1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2016, The Linux Foundation. All rights reserved. 4 */ 5 #include <linux/bitops.h> 6 #include <linux/clk.h> 7 #include <linux/delay.h> 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/dma/qcom_adm.h> 11 #include <linux/dma/qcom_bam_dma.h> 12 #include <linux/module.h> 13 #include <linux/mtd/partitions.h> 14 #include <linux/mtd/rawnand.h> 15 #include <linux/of.h> 16 #include <linux/platform_device.h> 17 #include <linux/slab.h> 18 #include <linux/mtd/nand-qpic-common.h> 19 20 /* 21 * NAND special boot partitions 22 * 23 * @page_offset: offset of the partition where spare data is not protected 24 * by ECC (value in pages) 25 * @page_offset: size of the partition where spare data is not protected 26 * by ECC (value in pages) 27 */ 28 struct qcom_nand_boot_partition { 29 u32 page_offset; 30 u32 page_size; 31 }; 32 33 /* 34 * Qcom op for each exec_op transfer 35 * 36 * @data_instr: data instruction pointer 37 * @data_instr_idx: data instruction index 38 * @rdy_timeout_ms: wait ready timeout in ms 39 * @rdy_delay_ns: Additional delay in ns 40 * @addr1_reg: Address1 register value 41 * @addr2_reg: Address2 register value 42 * @cmd_reg: CMD register value 43 * @flag: flag for misc instruction 44 */ 45 struct qcom_op { 46 const struct nand_op_instr *data_instr; 47 unsigned int data_instr_idx; 48 unsigned int rdy_timeout_ms; 49 unsigned int rdy_delay_ns; 50 __le32 addr1_reg; 51 __le32 addr2_reg; 52 __le32 cmd_reg; 53 u8 flag; 54 }; 55 56 /* 57 * NAND chip structure 58 * 59 * @boot_partitions: array of boot partitions where offset and size of the 60 * boot partitions are stored 61 * 62 * @chip: base NAND chip structure 63 * @node: list node to add itself to host_list in 64 * qcom_nand_controller 65 * 66 * @nr_boot_partitions: count of the boot partitions where spare data is not 67 * protected by ECC 68 * 69 * @cs: chip select value for this chip 70 * @cw_size: the number of bytes in a single step/codeword 71 * of a page, consisting of all data, ecc, spare 72 * and reserved bytes 73 * @cw_data: the number of bytes within a codeword protected 74 * by ECC 75 * @ecc_bytes_hw: ECC bytes used by controller hardware for this 76 * chip 77 * 78 * @last_command: keeps track of last command on this chip. used 79 * for reading correct status 80 * 81 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for 82 * ecc/non-ecc mode for the current nand flash 83 * device 84 * 85 * @status: value to be returned if NAND_CMD_STATUS command 86 * is executed 87 * @codeword_fixup: keep track of the current layout used by 88 * the driver for read/write operation. 89 * @use_ecc: request the controller to use ECC for the 90 * upcoming read/write 91 * @bch_enabled: flag to tell whether BCH ECC mode is used 92 */ 93 struct qcom_nand_host { 94 struct qcom_nand_boot_partition *boot_partitions; 95 96 struct nand_chip chip; 97 struct list_head node; 98 99 int nr_boot_partitions; 100 101 int cs; 102 int cw_size; 103 int cw_data; 104 int ecc_bytes_hw; 105 int spare_bytes; 106 int bbm_size; 107 108 int last_command; 109 110 u32 cfg0, cfg1; 111 u32 cfg0_raw, cfg1_raw; 112 u32 ecc_buf_cfg; 113 u32 ecc_bch_cfg; 114 u32 clrflashstatus; 115 u32 clrreadstatus; 116 117 u8 status; 118 bool codeword_fixup; 119 bool use_ecc; 120 bool bch_enabled; 121 }; 122 123 static struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) 124 { 125 return container_of(chip, struct qcom_nand_host, chip); 126 } 127 128 static struct qcom_nand_controller * 129 get_qcom_nand_controller(struct nand_chip *chip) 130 { 131 return (struct qcom_nand_controller *) 132 ((u8 *)chip->controller - sizeof(struct qcom_nand_controller)); 133 } 134 135 static u32 nandc_read(struct qcom_nand_controller *nandc, int offset) 136 { 137 return ioread32(nandc->base + offset); 138 } 139 140 static void nandc_write(struct qcom_nand_controller *nandc, int offset, 141 u32 val) 142 { 143 iowrite32(val, nandc->base + offset); 144 } 145 146 /* Helper to check whether this is the last CW or not */ 147 static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw) 148 { 149 return cw == (ecc->steps - 1); 150 } 151 152 /** 153 * nandc_set_read_loc_first() - to set read location first register 154 * @chip: NAND Private Flash Chip Data 155 * @reg_base: location register base 156 * @cw_offset: code word offset 157 * @read_size: code word read length 158 * @is_last_read_loc: is this the last read location 159 * 160 * This function will set location register value 161 */ 162 static void nandc_set_read_loc_first(struct nand_chip *chip, 163 int reg_base, u32 cw_offset, 164 u32 read_size, u32 is_last_read_loc) 165 { 166 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 167 __le32 locreg_val; 168 u32 val = (((cw_offset) << READ_LOCATION_OFFSET) | 169 ((read_size) << READ_LOCATION_SIZE) | 170 ((is_last_read_loc) << READ_LOCATION_LAST)); 171 172 locreg_val = cpu_to_le32(val); 173 174 if (reg_base == NAND_READ_LOCATION_0) 175 nandc->regs->read_location0 = locreg_val; 176 else if (reg_base == NAND_READ_LOCATION_1) 177 nandc->regs->read_location1 = locreg_val; 178 else if (reg_base == NAND_READ_LOCATION_2) 179 nandc->regs->read_location2 = locreg_val; 180 else if (reg_base == NAND_READ_LOCATION_3) 181 nandc->regs->read_location3 = locreg_val; 182 } 183 184 /** 185 * nandc_set_read_loc_last - to set read location last register 186 * @chip: NAND Private Flash Chip Data 187 * @reg_base: location register base 188 * @cw_offset: code word offset 189 * @read_size: code word read length 190 * @is_last_read_loc: is this the last read location 191 * 192 * This function will set location last register value 193 */ 194 static void nandc_set_read_loc_last(struct nand_chip *chip, 195 int reg_base, u32 cw_offset, 196 u32 read_size, u32 is_last_read_loc) 197 { 198 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 199 __le32 locreg_val; 200 u32 val = (((cw_offset) << READ_LOCATION_OFFSET) | 201 ((read_size) << READ_LOCATION_SIZE) | 202 ((is_last_read_loc) << READ_LOCATION_LAST)); 203 204 locreg_val = cpu_to_le32(val); 205 206 if (reg_base == NAND_READ_LOCATION_LAST_CW_0) 207 nandc->regs->read_location_last0 = locreg_val; 208 else if (reg_base == NAND_READ_LOCATION_LAST_CW_1) 209 nandc->regs->read_location_last1 = locreg_val; 210 else if (reg_base == NAND_READ_LOCATION_LAST_CW_2) 211 nandc->regs->read_location_last2 = locreg_val; 212 else if (reg_base == NAND_READ_LOCATION_LAST_CW_3) 213 nandc->regs->read_location_last3 = locreg_val; 214 } 215 216 /* helper to configure location register values */ 217 static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg, 218 u32 cw_offset, u32 read_size, u32 is_last_read_loc) 219 { 220 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 221 struct nand_ecc_ctrl *ecc = &chip->ecc; 222 int reg_base = NAND_READ_LOCATION_0; 223 224 if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw)) 225 reg_base = NAND_READ_LOCATION_LAST_CW_0; 226 227 reg_base += reg * 4; 228 229 if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw)) 230 return nandc_set_read_loc_last(chip, reg_base, cw_offset, 231 read_size, is_last_read_loc); 232 else 233 return nandc_set_read_loc_first(chip, reg_base, cw_offset, 234 read_size, is_last_read_loc); 235 } 236 237 /* helper to configure address register values */ 238 static void set_address(struct qcom_nand_host *host, u16 column, int page) 239 { 240 struct nand_chip *chip = &host->chip; 241 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 242 243 if (chip->options & NAND_BUSWIDTH_16) 244 column >>= 1; 245 246 nandc->regs->addr0 = cpu_to_le32(page << 16 | column); 247 nandc->regs->addr1 = cpu_to_le32(page >> 16 & 0xff); 248 } 249 250 /* 251 * update_rw_regs: set up read/write register values, these will be 252 * written to the NAND controller registers via DMA 253 * 254 * @num_cw: number of steps for the read/write operation 255 * @read: read or write operation 256 * @cw : which code word 257 */ 258 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw) 259 { 260 struct nand_chip *chip = &host->chip; 261 __le32 cmd, cfg0, cfg1, ecc_bch_cfg; 262 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 263 264 if (read) { 265 if (host->use_ecc) 266 cmd = cpu_to_le32(OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE); 267 else 268 cmd = cpu_to_le32(OP_PAGE_READ | PAGE_ACC | LAST_PAGE); 269 } else { 270 cmd = cpu_to_le32(OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE); 271 } 272 273 if (host->use_ecc) { 274 cfg0 = cpu_to_le32((host->cfg0 & ~(7U << CW_PER_PAGE)) | 275 (num_cw - 1) << CW_PER_PAGE); 276 277 cfg1 = cpu_to_le32(host->cfg1); 278 ecc_bch_cfg = cpu_to_le32(host->ecc_bch_cfg); 279 } else { 280 cfg0 = cpu_to_le32((host->cfg0_raw & ~(7U << CW_PER_PAGE)) | 281 (num_cw - 1) << CW_PER_PAGE); 282 283 cfg1 = cpu_to_le32(host->cfg1_raw); 284 ecc_bch_cfg = cpu_to_le32(ECC_CFG_ECC_DISABLE); 285 } 286 287 nandc->regs->cmd = cmd; 288 nandc->regs->cfg0 = cfg0; 289 nandc->regs->cfg1 = cfg1; 290 nandc->regs->ecc_bch_cfg = ecc_bch_cfg; 291 292 if (!nandc->props->qpic_version2) 293 nandc->regs->ecc_buf_cfg = cpu_to_le32(host->ecc_buf_cfg); 294 295 nandc->regs->clrflashstatus = cpu_to_le32(host->clrflashstatus); 296 nandc->regs->clrreadstatus = cpu_to_le32(host->clrreadstatus); 297 nandc->regs->exec = cpu_to_le32(1); 298 299 if (read) 300 nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ? 