUF_ACC, 2261 nandc->data_buffer, data_size + oob_size, 0); 2262 config_nand_cw_write(chip); 2263 2264 ret = submit_descs(nandc); 2265 2266 free_descs(nandc); 2267 2268 if (ret) { 2269 dev_err(nandc->dev, "failure to write oob\n"); 2270 return -EIO; 2271 } 2272 2273 return nand_prog_page_end_op(chip); 2274 } 2275 2276 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs) 2277 { 2278 struct mtd_info *mtd = nand_to_mtd(chip); 2279 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2280 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2281 struct nand_ecc_ctrl *ecc = &chip->ecc; 2282 int page, ret, bbpos, bad = 0; 2283 2284 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 2285 2286 /* 2287 * configure registers for a raw sub page read, the address is set to 2288 * the beginning of the last codeword, we don't care about reading ecc 2289 * portion of oob. we just want the first few bytes from this codeword 2290 * that contains the BBM 2291 */ 2292 host->use_ecc = false; 2293 2294 clear_bam_transaction(nandc); 2295 ret = copy_last_cw(host, page); 2296 if (ret) 2297 goto err; 2298 2299 if (check_flash_errors(host, 1)) { 2300 dev_warn(nandc->dev, "error when trying to read BBM\n"); 2301 goto err; 2302 } 2303 2304 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); 2305 2306 bad = nandc->data_buffer[bbpos] != 0xff; 2307 2308 if (chip->options & NAND_BUSWIDTH_16) 2309 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); 2310 err: 2311 return bad; 2312 } 2313 2314 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) 2315 { 2316 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2317 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2318 struct nand_ecc_ctrl *ecc = &chip->ecc; 2319 int page, ret; 2320 2321 clear_read_regs(nandc); 2322 clear_bam_transaction(nandc); 2323 2324 /* 2325 * to mark the BBM as bad, we flash the entire last codeword with 0s. 2326 * we don't care about the rest of the content in the codeword since 2327 * we aren't going to use this block again 2328 */ 2329 memset(nandc->data_buffer, 0x00, host->cw_size); 2330 2331 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 2332 2333 /* prepare write */ 2334 host->use_ecc = false; 2335 set_address(host, host->cw_size * (ecc->steps - 1), page); 2336 update_rw_regs(host, 1, false, ecc->steps - 1); 2337 2338 config_nand_page_write(chip); 2339 write_data_dma(nandc, FLASH_BUF_ACC, 2340 nandc->data_buffer, host->cw_size, 0); 2341 config_nand_cw_write(chip); 2342 2343 ret = submit_descs(nandc); 2344 2345 free_descs(nandc); 2346 2347 if (ret) { 2348 dev_err(nandc->dev, "failure to update BBM\n"); 2349 return -EIO; 2350 } 2351 2352 return nand_prog_page_end_op(chip); 2353 } 2354 2355 /* 2356 * the three functions below implement chip->legacy.read_byte(), 2357 * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these 2358 * aren't used for reading/writing page data, they are used for smaller data 2359 * like reading id, status etc 2360 */ 2361 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip) 2362 { 2363 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2364 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2365 u8 *buf = nandc->data_buffer; 2366 u8 ret = 0x0; 2367 2368 if (host->last_command == NAND_CMD_STATUS) { 2369 ret = host->status; 2370 2371 host->status = NAND_STATUS_READY | NAND_STATUS_WP; 2372 2373 return ret; 2374 } 2375 2376 if (nandc->buf_start < nandc->buf_count) 2377 ret = buf[nandc->buf_start++]; 2378 2379 return ret; 2380 } 2381 2382 