1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NAND flash simulator. 4 * 5 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> 6 * 7 * Copyright (C) 2004 Nokia Corporation 8 * 9 * Note: NS means "NAND Simulator". 10 * Note: Input means input TO flash chip, output means output FROM chip. 11 */ 12 13 #define pr_fmt(fmt) "[nandsim]" fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/vmalloc.h> 20 #include <linux/math64.h> 21 #include <linux/slab.h> 22 #include <linux/errno.h> 23 #include <linux/string.h> 24 #include <linux/mtd/mtd.h> 25 #include <linux/mtd/rawnand.h> 26 #include <linux/mtd/partitions.h> 27 #include <linux/delay.h> 28 #include <linux/list.h> 29 #include <linux/random.h> 30 #include <linux/sched.h> 31 #include <linux/sched/mm.h> 32 #include <linux/fs.h> 33 #include <linux/pagemap.h> 34 #include <linux/seq_file.h> 35 #include <linux/debugfs.h> 36 37 /* Default simulator parameters values */ 38 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ 39 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ 40 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ 41 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) 42 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 43 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 44 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ 45 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ 46 #endif 47 48 #ifndef CONFIG_NANDSIM_ACCESS_DELAY 49 #define CONFIG_NANDSIM_ACCESS_DELAY 25 50 #endif 51 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY 52 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200 53 #endif 54 #ifndef CONFIG_NANDSIM_ERASE_DELAY 55 #define CONFIG_NANDSIM_ERASE_DELAY 2 56 #endif 57 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE 58 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40 59 #endif 60 #ifndef CONFIG_NANDSIM_INPUT_CYCLE 61 #define CONFIG_NANDSIM_INPUT_CYCLE 50 62 #endif 63 #ifndef CONFIG_NANDSIM_BUS_WIDTH 64 #define CONFIG_NANDSIM_BUS_WIDTH 8 65 #endif 66 #ifndef CONFIG_NANDSIM_DO_DELAYS 67 #define CONFIG_NANDSIM_DO_DELAYS 0 68 #endif 69 #ifndef CONFIG_NANDSIM_LOG 70 #define CONFIG_NANDSIM_LOG 0 71 #endif 72 #ifndef CONFIG_NANDSIM_DBG 73 #define CONFIG_NANDSIM_DBG 0 74 #endif 75 #ifndef CONFIG_NANDSIM_MAX_PARTS 76 #define CONFIG_NANDSIM_MAX_PARTS 32 77 #endif 78 79 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; 80 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; 81 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; 82 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; 83 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; 84 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; 85 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; 86 static uint log = CONFIG_NANDSIM_LOG; 87 static uint dbg = CONFIG_NANDSIM_DBG; 88 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; 89 static unsigned int parts_num; 90 static char *badblocks = NULL; 91 static char *weakblocks = NULL; 92 static char *weakpages = NULL; 93 static unsigned int bitflips = 0; 94 static char *gravepages = NULL; 95 static unsigned int overridesize = 0; 96 static char *cache_file = NULL; 97 static unsigned int bbt; 98 static unsigned int bch; 99 static u_char id_bytes[8] = { 100 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE, 101 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE, 102 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE, 103 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE, 104 [4 ... 7] = 0xFF, 105 }; 106 107 module_param_array(id_bytes, byte, NULL, 0400); 108 module_param_named(first_id_byte, id_bytes[0], byte, 0400); 109 module_param_named(second_id_byte, id_bytes[1], byte, 0400); 110 module_param_named(third_id_byte, id_bytes[2], byte, 0400); 111 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400); 112 module_param(access_delay, uint, 0400); 113 module_param(programm_delay, uint, 0400); 114 module_param(erase_delay, uint, 0400); 115 module_param(output_cycle, uint, 0400); 116 module_param(input_cycle, uint, 0400); 117 module_param(bus_width, uint, 0400); 118 module_param(do_delays, uint, 0400); 119 module_param(log, uint, 0400); 120 module_param(dbg, uint, 0400); 121 module_param_array(parts, ulong, &parts_num, 0400); 122 module_param(badblocks, charp, 0400); 123 module_param(weakblocks, charp, 0400); 124 module_param(weakpages, charp, 0400); 125 module_param(bitflips, uint, 0400); 126 module_param(gravepages, charp, 0400); 127 module_param(overridesize, uint, 0400); 128 module_param(cache_file, charp, 0400); 129 module_param(bbt, uint, 0400); 130 module_param(bch, uint, 0400); 131 132 MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command"); 133 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)"); 134 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)"); 135 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)"); 136 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)"); 137 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); 138 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); 139 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); 140 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); 141 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); 142 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); 143 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); 144 MODULE_PARM_DESC(log, "Perform logging if not zero"); 145 MODULE_PARM_DESC(dbg, "Output debug information if not zero"); 146 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); 147 /* Page and erase block positions for the following parameters are independent of any partitions */ 148 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); 149 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" 150 " separated by commas e.g. 113:2 means eb 113" 151 " can be erased only twice before failing"); 152 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" 153 " separated by commas e.g. 1401:2 means page 1401" 154 " can be written only twice before failing"); 155 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); 156 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" 157 " separated by commas e.g. 1401:2 means page 1401" 158 " can be read only twice before failing"); 159 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " 160 "The size is specified in erase blocks and as the exponent of a power of two" 161 " e.g. 5 means a size of 32 erase blocks"); 162 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); 163 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); 164 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " 165 "be correctable in 512-byte blocks"); 166 167 /* The largest possible page size */ 168 #define NS_LARGEST_PAGE_SIZE 4096 169 170 /* Simulator's output macros (logging, debugging, warning, error) */ 171 #define NS_LOG(args...) \ 172 do { if (log) pr_debug(" log: " args); } while(0) 173 #define NS_DBG(args...) \ 174 do { if (dbg) pr_debug(" debug: " args); } while(0) 175 #define NS_WARN(args...) \ 176 do { pr_warn(" warning: " args); } while(0) 177 #define NS_ERR(args...) \ 178 do { pr_err(" error: " args); } while(0) 179 #define NS_INFO(args...) \ 180 do { pr_info(" " args); } while(0) 181 182 /* Busy-wait delay macros (microseconds, milliseconds) */ 183 #define NS_UDELAY(us) \ 184 do { if (do_delays) udelay(us); } while(0) 185 #define NS_MDELAY(us) \ 186 do { if (do_delays) mdelay(us); } while(0) 187 188 /* Is the nandsim structure initialized ? */ 189 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) 190 191 /* Good operation completion status */ 192 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) 193 194 /* Operation failed completion status */ 195 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) 196 197 /* Calculate the page offset in flash RAM image by (row, column) address */ 198 #define NS_RAW_OFFSET(ns) \ 199 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) 200 201 /* Calculate the OOB offset in flash RAM image by (row, column) address */ 202 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) 203 204 /* Calculate the byte shift in the next page to access */ 205 #define NS_PAGE_BYTE_SHIFT(ns) ((ns)->regs.column + (ns)->regs.off) 206 207 /* After a command is input, the simulator goes to one of the following states */ 208 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ 209 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ 210 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ 211 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ 212 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ 213 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ 214 #define STATE_CMD_STATUS 0x00000007 /* read status */ 215 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ 216 #define STATE_CMD_READID 0x0000000A /* read ID */ 217 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ 218 #define STATE_CMD_RESET 0x0000000C /* reset */ 219 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */ 220 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ 221 #define STATE_CMD_MASK 