301 host->cw_data : host->cw_size, 1); 302 } 303 304 /* 305 * Helper to prepare DMA descriptors for configuring registers 306 * before reading a NAND page. 307 */ 308 static void config_nand_page_read(struct nand_chip *chip) 309 { 310 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 311 312 qcom_write_reg_dma(nandc, &nandc->regs->addr0, NAND_ADDR0, 2, 0); 313 qcom_write_reg_dma(nandc, &nandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); 314 if (!nandc->props->qpic_version2) 315 qcom_write_reg_dma(nandc, &nandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, 1, 0); 316 qcom_write_reg_dma(nandc, &nandc->regs->erased_cw_detect_cfg_clr, 317 NAND_ERASED_CW_DETECT_CFG, 1, 0); 318 qcom_write_reg_dma(nandc, &nandc->regs->erased_cw_detect_cfg_set, 319 NAND_ERASED_CW_DETECT_CFG, 1, NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); 320 } 321 322 /* 323 * Helper to prepare DMA descriptors for configuring registers 324 * before reading each codeword in NAND page. 325 */ 326 static void 327 config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw) 328 { 329 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 330 struct nand_ecc_ctrl *ecc = &chip->ecc; 331 332 __le32 *reg = &nandc->regs->read_location0; 333 334 if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw)) 335 reg = &nandc->regs->read_location_last0; 336 337 if (nandc->props->supports_bam) 338 qcom_write_reg_dma(nandc, reg, NAND_READ_LOCATION_0, 4, NAND_BAM_NEXT_SGL); 339 340 qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 341 qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 342 343 if (use_ecc) { 344 qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); 345 qcom_read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, 346 NAND_BAM_NEXT_SGL); 347 } else { 348 qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 349 } 350 } 351 352 /* 353 * Helper to prepare dma descriptors to configure registers needed for reading a 354 * single codeword in page 355 */ 356 static void 357 config_nand_single_cw_page_read(struct nand_chip *chip, 358 bool use_ecc, int cw) 359 { 360 config_nand_page_read(chip); 361 config_nand_cw_read(chip, use_ecc, cw); 362 } 363 364 /* 365 * Helper to prepare DMA descriptors used to configure registers needed for 366 * before writing a NAND page. 367 */ 368 static void config_nand_page_write(struct nand_chip *chip) 369 { 370 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 371 372 qcom_write_reg_dma(nandc, &nandc->regs->addr0, NAND_ADDR0, 2, 0); 373 qcom_write_reg_dma(nandc, &nandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); 374 if (!nandc->props->qpic_version2) 375 qcom_write_reg_dma(nandc, &nandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, 1, 376 NAND_BAM_NEXT_SGL); 377 } 378 379 /* 380 * Helper to prepare DMA descriptors for configuring registers 381 * before writing each codeword in NAND page. 382 */ 383 static void config_nand_cw_write(struct nand_chip *chip) 384 { 385 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 386 387 qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 388 qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 389 390 qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 391 392 qcom_write_reg_dma(nandc, &nandc->regs->clrflashstatus, NAND_FLASH_STATUS, 1, 0); 393 qcom_write_reg_dma(nandc, &nandc->regs->clrreadstatus, NAND_READ_STATUS, 1, 394 NAND_BAM_NEXT_SGL); 395 } 396 397 /* 398 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read 399 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. 400 * 401 * when using RS ECC, the HW reports the same erros when reading an erased CW, 402 * but it notifies that it is an erased CW by placing special characters at 403 * certain offsets in the buffer. 404 * 405 * verify if the page is erased or not, and fix up the page for RS ECC by 406 * replacing the special characters with 0xff. 407 */ 408 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) 409 { 410 u8 empty1, empty2; 411 412 /* 413 * an erased page flags an error in NAND_FLASH_STATUS, check if the page 414 * is erased by looking for 0x54s at offsets 3 and 175 from the 415 * beginning of each codeword 416 */ 417 418 empty1 = data_buf[3]; 419 empty2 = data_buf[175]; 420 421 /* 422 * if the erased codework markers, if they exist override them with 423 * 0xffs 424 */ 425 if ((empty1 == 0x54 && empty2 == 0xff) || 426 (empty1 == 0xff && empty2 == 0x54)) { 427 data_buf[3] = 0xff; 428 data_buf[175] = 0xff; 429 } 430 431 /* 432 * check if the entire chunk contains 0xffs or not. if it doesn't, then 433 * restore the original values at the special offsets 434 */ 435 if (memchr_inv(data_buf, 0xff, data_len)) { 436 data_buf[3] = empty1; 437 data_buf[175] = empty2; 438 439 return false; 440 } 441 442 return true; 443 } 444 445 struct read_stats { 446 __le32 flash; 447 __le32 buffer; 448 __le32 erased_cw; 449 }; 450 451 /* reads back FLASH_STATUS register set by the controller */ 452 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt) 453 { 454 struct nand_chip *chip = &host->chip; 455 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 456 int i; 457 458 qcom_nandc_dev_to_mem(nandc, true); 459 460 for (i = 0; i < cw_cnt; i++) { 461 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]); 462 463 if (flash & (FS_OP_ERR | FS_MPU_ERR)) 464 return -EIO; 465 } 466 467 return 0; 468 } 469 470 /* performs raw read for one codeword */ 471 static int 472 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, 473 u8 *data_buf, u8 *oob_buf, int page, int cw) 474 { 475 struct qcom_nand_host *host = to_qcom_nand_host(chip); 476 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 477 struct nand_ecc_ctrl *ecc = &chip->ecc; 478 int data_size1, data_size2, oob_size1, oob_size2; 479 int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; 480 int raw_cw = cw; 481 482 nand_read_page_op(chip, page, 0, NULL, 0); 483 nandc->buf_count = 0; 484 nandc->buf_start = 0; 485 qcom_clear_read_regs(nandc); 486 host->use_ecc = false; 487 488 if (nandc->props->qpic_version2) 489 raw_cw = ecc->steps - 1; 490 491 qcom_clear_bam_transaction(nandc); 492 set_address(host, host->cw_size * cw, page); 493 update_rw_regs(host, 1, true, raw_cw); 494 config_nand_page_read(chip); 495 496 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); 497 oob_size1 = host->bbm_size; 498 499 if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) { 500 data_size2 = ecc->size - data_size1 - 501 ((ecc->steps - 1) * 4); 502 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw + 503 host->spare_bytes; 504 } else { 505 data_size2 = host->cw_data - data_size1; 506 oob_size2 = host->ecc_bytes_hw + host->spare_bytes; 507 } 508 509 if (nandc->props->supports_bam) { 510 nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0); 511 read_loc += data_size1; 512 513 nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0); 514 read_loc += oob_size1; 515 516 nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0); 517 read_loc += data_size2; 518 519 nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1); 520 } 521 522 config_nand_cw_read(chip, false, raw_cw); 523 524 qcom_read_data_dma(nandc, reg_off, data_buf, data_size1, 0); 525 reg_off += data_size1; 526 527 qcom_read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); 528 reg_off += oob_size1; 529 530 qcom_read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0); 531 reg_off += data_size2; 532 533 qcom_read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0); 534 535 ret = qcom_submit_descs(nandc); 536 if (ret) { 537 dev_err(nandc->dev, "failure to read raw cw %d\n", cw); 538 return ret; 539 } 540 541 return check_flash_errors(host, 1); 542 } 543 544 /* 545 * Bitflips can happen in erased codewords also so this function counts the 546 * number of 0 in each CW for which ECC engine returns the uncorrectable 547 * error. The page will be assumed as erased if this count is less than or 548 * equal to the ecc->strength for each CW. 549 * 550 * 1. Both DATA and OOB need to be checked for number of 0. The 551 * top-level API can be called with only data buf or OOB buf so use 552 * chip->data_buf if data buf is null and chip->oob_poi if oob buf 553 * is null for copying the raw bytes. 554 * 2. Perform raw read for all the CW which has uncorrectable errors. 