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len) 2383 { 2384 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2385 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); 2386 2387 memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len); 2388 nandc->buf_start += real_len; 2389 } 2390 2391 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf, 2392 int len) 2393 { 2394 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2395 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); 2396 2397 memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len); 2398 2399 nandc->buf_start += real_len; 2400 } 2401 2402 /* we support only one external chip for now */ 2403 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr) 2404 { 2405 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2406 2407 if (chipnr <= 0) 2408 return; 2409 2410 dev_warn(nandc->dev, "invalid chip select\n"); 2411 } 2412 2413 /* 2414 * NAND controller page layout info 2415 * 2416 * Layout with ECC enabled: 2417 * 2418 * |----------------------| |---------------------------------| 2419 * | xx.......yy| | *********xx.......yy| 2420 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| 2421 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| 2422 * | xx.......yy| | *********xx.......yy| 2423 * |----------------------| |---------------------------------| 2424 * codeword 1,2..n-1 codeword n 2425 * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> 2426 * 2427 * n = Number of codewords in the page 2428 * . = ECC bytes 2429 * * = Spare/free bytes 2430 * x = Unused byte(s) 2431 * y = Reserved byte(s) 2432 * 2433 * 2K page: n = 4, spare = 16 bytes 2434 * 4K page: n = 8, spare = 32 bytes 2435 * 8K page: n = 16, spare = 64 bytes 2436 * 2437 * the qcom nand controller operates at a sub page/codeword level. each 2438 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. 2439 * the number of ECC bytes vary based on the ECC strength and the bus width. 2440 * 2441 * the first n - 1 codewords contains 516 bytes of user data, the remaining 2442 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains 2443 * both user data and spare(oobavail) bytes that sum up to 516 bytes. 2444 * 2445 * When we access a page with ECC enabled, the reserved bytes(s) are not 2446 * accessible at all. When reading, we fill up these unreadable positions 2447 * with 0xffs. When writing, the controller skips writing the inaccessible 2448 * bytes. 2449 * 2450 * Layout with ECC disabled: 2451 * 2452 * |------------------------------| |---------------------------------------| 2453 * | yy xx.......| | bb *********xx.......| 2454 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| 2455 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| 2456 * | yy xx.......| | bb *********xx.......| 2457 * |------------------------------| |---------------------------------------| 2458 * codeword 1,2..n-1 codeword n 2459 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> 2460 * 2461 * n = Number of codewords in the page 2462 * . = ECC bytes 2463 * * = Spare/free bytes 2464 * x = Unused byte(s) 2465 * y = Dummy Bad Bock byte(s) 2466 * b = Real Bad Block byte(s) 2467 * size1/size2 = function of codeword size and 'n' 2468 * 2469 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus 2470 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad 2471 * Block Markers. In the last codeword, this position contains the real BBM 2472 * 2473 * In order to have a consistent layout between RAW and ECC modes, we assume 2474 * the following OOB layout arrangement: 2475 * 2476 * |-----------| |--------------------| 2477 * |yyxx.......