0x0000000F /* command states mask */ 222 223 /* After an address is input, the simulator goes to one of these states */ 224 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ 225 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ 226 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ 227 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ 228 #define STATE_ADDR_MASK 0x00000070 /* address states mask */ 229 230 /* During data input/output the simulator is in these states */ 231 #define STATE_DATAIN 0x00000100 /* waiting for data input */ 232 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ 233 234 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */ 235 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ 236 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ 237 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ 238 239 /* Previous operation is done, ready to accept new requests */ 240 #define STATE_READY 0x00000000 241 242 /* This state is used to mark that the next state isn't known yet */ 243 #define STATE_UNKNOWN 0x10000000 244 245 /* Simulator's actions bit masks */ 246 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ 247 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ 248 #define ACTION_SECERASE 0x00300000 /* erase sector */ 249 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ 250 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */ 251 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ 252 #define ACTION_MASK 0x00700000 /* action mask */ 253 254 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ 255 #define NS_OPER_STATES 6 /* Maximum number of states in operation */ 256 257 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ 258 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ 259 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ 260 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ 261 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ 262 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ 263 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ 264 265 /* Remove action bits from state */ 266 #define NS_STATE(x) ((x) & ~ACTION_MASK) 267 268 /* 269 * Maximum previous states which need to be saved. Currently saving is 270 * only needed for page program operation with preceded read command 271 * (which is only valid for 512-byte pages). 272 */ 273 #define NS_MAX_PREVSTATES 1 274 275 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */ 276 #define NS_MAX_HELD_PAGES 16 277 278 /* 279 * A union to represent flash memory contents and flash buffer. 280 */ 281 union ns_mem { 282 u_char *byte; /* for byte access */ 283 uint16_t *word; /* for 16-bit word access */ 284 }; 285 286 /* 287 * The structure which describes all the internal simulator data. 288 */ 289 struct nandsim { 290 struct nand_chip chip; 291 struct nand_controller base; 292 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; 293 unsigned int nbparts; 294 295 uint busw; /* flash chip bus width (8 or 16) */ 296 u_char ids[8]; /* chip's ID bytes */ 297 uint32_t options; /* chip's characteristic bits */ 298 uint32_t state; /* current chip state */ 299 uint32_t nxstate; /* next expected state */ 300 301 uint32_t *op; /* current operation, NULL operations isn't known yet */ 302 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ 303 uint16_t npstates; /* number of previous states saved */ 304 uint16_t stateidx; /* current state index */ 305 306 /* The simulated NAND flash pages array */ 307 union ns_mem *pages; 308 309 /* Slab allocator for nand pages */ 310 struct kmem_cache *nand_pages_slab; 311 312 /* Internal buffer of page + OOB size bytes */ 313 union ns_mem buf; 314 315 /* NAND flash "geometry" */ 316 struct { 317 uint64_t totsz; /* total flash size, bytes */ 318 uint32_t secsz; /* flash sector (erase block) size, bytes */ 319 uint pgsz; /* NAND flash page size, bytes */ 320 uint oobsz; /* page OOB area size, bytes */ 321 uint64_t totszoob; /* total flash size including OOB, bytes */ 322 uint pgszoob; /* page size including OOB , bytes*/ 323 uint secszoob; /* sector size including OOB, bytes */ 324 uint pgnum; /* total number of pages */ 325 uint pgsec; /* number of pages per sector */ 326 uint secshift; /* bits number in sector size */ 327 uint pgshift; /* bits number in page size */ 328 uint pgaddrbytes; /* bytes per page address */ 329 uint secaddrbytes; /* bytes per sector address */ 330 uint idbytes; /* the number ID bytes that this chip outputs */ 331 } geom; 332 333 /* NAND flash internal registers */ 334 struct { 335 unsigned command; /* the command register */ 336 u_char status; /* the status register */ 337 uint row; /* the page number */ 338 uint column; /* the offset within page */ 339 uint count; /* internal counter */ 340 uint num; /* number of bytes which must be processed */ 341 uint off; /* fixed page offset */ 342 } regs; 343 344 /* NAND flash lines state */ 345 struct { 346 int ce; /* chip Enable */ 347 int cle; /* command Latch Enable */ 348 int ale; /* address Latch Enable */ 349 int wp; /* write Protect */ 350 } lines; 351 352 /* Fields needed when using a cache file */ 353 struct file *cfile; /* Open file */ 354 unsigned long *pages_written; /* Which pages have been written */ 355 void *file_buf; 356 struct page *held_pages[NS_MAX_HELD_PAGES]; 357 int held_cnt; 358 359 /* debugfs entry */ 360 struct dentry *dent; 361 }; 362 363 /* 364 * Operations array. To perform any operation the simulator must pass 365 * through the correspondent states chain. 366 */ 367 static struct nandsim_operations { 368 uint32_t reqopts; /* options which are required to perform the operation */ 369 uint32_t states[NS_OPER_STATES]; /* operation's states */ 370 } ops[NS_OPER_NUM] = { 371 /* Read page + OOB from the beginning */ 372 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, 373 STATE_DATAOUT, STATE_READY}}, 374 /* Read page + OOB from the second half */ 375 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, 376 STATE_DATAOUT, STATE_READY}}, 377 /* Read OOB */ 378 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, 379 STATE_DATAOUT, STATE_READY}}, 380 /* Program page starting from the beginning */ 381 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, 382 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 383 /* Program page starting from the beginning */ 384 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, 385 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 386 /* Program page starting from the second half */ 387 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, 388 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 389 /* Program OOB */ 390 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, 391 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 392 /* Erase sector */ 393 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, 394 /* Read status */ 395 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, 396 /* Read ID */ 397 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, 398 /* Large page devices read page */ 399 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, 400 STATE_DATAOUT, STATE_READY}}, 401 /* Large page devices random page read */ 402 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, 403 STATE_DATAOUT, STATE_READY}}, 404 }; 405 406 struct weak_block { 407 struct list_head list; 408 unsigned int erase_block_no; 409 unsigned int max_erases; 410 unsigned int erases_done; 411 }; 412 413 static LIST_HEAD(weak_blocks); 414 415 struct weak_page { 416 struct list_head list; 417 unsigned int page_no; 418 unsigned int max_writes; 419 unsigned int writes_done; 420 }; 421 422 static LIST_HEAD(weak_pages); 423 424 struct grave_page { 425 struct list_head list; 426 unsigned int page_no; 427 unsigned int max_reads; 428 unsigned int reads_done; 429 }; 430 431 static LIST_HEAD(grave_pages); 432 433 static unsigned long *erase_block_wear = NULL; 434 static unsigned int wear_eb_count = 0; 435 static unsigned long total_wear = 0; 436 437 /* MTD structure for NAND controller */ 438 static struct mtd_info *nsmtd; 439 440 static int ns_show(struct seq_file *m, void *private) 441 { 442 unsigned long wmin = -1, wmax = 0, avg; 443 unsigned long deciles[10], decile_max[10], tot = 0; 444 unsigned int i; 445 446 /* Calc wear stats */ 447 for (i = 0; i < wear_eb_count; ++i) { 448 unsigned long wear = erase_block_wear[i]; 449 if (wear < wmin) 450 wmin = wear; 451 if (wear > wmax) 452 wmax = wear; 453 tot += wear; 454 } 455 456 for (i = 0; i < 9; ++i) { 457 deciles[i] = 0; 458 decile_max[i] = (wmax * (i + 1) + 5) / 10; 459 } 460 deciles[9] = 0; 461 decile_max[9] = wmax; 462 for (i = 0; i < wear_eb_count; ++i) { 463 int d; 464 unsigned long wear = erase_block_wear[i]; 465 for (d = 0; d < 10; ++d) 466 if (wear <= decile_max[d]) { 467 deciles[d] += 1; 468 break; 469 } 470 } 471 avg = tot / wear_eb_count; 472 473 /* Output wear report */ 474 seq_printf(m, "Total numbers of erases: %lu\n", tot); 475 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); 476 seq_printf(m, "Average number of erases: %lu\n", avg); 477 seq_printf(m, "Maximum number of erases: %lu\n", wmax); 478 seq_printf(m, "Minimum number of erases: %lu\n", wmin); 479 for (i = 0; i < 10; ++i) { 480 unsigned long from = (i ? decile_max[i - 1] + 1 : 0); 481 if (from > decile_max[i]) 482 continue; 483 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", 484 from, 485 decile_max[i], 486 deciles[i]); 487 } 488 489 return 0; 490 } 491 DEFINE_SHOW_ATTRIBUTE(ns); 492 493 /** 494 * ns_debugfs_create - initialize debugfs 495 * @ns: nandsim device description object 496 * 497 * This function creates all debugfs files for UBI device @ubi. Returns zero in 498 * case of success and a negative error code in case of failure. 