555 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes. 556 * The BBM and spare bytes bit flip won’t affect the ECC so don’t check 557 * the number of bitflips in this area. 558 */ 559 static int 560 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf, 561 u8 *oob_buf, unsigned long uncorrectable_cws, 562 int page, unsigned int max_bitflips) 563 { 564 struct nand_chip *chip = &host->chip; 565 struct mtd_info *mtd = nand_to_mtd(chip); 566 struct nand_ecc_ctrl *ecc = &chip->ecc; 567 u8 *cw_data_buf, *cw_oob_buf; 568 int cw, data_size, oob_size, ret; 569 570 if (!data_buf) 571 data_buf = nand_get_data_buf(chip); 572 573 if (!oob_buf) { 574 nand_get_data_buf(chip); 575 oob_buf = chip->oob_poi; 576 } 577 578 for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) { 579 if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) { 580 data_size = ecc->size - ((ecc->steps - 1) * 4); 581 oob_size = (ecc->steps * 4) + host->ecc_bytes_hw; 582 } else { 583 data_size = host->cw_data; 584 oob_size = host->ecc_bytes_hw; 585 } 586 587 /* determine starting buffer address for current CW */ 588 cw_data_buf = data_buf + (cw * host->cw_data); 589 cw_oob_buf = oob_buf + (cw * ecc->bytes); 590 591 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf, 592 cw_oob_buf, page, cw); 593 if (ret) 594 return ret; 595 596 /* 597 * make sure it isn't an erased page reported 598 * as not-erased by HW because of a few bitflips 599 */ 600 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size, 601 cw_oob_buf + host->bbm_size, 602 oob_size, NULL, 603 0, ecc->strength); 604 if (ret < 0) { 605 mtd->ecc_stats.failed++; 606 } else { 607 mtd->ecc_stats.corrected += ret; 608 max_bitflips = max_t(unsigned int, max_bitflips, ret); 609 } 610 } 611 612 return max_bitflips; 613 } 614 615 /* 616 * reads back status registers set by the controller to notify page read 617 * errors. this is equivalent to what 'ecc->correct()' would do. 618 */ 619 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, 620 u8 *oob_buf, int page) 621 { 622 struct nand_chip *chip = &host->chip; 623 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 624 struct mtd_info *mtd = nand_to_mtd(chip); 625 struct nand_ecc_ctrl *ecc = &chip->ecc; 626 unsigned int max_bitflips = 0, uncorrectable_cws = 0; 627 struct read_stats *buf; 628 bool flash_op_err = false, erased; 629 int i; 630 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; 631 632 buf = (struct read_stats *)nandc->reg_read_buf; 633 qcom_nandc_dev_to_mem(nandc, true); 634 635 for (i = 0; i < ecc->steps; i++, buf++) { 636 u32 flash, buffer, erased_cw; 637 int data_len, oob_len; 638 639 if (qcom_nandc_is_last_cw(ecc, i)) { 640 data_len = ecc->size - ((ecc->steps - 1) << 2); 641 oob_len = ecc->steps << 2; 642 } else { 643 data_len = host->cw_data; 644 oob_len = 0; 645 } 646 647 flash = le32_to_cpu(buf->flash); 648 buffer = le32_to_cpu(buf->buffer); 649 erased_cw = le32_to_cpu(buf->erased_cw); 650 651 /* 652 * Check ECC failure for each codeword. ECC failure can 653 * happen in either of the following conditions 654 * 1. If number of bitflips are greater than ECC engine 655 * capability. 656 * 2. If this codeword contains all 0xff for which erased 657 * codeword detection check will be done. 658 */ 659 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { 660 /* 661 * For BCH ECC, ignore erased codeword errors, if 662 * ERASED_CW bits are set. 663 */ 664 if (host->bch_enabled) { 665 erased = (erased_cw & ERASED_CW) == ERASED_CW; 666 /* 667 * For RS ECC, HW reports the erased CW by placing 668 * special characters at certain offsets in the buffer. 669 * These special characters will be valid only if 670 * complete page is read i.e. data_buf is not NULL. 671 */ 672 } else if (data_buf) { 673 erased = erased_chunk_check_and_fixup(data_buf, 674 data_len); 675 } else { 676 erased = false; 677 } 678 679 if (!erased) 680 uncorrectable_cws |= BIT(i); 681 /* 682 * Check if MPU or any other operational error (timeout, 683 * device failure, etc.) happened for this codeword and 684 * make flash_op_err true. If flash_op_err is set, then 685 * EIO will be returned for page read. 686 */ 687 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { 688 flash_op_err = true; 689 /* 690 * No ECC or operational errors happened. Check the number of 691 * bits corrected and update the ecc_stats.corrected. 692 */ 693 } else { 694 unsigned int stat; 695 696 stat = buffer & BS_CORRECTABLE_ERR_MSK; 697 mtd->ecc_stats.corrected += stat; 698 max_bitflips = max(max_bitflips, stat); 699 } 700 701 if (data_buf) 702 data_buf += data_len; 703 if (oob_buf) 704 oob_buf += oob_len + ecc->bytes; 705 } 706 707 if (flash_op_err) 708 return -EIO; 709 710 if (!uncorrectable_cws) 711 return max_bitflips; 712 713 return check_for_erased_page(host, data_buf_start, oob_buf_start, 714 uncorrectable_cws, page, 715 max_bitflips); 716 } 717 718 /* 719 * helper to perform the actual page read operation, used by ecc->read_page(), 720 * ecc->read_oob() 721 */ 722 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, 723 u8 *oob_buf, int page) 724 { 725 struct nand_chip *chip = &host->chip; 726 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 727 struct nand_ecc_ctrl *ecc = &chip->ecc; 728 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; 729 int i, ret; 730 731 config_nand_page_read(chip); 732 733 /* queue cmd descs for each codeword */ 734 for (i = 0; i < ecc->steps; i++) { 735 int data_size, oob_size; 736 737 if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { 738 data_size = ecc->size - ((ecc->steps - 1) << 2); 739 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + 740 host->spare_bytes; 741 } else { 742 data_size = host->cw_data; 743 oob_size = host->ecc_bytes_hw + host->spare_bytes; 744 } 745 746 if (nandc->props->supports_bam) { 747 if (data_buf && oob_buf) { 748 nandc_set_read_loc(chip, i, 0, 0, data_size, 0); 749 nandc_set_read_loc(chip, i, 1, data_size, 750 oob_size, 1); 751 } else if (data_buf) { 752 nandc_set_read_loc(chip, i, 0, 0, data_size, 1); 753 } else { 754 nandc_set_read_loc(chip, i, 0, data_size, 755 oob_size, 1); 756 } 757 } 758 759 config_nand_cw_read(chip, true, i); 760 761 if (data_buf) 762 qcom_read_data_dma(nandc, FLASH_BUF_ACC, data_buf, 763 data_size, 0); 764 765 /* 766 * when ecc is enabled, the controller doesn't read the real 767 * or dummy bad block markers in each chunk. To maintain a 768 * consistent layout across RAW and ECC reads, we just 769 * leave the real/dummy BBM offsets empty (i.e, filled with 770 * 0xffs) 771 */ 772 if (oob_buf) { 773 int j; 774 775 for (j = 0; j < host->bbm_size; j++) 776 *oob_buf++ = 0xff; 777 778 qcom_read_data_dma(nandc, FLASH_BUF_ACC + data_size, 779 oob_buf, oob_size, 0); 780 } 781 782 if (data_buf) 783 data_buf += data_size; 784 if (oob_buf) 785 oob_buf += oob_size; 786 } 787 788 ret = qcom_submit_descs(nandc); 789 if (ret) { 790 dev_err(nandc->dev, "failure to read page/oob\n"); 791 return ret; 792 } 793 794 return parse_read_errors(host, data_buf_start, oob_buf_start, page); 795 } 796 797 /* 798 * a helper that copies the last step/codeword of a page (containing free oob) 799 * into our local buffer 800 */ 801 static int copy_last_cw(struct qcom_nand_host *host, int page) 802 { 803 struct nand_chip *chip = &host->chip; 804 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 805 struct nand_ecc_ctrl *ecc = &chip->ecc; 806 int size; 807 int ret; 808 809 qcom_clear_read_regs(nandc); 810 811 size = host->use_ecc ? host->cw_data : host->cw_size; 812 813 /* prepare a clean read buffer */ 814 memset(nandc->data_buffer, 0xff, size); 815 816 set_address(host, host->cw_size * (ecc->steps - 1), page); 817 update_rw_regs(host, 1, true, ecc->steps - 1); 818 819 config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1); 820 821 qcom_read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); 822 823 ret = qcom_submit_descs(nandc); 824 if (ret) 825 dev_err(nandc->dev, "failed to copy last codeword\n"); 826 827 return ret; 828 } 829 830 static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page) 831 { 832 struct qcom_nand_boot_partition *boot_partition; 833 u32 start, end; 834 int i; 835 836 /* 837 * Since the frequent access will be to the non-boot partitions like rootfs, 838 * optimize the page check by: 839 * 840 * 1. Checking if the page lies after the last boot partition. 841 * 2. Checking from the boot partition end. 842 */ 843 844 /* First check the last boot partition */ 845 boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1]; 846 start = boot_partition->page_offset; 847 end = start + boot_partition->page_size; 848 849 /* Page is after the last boot partition end. This is NOT a boot partition */ 850 if (page > end) 851 return false; 852 853 /* Actually check if it's a boot partition */ 854 if (page < end && page >= start) 855 return true; 856 857 /* Check the other boot partitions starting from the second-last partition */ 858 for (i = host->nr_boot_partitions - 2; i >= 0; i--) { 859 boot_partition = &host->boot_partitions[i]; 860 start = boot_partition->page_offset; 861 end = start + boot_partition->page_size; 862 863 if (page < end && page >= start) 864 return true; 865 } 866 867 return false; 868 } 869 870 static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page) 871 { 872 bool codeword_fixup = qcom_nandc_is_boot_partition(host, page); 873 874 /* Skip conf write if we are already in the correct mode */ 875 if (codeword_fixup == host->codeword_fixup) 876 return; 877 878 host->codeword_fixup = codeword_fixup; 879 880 host->cw_data = codeword_fixup ? 