| |bb*********xx.......| 2478 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| 2479 * |yyxx.......| |bb*********xx.......| 2480 * |yyxx.......| |bb*********xx.......| 2481 * |-----------| |--------------------| 2482 * first n - 1 nth OOB region 2483 * OOB regions 2484 * 2485 * n = Number of codewords in the page 2486 * . = ECC bytes 2487 * * = FREE OOB bytes 2488 * y = Dummy bad block byte(s) (inaccessible when ECC enabled) 2489 * x = Unused byte(s) 2490 * b = Real bad block byte(s) (inaccessible when ECC enabled) 2491 * 2492 * This layout is read as is when ECC is disabled. When ECC is enabled, the 2493 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, 2494 * and assumed as 0xffs when we read a page/oob. The ECC, unused and 2495 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is 2496 * the sum of the three). 2497 */ 2498 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2499 struct mtd_oob_region *oobregion) 2500 { 2501 struct nand_chip *chip = mtd_to_nand(mtd); 2502 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2503 struct nand_ecc_ctrl *ecc = &chip->ecc; 2504 2505 if (section > 1) 2506 return -ERANGE; 2507 2508 if (!section) { 2509 oobregion->length = (ecc->bytes * (ecc->steps - 1)) + 2510 host->bbm_size; 2511 oobregion->offset = 0; 2512 } else { 2513 oobregion->length = host->ecc_bytes_hw + host->spare_bytes; 2514 oobregion->offset = mtd->oobsize - oobregion->length; 2515 } 2516 2517 return 0; 2518 } 2519 2520 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, 2521 struct mtd_oob_region *oobregion) 2522 { 2523 struct nand_chip *chip = mtd_to_nand(mtd); 2524 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2525 struct nand_ecc_ctrl *ecc = &chip->ecc; 2526 2527 if (section) 2528 return -ERANGE; 2529 2530 oobregion->length = ecc->steps * 4; 2531 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; 2532 2533 return 0; 2534 } 2535 2536 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { 2537 .ecc = qcom_nand_ooblayout_ecc, 2538 .free = qcom_nand_ooblayout_free, 2539 }; 2540 2541 static int 2542 qcom_nandc_calc_ecc_bytes(int step_size, int strength) 2543 { 2544 return strength == 4 ? 12 : 16; 2545 } 2546 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes, 2547 NANDC_STEP_SIZE, 4, 8); 2548 2549 static int qcom_nand_attach_chip(struct nand_chip *chip) 2550 { 2551 struct mtd_info *mtd = nand_to_mtd(chip); 2552 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2553 struct nand_ecc_ctrl *ecc = &chip->ecc; 2554 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2555 int cwperpage, bad_block_byte, ret; 2556 bool wide_bus; 2557 int ecc_mode = 1; 2558 2559 /* controller only supports 512 bytes data steps */ 2560 ecc->size = NANDC_STEP_SIZE; 2561 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; 2562 cwperpage = mtd->writesize / NANDC_STEP_SIZE; 2563 2564 /* 2565 * Each CW has 4 available OOB bytes which will be protected with ECC 2566 * so remaining bytes can be used for ECC. 2567 */ 2568 ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps, 2569 mtd->oobsize - (cwperpage * 4)); 2570 if (ret) { 2571 dev_err(nandc->dev, "No valid ECC settings possible\n"); 2572 return ret; 2573 } 2574 2575 if (ecc->strength >= 8) { 2576 /* 8 bit ECC defaults to BCH ECC on all platforms */ 2577 host->bch_enabled = true; 2578 ecc_mode = 1; 2579 2580 if (wide_bus) { 2581 host->ecc_bytes_hw = 14; 2582 host->spare_bytes = 0; 2583 host->bbm_size = 2; 2584 } else { 2585 host->ecc_bytes_hw = 13; 2586 host->spare_bytes = 2; 2587 host->bbm_size = 1; 2588 } 2589 } else { 2590 /* 2591 * if the controller supports BCH for 4 bit ECC, the controller 2592 * uses lesser bytes for ECC. If RS is used, the ECC bytes is 2593 * always 10 bytes 2594 */ 2595 if (nandc->props->ecc_modes & ECC_BCH_4BIT) { 2596 /* BCH */ 2597 host->bch_enabled = true; 2598 ecc_mode = 0; 2599 2600 if (wide_bus) { 2601 host->ecc_bytes_hw = 8; 2602 host->spare_bytes = 2; 2603 host->bbm_size = 2; 2604 } else { 2605 host->ecc_bytes_hw = 7; 2606 host->spare_bytes = 4; 2607 host->bbm_size = 1; 2608 } 2609 } else { 2610 /* RS */ 2611 host->ecc_bytes_hw = 10; 2612 2613 if (wide_bus) { 2614 host->spare_bytes = 0; 2615 host->bbm_size = 2; 2616 } else { 2617 host->spare_bytes = 1; 2618 host->bbm_size = 1; 2619 } 2620 } 2621 } 2622 2623 /* 2624 * we consider ecc->bytes as the sum of all the non-data content in a 2625 * step. It gives us a clean representation of the oob area (even if 2626 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit 2627 * ECC and 12 bytes for 4 bit ECC 2628 */ 2629 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; 2630 2631 ecc->read_page = qcom_nandc_read_page; 2632 ecc->read_page_raw = qcom_nandc_read_page_raw; 2633 ecc->read_oob = qcom_nandc_read_oob; 2634 ecc->write_page = qcom_nandc_write_page; 2635 ecc->write_page_raw = qcom_nandc_write_page_raw; 2636 ecc->write_oob = qcom_nandc_write_oob; 2637 2638 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2639 2640 mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); 2641 2642 nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, 2643 cwperpage); 2644 2645 /* 2646 * DATA_UD_BYTES varies based on whether the read/write command protects 2647 * spare data with ECC too. We protect spare data by default, so we set 2648 * it to main + spare data, which are 512 and 4 bytes respectively. 2649 */ 2650 host->cw_data = 516; 2651 2652 /* 2653 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes 2654 * for 8 bit ECC 2655 */ 2656 host->cw_size = host->cw_data + ecc->bytes; 2657 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; 2658 2659 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE 2660 | host->cw_data << UD_SIZE_BYTES 2661 | 0 << DISABLE_STATUS_AFTER_WRITE 2662 | 5 << NUM_ADDR_CYCLES 2663 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS 2664 | 0 << STATUS_BFR_READ 2665 | 1 << SET_RD_MODE_AFTER_STATUS 2666 | host->spare_bytes << SPARE_SIZE_BYTES; 2667 2668 host->cfg1 = 7 << NAND_RECOVERY_CYCLES 2669 | 0 << CS_ACTIVE_BSY 2670 | bad_block_byte << BAD_BLOCK_BYTE_NUM 2671 | 0 << BAD_BLOCK_IN_SPARE_AREA 2672 | 2 << WR_RD_BSY_GAP 2673 | wide_bus << WIDE_FLASH 2674 | host->bch_enabled << ENABLE_BCH_ECC; 2675 2676 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE 2677 | host->cw_size << UD_SIZE_BYTES 2678 | 5 << NUM_ADDR_CYCLES 2679 | 0 << SPARE_SIZE_BYTES; 2680 2681 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES 2682 | 0 << CS_ACTIVE_BSY 2683 | 17 << BAD_BLOCK_BYTE_NUM 2684 | 1 << BAD_BLOCK_IN_SPARE_AREA 2685 | 2 << WR_RD_BSY_GAP 2686 | wide_bus << WIDE_FLASH 2687 | 1 << DEV0_CFG1_ECC_DISABLE; 2688 2689 host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE 2690 | 0 << ECC_SW_RESET 2691 | host->cw_data << ECC_NUM_DATA_BYTES 2692 | 1 << ECC_FORCE_CLK_OPEN 2693 | ecc_mode << ECC_MODE 2694 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH; 2695 2696 if (!nandc->props->qpic_v2) 2697 host->ecc_buf_cfg = 0x203 << NUM_STEPS; 2698 2699 