499 */ 500 static int ns_debugfs_create(struct nandsim *ns) 501 { 502 struct dentry *root = nsmtd->dbg.dfs_dir; 503 504 /* 505 * Just skip debugfs initialization when the debugfs directory is 506 * missing. 507 */ 508 if (IS_ERR_OR_NULL(root)) { 509 if (IS_ENABLED(CONFIG_DEBUG_FS) && 510 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 511 NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); 512 return 0; 513 } 514 515 ns->dent = debugfs_create_file("nandsim_wear_report", 0400, root, ns, 516 &ns_fops); 517 if (IS_ERR_OR_NULL(ns->dent)) { 518 NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n"); 519 return -1; 520 } 521 522 return 0; 523 } 524 525 static void ns_debugfs_remove(struct nandsim *ns) 526 { 527 debugfs_remove_recursive(ns->dent); 528 } 529 530 /* 531 * Allocate array of page pointers, create slab allocation for an array 532 * and initialize the array by NULL pointers. 533 * 534 * RETURNS: 0 if success, -ENOMEM if memory alloc fails. 535 */ 536 static int __init ns_alloc_device(struct nandsim *ns) 537 { 538 struct file *cfile; 539 int i, err; 540 541 if (cache_file) { 542 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); 543 if (IS_ERR(cfile)) 544 return PTR_ERR(cfile); 545 if (!(cfile->f_mode & FMODE_CAN_READ)) { 546 NS_ERR("alloc_device: cache file not readable\n"); 547 err = -EINVAL; 548 goto err_close_filp; 549 } 550 if (!(cfile->f_mode & FMODE_CAN_WRITE)) { 551 NS_ERR("alloc_device: cache file not writeable\n"); 552 err = -EINVAL; 553 goto err_close_filp; 554 } 555 ns->pages_written = 556 vzalloc(array_size(sizeof(unsigned long), 557 BITS_TO_LONGS(ns->geom.pgnum))); 558 if (!ns->pages_written) { 559 NS_ERR("alloc_device: unable to allocate pages written array\n"); 560 err = -ENOMEM; 561 goto err_close_filp; 562 } 563 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 564 if (!ns->file_buf) { 565 NS_ERR("alloc_device: unable to allocate file buf\n"); 566 err = -ENOMEM; 567 goto err_free_pw; 568 } 569 ns->cfile = cfile; 570 571 return 0; 572 573 err_free_pw: 574 vfree(ns->pages_written); 575 err_close_filp: 576 filp_close(cfile, NULL); 577 578 return err; 579 } 580 581 ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum)); 582 if (!ns->pages) { 583 NS_ERR("alloc_device: unable to allocate page array\n"); 584 return -ENOMEM; 585 } 586 for (i = 0; i < ns->geom.pgnum; i++) { 587 ns->pages[i].byte = NULL; 588 } 589 ns->nand_pages_slab = kmem_cache_create("nandsim", 590 ns->geom.pgszoob, 0, 0, NULL); 591 if (!ns->nand_pages_slab) { 592 NS_ERR("cache_create: unable to create kmem_cache\n"); 593 err = -ENOMEM; 594 goto err_free_pg; 595 } 596 597 return 0; 598 599 err_free_pg: 600 vfree(ns->pages); 601 602 return err; 603 } 604 605 /* 606 * Free any allocated pages, and free the array of page pointers. 607 */ 608 static void ns_free_device(struct nandsim *ns) 609 { 610 int i; 611 612 if (ns->cfile) { 613 kfree(ns->file_buf); 614 vfree(ns->pages_written); 615 filp_close(ns->cfile, NULL); 616 return; 617 } 618 619 if (ns->pages) { 620 for (i = 0; i < ns->geom.pgnum; i++) { 621 if (ns->pages[i].byte) 622 kmem_cache_free(ns->nand_pages_slab, 623 ns->pages[i].byte); 624 } 625 kmem_cache_destroy(ns->nand_pages_slab); 626 vfree(ns->pages); 627 } 628 } 629 630 static char __init *ns_get_partition_name(int i) 631 { 632 return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); 633 } 634 635 /* 636 * Initialize the nandsim structure. 637 * 638 * RETURNS: 0 if success, -ERRNO if failure. 639 */ 640 static int __init ns_init(struct mtd_info *mtd) 641 { 642 struct nand_chip *chip = mtd_to_nand(mtd); 643 struct nandsim *ns = nand_get_controller_data(chip); 644 int i, ret = 0; 645 uint64_t remains; 646 uint64_t next_offset; 647 648 if (NS_IS_INITIALIZED(ns)) { 649 NS_ERR("init_nandsim: nandsim is already initialized\n"); 650 return -EIO; 651 } 652 653 /* Initialize the NAND flash parameters */ 654 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; 655 ns->geom.totsz = mtd->size; 656 ns->geom.pgsz = mtd->writesize; 657 ns->geom.oobsz = mtd->oobsize; 658 ns->geom.secsz = mtd->erasesize; 659 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; 660 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); 661 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; 662 ns->geom.secshift = ffs(ns->geom.secsz) - 1; 663 ns->geom.pgshift = chip->page_shift; 664 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; 665 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; 666 ns->options = 0; 667 668 if (ns->geom.pgsz == 512) { 669 ns->options |= OPT_PAGE512; 670 if (ns->busw == 8) 671 ns->options |= OPT_PAGE512_8BIT; 672 } else if (ns->geom.pgsz == 2048) { 673 ns->options |= OPT_PAGE2048; 674 } else if (ns->geom.pgsz == 4096) { 675 ns->options |= OPT_PAGE4096; 676 } else { 677 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); 678 return -EIO; 679 } 680 681 if (ns->options & OPT_SMALLPAGE) { 682 if (ns->geom.totsz <= (32 << 20)) { 683 ns->geom.pgaddrbytes = 3; 684 ns->geom.secaddrbytes = 2; 685 } else { 686 ns->geom.pgaddrbytes = 4; 687 ns->geom.secaddrbytes = 3; 688 } 689 } else { 690 if (ns->geom.totsz <= (128 << 20)) { 691 ns->geom.pgaddrbytes = 4; 692 ns->geom.secaddrbytes = 2; 693 } else { 694 ns->geom.pgaddrbytes = 5; 695 ns->geom.secaddrbytes = 3; 696 } 697 } 698 699 /* Fill the partition_info structure */ 700 if (parts_num > ARRAY_SIZE(ns->partitions)) { 701 NS_ERR("too many partitions.\n"); 702 return -EINVAL; 703 } 704 remains = ns->geom.totsz; 705 next_offset = 0; 706 for (i = 0; i < parts_num; ++i) { 707 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; 708 709 if (!part_sz || part_sz > remains) { 710 NS_ERR("bad partition size.\n"); 711 return -EINVAL; 712 } 713 ns->partitions[i].name = ns_get_partition_name(i); 714 if (!ns->partitions[i].name) { 715 NS_ERR("unable to allocate memory.\n"); 716 return -ENOMEM; 717 } 718 ns->partitions[i].offset = next_offset; 719 ns->partitions[i].size = part_sz; 720 next_offset += ns->partitions[i].size; 721 remains -= ns->partitions[i].size; 722 } 723 ns->nbparts = parts_num; 724 if (remains) { 725 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { 726 NS_ERR("too many partitions.\n"); 727 ret = -EINVAL; 728 goto free_partition_names; 729 } 730 ns->partitions[i].name = ns_get_partition_name(i); 731 if (!ns->partitions[i].name) { 732 NS_ERR("unable to allocate memory.\n"); 733 ret = -ENOMEM; 734 goto free_partition_names; 735 } 736 ns->partitions[i].offset = next_offset; 737 ns->partitions[i].size = remains; 738 ns->nbparts += 1; 739 } 740 741 if (ns->busw == 16) 742 NS_WARN("16-bit flashes support wasn't tested\n"); 743 744 printk("flash size: %llu MiB\n", 745 (unsigned long long)ns->geom.totsz >> 20); 746 printk("page size: %u bytes\n", ns->geom.pgsz); 747 printk("OOB area size: %u bytes\n", ns->geom.oobsz); 748 printk("sector size: %u KiB\n", ns->geom.secsz >> 10); 749 printk("pages number: %u\n", ns->geom.pgnum); 750 printk("pages per sector: %u\n", ns->geom.pgsec); 751 printk("bus width: %u\n", ns->busw); 752 printk("bits in sector size: %u\n", ns->geom.secshift); 753 printk("bits in page size: %u\n", ns->geom.pgshift); 754 printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); 755 printk("flash size with OOB: %llu KiB\n", 756 (unsigned long long)ns->geom.totszoob >> 10); 757 printk("page address bytes: %u\n", ns->geom.pgaddrbytes); 758 printk("sector address bytes: %u\n", ns->geom.secaddrbytes); 759 printk("options: %#x\n", ns->options); 760 761 ret = ns_alloc_device(ns); 762 if (ret) 763 goto free_partition_names; 764 765 /* Allocate / initialize the internal buffer */ 766 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 767 if (!ns->buf.byte) { 768 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", 769 ns->geom.pgszoob); 770 ret = -ENOMEM; 771 goto free_device; 772 } 773 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); 774 775 return 0; 776 777 free_device: 778 ns_free_device(ns); 779 free_partition_names: 780 for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i) 781 kfree(ns->partitions[i].name); 782 783 return ret; 784 } 785 786 /* 787 * Free the nandsim structure. 788 */ 789 static void ns_free(struct nandsim *ns) 790 { 791 int i; 792 793 for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i) 794 kfree(ns->partitions[i].name); 795 796 kfree(ns->buf.byte); 797 ns_free_device(ns); 798 799 return; 800 } 801 802 static int ns_parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) 803 { 804 char *w; 805 int zero_ok; 806 unsigned int erase_block_no; 807 loff_t offset; 808 809 if (!badblocks) 810 return 0; 811 w = badblocks; 812 do { 813 zero_ok = (*w == '0' ? 