512 : 516; 881 host->spare_bytes = host->cw_size - host->ecc_bytes_hw - 882 host->bbm_size - host->cw_data; 883 884 host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK); 885 host->cfg0 |= host->spare_bytes << SPARE_SIZE_BYTES | 886 host->cw_data << UD_SIZE_BYTES; 887 888 host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK; 889 host->ecc_bch_cfg |= host->cw_data << ECC_NUM_DATA_BYTES; 890 host->ecc_buf_cfg = (host->cw_data - 1) << NUM_STEPS; 891 } 892 893 /* implements ecc->read_page() */ 894 static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf, 895 int oob_required, int page) 896 { 897 struct qcom_nand_host *host = to_qcom_nand_host(chip); 898 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 899 struct nand_ecc_ctrl *ecc = &chip->ecc; 900 u8 *data_buf, *oob_buf = NULL; 901 902 if (host->nr_boot_partitions) 903 qcom_nandc_codeword_fixup(host, page); 904 905 nand_read_page_op(chip, page, 0, NULL, 0); 906 nandc->buf_count = 0; 907 nandc->buf_start = 0; 908 host->use_ecc = true; 909 qcom_clear_read_regs(nandc); 910 set_address(host, 0, page); 911 update_rw_regs(host, ecc->steps, true, 0); 912 913 data_buf = buf; 914 oob_buf = oob_required ? chip->oob_poi : NULL; 915 916 qcom_clear_bam_transaction(nandc); 917 918 return read_page_ecc(host, data_buf, oob_buf, page); 919 } 920 921 /* implements ecc->read_page_raw() */ 922 static int qcom_nandc_read_page_raw(struct nand_chip *chip, u8 *buf, 923 int oob_required, int page) 924 { 925 struct mtd_info *mtd = nand_to_mtd(chip); 926 struct qcom_nand_host *host = to_qcom_nand_host(chip); 927 struct nand_ecc_ctrl *ecc = &chip->ecc; 928 int cw, ret; 929 u8 *data_buf = buf, *oob_buf = chip->oob_poi; 930 931 if (host->nr_boot_partitions) 932 qcom_nandc_codeword_fixup(host, page); 933 934 for (cw = 0; cw < ecc->steps; cw++) { 935 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf, 936 page, cw); 937 if (ret) 938 return ret; 939 940 data_buf += host->cw_data; 941 oob_buf += ecc->bytes; 942 } 943 944 return 0; 945 } 946 947 /* implements ecc->read_oob() */ 948 static int qcom_nandc_read_oob(struct nand_chip *chip, int page) 949 { 950 struct qcom_nand_host *host = to_qcom_nand_host(chip); 951 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 952 struct nand_ecc_ctrl *ecc = &chip->ecc; 953 954 if (host->nr_boot_partitions) 955 qcom_nandc_codeword_fixup(host, page); 956 957 qcom_clear_read_regs(nandc); 958 qcom_clear_bam_transaction(nandc); 959 960 host->use_ecc = true; 961 set_address(host, 0, page); 962 update_rw_regs(host, ecc->steps, true, 0); 963 964 return read_page_ecc(host, NULL, chip->oob_poi, page); 965 } 966 967 /* implements ecc->write_page() */ 968 static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf, 969 int oob_required, int page) 970 { 971 struct qcom_nand_host *host = to_qcom_nand_host(chip); 972 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 973 struct nand_ecc_ctrl *ecc = &chip->ecc; 974 u8 *data_buf, *oob_buf; 975 int i, ret; 976 977 if (host->nr_boot_partitions) 978 qcom_nandc_codeword_fixup(host, page); 979 980 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 981 982 set_address(host, 0, page); 983 nandc->buf_count = 0; 984 nandc->buf_start = 0; 985 qcom_clear_read_regs(nandc); 986 qcom_clear_bam_transaction(nandc); 987 988 data_buf = (u8 *)buf; 989 oob_buf = chip->oob_poi; 990 991 host->use_ecc = true; 992 update_rw_regs(host, ecc->steps, false, 0); 993 config_nand_page_write(chip); 994 995 for (i = 0; i < ecc->steps; i++) { 996 int data_size, oob_size; 997 998 if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { 999 data_size = ecc->size - ((ecc->steps - 1) << 2); 1000 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + 1001 host->spare_bytes; 1002 } else { 1003 data_size = host->cw_data; 1004 oob_size = ecc->bytes; 1005 } 1006 1007 qcom_write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, 1008 i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); 1009 1010 /* 1011 * when ECC is enabled, we don't really need to write anything 1012 * to oob for the first n - 1 codewords since these oob regions 1013 * just contain ECC bytes that's written by the controller 1014 * itself. For the last codeword, we skip the bbm positions and 1015 * write to the free oob area. 1016 */ 1017 if (qcom_nandc_is_last_cw(ecc, i)) { 1018 oob_buf += host->bbm_size; 1019 1020 qcom_write_data_dma(nandc, FLASH_BUF_ACC + data_size, 1021 oob_buf, oob_size, 0); 1022 } 1023 1024 config_nand_cw_write(chip); 1025 1026 data_buf += data_size; 1027 oob_buf += oob_size; 1028 } 1029 1030 ret = qcom_submit_descs(nandc); 1031 if (ret) { 1032 dev_err(nandc->dev, "failure to write page\n"); 1033 return ret; 1034 } 1035 1036 return nand_prog_page_end_op(chip); 1037 } 1038 1039 /* implements ecc->write_page_raw() */ 1040 static int qcom_nandc_write_page_raw(struct nand_chip *chip, 1041 const u8 *buf, int oob_required, 1042 int page) 1043 { 1044 struct mtd_info *mtd = nand_to_mtd(chip); 1045 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1046 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1047 struct nand_ecc_ctrl *ecc = &chip->ecc; 1048 u8 *data_buf, *oob_buf; 1049 int i, ret; 1050 1051 if (host->nr_boot_partitions) 1052 qcom_nandc_codeword_fixup(host, page); 1053 1054 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1055 qcom_clear_read_regs(nandc); 1056 qcom_clear_bam_transaction(nandc); 1057 1058 data_buf = (u8 *)buf; 1059 oob_buf = chip->oob_poi; 1060 1061 host->use_ecc = false; 1062 update_rw_regs(host, ecc->steps, false, 0); 1063 config_nand_page_write(chip); 1064 1065 for (i = 0; i < ecc->steps; i++) { 1066 int data_size1, data_size2, oob_size1, oob_size2; 1067 int reg_off = FLASH_BUF_ACC; 1068 1069 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); 1070 oob_size1 = host->bbm_size; 1071 1072 if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { 1073 data_size2 = ecc->size - data_size1 - 1074 ((ecc->steps - 1) << 2); 1075 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + 1076 host->spare_bytes; 1077 } else { 1078 data_size2 = host->cw_data - data_size1; 1079 oob_size2 = host->ecc_bytes_hw + host->spare_bytes; 1080 } 1081 1082 qcom_write_data_dma(nandc, reg_off, data_buf, data_size1, 1083 NAND_BAM_NO_EOT); 1084 reg_off += data_size1; 1085 data_buf += data_size1; 1086 1087 qcom_write_data_dma(nandc, reg_off, oob_buf, oob_size1, 1088 NAND_BAM_NO_EOT); 1089 reg_off += oob_size1; 1090 oob_buf += oob_size1; 1091 1092 qcom_write_data_dma(nandc, reg_off, data_buf, data_size2, 1093 NAND_BAM_NO_EOT); 1094 reg_off += data_size2; 1095 data_buf += data_size2; 1096 1097 qcom_write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); 1098 oob_buf += oob_size2; 1099 1100 config_nand_cw_write(chip); 1101 } 1102 1103 ret = qcom_submit_descs(nandc); 1104 if (ret) { 1105 dev_err(nandc->dev, "failure to write raw page\n"); 1106 return ret; 1107 } 1108 1109 return nand_prog_page_end_op(chip); 1110 } 1111 1112 /* 1113 * implements ecc->write_oob() 1114 * 1115 * the NAND controller cannot write only data or only OOB within a codeword 1116 * since ECC is calculated for the combined codeword. So update the OOB from 1117 * chip->oob_poi, and pad the data area with OxFF before writing. 1118 */ 1119 static int qcom_nandc_write_oob(struct nand_chip *chip, int page) 1120 { 1121 struct mtd_info *mtd = nand_to_mtd(chip); 1122 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1123 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1124 struct nand_ecc_ctrl *ecc = &chip->ecc; 1125 u8 *oob = chip->oob_poi; 1126 int data_size, oob_size; 1127 int ret; 1128 1129 if (host->nr_boot_partitions) 1130 qcom_nandc_codeword_fixup(host, page); 1131 1132 host->use_ecc = true; 1133 qcom_clear_bam_transaction(nandc); 1134 1135 /* calculate the data and oob size for the last codeword/step */ 1136 data_size = ecc->size - ((ecc->steps - 1) << 2); 1137 oob_size = mtd->oobavail; 1138 1139 memset(nandc->data_buffer, 0xff, host->cw_data); 1140 /* override new oob content to last codeword */ 1141 mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, 1142 0, mtd->oobavail); 1143 1144 set_address(host, host->cw_size * (ecc->steps - 1), page); 1145 update_rw_regs(host, 1, false, 0); 1146 1147 config_nand_page_write(chip); 1148 qcom_write_data_dma(nandc, FLASH_BUF_ACC, 1149 nandc->data_buffer, data_size + oob_size, 0); 1150 config_nand_cw_write(chip); 1151 1152 ret = qcom_submit_descs(nandc); 1153 if (ret) { 1154 dev_err(nandc->dev, "failure to write oob\n"); 1155 return ret; 1156 } 1157 1158 return nand_prog_page_end_op(chip); 1159 } 1160 1161 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs) 1162 { 1163 struct mtd_info *mtd = nand_to_mtd(chip); 1164 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1165 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1166 struct nand_ecc_ctrl *ecc = &chip->ecc; 1167 int page, ret, bbpos, bad = 0; 1168 1169 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 1170 1171 /* 1172 * configure registers for a raw sub page read, the address is set to 1173 * the beginning of the last codeword, we don't care about reading ecc 1174 * portion of oob. we just want the first few bytes from this codeword 1175 * that contains the BBM 1176 */ 1177 host->use_ecc = false; 1178 1179 qcom_clear_bam_transaction(nandc); 1180 ret = copy_last_cw(host, page); 1181 if (ret) 1182 goto err; 1183 1184 if (check_flash_errors(host, 1)) { 1185 dev_warn(nandc->dev, "error when trying to read BBM\n"); 1186 goto err; 1187 } 1188 1189 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); 1190 1191 bad = nandc->data_buffer[bbpos] != 0xff; 1192 1193 if (chip->options & NAND_BUSWIDTH_16) 1194 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); 1195 err: 1196 return bad; 1197 } 1198 1199 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) 1200 { 1201 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1202 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1203 struct nand_ecc_ctrl *ecc = &chip->ecc; 1204 int page, ret; 1205 1206 qcom_clear_read_regs(nandc); 1207 qcom_clear_bam_transaction(nandc); 1208 1209 /* 1210 * to mark the BBM as bad, we flash the entire last codeword with 0s. 1211 * we don't care about the rest of the content in the codeword since 1212 * we aren't going to use this block again 1213 */ 1214 memset(nandc->data_buffer, 0x00, host->cw_size); 1215 1216 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 1217 1218 /* prepare write */ 1219 host->use_ecc = false; 1220 set_address(host, host->cw_size * (ecc->steps - 1), page); 1221 update_rw_regs(host, 1, false, ecc->steps - 1); 1222 1223 config_nand_page_write(chip); 1224 qcom_write_data_dma(nandc, FLASH_BUF_ACC, 1225 nandc->data_buffer, host->cw_size, 0); 1226 config_nand_cw_write(chip); 1227 1228 ret = qcom_submit_descs(nandc); 1229 if (ret) { 1230 dev_err(nandc->dev, "failure to update BBM\n"); 1231 return ret; 1232 } 1233 1234 return nand_prog_page_end_op(chip); 1235 } 1236 1237 /* 1238 * NAND controller page layout info 1239 * 1240 * Layout with ECC enabled: 1241 * 1242 * |----------------------| |---------------------------------| 1243 * | xx.......yy| | *********xx.......yy| 1244 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| 1245 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| 1246 * | xx.......yy| | *********xx.......yy| 1247 * |----------------------| |---------------------------------| 1248 * codeword 1,2..n-1 codeword n 1249 * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> 1250 * 1251 * n = Number of codewords in the page 1252 * . = ECC bytes 1253 * * = Spare/free bytes 1254 * x = Unused byte(s) 1255 * y = Reserved byte(s) 1256 * 1257 * 2K page: n = 4, spare = 16 bytes 1258 * 4K page: n = 8, spare = 32 bytes 1259 * 8K page: n = 16, spare = 64 bytes 1260 * 1261 * the qcom nand controller operates at a sub page/codeword level. each 1262 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. 