host->clrflashstatus = FS_READY_BSY_N; 2700 host->clrreadstatus = 0xc0; 2701 nandc->regs->erased_cw_detect_cfg_clr = 2702 cpu_to_le32(CLR_ERASED_PAGE_DET); 2703 nandc->regs->erased_cw_detect_cfg_set = 2704 cpu_to_le32(SET_ERASED_PAGE_DET); 2705 2706 dev_dbg(nandc->dev, 2707 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", 2708 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, 2709 host->cw_size, host->cw_data, ecc->strength, ecc->bytes, 2710 cwperpage); 2711 2712 return 0; 2713 } 2714 2715 static const struct nand_controller_ops qcom_nandc_ops = { 2716 .attach_chip = qcom_nand_attach_chip, 2717 }; 2718 2719 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) 2720 { 2721 if (nandc->props->is_bam) { 2722 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma)) 2723 dma_unmap_single(nandc->dev, nandc->reg_read_dma, 2724 MAX_REG_RD * 2725 sizeof(*nandc->reg_read_buf), 2726 DMA_FROM_DEVICE); 2727 2728 if (nandc->tx_chan) 2729 dma_release_channel(nandc->tx_chan); 2730 2731 if (nandc->rx_chan) 2732 dma_release_channel(nandc->rx_chan); 2733 2734 if (nandc->cmd_chan) 2735 dma_release_channel(nandc->cmd_chan); 2736 } else { 2737 if (nandc->chan) 2738 dma_release_channel(nandc->chan); 2739 } 2740 } 2741 2742 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) 2743 { 2744 int ret; 2745 2746 ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); 2747 if (ret) { 2748 dev_err(nandc->dev, "failed to set DMA mask\n"); 2749 return ret; 2750 } 2751 2752 /* 2753 * we use the internal buffer for reading ONFI params, reading small 2754 * data like ID and status, and preforming read-copy-write operations 2755 * when writing to a codeword partially. 532 is the maximum possible 2756 * size of a codeword for our nand controller 2757 */ 2758 nandc->buf_size = 532; 2759 2760 nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, 2761 GFP_KERNEL); 2762 if (!nandc->data_buffer) 2763 return -ENOMEM; 2764 2765 nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), 2766 GFP_KERNEL); 2767 if (!nandc->regs) 2768 return -ENOMEM; 2769 2770 nandc->reg_read_buf = devm_kcalloc(nandc->dev, 2771 MAX_REG_RD, sizeof(*nandc->reg_read_buf), 2772 GFP_KERNEL); 2773 if (!nandc->reg_read_buf) 2774 return -ENOMEM; 2775 2776 if (nandc->props->is_bam) { 2777 nandc->reg_read_dma = 2778 dma_map_single(nandc->dev, nandc->reg_read_buf, 2779 MAX_REG_RD * 2780 sizeof(*nandc->reg_read_buf), 2781 DMA_FROM_DEVICE); 2782 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) { 2783 dev_err(nandc->dev, "failed to DMA MAP reg buffer\n"); 2784 return -EIO; 2785 } 2786 2787 nandc->tx_chan = dma_request_chan(nandc->dev, "tx"); 2788 if (IS_ERR(nandc->tx_chan)) { 2789 ret = PTR_ERR(nandc->tx_chan); 2790 nandc->tx_chan = NULL; 2791 dev_err_probe(nandc->dev, ret, 2792 "tx DMA channel request failed\n"); 2793 goto unalloc; 2794 } 2795 2796 nandc->rx_chan = dma_request_chan(nandc->dev, "rx"); 2797 if (IS_ERR(nandc->rx_chan)) { 2798 ret = PTR_ERR(nandc->rx_chan); 2799 nandc->rx_chan = NULL; 2800 dev_err_probe(nandc->dev, ret, 2801 "rx DMA channel request failed\n"); 2802 goto unalloc; 2803 } 2804 2805 nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd"); 2806 if (IS_ERR(nandc->cmd_chan)) { 2807 ret = PTR_ERR(nandc->cmd_chan); 2808 nandc->cmd_chan = NULL; 2809 dev_err_probe(nandc->dev, ret, 2810 "cmd DMA channel request failed\n"); 2811 goto unalloc; 2812 } 2813 2814 /* 2815 * Initially allocate BAM transaction to read ONFI param page. 2816 * After detecting all the devices, this BAM transaction will 2817 * be