1 : 0); 814 erase_block_no = simple_strtoul(w, &w, 0); 815 if (!zero_ok && !erase_block_no) { 816 NS_ERR("invalid badblocks.\n"); 817 return -EINVAL; 818 } 819 offset = (loff_t)erase_block_no * ns->geom.secsz; 820 if (mtd_block_markbad(mtd, offset)) { 821 NS_ERR("invalid badblocks.\n"); 822 return -EINVAL; 823 } 824 if (*w == ',') 825 w += 1; 826 } while (*w); 827 return 0; 828 } 829 830 static int ns_parse_weakblocks(void) 831 { 832 char *w; 833 int zero_ok; 834 unsigned int erase_block_no; 835 unsigned int max_erases; 836 struct weak_block *wb; 837 838 if (!weakblocks) 839 return 0; 840 w = weakblocks; 841 do { 842 zero_ok = (*w == '0' ? 1 : 0); 843 erase_block_no = simple_strtoul(w, &w, 0); 844 if (!zero_ok && !erase_block_no) { 845 NS_ERR("invalid weakblocks.\n"); 846 return -EINVAL; 847 } 848 max_erases = 3; 849 if (*w == ':') { 850 w += 1; 851 max_erases = simple_strtoul(w, &w, 0); 852 } 853 if (*w == ',') 854 w += 1; 855 wb = kzalloc(sizeof(*wb), GFP_KERNEL); 856 if (!wb) { 857 NS_ERR("unable to allocate memory.\n"); 858 return -ENOMEM; 859 } 860 wb->erase_block_no = erase_block_no; 861 wb->max_erases = max_erases; 862 list_add(&wb->list, &weak_blocks); 863 } while (*w); 864 return 0; 865 } 866 867 static int ns_erase_error(unsigned int erase_block_no) 868 { 869 struct weak_block *wb; 870 871 list_for_each_entry(wb, &weak_blocks, list) 872 if (wb->erase_block_no == erase_block_no) { 873 if (wb->erases_done >= wb->max_erases) 874 return 1; 875 wb->erases_done += 1; 876 return 0; 877 } 878 return 0; 879 } 880 881 static int ns_parse_weakpages(void) 882 { 883 char *w; 884 int zero_ok; 885 unsigned int page_no; 886 unsigned int max_writes; 887 struct weak_page *wp; 888 889 if (!weakpages) 890 return 0; 891 w = weakpages; 892 do { 893 zero_ok = (*w == '0' ? 1 : 0); 894 page_no = simple_strtoul(w, &w, 0); 895 if (!zero_ok && !page_no) { 896 NS_ERR("invalid weakpages.\n"); 897 return -EINVAL; 898 } 899 max_writes = 3; 900 if (*w == ':') { 901 w += 1; 902 max_writes = simple_strtoul(w, &w, 0); 903 } 904 if (*w == ',') 905 w += 1; 906 wp = kzalloc(sizeof(*wp), GFP_KERNEL); 907 if (!wp) { 908 NS_ERR("unable to allocate memory.\n"); 909 return -ENOMEM; 910 } 911 wp->page_no = page_no; 912 wp->max_writes = max_writes; 913 list_add(&wp->list, &weak_pages); 914 } while (*w); 915 return 0; 916 } 917 918 static int ns_write_error(unsigned int page_no) 919 { 920 struct weak_page *wp; 921 922 list_for_each_entry(wp, &weak_pages, list) 923 if (wp->page_no == page_no) { 924 if (wp->writes_done >= wp->max_writes) 925 return 1; 926 wp->writes_done += 1; 927 return 0; 928 } 929 return 0; 930 } 931 932 static int ns_parse_gravepages(void) 933 { 934 char *g; 935 int zero_ok; 936 unsigned int page_no; 937 unsigned int max_reads; 938 struct grave_page *gp; 939 940 if (!gravepages) 941 return 0; 942 g = gravepages; 943 do { 944 zero_ok = (*g == '0' ? 1 : 0); 945 page_no = simple_strtoul(g, &g, 0); 946 if (!zero_ok && !page_no) { 947 NS_ERR("invalid gravepagess.\n"); 948 return -EINVAL; 949 } 950 max_reads = 3; 951 if (*g == ':') { 952 g += 1; 953 max_reads = simple_strtoul(g, &g, 0); 954 } 955 if (*g == ',') 956 g += 1; 957 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 958 if (!gp) { 959 NS_ERR("unable to allocate memory.\n"); 960 return -ENOMEM; 961 } 962 gp->page_no = page_no; 963 gp->max_reads = max_reads; 964 list_add(&gp->list, &grave_pages); 965 } while (*g); 966 return 0; 967 } 968 969 static int ns_read_error(unsigned int page_no) 970 { 971 struct grave_page *gp; 972 973 list_for_each_entry(gp, &grave_pages, list) 974 if (gp->page_no == page_no) { 975 if (gp->reads_done >= gp->max_reads) 976 return 1; 977 gp->reads_done += 1; 978 return 0; 979 } 980 return 0; 981 } 982 983 static int ns_setup_wear_reporting(struct mtd_info *mtd) 984 { 985 wear_eb_count = div_u64(mtd->size, mtd->erasesize); 986 erase_block_wear = kcalloc(wear_eb_count, sizeof(unsigned long), GFP_KERNEL); 987 if (!erase_block_wear) { 988 NS_ERR("Too many erase blocks for wear reporting\n"); 989 return -ENOMEM; 990 } 991 return 0; 992 } 993 994 static void ns_update_wear(unsigned int erase_block_no) 995 { 996 if (!erase_block_wear) 997 return; 998 total_wear += 1; 999 /* 1000 * TODO: Notify this through a debugfs entry, 1001 * instead of showing an error message. 1002 */ 1003 if (total_wear == 0) 1004 NS_ERR("Erase counter total overflow\n"); 1005 erase_block_wear[erase_block_no] += 1; 1006 if (erase_block_wear[erase_block_no] == 0) 1007 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); 1008 } 1009 1010 /* 1011 * Returns the string representation of 'state' state. 1012 */ 1013 static char *ns_get_state_name(uint32_t state) 1014 { 1015 switch (NS_STATE(state)) { 1016 case STATE_CMD_READ0: 1017 return "STATE_CMD_READ0"; 1018 case STATE_CMD_READ1: 1019 return "STATE_CMD_READ1"; 1020 case STATE_CMD_PAGEPROG: 1021 return "STATE_CMD_PAGEPROG"; 1022 case STATE_CMD_READOOB: 1023 return "STATE_CMD_READOOB"; 1024 case STATE_CMD_READSTART: 1025 return "STATE_CMD_READSTART"; 1026 case STATE_CMD_ERASE1: 1027 return "STATE_CMD_ERASE1"; 1028 case STATE_CMD_STATUS: 1029 return "STATE_CMD_STATUS"; 1030 case STATE_CMD_SEQIN: 1031 return "STATE_CMD_SEQIN"; 1032 case STATE_CMD_READID: 1033 return "STATE_CMD_READID"; 1034 case STATE_CMD_ERASE2: 1035 return "STATE_CMD_ERASE2"; 1036 case STATE_CMD_RESET: 1037 return "STATE_CMD_RESET"; 1038 case STATE_CMD_RNDOUT: 1039 return "STATE_CMD_RNDOUT"; 1040 case STATE_CMD_RNDOUTSTART: 1041 return "STATE_CMD_RNDOUTSTART"; 1042 case STATE_ADDR_PAGE: 1043 return "STATE_ADDR_PAGE"; 1044 case STATE_ADDR_SEC: 1045 return "STATE_ADDR_SEC"; 1046 case STATE_ADDR_ZERO: 1047 return "STATE_ADDR_ZERO"; 1048 case STATE_ADDR_COLUMN: 1049 return "STATE_ADDR_COLUMN"; 1050 case STATE_DATAIN: 1051 return "STATE_DATAIN"; 1052 case STATE_DATAOUT: 1053 return "STATE_DATAOUT"; 1054 case STATE_DATAOUT_ID: 1055 return "STATE_DATAOUT_ID"; 1056 case STATE_DATAOUT_STATUS: 1057 return "STATE_DATAOUT_STATUS"; 1058 case STATE_READY: 1059 return "STATE_READY"; 1060 case STATE_UNKNOWN: 1061 return "STATE_UNKNOWN"; 1062 } 1063 1064 NS_ERR("get_state_name: unknown state, BUG\n"); 1065 return NULL; 1066 } 1067 1068 /* 1069 * Check if command is valid. 1070 * 1071 * RETURNS: 1 if wrong command, 0 if right. 1072 */ 1073 static int ns_check_command(int cmd) 1074 { 1075 switch (cmd) { 1076 1077 case NAND_CMD_READ0: 1078 case NAND_CMD_READ1: 1079 case NAND_CMD_READSTART: 1080 case NAND_CMD_PAGEPROG: 1081 case NAND_CMD_READOOB: 1082 case NAND_CMD_ERASE1: 1083 case NAND_CMD_STATUS: 1084 case NAND_CMD_SEQIN: 1085 case NAND_CMD_READID: 1086 case NAND_CMD_ERASE2: 1087 case NAND_CMD_RESET: 1088 case NAND_CMD_RNDOUT: 1089 case NAND_CMD_RNDOUTSTART: 1090 return 0; 1091 1092 default: 1093 return 1; 1094 } 1095 } 1096 1097 /* 1098 * Returns state after command is accepted by command number. 1099 */ 1100 static uint32_t ns_get_state_by_command(unsigned command) 1101 { 1102 switch (command) { 1103 case NAND_CMD_READ0: 1104 return STATE_CMD_READ0; 1105 case NAND_CMD_READ1: 1106 return STATE_CMD_READ1; 1107 case NAND_CMD_PAGEPROG: 1108 return STATE_CMD_PAGEPROG; 1109 case NAND_CMD_READSTART: 1110 return STATE_CMD_READSTART; 1111 case NAND_CMD_READOOB: 1112 return STATE_CMD_READOOB; 1113 case NAND_CMD_ERASE1: 1114 return STATE_CMD_ERASE1; 1115 case NAND_CMD_STATUS: 1116 return STATE_CMD_STATUS; 1117 case NAND_CMD_SEQIN: 1118 return STATE_CMD_SEQIN; 1119 case NAND_CMD_READID: 1120 return STATE_CMD_READID; 1121 case NAND_CMD_ERASE2: 1122 return STATE_CMD_ERASE2; 1123 case NAND_CMD_RESET: 1124 return STATE_CMD_RESET; 1125 case NAND_CMD_RNDOUT: 1126 return STATE_CMD_RNDOUT; 1127 case NAND_CMD_RNDOUTSTART: 1128 return STATE_CMD_RNDOUTSTART; 1129 } 1130 1131 NS_ERR("get_state_by_command: unknown command, BUG\n"); 1132 return 0; 1133 } 1134 1135 /* 1136 * Move an address byte to the correspondent internal register. 1137 */ 1138 static inline void ns_accept_addr_byte(struct nandsim *ns, u_char bt) 1139 { 1140 uint byte = (uint)bt; 1141 1142 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) 1143 ns->regs.column |= (byte << 8 * ns->regs.count); 1144 else { 1145 ns->regs.row |= (byte << 8 * (ns->regs.count - 1146 ns->geom.pgaddrbytes + 1147 ns->geom.secaddrbytes)); 1148 } 1149 1150 return; 1151 } 1152 1153 /* 1154 * Switch to STATE_READY state. 1155 */ 1156 static inline void ns_switch_to_ready_state(struct nandsim *ns, u_char status) 1157 { 1158 NS_DBG("switch_to_ready_state: switch to %s state\n", 1159 ns_get_state_name(STATE_READY)); 1160 1161 ns->state = STATE_READY; 1162 ns->nxstate = STATE_UNKNOWN; 1163 ns->op = NULL; 1164 ns->npstates = 0; 1165 ns->stateidx = 0; 1166 ns->regs.num = 0; 1167 ns->regs.count = 0; 1168 ns->regs.off = 0; 1169 ns->regs.row = 0; 1170 ns->regs.column = 0; 1171 ns->regs.status = status; 1172 } 1173 1174 /* 1175 * If the operation isn't known yet, try to find it in the global array 1176 * of supported operations. 