1263 * the number of ECC bytes vary based on the ECC strength and the bus width. 1264 * 1265 * the first n - 1 codewords contains 516 bytes of user data, the remaining 1266 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains 1267 * both user data and spare(oobavail) bytes that sum up to 516 bytes. 1268 * 1269 * When we access a page with ECC enabled, the reserved bytes(s) are not 1270 * accessible at all. When reading, we fill up these unreadable positions 1271 * with 0xffs. When writing, the controller skips writing the inaccessible 1272 * bytes. 1273 * 1274 * Layout with ECC disabled: 1275 * 1276 * |------------------------------| |---------------------------------------| 1277 * | yy xx.......| | bb *********xx.......| 1278 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| 1279 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| 1280 * | yy xx.......| | bb *********xx.......| 1281 * |------------------------------| |---------------------------------------| 1282 * codeword 1,2..n-1 codeword n 1283 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> 1284 * 1285 * n = Number of codewords in the page 1286 * . = ECC bytes 1287 * * = Spare/free bytes 1288 * x = Unused byte(s) 1289 * y = Dummy Bad Bock byte(s) 1290 * b = Real Bad Block byte(s) 1291 * size1/size2 = function of codeword size and 'n' 1292 * 1293 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus 1294 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad 1295 * Block Markers. In the last codeword, this position contains the real BBM 1296 * 1297 * In order to have a consistent layout between RAW and ECC modes, we assume 1298 * the following OOB layout arrangement: 1299 * 1300 * |-----------| |--------------------| 1301 * |yyxx.......| |bb*********xx.......| 1302 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| 1303 * |yyxx.......| |bb*********xx.......| 1304 * |yyxx.......| |bb*********xx.......| 1305 * |-----------| |--------------------| 1306 * first n - 1 nth OOB region 1307 * OOB regions 1308 * 1309 * n = Number of codewords in the page 1310 * . = ECC bytes 1311 * * = FREE OOB bytes 1312 * y = Dummy bad block byte(s) (inaccessible when ECC enabled) 1313 * x = Unused byte(s) 1314 * b = Real bad block byte(s) (inaccessible when ECC enabled) 1315 * 1316 * This layout is read as is when ECC is disabled. When ECC is enabled, the 1317 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, 1318 * and assumed as 0xffs when we read a page/oob. The ECC, unused and 1319 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is 1320 * the sum of the three). 1321 */ 1322 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 1323 struct mtd_oob_region *oobregion) 1324 { 1325 struct nand_chip *chip = mtd_to_nand(mtd); 1326 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1327 struct nand_ecc_ctrl *ecc = &chip->ecc; 1328 1329 if (section > 1) 1330 return -ERANGE; 1331 1332 if (!section) { 1333 oobregion->length = (ecc->bytes * (ecc->steps - 1)) + 1334 host->bbm_size; 1335 oobregion->offset = 0; 1336 } else { 1337 oobregion->length = host->ecc_bytes_hw + host->spare_bytes; 1338 oobregion->offset = mtd->oobsize - oobregion->length; 1339 } 1340 1341 return 0; 1342 } 1343 1344 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, 1345 struct mtd_oob_region *oobregion) 1346 { 1347 struct nand_chip *chip = mtd_to_nand(mtd); 1348 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1349 struct nand_ecc_ctrl *ecc = &chip->ecc; 1350 1351 if (section) 1352 return -ERANGE; 1353 1354 oobregion->length = ecc->steps * 4; 1355 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; 1356 1357 return 0; 1358 } 1359 1360 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { 1361 .ecc = qcom_nand_ooblayout_ecc, 1362 .free = qcom_nand_ooblayout_free, 1363 }; 1364 1365 static int 1366 qcom_nandc_calc_ecc_bytes(int step_size, int strength) 1367 { 1368 return strength == 4 ? 12 : 16; 1369 } 1370 1371 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes, 1372 NANDC_STEP_SIZE, 4, 8); 1373 1374 static int qcom_nand_attach_chip(struct nand_chip *chip) 1375 { 1376 struct mtd_info *mtd = nand_to_mtd(chip); 1377 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1378 struct nand_ecc_ctrl *ecc = &chip->ecc; 1379 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1380 int cwperpage, bad_block_byte, ret; 1381 bool wide_bus; 1382 int ecc_mode = 1; 1383 1384 /* controller only supports 512 bytes data steps */ 1385 ecc->size = NANDC_STEP_SIZE; 1386 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; 1387 cwperpage = mtd->writesize / NANDC_STEP_SIZE; 1388 1389 /* 1390 * Each CW has 4 available OOB bytes which will be protected with ECC 1391 * so remaining bytes can be used for ECC. 1392 */ 1393 ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps, 1394 mtd->oobsize - (cwperpage * 4)); 1395 if (ret) { 1396 dev_err(nandc->dev, "No valid ECC settings possible\n"); 1397 return ret; 1398 } 1399 1400 if (ecc->strength >= 8) { 1401 /* 8 bit ECC defaults to BCH ECC on all platforms */ 1402 host->bch_enabled = true; 1403 ecc_mode = 1; 1404 1405 if (wide_bus) { 1406 host->ecc_bytes_hw = 14; 1407 host->spare_bytes = 0; 1408 host->bbm_size = 2; 1409 } else { 1410 host->ecc_bytes_hw = 13; 1411 host->spare_bytes = 2; 1412 host->bbm_size = 1; 1413 } 1414 } else { 1415 /* 1416 * if the controller supports BCH for 4 bit ECC, the controller 1417 * uses lesser bytes for ECC. If RS is used, the ECC bytes is 1418 * always 10 bytes 1419 */ 1420 if (nandc->props->ecc_modes & ECC_BCH_4BIT) { 1421 /* BCH */ 1422 host->bch_enabled = true; 1423 ecc_mode = 0; 1424 1425 if (wide_bus) { 1426 host->ecc_bytes_hw = 8; 1427 host->spare_bytes = 2; 1428 host->bbm_size = 2; 1429 } else { 1430 host->ecc_bytes_hw = 7; 1431 host->spare_bytes = 4; 1432 host->bbm_size = 1; 1433 } 1434 } else { 1435 /* RS */ 1436 host->ecc_bytes_hw = 10; 1437 1438 if (wide_bus) { 1439 host->spare_bytes = 0; 1440 host->bbm_size = 2; 1441 } else { 1442 host->spare_bytes = 1; 1443 host->bbm_size = 1; 1444 } 1445 } 1446 } 1447 1448 /* 1449 * we consider ecc->bytes as the sum of all the non-data content in a 1450 * step. It gives us a clean representation of the oob area (even if 1451 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit 1452 * ECC and 12 bytes for 4 bit ECC 1453 */ 1454 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; 1455 1456 ecc->read_page = qcom_nandc_read_page; 1457 ecc->read_page_raw = qcom_nandc_read_page_raw; 1458 ecc->read_oob = qcom_nandc_read_oob; 1459 ecc->write_page = qcom_nandc_write_page; 1460 ecc->write_page_raw = qcom_nandc_write_page_raw; 1461 ecc->write_oob = qcom_nandc_write_oob; 1462 1463 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 1464 1465 mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); 1466 /* Free the initially allocated BAM transaction for reading the ONFI params */ 1467 if (nandc->props->supports_bam) 1468 qcom_free_bam_transaction(nandc); 1469 1470 nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, 1471 cwperpage); 1472 1473 /* Now allocate the BAM transaction based on updated max_cwperpage */ 1474 if (nandc->props->supports_bam) { 1475 nandc->bam_txn = qcom_alloc_bam_transaction(nandc); 1476 if (!nandc->bam_txn) { 1477 dev_err(nandc->dev, 1478 "failed to allocate bam transaction\n"); 1479 return -ENOMEM; 1480 } 1481 } 1482 1483 /* 1484 * DATA_UD_BYTES varies based on whether the read/write command protects 1485 * spare data with ECC too. We protect spare data by default, so we set 1486 * it to main + spare data, which are 512 and 4 bytes respectively. 