freed and the next BAM tranasction will be allocated with 2818 * maximum codeword size 2819 */ 2820 nandc->max_cwperpage = 1; 2821 nandc->bam_txn = alloc_bam_transaction(nandc); 2822 if (!nandc->bam_txn) { 2823 dev_err(nandc->dev, 2824 "failed to allocate bam transaction\n"); 2825 ret = -ENOMEM; 2826 goto unalloc; 2827 } 2828 } else { 2829 nandc->chan = dma_request_chan(nandc->dev, "rxtx"); 2830 if (IS_ERR(nandc->chan)) { 2831 ret = PTR_ERR(nandc->chan); 2832 nandc->chan = NULL; 2833 dev_err_probe(nandc->dev, ret, 2834 "rxtx DMA channel request failed\n"); 2835 return ret; 2836 } 2837 } 2838 2839 INIT_LIST_HEAD(&nandc->desc_list); 2840 INIT_LIST_HEAD(&nandc->host_list); 2841 2842 nand_controller_init(&nandc->controller); 2843 nandc->controller.ops = &qcom_nandc_ops; 2844 2845 return 0; 2846 unalloc: 2847 qcom_nandc_unalloc(nandc); 2848 return ret; 2849 } 2850 2851 /* one time setup of a few nand controller registers */ 2852 static int qcom_nandc_setup(struct qcom_nand_controller *nandc) 2853 { 2854 u32 nand_ctrl; 2855 2856 /* kill onenand */ 2857 if (!nandc->props->is_qpic) 2858 nandc_write(nandc, SFLASHC_BURST_CFG, 0); 2859 2860 if (!nandc->props->qpic_v2) 2861 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), 2862 NAND_DEV_CMD_VLD_VAL); 2863 2864 /* enable ADM or BAM DMA */ 2865 if (nandc->props->is_bam) { 2866 nand_ctrl = nandc_read(nandc, NAND_CTRL); 2867 2868 /* 2869 *NAND_CTRL is an operational registers, and CPU 2870 * access to operational registers are read only 2871 * in BAM mode. So update the NAND_CTRL register 2872 * only if it is not in BAM mode. In most cases BAM 2873 * mode will be enabled in bootloader 2874 */ 2875 if (!(nand_ctrl & BAM_MODE_EN)) 2876 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN); 2877 } else { 2878 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); 2879 } 2880 2881 /* save the original values of these registers */ 2882 if (!nandc->props->qpic_v2) { 2883 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); 2884 nandc->vld = NAND_DEV_CMD_VLD_VAL; 2885 } 2886 2887 return 0; 2888 } 2889 2890 static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL }; 2891 2892 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc, 2893 struct qcom_nand_host *host, 2894 struct device_node *dn) 2895 { 2896 struct nand_chip *chip = &host->chip; 2897 struct mtd_info *mtd = nand_to_mtd(chip); 2898 struct device *dev = nandc->dev; 2899 int ret; 2900 2901 ret = of_property_read_u32(dn, "reg", &host->cs); 2902 if (ret) { 2903 dev_err(dev, "can't get chip-select\n"); 2904 return -ENXIO; 2905 } 2906 2907 nand_set_flash_node(chip, dn); 2908 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); 2909 if (!mtd->name) 2910 return -ENOMEM; 2911 2912 mtd->owner = THIS_MODULE; 2913 mtd->dev.parent = dev; 2914 2915 chip->legacy.cmdfunc = qcom_nandc_command; 2916 chip->legacy.select_chip = qcom_nandc_select_chip; 2917 chip->legacy.read_byte = qcom_nandc_read_byte; 2918 chip->legacy.read_buf = qcom_nandc_read_buf; 2919 chip->legacy.write_buf = qcom_nandc_write_buf; 2920 chip->legacy.set_features = nand_get_set_features_notsupp; 2921 chip->legacy.get_features = nand_get_set_features_notsupp; 2922 2923 /* 2924 * the bad block marker is readable only when we read the last codeword 2925 * of a page with ECC disabled. currently, the nand_base and nand_bbt 2926 * helpers don't allow us to read BB from a nand chip with ECC 2927 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad 2928 * and block_markbad helpers until we permanently switch