1177 * 1178 * Operation can be unknown because of the following. 1179 * 1. New command was accepted and this is the first call to find the 1180 * correspondent states chain. In this case ns->npstates = 0; 1181 * 2. There are several operations which begin with the same command(s) 1182 * (for example program from the second half and read from the 1183 * second half operations both begin with the READ1 command). In this 1184 * case the ns->pstates[] array contains previous states. 1185 * 1186 * Thus, the function tries to find operation containing the following 1187 * states (if the 'flag' parameter is 0): 1188 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state 1189 * 1190 * If (one and only one) matching operation is found, it is accepted ( 1191 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is 1192 * zeroed). 1193 * 1194 * If there are several matches, the current state is pushed to the 1195 * ns->pstates. 1196 * 1197 * The operation can be unknown only while commands are input to the chip. 1198 * As soon as address command is accepted, the operation must be known. 1199 * In such situation the function is called with 'flag' != 0, and the 1200 * operation is searched using the following pattern: 1201 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> 1202 * 1203 * It is supposed that this pattern must either match one operation or 1204 * none. There can't be ambiguity in that case. 1205 * 1206 * If no matches found, the function does the following: 1207 * 1. if there are saved states present, try to ignore them and search 1208 * again only using the last command. If nothing was found, switch 1209 * to the STATE_READY state. 1210 * 2. if there are no saved states, switch to the STATE_READY state. 1211 * 1212 * RETURNS: -2 - no matched operations found. 1213 * -1 - several matches. 1214 * 0 - operation is found. 1215 */ 1216 static int ns_find_operation(struct nandsim *ns, uint32_t flag) 1217 { 1218 int opsfound = 0; 1219 int i, j, idx = 0; 1220 1221 for (i = 0; i < NS_OPER_NUM; i++) { 1222 1223 int found = 1; 1224 1225 if (!(ns->options & ops[i].reqopts)) 1226 /* Ignore operations we can't perform */ 1227 continue; 1228 1229 if (flag) { 1230 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) 1231 continue; 1232 } else { 1233 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) 1234 continue; 1235 } 1236 1237 for (j = 0; j < ns->npstates; j++) 1238 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) 1239 && (ns->options & ops[idx].reqopts)) { 1240 found = 0; 1241 break; 1242 } 1243 1244 if (found) { 1245 idx = i; 1246 opsfound += 1; 1247 } 1248 } 1249 1250 if (opsfound == 1) { 1251 /* Exact match */ 1252 ns->op = &ops[idx].states[0]; 1253 if (flag) { 1254 /* 1255 * In this case the find_operation function was 1256 * called when address has just began input. But it isn't 1257 * yet fully input and the current state must 1258 * not be one of STATE_ADDR_*, but the STATE_ADDR_* 1259 * state must be the next state (ns->nxstate). 1260 */ 1261 ns->stateidx = ns->npstates - 1; 1262 } else { 1263 ns->stateidx = ns->npstates; 1264 } 1265 ns->npstates = 0; 1266 ns->state = ns->op[ns->stateidx]; 1267 ns->nxstate = ns->op[ns->stateidx + 1]; 1268 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", 1269 idx, ns_get_state_name(ns->state), 1270 ns_get_state_name(ns->nxstate)); 1271 return 0; 1272 } 1273 1274 if (opsfound == 0) { 1275 /* Nothing was found. Try to ignore previous commands (if any) and search again */ 1276 if (ns->npstates != 0) { 1277 NS_DBG("find_operation: no operation found, try again with state %s\n", 1278 ns_get_state_name(ns->state)); 1279 ns->npstates = 0; 1280 return ns_find_operation(ns, 0); 1281 1282 } 1283 NS_DBG("find_operation: no operations found\n"); 1284 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1285 return -2; 1286 } 1287 1288 if (flag) { 1289 /* This shouldn't happen */ 1290 NS_DBG("find_operation: BUG, operation must be known if address is input\n"); 1291 return -2; 1292 } 1293 1294 NS_DBG("find_operation: there is still ambiguity\n"); 1295 1296 ns->pstates[ns->npstates++] = ns->state; 1297 1298 return -1; 1299 } 1300 1301 static void ns_put_pages(struct nandsim *ns) 1302 { 1303 int i; 1304 1305 for (i = 0; i < ns->held_cnt; i++) 1306 put_page(ns->held_pages[i]); 1307 } 1308 1309 /* Get page cache pages in advance to provide NOFS memory allocation */ 1310 static int ns_get_pages(struct nandsim *ns, struct file *file, size_t count, 1311 loff_t pos) 1312 { 1313 pgoff_t index, start_index, end_index; 1314 struct page *page; 1315 struct address_space *mapping = file->f_mapping; 1316 1317 start_index = pos >> PAGE_SHIFT; 1318 end_index = (pos + count - 1) >> PAGE_SHIFT; 1319 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) 1320 return -EINVAL; 1321 ns->held_cnt = 0; 1322 for (index = start_index; index <= end_index; index++) { 1323 page = find_get_page(mapping, index); 1324 if (page == NULL) { 1325 page = find_or_create_page(mapping, index, GFP_NOFS); 1326 if (page == NULL) { 1327 write_inode_now(mapping->host, 1); 1328 page = find_or_create_page(mapping, index, GFP_NOFS); 1329 } 1330 if (page == NULL) { 1331 ns_put_pages(ns); 1332 return -ENOMEM; 1333 } 1334 unlock_page(page); 1335 } 1336 ns->held_pages[ns->held_cnt++] = page; 1337 } 1338 return 0; 1339 } 1340 1341 static ssize_t ns_read_file(struct nandsim *ns, struct file *file, void *buf, 1342 size_t count, loff_t pos) 1343 { 1344 ssize_t tx; 1345 int err; 1346 unsigned int noreclaim_flag; 1347 1348 err = ns_get_pages(ns, file, count, pos); 1349 if (err) 1350 return err; 1351 noreclaim_flag = memalloc_noreclaim_save(); 1352 tx = kernel_read(file, buf, count, &pos); 1353 memalloc_noreclaim_restore(noreclaim_flag); 1354 ns_put_pages(ns); 1355 return tx; 1356 } 1357 1358 static ssize_t ns_write_file(struct nandsim *ns, struct file *file, void *buf, 1359 size_t count, loff_t pos) 1360 { 1361 ssize_t tx; 1362 int err; 1363 unsigned int noreclaim_flag; 1364 1365 err = ns_get_pages(ns, file, count, pos); 1366 if (err) 1367 return err; 1368 noreclaim_flag = memalloc_noreclaim_save(); 1369 tx = kernel_write(file, buf, count, &pos); 1370 memalloc_noreclaim_restore(noreclaim_flag); 1371 ns_put_pages(ns); 1372 return tx; 1373 } 1374 1375 /* 1376 * Returns a pointer to the current page. 1377 */ 1378 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) 1379 { 1380 return &(ns->pages[ns->regs.row]); 1381 } 1382 1383 /* 1384 * Returns a pointer to the current byte, within the current page. 1385 */ 1386 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) 1387 { 1388 return NS_GET_PAGE(ns)->byte + NS_PAGE_BYTE_SHIFT(ns); 1389 } 1390 1391 static int ns_do_read_error(struct nandsim *ns, int num) 1392 { 1393 unsigned int page_no = ns->regs.row; 1394 1395 if (ns_read_error(page_no)) { 1396 get_random_bytes(ns->buf.byte, num); 1397 NS_WARN("simulating read error in page %u\n", page_no); 1398 return 1; 1399 } 1400 return 0; 1401 } 1402 1403 static void ns_do_bit_flips(struct nandsim *ns, int num) 1404 { 1405 if (bitflips && get_random_u16() < (1 << 6)) { 1406 int flips = 1; 1407 if (bitflips > 1) 1408 flips = get_random_u32_inclusive(1, bitflips); 1409 while (flips--) { 1410 int pos = get_random_u32_below(num * 8); 1411 ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); 1412 NS_WARN("read_page: flipping bit %d in page %d " 1413 "reading from %d ecc: corrected=%u failed=%u\n", 1414 pos, ns->regs.row, NS_PAGE_BYTE_SHIFT(ns), 1415 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); 1416 } 1417 } 1418 } 1419 1420 /* 1421 * Fill the NAND buffer with data read from the specified page. 1422 */ 1423 static void ns_read_page(struct nandsim *ns, int num) 1424 { 1425 union ns_mem *mypage; 1426 1427 if (ns->cfile) { 1428 if (!test_bit(ns->regs.row, ns->pages_written)) { 1429 NS_DBG("read_page: page %d not written\n", ns->regs.row); 1430 memset(ns->buf.byte, 0xFF, num); 1431 } else { 1432 loff_t pos; 1433 ssize_t tx; 1434 1435 NS_DBG("read_page: page %d written, reading from %d\n", 1436 ns->regs.row, NS_PAGE_BYTE_SHIFT(ns)); 1437 if (ns_do_read_error(ns, num)) 1438 return; 1439 pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1440 tx = ns_read_file(ns, ns->cfile, ns->buf.byte, num, 1441 pos); 1442 if (tx != num) { 1443 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1444 return; 1445 } 1446 ns_do_bit_flips(ns, num); 1447 } 1448 return; 1449 } 1450 1451 mypage = NS_GET_PAGE(ns); 1452 if (mypage->byte == NULL) { 1453 NS_DBG("read_page: page %d not allocated\n", ns->regs.row); 1454 memset(ns->buf.byte, 0xFF, num); 1455 } else { 1456 NS_DBG("read_page: page %d allocated, reading from %d\n", 1457 ns->regs.row, NS_PAGE_BYTE_SHIFT(ns)); 1458 if (ns_do_read_error(ns, num)) 1459 return; 1460 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); 1461 ns_do_bit_flips(ns, num); 1462 } 1463 } 1464 1465 /* 1466 * Erase all pages in the specified sector. 