1487 */ 1488 host->cw_data = 516; 1489 1490 /* 1491 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes 1492 * for 8 bit ECC 1493 */ 1494 host->cw_size = host->cw_data + ecc->bytes; 1495 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; 1496 1497 host->cfg0 = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) | 1498 FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_data) | 1499 FIELD_PREP(DISABLE_STATUS_AFTER_WRITE, 0) | 1500 FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) | 1501 FIELD_PREP(ECC_PARITY_SIZE_BYTES_RS, host->ecc_bytes_hw) | 1502 FIELD_PREP(STATUS_BFR_READ, 0) | 1503 FIELD_PREP(SET_RD_MODE_AFTER_STATUS, 1) | 1504 FIELD_PREP(SPARE_SIZE_BYTES_MASK, host->spare_bytes); 1505 1506 host->cfg1 = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) | 1507 FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, bad_block_byte) | 1508 FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 0) | 1509 FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) | 1510 FIELD_PREP(WIDE_FLASH, wide_bus) | 1511 FIELD_PREP(ENABLE_BCH_ECC, host->bch_enabled); 1512 1513 host->cfg0_raw = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) | 1514 FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_size) | 1515 FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) | 1516 FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0); 1517 1518 host->cfg1_raw = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) | 1519 FIELD_PREP(CS_ACTIVE_BSY, 0) | 1520 FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) | 1521 FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) | 1522 FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) | 1523 FIELD_PREP(WIDE_FLASH, wide_bus) | 1524 FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1); 1525 1526 host->ecc_bch_cfg = FIELD_PREP(ECC_CFG_ECC_DISABLE, !host->bch_enabled) | 1527 FIELD_PREP(ECC_SW_RESET, 0) | 1528 FIELD_PREP(ECC_NUM_DATA_BYTES_MASK, host->cw_data) | 1529 FIELD_PREP(ECC_FORCE_CLK_OPEN, 1) | 1530 FIELD_PREP(ECC_MODE_MASK, ecc_mode) | 1531 FIELD_PREP(ECC_PARITY_SIZE_BYTES_BCH_MASK, host->ecc_bytes_hw); 1532 1533 if (!nandc->props->qpic_version2) 1534 host->ecc_buf_cfg = 0x203 << NUM_STEPS; 1535 1536 host->clrflashstatus = FS_READY_BSY_N; 1537 host->clrreadstatus = 0xc0; 1538 nandc->regs->erased_cw_detect_cfg_clr = 1539 cpu_to_le32(CLR_ERASED_PAGE_DET); 1540 nandc->regs->erased_cw_detect_cfg_set = 1541 cpu_to_le32(SET_ERASED_PAGE_DET); 1542 1543 dev_dbg(nandc->dev, 1544 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", 1545 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, 1546 host->cw_size, host->cw_data, ecc->strength, ecc->bytes, 1547 cwperpage); 1548 1549 return 0; 1550 } 1551 1552 static int qcom_op_cmd_mapping(struct nand_chip *chip, u8 opcode, 1553 struct qcom_op *q_op) 1554 { 1555 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1556 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1557 int cmd; 1558 1559 switch (opcode) { 1560 case NAND_CMD_RESET: 1561 cmd = OP_RESET_DEVICE; 1562 break; 1563 case NAND_CMD_READID: 1564 cmd = OP_FETCH_ID; 1565 break; 1566 case NAND_CMD_PARAM: 1567 if (nandc->props->qpic_version2) 1568 cmd = OP_PAGE_READ_ONFI_READ; 1569 else 1570 cmd = OP_PAGE_READ; 1571 break; 1572 case NAND_CMD_ERASE1: 1573 case NAND_CMD_ERASE2: 1574 cmd = OP_BLOCK_ERASE; 1575 break; 1576 case NAND_CMD_STATUS: 1577 cmd = OP_CHECK_STATUS; 1578 break; 1579 case NAND_CMD_PAGEPROG: 1580 cmd = OP_PROGRAM_PAGE; 1581 q_op->flag = OP_PROGRAM_PAGE; 1582 nandc->exec_opwrite = true; 1583 break; 1584 case NAND_CMD_READ0: 1585 case NAND_CMD_READSTART: 1586 if (host->use_ecc) 1587 cmd = OP_PAGE_READ_WITH_ECC; 1588 else 1589 cmd = OP_PAGE_READ; 1590 break; 1591 default: 1592 dev_err(nandc->dev, "Opcode not supported: %u\n", opcode); 1593 return -EOPNOTSUPP; 1594 } 1595 1596 return cmd; 1597 } 1598 1599 /* NAND framework ->exec_op() hooks and related helpers */ 1600 static int qcom_parse_instructions(struct nand_chip *chip, 1601 const struct nand_subop *subop, 1602 struct qcom_op *q_op) 1603 { 1604 const struct nand_op_instr *instr = NULL; 1605 unsigned int op_id; 1606 int i, ret; 1607 1608 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1609 unsigned int offset, naddrs; 1610 const u8 *addrs; 1611 1612 instr = &subop->instrs[op_id]; 1613 1614 switch (instr->type) { 1615 case NAND_OP_CMD_INSTR: 1616 ret = qcom_op_cmd_mapping(chip, instr->ctx.cmd.opcode, q_op); 1617 if (ret < 0) 1618 return ret; 1619 1620 q_op->cmd_reg = cpu_to_le32(ret); 1621 q_op->rdy_delay_ns = instr->delay_ns; 1622 break; 1623 1624 case NAND_OP_ADDR_INSTR: 1625 offset = nand_subop_get_addr_start_off(subop, op_id); 1626 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1627 addrs = &instr->ctx.addr.addrs[offset]; 1628 1629 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1630 q_op->addr1_reg |= cpu_to_le32(addrs[i] << (i * 8)); 1631 1632 if (naddrs > 4) 1633 q_op->addr2_reg |= cpu_to_le32(addrs[4]); 1634 1635 q_op->rdy_delay_ns = instr->delay_ns; 1636 break; 1637 1638 case NAND_OP_DATA_IN_INSTR: 1639 q_op->data_instr = instr; 1640 q_op->data_instr_idx = op_id; 1641 q_op->rdy_delay_ns = instr->delay_ns; 1642 fallthrough; 1643 case NAND_OP_DATA_OUT_INSTR: 1644 q_op->rdy_delay_ns = instr->delay_ns; 1645 break; 1646 1647 case NAND_OP_WAITRDY_INSTR: 1648 q_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1649 q_op->rdy_delay_ns = instr->delay_ns; 1650 break; 1651 } 1652 } 1653 1654 return 0; 1655 } 1656 1657 static void qcom_delay_ns(unsigned int ns) 1658 { 1659 if (!ns) 1660 return; 1661 1662 if (ns < 10000) 1663 ndelay(ns); 1664 else 1665 udelay(DIV_ROUND_UP(ns, 1000)); 1666 } 1667 1668 static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms) 1669 { 1670 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1671 unsigned long start = jiffies + msecs_to_jiffies(time_ms); 1672 u32 flash; 1673 1674 qcom_nandc_dev_to_mem(nandc, true); 1675 1676 do { 1677 flash = le32_to_cpu(nandc->reg_read_buf[0]); 1678 if (flash & FS_READY_BSY_N) 1679 return 0; 1680 cpu_relax(); 1681 } while (time_after(start, jiffies)); 1682 1683 dev_err(nandc->dev, "Timeout waiting for device to be ready:0x%08x\n", flash); 1684 1685 return -ETIMEDOUT; 1686 } 1687 1688 static int qcom_read_status_exec(struct nand_chip *chip, 1689 const struct nand_subop *subop) 1690 { 1691 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1692 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1693 struct nand_ecc_ctrl *ecc = &chip->ecc; 1694 struct qcom_op q_op = {}; 1695 const struct nand_op_instr *instr = NULL; 1696 unsigned int op_id = 0; 1697 unsigned int len = 0; 1698 int ret, num_cw, i; 1699 u32 flash_status; 1700 1701 host->status = NAND_STATUS_READY | NAND_STATUS_WP; 1702 1703 ret = qcom_parse_instructions(chip, subop, &q_op); 1704 if (ret) 1705 return ret; 1706 1707 num_cw = nandc->exec_opwrite ? ecc->steps : 1; 1708 nandc->exec_opwrite = false; 1709 1710 nandc->buf_count = 0; 1711 nandc->buf_start = 0; 1712 host->use_ecc = false; 1713 1714 qcom_clear_read_regs(nandc); 1715 qcom_clear_bam_transaction(nandc); 1716 1717 nandc->regs->cmd = q_op.cmd_reg; 1718 nandc->regs->exec = cpu_to_le32(1); 1719 1720 qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1721 qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1722 qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1723 1724 ret = qcom_submit_descs(nandc); 1725 if (ret) { 1726 dev_err(nandc->dev, "failure in submitting status descriptor\n"); 1727 goto err_out; 1728 } 1729 1730 qcom_nandc_dev_to_mem(nandc, true); 1731 1732 for (i = 0; i < num_cw; i++) { 1733 flash_status = le32_to_cpu(nandc->reg_read_buf[i]); 1734 1735 if (flash_status & FS_MPU_ERR) 1736 host->status &= ~NAND_STATUS_WP; 1737 1738 if (flash_status & FS_OP_ERR || 1739 (i == (num_cw - 1) && (flash_status & FS_DEVICE_STS_ERR))) 1740 host->status |= NAND_STATUS_FAIL; 1741 } 1742 1743 flash_status = host->status; 1744 instr = q_op.data_instr; 1745 op_id = q_op.data_instr_idx; 1746 len = nand_subop_get_data_len(subop, op_id); 1747 memcpy(instr->ctx.data.buf.in, &flash_status, len); 1748 1749 err_out: 1750 return ret; 1751 } 1752 1753 static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop) 1754 { 1755 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1756 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1757 struct qcom_op q_op = {}; 1758 const struct nand_op_instr *instr = NULL; 1759 unsigned int op_id = 0; 1760 unsigned int len = 0; 1761 int ret; 1762 1763 ret = qcom_parse_instructions(chip, subop, &q_op); 1764 if (ret) 1765 return ret; 1766 1767 nandc->buf_count = 0; 1768 nandc->buf_start = 0; 1769 host->use_ecc = false; 1770 1771 qcom_clear_read_regs(nandc); 1772 qcom_clear_bam_transaction(nandc); 1773 1774 nandc->regs->cmd = q_op.cmd_reg; 1775 nandc->regs->addr0 = q_op.addr1_reg; 1776 nandc->regs->addr1 = q_op.addr2_reg; 1777 nandc->regs->chip_sel = cpu_to_le32(nandc->props->supports_bam ? 