to using 2929 * MTD_OPS_RAW for all drivers (with the help of badblockbits) 2930 */ 2931 chip->legacy.block_bad = qcom_nandc_block_bad; 2932 chip->legacy.block_markbad = qcom_nandc_block_markbad; 2933 2934 chip->controller = &nandc->controller; 2935 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | 2936 NAND_SKIP_BBTSCAN; 2937 2938 /* set up initial status value */ 2939 host->status = NAND_STATUS_READY | NAND_STATUS_WP; 2940 2941 ret = nand_scan(chip, 1); 2942 if (ret) 2943 return ret; 2944 2945 if (nandc->props->is_bam) { 2946 free_bam_transaction(nandc); 2947 nandc->bam_txn = alloc_bam_transaction(nandc); 2948 if (!nandc->bam_txn) { 2949 dev_err(nandc->dev, 2950 "failed to allocate bam transaction\n"); 2951 nand_cleanup(chip); 2952 return -ENOMEM; 2953 } 2954 } 2955 2956 ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0); 2957 if (ret) 2958 nand_cleanup(chip); 2959 2960 return ret; 2961 } 2962 2963 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) 2964 { 2965 struct device *dev = nandc->dev; 2966 struct device_node *dn = dev->of_node, *child; 2967 struct qcom_nand_host *host; 2968 int ret = -ENODEV; 2969 2970 for_each_available_child_of_node(dn, child) { 2971 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); 2972 if (!host) { 2973 of_node_put(child); 2974 return -ENOMEM; 2975 } 2976 2977 ret = qcom_nand_host_init_and_register(nandc, host, child); 2978 if (ret) { 2979 devm_kfree(dev, host); 2980 continue; 2981 } 2982 2983 list_add_tail(&host->node, &nandc->host_list); 2984 } 2985 2986 return ret; 2987 } 2988 2989 /* parse custom DT properties here */ 2990 static int qcom_nandc_parse_dt(struct platform_device *pdev) 2991 { 2992 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); 2993 struct device_node *np = nandc->dev->of_node; 2994 int ret; 2995 2996 if (!nandc->props->is_bam) { 2997 ret = of_property_read_u32(np, "qcom,cmd-crci", 2998 &nandc->cmd_crci); 2999 if (ret) { 3000 dev_err(nandc->dev, "command CRCI unspecified\n"); 3001 return ret; 3002 } 3003 3004 ret = of_property_read_u32(np, "qcom,data-crci", 3005 &nandc->data_crci); 3006 if (ret) { 3007 dev_err(nandc->dev, "data CRCI unspecified\n"); 3008 return ret; 3009 } 3010 } 3011 3012 return 0; 3013 } 3014 3015 static int qcom_nandc_probe(struct platform_device *pdev) 3016 { 3017 struct qcom_nand_controller *nandc; 3018 const void *dev_data; 3019 struct device *dev = &pdev->dev; 3020 struct resource *res; 3021 int ret; 3022 3023 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL); 3024 if (!nandc) 3025 return -ENOMEM; 3026 3027 platform_set_drvdata(pdev, nandc); 3028 nandc->dev = dev; 3029 3030 dev_data = of_device_get_match_data(dev); 3031 if (!dev_data) { 3032 dev_err(&pdev->dev, "failed to get device data\n"); 3033 return -ENODEV; 3034 } 3035 3036 nandc->props = dev_data; 3037 3038 nandc->core_clk = devm_clk_get(dev, "core"); 3039 if (IS_ERR(nandc->core_clk)) 3040 return PTR_ERR(nandc->core_clk); 3041 3042 nandc->aon_clk = devm_clk_get(dev, "aon"); 3043 if (IS_ERR(nandc->aon_clk)) 3044 return PTR_ERR(nandc->aon_clk); 3045 3046 ret = qcom_nandc_parse_dt(pdev); 3047 if (ret) 3048 return ret; 3049 3050 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3051 nandc->base = devm_ioremap_resource(dev, res); 3052 if (IS_ERR(nandc->base)) 3053 return PTR_ERR(nandc->base); 3054 3055 nandc->base_phys = res->start; 3056 nandc->base_dma = dma_map_resource(dev, res->start, 3057 resource_size(res), 3058 DMA_BIDIRECTIONAL, 0); 3059 if (dma_mapping_error(dev, nandc->base_dma)) 3060 