1467 */ 1468 static void ns_erase_sector(struct nandsim *ns) 1469 { 1470 union ns_mem *mypage; 1471 int i; 1472 1473 if (ns->cfile) { 1474 for (i = 0; i < ns->geom.pgsec; i++) 1475 if (__test_and_clear_bit(ns->regs.row + i, 1476 ns->pages_written)) { 1477 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); 1478 } 1479 return; 1480 } 1481 1482 mypage = NS_GET_PAGE(ns); 1483 for (i = 0; i < ns->geom.pgsec; i++) { 1484 if (mypage->byte != NULL) { 1485 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); 1486 kmem_cache_free(ns->nand_pages_slab, mypage->byte); 1487 mypage->byte = NULL; 1488 } 1489 mypage++; 1490 } 1491 } 1492 1493 /* 1494 * Program the specified page with the contents from the NAND buffer. 1495 */ 1496 static int ns_prog_page(struct nandsim *ns, int num) 1497 { 1498 int i; 1499 union ns_mem *mypage; 1500 u_char *pg_off; 1501 1502 if (ns->cfile) { 1503 loff_t off; 1504 ssize_t tx; 1505 int all; 1506 1507 NS_DBG("prog_page: writing page %d\n", ns->regs.row); 1508 pg_off = ns->file_buf + NS_PAGE_BYTE_SHIFT(ns); 1509 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1510 if (!test_bit(ns->regs.row, ns->pages_written)) { 1511 all = 1; 1512 memset(ns->file_buf, 0xff, ns->geom.pgszoob); 1513 } else { 1514 all = 0; 1515 tx = ns_read_file(ns, ns->cfile, pg_off, num, off); 1516 if (tx != num) { 1517 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1518 return -1; 1519 } 1520 } 1521 for (i = 0; i < num; i++) 1522 pg_off[i] &= ns->buf.byte[i]; 1523 if (all) { 1524 loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; 1525 tx = ns_write_file(ns, ns->cfile, ns->file_buf, 1526 ns->geom.pgszoob, pos); 1527 if (tx != ns->geom.pgszoob) { 1528 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1529 return -1; 1530 } 1531 __set_bit(ns->regs.row, ns->pages_written); 1532 } else { 1533 tx = ns_write_file(ns, ns->cfile, pg_off, num, off); 1534 if (tx != num) { 1535 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1536 return -1; 1537 } 1538 } 1539 return 0; 1540 } 1541 1542 mypage = NS_GET_PAGE(ns); 1543 if (mypage->byte == NULL) { 1544 NS_DBG("prog_page: allocating page %d\n", ns->regs.row); 1545 /* 1546 * We allocate memory with GFP_NOFS because a flash FS may 1547 * utilize this. If it is holding an FS lock, then gets here, 1548 * then kernel memory alloc runs writeback which goes to the FS 1549 * again and deadlocks. This was seen in practice. 1550 */ 1551 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); 1552 if (mypage->byte == NULL) { 1553 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); 1554 return -1; 1555 } 1556 memset(mypage->byte, 0xFF, ns->geom.pgszoob); 1557 } 1558 1559 pg_off = NS_PAGE_BYTE_OFF(ns); 1560 for (i = 0; i < num; i++) 1561 pg_off[i] &= ns->buf.byte[i]; 1562 1563 return 0; 1564 } 1565 1566 /* 1567 * If state has any action bit, perform this action. 1568 * 1569 * RETURNS: 0 if success, -1 if error. 1570 */ 1571 static int ns_do_state_action(struct nandsim *ns, uint32_t action) 1572 { 1573 int num; 1574 int busdiv = ns->busw == 8 ? 1 : 2; 1575 unsigned int erase_block_no, page_no; 1576 1577 action &= ACTION_MASK; 1578 1579 /* Check that page address input is correct */ 1580 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { 1581 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); 1582 return -1; 1583 } 1584 1585 switch (action) { 1586 1587 case ACTION_CPY: 1588 /* 1589 * Copy page data to the internal buffer. 1590 */ 1591 1592 /* Column shouldn't be very large */ 1593 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { 1594 NS_ERR("do_state_action: column number is too large\n"); 1595 break; 1596 } 1597 num = ns->geom.pgszoob - NS_PAGE_BYTE_SHIFT(ns); 1598 ns_read_page(ns, num); 1599 1600 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", 1601 num, NS_RAW_OFFSET(ns) + ns->regs.off); 1602 1603 if (ns->regs.off == 0) 1604 NS_LOG("read page %d\n", ns->regs.row); 1605 else if (ns->regs.off < ns->geom.pgsz) 1606 NS_LOG("read page %d (second half)\n", ns->regs.row); 1607 else 1608 NS_LOG("read OOB of page %d\n", ns->regs.row); 1609 1610 NS_UDELAY(access_delay); 1611 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); 1612 1613 break; 1614 1615 case ACTION_SECERASE: 1616 /* 1617 * Erase sector. 1618 */ 1619 1620 if (ns->lines.wp) { 1621 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); 1622 return -1; 1623 } 1624 1625 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec 1626 || (ns->regs.row & ~(ns->geom.secsz - 1))) { 1627 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); 1628 return -1; 1629 } 1630 1631 ns->regs.row = (ns->regs.row << 1632 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; 1633 ns->regs.column = 0; 1634 1635 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); 1636 1637 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", 1638 ns->regs.row, NS_RAW_OFFSET(ns)); 1639 NS_LOG("erase sector %u\n", erase_block_no); 1640 1641 ns_erase_sector(ns); 1642 1643 NS_MDELAY(erase_delay); 1644 1645 if (erase_block_wear) 1646 ns_update_wear(erase_block_no); 1647 1648 if (ns_erase_error(erase_block_no)) { 1649 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); 1650 return -1; 1651 } 1652 1653 break; 1654 1655 case ACTION_PRGPAGE: 1656 /* 1657 * Program page - move internal buffer data to the page. 1658 */ 1659 1660 if (ns->lines.wp) { 1661 NS_WARN("do_state_action: device is write-protected, programm\n"); 1662 return -1; 1663 } 1664 1665 num = ns->geom.pgszoob - NS_PAGE_BYTE_SHIFT(ns); 1666 if (num != ns->regs.count) { 1667 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", 1668 ns->regs.count, num); 1669 return -1; 1670 } 1671 1672 if (ns_prog_page(ns, num) == -1) 1673 return -1; 1674 1675 page_no = ns->regs.row; 1676 1677 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", 1678 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); 1679 NS_LOG("programm page %d\n", ns->regs.row); 1680 1681 NS_UDELAY(programm_delay); 1682 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); 1683 1684 if (ns_write_error(page_no)) { 1685 NS_WARN("simulating write failure in page %u\n", page_no); 1686 return -1; 1687 } 1688 1689 break; 1690 1691 case ACTION_ZEROOFF: 1692 NS_DBG("do_state_action: set internal offset to 0\n"); 1693 ns->regs.off = 0; 1694 break; 1695 1696 case ACTION_HALFOFF: 1697 if (!(ns->options & OPT_PAGE512_8BIT)) { 1698 NS_ERR("do_state_action: BUG! can't skip half of page for non-512" 1699 "byte page size 8x chips\n"); 1700 return -1; 1701 } 1702 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); 1703 ns->regs.off = ns->geom.pgsz/2; 1704 break; 1705 1706 case ACTION_OOBOFF: 1707 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); 1708 ns->regs.off = ns->geom.pgsz; 1709 break; 1710 1711 default: 1712 NS_DBG("do_state_action: BUG! unknown action\n"); 1713 } 1714 1715 return 0; 1716 } 1717 1718 /* 1719 * Switch simulator's state. 1720 */ 1721 static void ns_switch_state(struct nandsim *ns) 1722 { 1723 if (ns->op) { 1724 /* 1725 * The current operation have already been identified. 1726 * Just follow the states chain. 1727 */ 1728 1729 ns->stateidx += 1; 1730 ns->state = ns->nxstate; 1731 ns->nxstate = ns->op[ns->stateidx + 1]; 1732 1733 NS_DBG("switch_state: operation is known, switch to the next state, " 1734 "state: %s, nxstate: %s\n", 1735 ns_get_state_name(ns->state), 1736 ns_get_state_name(ns->nxstate)); 1737 } else { 1738 /* 1739 * We don't yet know which operation we perform. 1740 * Try to identify it. 1741 */ 1742 1743 /* 1744 * The only event causing the switch_state function to 1745 * be called with yet unknown operation is new command. 1746 */ 1747 ns->state = ns_get_state_by_command(ns->regs.command); 1748 1749 NS_DBG("switch_state: operation is unknown, try to find it\n"); 1750 1751 if (ns_find_operation(ns, 0)) 1752 return; 1753 } 1754 1755 /* See, whether we need to do some action */ 1756 if ((ns->state & ACTION_MASK) && 1757 ns_do_state_action(ns, ns->state) < 0) { 1758 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1759 return; 1760 } 1761 1762 /* For 16x devices column means the page offset in words */ 1763 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { 1764 NS_DBG("switch_state: double the column number for 16x device\n"); 1765 ns->regs.column <<= 1; 1766 } 1767 1768 if (NS_STATE(ns->nxstate) == STATE_READY) { 1769 /* 1770 * The current state is the last. Return to STATE_READY 1771 */ 1772 1773 u_char status = NS_STATUS_OK(ns); 1774 1775 /* In case of data states, see if all bytes were input/output */ 1776 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) 1777 && ns->regs.count != ns->regs.num) { 1778 NS_WARN("switch_state: not all bytes were processed, %d left\n", 1779 ns->regs.num - ns->regs.count); 1780 status = NS_STATUS_FAILED(ns); 1781 } 1782 1783 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); 1784 1785 ns_switch_to_ready_state(ns, status); 1786 1787 return; 1788 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { 1789 /* 1790 * If the next state is data input/output, switch to it now 1791 */ 1792 1793 ns->state = ns->nxstate; 1794 ns->nxstate = ns->op[++ns->stateidx + 1]; 1795 ns->regs.num = ns->regs.count = 0; 1796 1797 