0 : DM_EN); 1778 nandc->regs->exec = cpu_to_le32(1); 1779 1780 qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); 1781 qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1782 1783 qcom_read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); 1784 1785 ret = qcom_submit_descs(nandc); 1786 if (ret) { 1787 dev_err(nandc->dev, "failure in submitting read id descriptor\n"); 1788 goto err_out; 1789 } 1790 1791 instr = q_op.data_instr; 1792 op_id = q_op.data_instr_idx; 1793 len = nand_subop_get_data_len(subop, op_id); 1794 1795 qcom_nandc_dev_to_mem(nandc, true); 1796 memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len); 1797 1798 err_out: 1799 return ret; 1800 } 1801 1802 static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop) 1803 { 1804 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1805 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1806 struct qcom_op q_op = {}; 1807 int ret; 1808 int instrs = 1; 1809 1810 ret = qcom_parse_instructions(chip, subop, &q_op); 1811 if (ret) 1812 return ret; 1813 1814 if (q_op.flag == OP_PROGRAM_PAGE) { 1815 goto wait_rdy; 1816 } else if (q_op.cmd_reg == cpu_to_le32(OP_BLOCK_ERASE)) { 1817 q_op.cmd_reg |= cpu_to_le32(PAGE_ACC | LAST_PAGE); 1818 nandc->regs->addr0 = q_op.addr1_reg; 1819 nandc->regs->addr1 = q_op.addr2_reg; 1820 nandc->regs->cfg0 = cpu_to_le32(host->cfg0_raw & ~(7 << CW_PER_PAGE)); 1821 nandc->regs->cfg1 = cpu_to_le32(host->cfg1_raw); 1822 instrs = 3; 1823 } else if (q_op.cmd_reg != cpu_to_le32(OP_RESET_DEVICE)) { 1824 return 0; 1825 } 1826 1827 nandc->buf_count = 0; 1828 nandc->buf_start = 0; 1829 host->use_ecc = false; 1830 1831 qcom_clear_read_regs(nandc); 1832 qcom_clear_bam_transaction(nandc); 1833 1834 nandc->regs->cmd = q_op.cmd_reg; 1835 nandc->regs->exec = cpu_to_le32(1); 1836 1837 qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL); 1838 if (q_op.cmd_reg == cpu_to_le32(OP_BLOCK_ERASE)) 1839 qcom_write_reg_dma(nandc, &nandc->regs->cfg0, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL); 1840 1841 qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1842 qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1843 1844 ret = qcom_submit_descs(nandc); 1845 if (ret) { 1846 dev_err(nandc->dev, "failure in submitting misc descriptor\n"); 1847 goto err_out; 1848 } 1849 1850 wait_rdy: 1851 qcom_delay_ns(q_op.rdy_delay_ns); 1852 ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms); 1853 1854 err_out: 1855 return ret; 1856 } 1857 1858 static int qcom_param_page_type_exec(struct nand_chip *chip, const struct nand_subop *subop) 1859 { 1860 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1861 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1862 struct qcom_op q_op = {}; 1863 const struct nand_op_instr *instr = NULL; 1864 unsigned int op_id = 0; 1865 unsigned int len = 0; 1866 int ret; 1867 1868 ret = qcom_parse_instructions(chip, subop, &q_op); 1869 if (ret) 1870 return ret; 1871 1872 q_op.cmd_reg |= cpu_to_le32(PAGE_ACC | LAST_PAGE); 1873 1874 nandc->buf_count = 0; 1875 nandc->buf_start = 0; 1876 host->use_ecc = false; 1877 qcom_clear_read_regs(nandc); 1878 qcom_clear_bam_transaction(nandc); 1879 1880 nandc->regs->cmd = q_op.cmd_reg; 1881 nandc->regs->addr0 = 0; 1882 nandc->regs->addr1 = 0; 1883 1884 nandc->regs->cfg0 = cpu_to_le32(FIELD_PREP(CW_PER_PAGE_MASK, 0) | 1885 FIELD_PREP(UD_SIZE_BYTES_MASK, 512) | 1886 FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) | 1887 FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0)); 1888 1889 nandc->regs->cfg1 = cpu_to_le32(FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) | 1890 FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) | 1891 FIELD_PREP(CS_ACTIVE_BSY, 0) | 1892 FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) | 1893 FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) | 1894 FIELD_PREP(WIDE_FLASH, 0) | 1895 FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1)); 1896 1897 if (!nandc->props->qpic_version2) 1898 nandc->regs->ecc_buf_cfg = cpu_to_le32(ECC_CFG_ECC_DISABLE); 1899 1900 /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */ 1901 if (!nandc->props->qpic_version2) { 1902 nandc->regs->vld = cpu_to_le32((nandc->vld & ~READ_START_VLD)); 1903 nandc->regs->cmd1 = cpu_to_le32((nandc->cmd1 & ~(0xFF << READ_ADDR)) 1904 | NAND_CMD_PARAM << READ_ADDR); 1905 } 1906 1907 nandc->regs->exec = cpu_to_le32(1); 1908 1909 if (!nandc->props->qpic_version2) { 1910 nandc->regs->orig_cmd1 = cpu_to_le32(nandc->cmd1); 1911 nandc->regs->orig_vld = cpu_to_le32(nandc->vld); 1912 } 1913 1914 instr = q_op.data_instr; 1915 op_id = q_op.data_instr_idx; 1916 len = nand_subop_get_data_len(subop, op_id); 1917 1918 nandc_set_read_loc(chip, 0, 0, 0, len, 1); 1919 1920 if (!nandc->props->qpic_version2) { 1921 qcom_write_reg_dma(nandc, &nandc->regs->vld, NAND_DEV_CMD_VLD, 1, 0); 1922 qcom_write_reg_dma(nandc, &nandc->regs->cmd1, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); 1923 } 1924 1925 nandc->buf_count = len; 1926 memset(nandc->data_buffer, 0xff, nandc->buf_count); 1927 1928 config_nand_single_cw_page_read(chip, false, 0); 1929 1930 qcom_read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, 1931 nandc->buf_count, 0); 1932 1933 /* restore CMD1 and VLD regs */ 1934 if (!nandc->props->qpic_version2) { 1935 qcom_write_reg_dma(nandc, &nandc->regs->orig_cmd1, NAND_DEV_CMD1_RESTORE, 1, 0); 1936 qcom_write_reg_dma(nandc, &nandc->regs->orig_vld, NAND_DEV_CMD_VLD_RESTORE, 1, 1937 NAND_BAM_NEXT_SGL); 1938 } 1939 1940 ret = qcom_submit_descs(nandc); 1941 if (ret) { 1942 dev_err(nandc->dev, "failure in submitting param page descriptor\n"); 1943 goto err_out; 1944 } 1945 1946 ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms); 1947 if (ret) 1948 goto err_out; 1949 1950 memcpy(instr->ctx.data.buf.in, nandc->data_buffer, len); 1951 1952 err_out: 1953 return ret; 1954 } 1955 1956 static const struct nand_op_parser qcom_op_parser = NAND_OP_PARSER( 1957 NAND_OP_PARSER_PATTERN( 1958 qcom_read_id_type_exec, 1959 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1960 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE), 1961 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 1962 NAND_OP_PARSER_PATTERN( 1963 qcom_read_status_exec, 1964 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1965 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 1966 NAND_OP_PARSER_PATTERN( 1967 qcom_param_page_type_exec, 1968 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1969 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE), 1970 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 1971 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 512)), 1972 NAND_OP_PARSER_PATTERN( 1973 qcom_misc_cmd_type_exec, 1974 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1975 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYCLE), 1976 NAND_OP_PARSER_PAT_CMD_ELEM(true), 1977 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 1978 ); 1979 1980 static int qcom_check_op(struct nand_chip *chip, 1981 const struct nand_operation *op) 1982 { 1983 const struct nand_op_instr *instr; 1984 int op_id; 1985 1986 for (op_id = 0; op_id < op->ninstrs; op_id++) { 1987 instr = &op->instrs[op_id]; 1988 1989 switch (instr->type) { 1990 case NAND_OP_CMD_INSTR: 1991 if (instr->ctx.cmd.opcode != NAND_CMD_RESET && 1992 instr->ctx.cmd.opcode != NAND_CMD_READID && 1993 instr->ctx.cmd.opcode != NAND_CMD_PARAM && 1994 instr->ctx.cmd.opcode != NAND_CMD_ERASE1 && 1995 instr->ctx.cmd.opcode != NAND_CMD_ERASE2 && 1996 instr->ctx.cmd.opcode != NAND_CMD_STATUS && 1997 instr->ctx.cmd.opcode != NAND_CMD_PAGEPROG && 1998 instr->ctx.cmd.opcode != NAND_CMD_READ0 && 1999 instr->ctx.cmd.opcode != NAND_CMD_READSTART) 2000 return -EOPNOTSUPP; 2001 break; 2002 default: 2003 break; 2004 } 2005 } 2006 2007 return 0; 2008 } 2009 2010 static int qcom_nand_exec_op(struct nand_chip *chip, 2011 const struct nand_operation *op, bool check_only) 2012 { 2013 if (check_only) 2014 return qcom_check_op(chip, op); 2015 2016 return nand_op_parser_exec_op(chip, &qcom_op_parser, op, check_only); 2017 } 2018 2019 static const struct nand_controller_ops qcom_nandc_ops = { 2020 .attach_chip = qcom_nand_attach_chip, 2021 .exec_op = qcom_nand_exec_op, 2022 }; 2023 2024 /* one time setup of a few nand controller registers */ 2025 static int qcom_nandc_setup(struct qcom_nand_controller *nandc) 2026 { 2027 u32 nand_ctrl; 2028 2029 nand_controller_init(nandc->controller); 2030 nandc->controller->ops = &qcom_nandc_ops; 2031 2032 /* kill onenand */ 2033 if (!nandc->props->nandc_part_of_qpic) 2034 nandc_write(nandc, SFLASHC_BURST_CFG, 0); 2035 2036 if (!nandc->props->qpic_version2) 2037 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), 2038 NAND_DEV_CMD_VLD_VAL); 2039 2040 /* enable ADM or BAM DMA */ 2041 if (nandc->props->supports_bam) { 2042 nand_ctrl = nandc_read(nandc, NAND_CTRL); 2043 2044 /* 2045 *NAND_CTRL is an operational registers, and CPU 2046 * access to operational registers are read only 2047 * in BAM mode. So update the NAND_CTRL register 2048 * only if it is not in BAM mode. In most cases BAM 2049 * mode will be enabled in bootloader 2050 */ 2051 if (!