return -ENXIO; 3061 3062 ret = qcom_nandc_alloc(nandc); 3063 if (ret) 3064 goto err_nandc_alloc; 3065 3066 ret = clk_prepare_enable(nandc->core_clk); 3067 if (ret) 3068 goto err_core_clk; 3069 3070 ret = clk_prepare_enable(nandc->aon_clk); 3071 if (ret) 3072 goto err_aon_clk; 3073 3074 ret = qcom_nandc_setup(nandc); 3075 if (ret) 3076 goto err_setup; 3077 3078 ret = qcom_probe_nand_devices(nandc); 3079 if (ret) 3080 goto err_setup; 3081 3082 return 0; 3083 3084 err_setup: 3085 clk_disable_unprepare(nandc->aon_clk); 3086 err_aon_clk: 3087 clk_disable_unprepare(nandc->core_clk); 3088 err_core_clk: 3089 qcom_nandc_unalloc(nandc); 3090 err_nandc_alloc: 3091 dma_unmap_resource(dev, res->start, resource_size(res), 3092 DMA_BIDIRECTIONAL, 0); 3093 3094 return ret; 3095 } 3096 3097 static int qcom_nandc_remove(struct platform_device *pdev) 3098 { 3099 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); 3100 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3101 struct qcom_nand_host *host; 3102 struct nand_chip *chip; 3103 int ret; 3104 3105 list_for_each_entry(host, &nandc->host_list, node) { 3106 chip = &host->chip; 3107 ret = mtd_device_unregister(nand_to_mtd(chip)); 3108 WARN_ON(ret); 3109 nand_cleanup(chip); 3110 } 3111 3112 qcom_nandc_unalloc(nandc); 3113 3114 clk_disable_unprepare(nandc->aon_clk); 3115 clk_disable_unprepare(nandc->core_clk); 3116 3117 dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res), 3118 DMA_BIDIRECTIONAL, 0); 3119 3120 return 0; 3121 } 3122 3123 static const struct qcom_nandc_props ipq806x_nandc_props = { 3124 .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), 3125 .is_bam = false, 3126 .dev_cmd_reg_start = 0x0, 3127 }; 3128 3129 static const struct qcom_nandc_props ipq4019_nandc_props = { 3130 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 3131 .is_bam = true, 3132 .is_qpic = true, 3133 .dev_cmd_reg_start = 0x0, 3134 }; 3135 3136 static const struct qcom_nandc_props ipq8074_nandc_props = { 3137 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 3138 .is_bam = true, 3139 .is_qpic = true, 3140 .dev_cmd_reg_start = 0x7000, 3141 }; 3142 3143 static const struct qcom_nandc_props sdx55_nandc_props = { 3144 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 3145 .is_bam = true, 3146 .is_qpic = true, 3147 .qpic_v2 = true, 3148 .dev_cmd_reg_start = 0x7000, 3149 }; 3150 3151 /* 3152 * data will hold a struct pointer containing more differences once we support 3153 * more controller variants 3154 */ 3155 static const struct of_device_id qcom_nandc_of_match[] = { 3156 { 3157 .compatible = "qcom,ipq806x-nand", 3158 .data = &ipq806x_nandc_props, 3159 }, 3160 { 3161 .compatible = "qcom,ipq4019-nand", 3162 .data = &ipq4019_nandc_props, 3163 }, 3164 { 3165 .compatible = "qcom,ipq6018-nand", 3166 .data = &ipq8074_nandc_props, 3167 }, 3168 { 3169 .compatible = "qcom,ipq8074-nand", 3170 .data = &ipq8074_nandc_props, 3171 }, 3172 { 3173 .compatible = "qcom,sdx55-nand", 3174 .data = &sdx55_nandc_props, 3175 }, 3176 {} 3177 }; 3178 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); 3179 3180 static struct platform_driver qcom_nandc_driver = { 3181 .driver = { 3182 .name = "qcom-nandc", 3183 .of_match_table = qcom_nandc_of_match, 3184 }, 3185 .probe = qcom_nandc_probe, 3186 .remove = qcom_nandc_remove, 3187 }; 3188 module_platform_driver(qcom_nandc_driver); 3189 3190 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>"); 3191 MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); 3192 MODULE_LICENSE("GPL v2"); 3193