NS_DBG("switch_state: the next state is data I/O, switch, " 1798 "state: %s, nxstate: %s\n", 1799 ns_get_state_name(ns->state), 1800 ns_get_state_name(ns->nxstate)); 1801 1802 /* 1803 * Set the internal register to the count of bytes which 1804 * are expected to be input or output 1805 */ 1806 switch (NS_STATE(ns->state)) { 1807 case STATE_DATAIN: 1808 case STATE_DATAOUT: 1809 ns->regs.num = ns->geom.pgszoob - NS_PAGE_BYTE_SHIFT(ns); 1810 break; 1811 1812 case STATE_DATAOUT_ID: 1813 ns->regs.num = ns->geom.idbytes; 1814 break; 1815 1816 case STATE_DATAOUT_STATUS: 1817 ns->regs.count = ns->regs.num = 0; 1818 break; 1819 1820 default: 1821 NS_ERR("switch_state: BUG! unknown data state\n"); 1822 } 1823 1824 } else if (ns->nxstate & STATE_ADDR_MASK) { 1825 /* 1826 * If the next state is address input, set the internal 1827 * register to the number of expected address bytes 1828 */ 1829 1830 ns->regs.count = 0; 1831 1832 switch (NS_STATE(ns->nxstate)) { 1833 case STATE_ADDR_PAGE: 1834 ns->regs.num = ns->geom.pgaddrbytes; 1835 1836 break; 1837 case STATE_ADDR_SEC: 1838 ns->regs.num = ns->geom.secaddrbytes; 1839 break; 1840 1841 case STATE_ADDR_ZERO: 1842 ns->regs.num = 1; 1843 break; 1844 1845 case STATE_ADDR_COLUMN: 1846 /* Column address is always 2 bytes */ 1847 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; 1848 break; 1849 1850 default: 1851 NS_ERR("switch_state: BUG! unknown address state\n"); 1852 } 1853 } else { 1854 /* 1855 * Just reset internal counters. 1856 */ 1857 1858 ns->regs.num = 0; 1859 ns->regs.count = 0; 1860 } 1861 } 1862 1863 static u_char ns_nand_read_byte(struct nand_chip *chip) 1864 { 1865 struct nandsim *ns = nand_get_controller_data(chip); 1866 u_char outb = 0x00; 1867 1868 /* Sanity and correctness checks */ 1869 if (!ns->lines.ce) { 1870 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); 1871 return outb; 1872 } 1873 if (ns->lines.ale || ns->lines.cle) { 1874 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); 1875 return outb; 1876 } 1877 if (!(ns->state & STATE_DATAOUT_MASK)) { 1878 NS_WARN("read_byte: unexpected data output cycle, state is %s return %#x\n", 1879 ns_get_state_name(ns->state), (uint)outb); 1880 return outb; 1881 } 1882 1883 /* Status register may be read as many times as it is wanted */ 1884 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { 1885 NS_DBG("read_byte: return %#x status\n", ns->regs.status); 1886 return ns->regs.status; 1887 } 1888 1889 /* Check if there is any data in the internal buffer which may be read */ 1890 if (ns->regs.count == ns->regs.num) { 1891 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); 1892 return outb; 1893 } 1894 1895 switch (NS_STATE(ns->state)) { 1896 case STATE_DATAOUT: 1897 if (ns->busw == 8) { 1898 outb = ns->buf.byte[ns->regs.count]; 1899 ns->regs.count += 1; 1900 } else { 1901 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); 1902 ns->regs.count += 2; 1903 } 1904 break; 1905 case STATE_DATAOUT_ID: 1906 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); 1907 outb = ns->ids[ns->regs.count]; 1908 ns->regs.count += 1; 1909 break; 1910 default: 1911 BUG(); 1912 } 1913 1914 if (ns->regs.count == ns->regs.num) { 1915 NS_DBG("read_byte: all bytes were read\n"); 1916 1917 if (NS_STATE(ns->nxstate) == STATE_READY) 1918 ns_switch_state(ns); 1919 } 1920 1921 return outb; 1922 } 1923 1924 static void ns_nand_write_byte(struct nand_chip *chip, u_char byte) 1925 { 1926 struct nandsim *ns = nand_get_controller_data(chip); 1927 1928 /* Sanity and correctness checks */ 1929 if (!ns->lines.ce) { 1930 NS_ERR("write_byte: chip is disabled, ignore write\n"); 1931 return; 1932 } 1933 if (ns->lines.ale && ns->lines.cle) { 1934 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); 1935 return; 1936 } 1937 1938 if (ns->lines.cle == 1) { 1939 /* 1940 * The byte written is a command. 1941 */ 1942 1943 if (byte == NAND_CMD_RESET) { 1944 NS_LOG("reset chip\n"); 1945 ns_switch_to_ready_state(ns, NS_STATUS_OK(ns)); 1946 return; 1947 } 1948 1949 /* Check that the command byte is correct */ 1950 if (ns_check_command(byte)) { 1951 NS_ERR("write_byte: unknown command %#x\n", (uint)byte); 1952 return; 1953 } 1954 1955 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS 1956 || NS_STATE(ns->state) == STATE_DATAOUT) { 1957 int row = ns->regs.row; 1958 1959 ns_switch_state(ns); 1960 if (byte == NAND_CMD_RNDOUT) 1961 ns->regs.row = row; 1962 } 1963 1964 /* Check if chip is expecting command */ 1965 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { 1966 /* Do not warn if only 2 id bytes are read */ 1967 if (!(ns->regs.command == NAND_CMD_READID && 1968 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { 1969 /* 1970 * We are in situation when something else (not command) 1971 * was expected but command was input. In this case ignore 1972 * previous command(s)/state(s) and accept the last one. 1973 */ 1974 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, ignore previous states\n", 1975 (uint)byte, 1976 ns_get_state_name(ns->nxstate)); 1977 } 1978 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1979 } 1980 1981 NS_DBG("command byte corresponding to %s state accepted\n", 1982 ns_get_state_name(ns_get_state_by_command(byte))); 1983 ns->regs.command = byte; 1984 ns_switch_state(ns); 1985 1986 } else if (ns->lines.ale == 1) { 1987 /* 1988 * The byte written is an address. 1989 */ 1990 1991 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { 1992 1993 NS_DBG("write_byte: operation isn't known yet, identify it\n"); 1994 1995 if (ns_find_operation(ns, 1) < 0) 1996 return; 1997 1998 if ((ns->state & ACTION_MASK) && 1999 ns_do_state_action(ns, ns->state) < 0) { 2000 ns_switch_to_ready_state(ns, 2001 NS_STATUS_FAILED(ns)); 2002 return; 2003 } 2004 2005 ns->regs.count = 0; 2006 switch (NS_STATE(ns->nxstate)) { 2007 case STATE_ADDR_PAGE: 2008 ns->regs.num = ns->geom.pgaddrbytes; 2009 break; 2010 case STATE_ADDR_SEC: 2011 ns->regs.num = ns->geom.secaddrbytes; 2012 break; 2013 case STATE_ADDR_ZERO: 2014 ns->regs.num = 1; 2015 break; 2016 default: 2017 BUG(); 2018 } 2019 } 2020 2021 /* Check that chip is expecting address */ 2022 if (!(ns->nxstate & STATE_ADDR_MASK)) { 2023 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, switch to STATE_READY\n", 2024 (uint)byte, ns_get_state_name(ns->nxstate)); 2025 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2026 return; 2027 } 2028 2029 /* Check if this is expected byte */ 2030 if (ns->regs.count == ns->regs.num) { 2031 NS_ERR("write_byte: no more address bytes expected\n"); 2032 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2033 return; 2034 } 2035 2036 ns_accept_addr_byte(ns, byte); 2037 2038 ns->regs.count += 1; 2039 2040 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", 2041 (uint)byte, ns->regs.count, ns->regs.num); 2042 2043 if (ns->regs.count == ns->regs.num) { 2044 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); 2045 ns_switch_state(ns); 2046 } 2047 2048 } else { 2049 /* 2050 * The byte written is an input data. 2051 */ 2052 2053 /* Check that chip is expecting data input */ 2054 if (!(ns->state & STATE_DATAIN_MASK)) { 2055 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, switch to %s\n", 2056 (uint)byte, ns_get_state_name(ns->state), 2057 ns_get_state_name(STATE_READY)); 2058 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2059 return; 2060 } 2061 2062 /* Check if this is expected byte */ 2063 if (ns->regs.count == ns->regs.num) { 2064 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", 2065 ns->regs.num); 2066 return; 2067 } 2068 2069 if (ns->busw == 8) { 2070 ns->buf.byte[ns->regs.count] = byte; 2071 ns->regs.count += 1; 2072 } else { 2073 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); 2074 ns->regs.count += 2; 2075 } 2076 } 2077 2078 return; 2079 } 2080 2081 static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf, 2082 int len) 2083 { 2084 struct nandsim *ns = nand_get_controller_data(chip); 2085 2086 /* Check that chip is expecting data input */ 2087 if (!(ns->state & STATE_DATAIN_MASK)) { 2088 NS_ERR("write_buf: data input isn't expected, state is %s, switch to STATE_READY\n", 2089 ns_get_state_name(ns->state)); 2090 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2091 return; 2092 } 2093 2094 /* Check if these are expected bytes */ 2095 if (ns->regs.count + len > ns->regs.num) { 2096 NS_ERR("write_buf: too many input bytes\n"); 2097 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2098 return; 2099 } 2100 2101 memcpy(ns->buf.byte + ns->regs.count, buf, len); 2102 ns->regs.count += len; 2103 2104 if (ns->regs.count == ns->regs.num) { 2105 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); 2106 } 2107 } 2108 2109 static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len) 2110 { 2111 struct nandsim *ns = nand_get_controller_data(chip); 2112 2113 /* Sanity and correctness checks */ 2114 if (!ns->lines.ce) { 2115 NS_ERR("read_buf: chip is disabled\n"); 2116 return; 2117 } 2118 if (ns->lines.ale || ns->lines.cle) { 2119 NS_ERR("read_buf: ALE or CLE pin is high\n"); 2120 return; 2121 } 2122 if (!