(nand_ctrl & BAM_MODE_EN)) 2052 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN); 2053 } else { 2054 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); 2055 } 2056 2057 /* save the original values of these registers */ 2058 if (!nandc->props->qpic_version2) { 2059 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); 2060 nandc->vld = NAND_DEV_CMD_VLD_VAL; 2061 } 2062 2063 return 0; 2064 } 2065 2066 static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL }; 2067 2068 static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc, 2069 struct qcom_nand_host *host, 2070 struct device_node *dn) 2071 { 2072 struct nand_chip *chip = &host->chip; 2073 struct mtd_info *mtd = nand_to_mtd(chip); 2074 struct qcom_nand_boot_partition *boot_partition; 2075 struct device *dev = nandc->dev; 2076 int partitions_count, i, j, ret; 2077 2078 if (!of_property_present(dn, "qcom,boot-partitions")) 2079 return 0; 2080 2081 partitions_count = of_property_count_u32_elems(dn, "qcom,boot-partitions"); 2082 if (partitions_count <= 0) { 2083 dev_err(dev, "Error parsing boot partition\n"); 2084 return partitions_count ? partitions_count : -EINVAL; 2085 } 2086 2087 host->nr_boot_partitions = partitions_count / 2; 2088 host->boot_partitions = devm_kcalloc(dev, host->nr_boot_partitions, 2089 sizeof(*host->boot_partitions), GFP_KERNEL); 2090 if (!host->boot_partitions) { 2091 host->nr_boot_partitions = 0; 2092 return -ENOMEM; 2093 } 2094 2095 for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) { 2096 boot_partition = &host->boot_partitions[i]; 2097 2098 ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j, 2099 &boot_partition->page_offset); 2100 if (ret) { 2101 dev_err(dev, "Error parsing boot partition offset at index %d\n", i); 2102 host->nr_boot_partitions = 0; 2103 return ret; 2104 } 2105 2106 if (boot_partition->page_offset % mtd->writesize) { 2107 dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n", 2108 i); 2109 host->nr_boot_partitions = 0; 2110 return -EINVAL; 2111 } 2112 /* Convert offset to nand pages */ 2113 boot_partition->page_offset /= mtd->writesize; 2114 2115 ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j + 1, 2116 &boot_partition->page_size); 2117 if (ret) { 2118 dev_err(dev, "Error parsing boot partition size at index %d\n", i); 2119 host->nr_boot_partitions = 0; 2120 return ret; 2121 } 2122 2123 if (boot_partition->page_size % mtd->writesize) { 2124 dev_err(dev, "Boot partition size not multiple of writesize at index %i\n", 2125 i); 2126 host->nr_boot_partitions = 0; 2127 return -EINVAL; 2128 } 2129 /* Convert size to nand pages */ 2130 boot_partition->page_size /= mtd->writesize; 2131 } 2132 2133 return 0; 2134 } 2135 2136 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc, 2137 struct qcom_nand_host *host, 2138 struct device_node *dn) 2139 { 2140 struct nand_chip *chip = &host->chip; 2141 struct mtd_info *mtd = nand_to_mtd(chip); 2142 struct device *dev = nandc->dev; 2143 int ret; 2144 2145 ret = of_property_read_u32(dn, "reg", &host->cs); 2146 if (ret) { 2147 dev_err(dev, "can't get chip-select\n"); 2148 return -ENXIO; 2149 } 2150 2151 nand_set_flash_node(chip, dn); 2152 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); 2153 if (!mtd->name) 2154 return -ENOMEM; 2155 2156 mtd->owner = THIS_MODULE; 2157 mtd->dev.parent = dev; 2158 2159 /* 2160 * the bad block marker is readable only when we read the last codeword 2161 * of a page with ECC disabled. currently, the nand_base and nand_bbt 2162 * helpers don't allow us to read BB from a nand chip with ECC 2163 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad 2164 * and block_markbad helpers until we permanently switch to using 2165 * MTD_OPS_RAW for all drivers (with the help of badblockbits) 2166 */ 2167 chip->legacy.block_bad = qcom_nandc_block_bad; 2168 chip->legacy.block_markbad = qcom_nandc_block_markbad; 2169 2170 chip->controller = nandc->controller; 2171 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | 2172 NAND_SKIP_BBTSCAN; 2173 2174 /* set up initial status value */ 2175 host->status = NAND_STATUS_READY | NAND_STATUS_WP; 2176 2177 ret = nand_scan(chip, 1); 2178 if (ret) 2179 return ret; 2180 2181 ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0); 2182 if (ret) 2183 goto err; 2184 2185 if (nandc->props->use_codeword_fixup) { 2186 ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn); 2187 if (ret) 2188 goto err; 2189 } 2190 2191 return 0; 2192 2193 err: 2194 nand_cleanup(chip); 2195 return ret; 2196 } 2197 2198 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) 2199 { 2200 struct device *dev = nandc->dev; 2201 struct device_node *dn = dev->of_node, *child; 2202 struct qcom_nand_host *host; 2203 int ret = -ENODEV; 2204 2205 for_each_available_child_of_node(dn, child) { 2206 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); 2207 if (!host) { 2208 of_node_put(child); 2209 return -ENOMEM; 2210 } 2211 2212 ret = qcom_nand_host_init_and_register(nandc, host, child); 2213 if (ret) { 2214 devm_kfree(dev, host); 2215 continue; 2216 } 2217 2218 list_add_tail(&host->node, &nandc->host_list); 2219 } 2220 2221 return ret; 2222 } 2223 2224 /* parse custom DT properties here */ 2225 static int qcom_nandc_parse_dt(struct platform_device *pdev) 2226 { 2227 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); 2228 struct device_node *np = nandc->dev->of_node; 2229 int ret; 2230 2231 if (!nandc->props->supports_bam) { 2232 ret = of_property_read_u32(np, "qcom,cmd-crci", 2233 &nandc->cmd_crci); 2234 if (ret) { 2235 dev_err(nandc->dev, "command CRCI unspecified\n"); 2236 return ret; 2237 } 2238 2239 ret = of_property_read_u32(np, "qcom,data-crci", 2240 &nandc->data_crci); 2241 if (ret) { 2242 dev_err(nandc->dev, "data CRCI unspecified\n"); 2243 return ret; 2244 } 2245 } 2246 2247 return 0; 2248 } 2249 2250 static int qcom_nandc_probe(struct platform_device *pdev) 2251 { 2252 struct qcom_nand_controller *nandc; 2253 struct nand_controller *controller; 2254 const void *dev_data; 2255 struct device *dev = &pdev->dev; 2256 struct resource *res; 2257 int ret; 2258 2259 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc) + sizeof(*controller), 2260 GFP_KERNEL); 2261 if (!nandc) 2262 return -ENOMEM; 2263 controller = (struct nand_controller *)&nandc[1]; 2264 2265 platform_set_drvdata(pdev, nandc); 2266 nandc->dev = dev; 2267 nandc->controller = controller; 2268 2269 dev_data = of_device_get_match_data(dev); 2270 if (!dev_data) { 2271 dev_err(&pdev->dev, "failed to get device data\n"); 2272 return -ENODEV; 2273 } 2274 2275 nandc->props = dev_data; 2276 2277 nandc->core_clk = devm_clk_get(dev, "core"); 2278 if (IS_ERR(nandc->core_clk)) 2279 return PTR_ERR(nandc->core_clk); 2280 2281 nandc->aon_clk = devm_clk_get(dev, "aon"); 2282 if (IS_ERR(nandc->aon_clk)) 2283 return PTR_ERR(nandc->aon_clk); 2284 2285 ret = qcom_nandc_parse_dt(pdev); 2286 if (ret) 2287 return ret; 2288 2289 nandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2290 if (IS_ERR(nandc->base)) 2291 return PTR_ERR(nandc->base); 2292 2293 nandc->base_phys = res->start; 2294 nandc->base_dma = dma_map_resource(dev, res->start, 2295 resource_size(res), 2296 DMA_BIDIRECTIONAL, 0); 2297 if (dma_mapping_error(dev, nandc->base_dma)) 2298 return -ENXIO; 2299 2300 ret = clk_prepare_enable(nandc->core_clk); 2301 if (ret) 2302 goto err_core_clk; 2303 2304 ret = clk_prepare_enable(nandc->aon_clk); 2305 if (ret) 2306 goto err_aon_clk; 2307 2308 ret = qcom_nandc_alloc(nandc); 2309 if (ret) 2310 goto err_nandc_alloc; 2311 2312 ret = qcom_nandc_setup(nandc); 2313 if (ret) 2314 goto err_setup; 2315 2316 ret = qcom_probe_nand_devices(nandc); 2317 if (ret) 2318 goto err_setup; 2319 2320 return 0; 2321 2322 err_setup: 2323 qcom_nandc_unalloc(nandc); 2324 err_nandc_alloc: 2325 clk_disable_unprepare(nandc->aon_clk); 2326 err_aon_clk: 2327 clk_disable_unprepare(nandc->core_clk); 2328 err_core_clk: 2329 dma_unmap_resource(dev, nandc->base_dma, resource_size(res), 2330 DMA_BIDIRECTIONAL, 0); 2331 return ret; 2332 } 2333 2334 static void qcom_nandc_remove(struct platform_device *pdev) 2335 { 2336 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); 2337 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2338 struct qcom_nand_host *host; 2339 struct nand_chip *chip; 2340 int ret; 2341 2342 list_for_each_entry(host, &nandc->host_list, node) { 2343 chip = &host->chip; 2344 ret = mtd_device_unregister(nand_to_mtd(chip)); 2345 WARN_ON(ret); 2346 nand_cleanup(chip); 2347 } 2348 2349 qcom_nandc_unalloc(nandc); 2350 2351 clk_disable_unprepare(nandc->aon_clk); 2352 clk_disable_unprepare(nandc->core_clk); 2353 2354 dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res), 2355 DMA_BIDIRECTIONAL, 0); 2356 } 2357 2358 static const struct qcom_nandc_props ipq806x_nandc_props = { 2359 .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), 2360 .supports_bam = false, 2361 .use_codeword_fixup = true, 2362 .dev_cmd_reg_start = 0x0, 2363 }; 2364 2365 static const struct qcom_nandc_props ipq4019_nandc_props = { 2366 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 2367 .supports_bam = true, 2368 .nandc_part_of_qpic = true, 2369 .dev_cmd_reg_start = 0x0, 2370 }; 2371 2372 static const struct qcom_nandc_props ipq8074_nandc_props = { 2373 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 2374 .supports_bam = true, 2375 .nandc_part_of_qpic = true, 2376 .dev_cmd_reg_start = 0x7000, 2377 }; 2378 2379 static const struct qcom_nandc_props sdx55_nandc_props = { 2380 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 2381 .supports_bam = true, 2382 .nandc_part_of_qpic = true, 2383 .qpic_version2 = true, 2384 .dev_cmd_reg_start = 0x7000, 2385 }; 2386 2387 /* 2388 * data will hold a struct pointer containing more differences once we support 2389 * more controller variants 2390 */ 2391 static const struct of_device_id qcom_nandc_of_match[] = { 2392 { 2393 .compatible = "qcom,ipq806x-nand", 2394 .data = &ipq806x_nandc_props, 2395 }, 2396 { 2397 .compatible = "qcom,ipq4019-nand", 2398 .data = &ipq4019_nandc_props, 2399 }, 2400 { 2401 .compatible = "qcom,ipq6018-nand", 2402 .data = &ipq8074_nandc_props, 2403 }, 2404 { 2405 .compatible = "qcom,ipq8074-nand", 2406 .data = &ipq8074_nandc_props, 2407 }, 2408 { 2409 .compatible = "qcom,sdx55-nand", 2410 .data = &sdx55_nandc_props, 2411 }, 2412 {} 2413 }; 2414 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); 2415 2416 static struct platform_driver qcom_nandc_driver = { 2417 .driver = { 2418 .name = "qcom-nandc", 2419 .of_match_table = qcom_nandc_of_match, 2420 }, 2421 .probe = qcom_nandc_probe, 2422 .remove = qcom_nandc_remove, 2423 }; 2424 module_platform_driver(qcom_nandc_driver); 2425 2426 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>"); 2427 MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); 2428 MODULE_LICENSE("GPL v2"); 2429