(ns->state & STATE_DATAOUT_MASK)) { 2123 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", 2124 ns_get_state_name(ns->state)); 2125 return; 2126 } 2127 2128 if (NS_STATE(ns->state) != STATE_DATAOUT) { 2129 int i; 2130 2131 for (i = 0; i < len; i++) 2132 buf[i] = ns_nand_read_byte(chip); 2133 2134 return; 2135 } 2136 2137 /* Check if these are expected bytes */ 2138 if (ns->regs.count + len > ns->regs.num) { 2139 NS_ERR("read_buf: too many bytes to read\n"); 2140 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2141 return; 2142 } 2143 2144 memcpy(buf, ns->buf.byte + ns->regs.count, len); 2145 ns->regs.count += len; 2146 2147 if (ns->regs.count == ns->regs.num) { 2148 if (NS_STATE(ns->nxstate) == STATE_READY) 2149 ns_switch_state(ns); 2150 } 2151 2152 return; 2153 } 2154 2155 static int ns_exec_op(struct nand_chip *chip, const struct nand_operation *op, 2156 bool check_only) 2157 { 2158 int i; 2159 unsigned int op_id; 2160 const struct nand_op_instr *instr = NULL; 2161 struct nandsim *ns = nand_get_controller_data(chip); 2162 2163 if (check_only) { 2164 /* The current implementation of nandsim needs to know the 2165 * ongoing operation when performing the address cycles. This 2166 * means it cannot make the difference between a regular read 2167 * and a continuous read. Hence, this hack to manually refuse 2168 * supporting sequential cached operations. 2169 */ 2170 for (op_id = 0; op_id < op->ninstrs; op_id++) { 2171 instr = &op->instrs[op_id]; 2172 if (instr->type == NAND_OP_CMD_INSTR && 2173 (instr->ctx.cmd.opcode == NAND_CMD_READCACHEEND || 2174 instr->ctx.cmd.opcode == NAND_CMD_READCACHESEQ)) 2175 return -EOPNOTSUPP; 2176 } 2177 2178 return 0; 2179 } 2180 2181 ns->lines.ce = 1; 2182 2183 for (op_id = 0; op_id < op->ninstrs; op_id++) { 2184 instr = &op->instrs[op_id]; 2185 ns->lines.cle = 0; 2186 ns->lines.ale = 0; 2187 2188 switch (instr->type) { 2189 case NAND_OP_CMD_INSTR: 2190 ns->lines.cle = 1; 2191 ns_nand_write_byte(chip, instr->ctx.cmd.opcode); 2192 break; 2193 case NAND_OP_ADDR_INSTR: 2194 ns->lines.ale = 1; 2195 for (i = 0; i < instr->ctx.addr.naddrs; i++) 2196 ns_nand_write_byte(chip, instr->ctx.addr.addrs[i]); 2197 break; 2198 case NAND_OP_DATA_IN_INSTR: 2199 ns_nand_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len); 2200 break; 2201 case NAND_OP_DATA_OUT_INSTR: 2202 ns_nand_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len); 2203 break; 2204 case NAND_OP_WAITRDY_INSTR: 2205 /* we are always ready */ 2206 break; 2207 } 2208 } 2209 2210 return 0; 2211 } 2212 2213 static int ns_attach_chip(struct nand_chip *chip) 2214 { 2215 unsigned int eccsteps, eccbytes; 2216 2217 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 2218 chip->ecc.algo = bch ? NAND_ECC_ALGO_BCH : NAND_ECC_ALGO_HAMMING; 2219 2220 if (!bch) 2221 return 0; 2222 2223 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { 2224 NS_ERR("BCH ECC support is disabled\n"); 2225 return -EINVAL; 2226 } 2227 2228 /* Use 512-byte ecc blocks */ 2229 eccsteps = nsmtd->writesize / 512; 2230 eccbytes = ((bch * 13) + 7) / 8; 2231 2232 /* Do not bother supporting small page devices */ 2233 if (nsmtd->oobsize < 64 || !eccsteps) { 2234 NS_ERR("BCH not available on small page devices\n"); 2235 return -EINVAL; 2236 } 2237 2238 if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) { 2239 NS_ERR("Invalid BCH value %u\n", bch); 2240 return -EINVAL; 2241 } 2242 2243 chip->ecc.size = 512; 2244 chip->ecc.strength = bch; 2245 chip->ecc.bytes = eccbytes; 2246 2247 NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); 2248 2249 return 0; 2250 } 2251 2252 static const struct nand_controller_ops ns_controller_ops = { 2253 .attach_chip = ns_attach_chip, 2254 .exec_op = ns_exec_op, 2255 }; 2256 2257 /* 2258 * Module initialization function 2259 */ 2260 static int __init ns_init_module(void) 2261 { 2262 struct list_head *pos, *n; 2263 struct nand_chip *chip; 2264 struct nandsim *ns; 2265 int ret; 2266 2267 if (bus_width != 8 && bus_width != 16) { 2268 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); 2269 return -EINVAL; 2270 } 2271 2272 ns = kzalloc(sizeof(struct nandsim), GFP_KERNEL); 2273 if (!ns) { 2274 NS_ERR("unable to allocate core structures.\n"); 2275 return -ENOMEM; 2276 } 2277 chip = &ns->chip; 2278 nsmtd = nand_to_mtd(chip); 2279 nand_set_controller_data(chip, (void *)ns); 2280 2281 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ 2282 /* and 'badblocks' parameters to work */ 2283 chip->options |= NAND_SKIP_BBTSCAN; 2284 2285 switch (bbt) { 2286 case 2: 2287 chip->bbt_options |= NAND_BBT_NO_OOB; 2288 fallthrough; 2289 case 1: 2290 chip->bbt_options |= NAND_BBT_USE_FLASH; 2291 fallthrough; 2292 case 0: 2293 break; 2294 default: 2295 NS_ERR("bbt has to be 0..2\n"); 2296 ret = -EINVAL; 2297 goto free_ns_struct; 2298 } 2299 /* 2300 * Perform minimum nandsim structure initialization to handle 2301 * the initial ID read command correctly 2302 */ 2303 if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF) 2304 ns->geom.idbytes = 8; 2305 else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF) 2306 ns->geom.idbytes = 6; 2307 else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF) 2308 ns->geom.idbytes = 4; 2309 else 2310 ns->geom.idbytes = 2; 2311 ns->regs.status = NS_STATUS_OK(ns); 2312 ns->nxstate = STATE_UNKNOWN; 2313 ns->options |= OPT_PAGE512; /* temporary value */ 2314 memcpy(ns->ids, id_bytes, sizeof(ns->ids)); 2315 if (bus_width == 16) { 2316 ns->busw = 16; 2317 chip->options |= NAND_BUSWIDTH_16; 2318 } 2319 2320 nsmtd->owner = THIS_MODULE; 2321 2322 ret = ns_parse_weakblocks(); 2323 if (ret) 2324 goto free_ns_struct; 2325 2326 ret = ns_parse_weakpages(); 2327 if (ret) 2328 goto free_wb_list; 2329 2330 ret = ns_parse_gravepages(); 2331 if (ret) 2332 goto free_wp_list; 2333 2334 nand_controller_init(&ns->base); 2335 ns->base.ops = &ns_controller_ops; 2336 chip->controller = &ns->base; 2337 2338 ret = nand_scan(chip, 1); 2339 if (ret) { 2340 NS_ERR("Could not scan NAND Simulator device\n"); 2341 goto free_gp_list; 2342 } 2343 2344 if (overridesize) { 2345 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; 2346 struct nand_memory_organization *memorg; 2347 u64 targetsize; 2348 2349 memorg = nanddev_get_memorg(&chip->base); 2350 2351 if (new_size >> overridesize != nsmtd->erasesize) { 2352 NS_ERR("overridesize is too big\n"); 2353 ret = -EINVAL; 2354 goto cleanup_nand; 2355 } 2356 2357 /* N.B. This relies on nand_scan not doing anything with the size before we change it */ 2358 nsmtd->size = new_size; 2359 memorg->eraseblocks_per_lun = 1 << overridesize; 2360 targetsize = nanddev_target_size(&chip->base); 2361 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; 2362 chip->pagemask = (targetsize >> chip->page_shift) - 1; 2363 } 2364 2365 ret = ns_setup_wear_reporting(nsmtd); 2366 if (ret) 2367 goto cleanup_nand; 2368 2369 ret = ns_init(nsmtd); 2370 if (ret) 2371 goto free_ebw; 2372 2373 ret = nand_create_bbt(chip); 2374 if (ret) 2375 goto free_ns_object; 2376 2377 ret = ns_parse_badblocks(ns, nsmtd); 2378 if (ret) 2379 goto free_ns_object; 2380 2381 /* Register NAND partitions */ 2382 ret = mtd_device_register(nsmtd, &ns->partitions[0], ns->nbparts); 2383 if (ret) 2384 goto free_ns_object; 2385 2386 ret = ns_debugfs_create(ns); 2387 if (ret) 2388 goto unregister_mtd; 2389 2390 return 0; 2391 2392 unregister_mtd: 2393 WARN_ON(mtd_device_unregister(nsmtd)); 2394 free_ns_object: 2395 ns_free(ns); 2396 free_ebw: 2397 kfree(erase_block_wear); 2398 cleanup_nand: 2399 nand_cleanup(chip); 2400 free_gp_list: 2401 list_for_each_safe(pos, n, &grave_pages) { 2402 list_del(pos); 2403 kfree(list_entry(pos, struct grave_page, list)); 2404 } 2405 free_wp_list: 2406 list_for_each_safe(pos, n, &weak_pages) { 2407 list_del(pos); 2408 kfree(list_entry(pos, struct weak_page, list)); 2409 } 2410 free_wb_list: 2411 list_for_each_safe(pos, n, &weak_blocks) { 2412 list_del(pos); 2413 kfree(list_entry(pos, struct weak_block, list)); 2414 } 2415 free_ns_struct: 2416 kfree(ns); 2417 2418 return ret; 2419 } 2420 2421 module_init(ns_init_module); 2422 2423 /* 2424 * Module clean-up function 2425 */ 2426 static void __exit ns_cleanup_module(void) 2427 { 2428 struct nand_chip *chip = mtd_to_nand(nsmtd); 2429 struct nandsim *ns = nand_get_controller_data(chip); 2430 struct list_head *pos, *n; 2431 2432 ns_debugfs_remove(ns); 2433 WARN_ON(mtd_device_unregister(nsmtd)); 2434 ns_free(ns); 2435 kfree(erase_block_wear); 2436 nand_cleanup(chip); 2437 2438 list_for_each_safe(pos, n, &grave_pages) { 2439 list_del(pos); 2440 kfree(list_entry(pos, struct grave_page, list)); 2441 } 2442 2443 list_for_each_safe(pos, n, &weak_pages) { 2444 list_del(pos); 2445 kfree(list_entry(pos, struct weak_page, list)); 2446 } 2447 2448 list_for_each_safe(pos, n, &weak_blocks) { 2449 list_del(pos); 2450 kfree(list_entry(pos, struct weak_block, list)); 2451 } 2452 2453 kfree(ns); 2454 } 2455 2456 module_exit(ns_cleanup_module); 2457 2458 MODULE_LICENSE ("GPL"); 2459 MODULE_AUTHOR ("Artem B. Bityuckiy"); 2460 MODULE_DESCRIPTION ("The NAND flash simulator"); 2461